青岛版八年级下册数学期末测试卷【通用】

合集下载

青岛版八年级下册数学期末测试卷【及含答案】

青岛版八年级下册数学期末测试卷【及含答案】

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、不等式组的解集在数轴上表示为()A. B. C. D.2、如图,在平面直角坐标系xOy中,平行四边形OABC的顶点O(0,0),B (3,2),点A在x轴的正半轴上.按以下步骤作图:①以点O为圆心,适当长度为半径作弧分别交边OA、OC于点M、N;②分别以点M、N为圆心,大于MN的长为半径作弧,两弧在∠AOC内交于点P;③作射线OP,恰好过点B,则点A的坐标为()A.(,0)B.(,0)C.(,0)D.(2,0)3、不等式组的解集在数轴上表示正确的是()A. B. C. D.4、如图,已知△ABC中,AB=6,AC=8,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()A.28B.36C.45D.525、如图所示,中,,将绕点A按顺时针方向旋转50°,得到,则的度数是()A.13°B.17°C.23°D.33°6、如图,为半径,点为中点,为上一点,且,若,则的长为()A. B. C. D.7、下列各式中正确的是()A. =±2B. =-3C. =2D. =38、若式子有意义,则x的取值范围是()A. x≤2B. x≥1C. x≥2D.1≤ x≤29、若a、b为实数,且-b=5,则直线y=ax-b不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限10、在中,,两直角边,,在三角形内有一点到各边的距离相等,则这个距离是()A.1B.2C.3D.411、在下列实数,π﹣3.14,3.14,,0.2 ,中无理数有()A.1个B.2个C.3个D.4个12、如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图2所示,则下列说法不正确的是()A.当x=2时,y=5B.矩形MNPQ的面积是20C.当x=6时,y=10 D.当y= 时,x=1013、在同一坐标系中,函数y= 和y=kx+1的图象大致是()A. B. C. D.14、如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶点所得的四个三角形中是相似三角形的是()A.①和②B.②和③C.①和③D.①和④15、下列计算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数(k>0)在第一象限的图象经过点E,若正方形AOBC和正方形CDEF的面积之差为6,则k=________.17、正方形ABCD的边长为1,如果将线段BD绕着点B旋转后,点D落在BC延长线上的点D1处,那么tan∠BAD1=________18、若关于x的方程=3的解为非负数,则m的取值范围是________.19、若实数a、b满足,则=________.20、如图,在中,,,点D在边上,,将沿直线翻折,使点C落在边上的点E处,若点P 是直线上的动点,则的周长的最小值是________.21、一直角三角形斜边上的中线等于5,一直角边长是6,则另一直角边长是________.22、计算:(-1)2019-(-2)0=________.23、如图,正方形ABCD的边长为10,点A的坐标为(-8,0),点B在y轴上,若反比例函数的图象过点C,则反比例函数的解析式为________ .24、已知实数x在数轴上表示为如图所示,化简=________.25、如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A⇒B⇒C所走的路程为________m.三、解答题(共5题,共计25分)26、计算:27、如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作AF∥BC交BE的延长线于点F,连结CF.试说明:四边形ADCF是平行四边形.28、如图,,,,,是直线上一动点,请你探索:当点离点多远时,是一个以为斜边的直角三角形?29、如图,在平面直角坐标系中,每个小正方形的边长为1cm,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣1,2)、(0,-1),结合所给的平面直角坐标系解答下列问题:(1)AC的长等于多少?的坐(2)画出△ABC向右平移2个单位得到的△,求A点的对应点A1标。

青岛版2024年八年级数学下册期末检测题+答案2

青岛版2024年八年级数学下册期末检测题+答案2

八年级下学期期末检测题一、选择题1、若()2x 24,x 2+=+则的平方根为( )A.16B.±16C.2D.±22、一直角三角形的斜边长比一直角边长大1,另一直角边长为4,则斜边长为( )A.4B.8C.10D.123、下列命题正确的是( )A.矩形不是平行四边形B.相似三角形不一定是全等三角形C.等腰梯形的对角线未必相等D.两直线平行,同位角不一定相等4、如图,在菱形ABCD 中,∠ADC=120°,则OD :OC 等于( )A.3:2B.3:3C.1:2D.3:15、119的估算结果应在( )之间.A 、9到10B 、10到11C 、11到12D 、12到136、如图中字母M 所代表的正方形的面积为( )A.4B.8C.16D.647、甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.2环,方差分别为20.52S =甲,20.61S =乙,20.49S =丙,45.02=丁S ,则成绩最稳定的是( )A 、甲B 、乙C 、丙D 、丁8、如图,点O 王明家的位置,他家门前有一条东西走向的公路,水塔A 位于他家北偏东60°的300米处,那么水塔所在的位置到公路的距离是( )A.150米B.1503C.1003D.15029、如图△ABC 中,AD 垂直BC 于点D,BE 垂直AC 于点E ,AD 与BE 相交于点F ,若BF=AC ,那么∠ABC 的大小是( )AB C DEFA.40°B.45°C.50°D.60° 10、如图所示,在□ABCD 中,E 为AD 中点,已知△DEF 的面积为S ,则△ABE 的面积为( )A.SB.2SC.3SD.4S11、一组数据的方差为S 2,将这组数据的每个数据都加上2,所得到的一组新数据的方差为( )A.S 2B.2+S 2C.2S 2D.4S 212、在Rt △ABC 中,各边长度都扩大10倍,则锐角B 的正弦值( )A.扩大4倍B.扩大2倍C.不变D.缩小2倍二、填空题13、已知最简二次根式a +1与a 24-是同类二次根式,则a=____________.A B C DEF14、如图,已知AB=BE ,BC=BD ,∠1=∠2,那么图中 ≌ ,AC= ,∠ABC= .15、如图E 、F 、G 、H 分别是矩形ABCD 四边上的点,EF 垂直于GH ,若AB=2,BC=3,则EF :GH=____.A B C DEFG H 16、已知正方形的面积为3,点E 为DC 边上一点,DE=1,将线段AE 绕点A 旋转,使点E 落在直线BC 上,落点记为F ,则FC 的长为___________.17、如图:直角三角形纸片ABC 中,∠ABC=90o ,AC=8,BC=6,折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E ,(1)DE 的长为_________;(2)将折叠后的图形沿直线AE 剪开,原纸片被剪成3快,其中最小一块的面积为________________.AB C DE三、解答题18、计算:222sin30tan 60cos 45︒+︒-︒19、如图所示,已知点A 、E 、F 、D 在同一条直线上,AE=DF ,BF ⊥AD ,CE ⊥AD ,垂足分别为F 、E ,BF=CE ,求证:AB ∥CD.A 2 1 DC B14EAFC EB D20、在△ABC 中,∠C=90o ,∠CAB=60°,AD 是∠BAC 的平分线,已知AB=23.求AD 的长.AB CD21、如图所示,在□ABCD 中,对角线AC 、BD 交于点O ,过点O 作直线EF ⊥BD ,分别交AD 、BC 于点E 和点F ,求证:BEDF 是菱形.A BC DE F O参考答案:1-5BCBBB 6-12DDABAAC13.1 14.略 15.3:217.4 4 18.41219.略 21.略。

青岛版八年级下册数学期末测试卷【及含答案】

青岛版八年级下册数学期末测试卷【及含答案】

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如果a为任意实数,下列各式中一定有意义的是()A. B. C. D.2、如果=2a-1,那么()A.a<B.a≤C.a>D.a≥3、下列二次根式中,是同类二次根式的组数是()① 与;② 与;③ 与;④ 与.A.1组B.2组C.3组D.4组4、如图所示,图中的一个矩形是另一个矩形顺时针方向旋转90°后形成的个数是()A.1个B.2个C.3个D.4个5、当k>0,b<0时,一次函数y=kx+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6、在实数0,﹣π,﹣4,中,最小的数是()A.0B.﹣πC.﹣4D.7、如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是( )A.2 015B.3 019.5C.3 018D.3 0248、下列根式是最简二次根式的是()A. aB.C.D.9、下列结论正确的是()A.64的立方根是±4B.﹣没有立方根C.立方根等于本身的数是0 D. =﹣10、如图图案中既是轴对称图形又是中心对称图形的是()A. B. C. D.11、在平面直角坐标系中,一次函数y=-3x+1的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限12、Rt△ABC两直角边的长分别为6cm和8cm,则连接这两条直角边中点的线段长为( )A.10cmB.3cmC.4cmD.5cm13、如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE2+PF2=PO2;④△POF∽△BNF;⑤当△PMN∽△AMP时,点P是AB的中点.其中正确的结论的个数有()个A.5B.4C.3D.214、如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加,其和是定值,则方阵中第三行三列的“数”是()30 2 sin60°22﹣3 ﹣2 ﹣sin45°0|﹣5| 6 23()﹣14()﹣1A.5B.6C.7D.815、函数y= 与y=mx﹣m(m≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.二、填空题(共10题,共计30分)16、某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=12m,半径OA=10m,则中间柱CD的高度为________m.17、试写出两个无理数 ________ 和 ________ ,使它们的和为-6.18、,,0.232332333,,中无理数有________.19、已知a2﹣12a+36与|b﹣8|互为相反数,以a、b长为直角边作直角三角形,则斜边长为________.20、比较大小:2 ________3 ,________21、我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AH,CF于点P、Q.在正方形EFGH的EH、FG两边上分别取点M,N,且MN 经过点O,若MH=3ME,BD=2MN=4 .则△APD的面积为________.22、如图,已知在△ 中,AB=4,AC=3,,将这个三角形绕点B 旋转,使点落在射线AC上的点处,点落在点处,那么________23、比较大小:5________ (填“>”、“<”或“=”)24、若x2=16,则x=________;若x3=﹣8,则x=________;的平方根是________.25、矩形的长是宽的2倍,对角线的长是5cm,则这个矩形的长是________cm.三、解答题(共5题,共计25分)26、计算:4sin60°﹣| ﹣1|+()﹣1﹣(2019﹣)0.27、解不等式组并写出该不等式组的所有非负整数解.28、在△ABC中,AD是BC边上的中线,延长AD到点E,使DE=AD,连结BE和CE,根据对角线互相平分的四边形是平行四边形,易得四边形ABEC是平行四边形.这种方法是数学证明常用的一种添辅助线的方法,叫做“加倍中线法”,请用这种方法解决下列问题:如图,在△ABC中,AB=AC,延长AB到点D,使DB=AB,E是AB的中点.求证:CD=2CE.29、某校九年级举行数学竞赛,学校准备购买甲、乙、丙三种笔记本奖励给获奖学生,已知甲种笔记本单价比乙种笔记本单价高10元,丙种笔记本单价是甲种笔记本单价的一半,单价和为80元.(1)甲、乙、丙三种笔记本的单价分别是多少元?(2)学校计划拿出不超过950元的资金购买三种笔记本40本,要求购买丙种笔记本20本,甲种笔记本超过5本,有哪几种购买方案?30、某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需要购买行李票.已知行李费y(元)是行李质量x(kg)之间的函数表达式为y=kx+b.这个函数的图象如图所示:(1)求k和b的值;(2)求旅客最多可免费携带行李的质量;(3)求行李费为4~15元时,旅客携带行李的质量为多少?参考答案一、单选题(共15题,共计45分)1、C2、D3、B4、B5、B6、C7、D8、B9、D10、D11、C12、D13、B14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

青岛版八年级下册数学期末试卷(含答案)

青岛版八年级下册数学期末试卷(含答案)

青岛版八年级下册数学期末试卷一、选择题(本大题共12个小题,共36分,每小题给出的四个选项中,只有一个选项符合题意)1.(3分)在,,0,﹣2这四个数中,为无理数的是()A.B.C.0D.﹣22.(3分)的平方根是()A.B.±C.2D.±23.(3分)下列二次根式中,最简二次根式是()A.B.C.﹣D.4.(3分)已知点A(a,1)与点B(﹣4,b)关于原点对称,则a﹣b的值为()A.﹣5B.5C.3D.﹣35.(3分)代数式+中x的取值范围在数轴上表示为()A.B.C.D.6.(3分)设a、b是直角三角形的两条直角边,若该三角形的周长为6,斜边长为2.5,则ab的值是()A.1.5B.2C.2.5D.37.(3分)如图,在平面直角坐标系xOy中,已知点A(,0),B(1,1).若平移点A 到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位B.向左平移(2﹣1)个单位,再向上平移1个单位C.向右平移个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位8.(3分)如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,E,F,G分别是AO,OB,OC的中点,且△EFG的周长为7,则▱ABCD的周长为()A.10B.15C.20D.259.(3分)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是()A.(4,5)B.(5,4)C.(4,4)D.(5,3)10.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个11.(3分)如图,在矩形ABCD中,BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则EF的长是()A.3B.C.5D.12.(3分)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小华到学校的时间是7:55D.小明跑步的平均速度是100米/分二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知不等式组的解集是2<x<3,则a+b的值是.15.(3分)如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是.16.(3分)如图,四边形ABCD是边长为9的正方形纸片,将其沿MN折叠,使点B落在CD边上的B′处,点A对应点为A′,且B′D=6,则BN的长是.17.(3分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为.三、解答题(本题共8小题,共69分,解答应写出必要的文字说明、推理过程或演算步骤)18.(7分)解下列不等式或不等式组,并把解集在数轴上表示出来:(1)﹣≥1;(2).19.(8分)计算:(1)5﹣+2;(2)(+2)+(﹣)2.20.(8分)如图,在平行四边形ABCD中,点M是边AD上的点,连接MB,MC,点N为BC边上的动点,点E,F为MB,MC上的两点,连接NE,NF,且∠BNE=∠CMD,∠BEN=∠NFC.求证:四边形MENF为平行四边形.21.(8分)在平面直角坐标系中,△ABC顶点坐标分别为:A(2,5)、B(﹣2,3)、C(0,2).线段DE的端点坐标为D(2,﹣3),E(6,﹣1).(1)线段AB先向平移个单位,再向平移个单位与线段ED重合;(2)将△ABC绕点P旋转180°后得到的△DEF,使AB的对应边为DE,直接写出点P 的坐标,并画出△DEF;(3)求点C在旋转过程中所经过的路径l的长.22.(8分)已知在四边形ABCD中,作AE∥BC交BD于O点且OB=OD,交DC于点E,连接BE,∠ABD=∠EAB,∠DBE=∠EBC.求证:四边形ABED为矩形.23.(10分)某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?24.(10分)在直角坐标系中,已知A,B是x轴上的两点,且A(6,0),AB=10,点M 是y轴上一点,连接BM,将△ABM沿过A,M的直线AM折叠,点B恰好落在y轴的点B′处.(1)求直线AB′的函数表达式;(2)求直线AM的函数表达式.25.(10分)如图,等腰三角形ABC中,AB=AC,AD平分∠BAC交BC于点D,在线段AD上任取一点P(点A除外),过点P作EF∥AB,分别交AC,BC于点E和点F,作PQ∥AC,交AB于点Q,连接QE.(1)求证:四边形AEPQ为菱形;(2)当点P在何处时,菱形AEPQ的面积为四边形EFBQ面积的一半?参考答案与试题解析一、选择题(本大题共12个小题,共36分,每小题给出的四个选项中,只有一个选项符合题意)1.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:,0,﹣2是有理数,是无理数,故选:A.2.【分析】根据计算立方根,再根据平方根的定义解答即可.【解答】解:=2,2的平方根为:,故的平方根为:,故选:B.3.【分析】根据最简二次根式的定义判断即可.【解答】解:A、=,故此选项不符合题意;B、=2,故此选项不符合题意;C、﹣是最简二次根式,故此选项符合题意;D、=|a|,故此选项不符合题意.故选:C.4.【分析】利用关于原点对称点的坐标性质得出a的值即可.【解答】解:∵点A(a,1)与点B(﹣4,b)关于原点对称,∴a=4,b=﹣1.∴a﹣b=4﹣(﹣1)=5.故选:B.5.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得3﹣x≥0且x﹣1≠0,解得x≤3且x≠1,在数轴上表示如图,故选:A.6.【分析】由该三角形的周长为6,斜边长为2.5可知a+b+2.5=6,再根据勾股定理和完全平方公式即可求出ab的值.【解答】解:∵三角形的周长为6,斜边长为2.5,∴a+b+2.5=6,∴a+b=3.5,①∵a、b是直角三角形的两条直角边,∴a2+b2=2.52,②由②得a2+b2=(a+b)2﹣2ab=2.52∴3.52﹣2ab=2.52ab=3,故选:D.7.【分析】过点B作BH⊥OA,交OA于点H,利用勾股定理可求出OB的长,进而可得点A向左或向右平移的距离,由菱形的性质可知BC∥OA,所以可得向上或向下平移的距离,问题得解.【解答】解:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作BH⊥x轴于H,∵B(1,1),∴OB==,∵A(,0),∴C(1+,1)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,故选:D.8.【分析】由平行四边形的性质得出OA=OC,AB=CD,AD=BC,由三角形中位线定理可得出EF=AB,FG=BC,求出EG=2,则可求出EF+FG,可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵E,F,G分别是AO,OB,OC的中点,∴EG=AC,EF=AB,FG=BC,∵AC=4,∴EG=2,∵△EFG的周长为7,∴EF+FG=7﹣2=5,∴AB+BC=2EF+2FG=2×(EF+FG)=2×5=10,∴▱ABCD的周长为2AB+2BC=2×10=20.故选:C.9.【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故选:B.10.【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.11.【分析】由折叠可得BF=AB=6,AE=EF,可求DF=4,根据勾股定理可求EF的长.【解答】解:∵四边形ABCD是矩形∴AB=CD=8,∠A=90°∵AB=6,AD=8∴BD==10∵将△ABE沿BE折叠,使点A恰好落在对角线BD上F处∴AB=BF=6,AE=EF,∠A=∠BFE=90°∴DF=4Rt△DEF中,DE2=EF2+DF2(8﹣AE)2=AE2+16∴AE=3即EF=3故选:A.12.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A.由图象可知,小明吃早餐用时13﹣8=5(分钟),此选项不合题意;B.小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项不合题意;C.小华到学校的时间是7:53,此选项符合题意;D.小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项不合题意;故选:C.二、填空题(本题共5小题,每小题3分,满分15分,只要求填写最后的结果)13.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.14.【分析】根据不等式组的解集即可得出关于a、b而愿意方程组,解方程组即可得出a、b值,将其代入计算可得.【解答】解:解不等式x+1<2a,得:x<2a﹣1,解不等式x﹣b>1,得:x>b+1,所以不等式组的解集为b+1<x<2a﹣1,∵不等式组的解集为2<x<3,∴b+1=2、2a﹣1=3,解得:a=2、b=1,∴a+b=3,故答案为:3.15.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故答案为:x<﹣116.【分析】由正方形的性质得出BC=CD=9,则B'C=3,由折叠的性质得出BN=B'N,设BN=x,由勾股定理列出方程可得出答案.【解答】解:∵四边形ABCD是正方形,∴BC=CD=9,∵B'D=6,∴B'C=3,∵将四边形ABCD沿MN折叠,使点B落在CD边上的B′处,∴BN=B'N,设BN=x,∵B'N2=B'C2+CN2,∴x2=32+(9﹣x)2,∴x=5.故答案为5.17.【分析】根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.【解答】解:作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故答案为(﹣,0).三、解答题(本题共8小题,共69分,解答应写出必要的文字说明、推理过程或演算步骤)18.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去分母,得:3x﹣2(x﹣1)≥6,去括号,得:3x﹣2x+2≥6,移项,得:3x﹣2x≥6﹣2,合并同类项,得:x≥4,表示在数轴上如下:(2)解不等式5x﹣7<3(x+1),得:x<5,解不等式x﹣1≥7﹣x,得:x≥4,∴不等式组的解集为4≤x<5,表示在数轴上如下:19.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)根据二次根式的乘法法则和完全平方公式计算.【解答】解:(1)原式=﹣2+6=5;(2)原式=+2×6+6﹣2+3=6+12+6﹣6+3=21.20.【分析】由平行四边形的性质得AD∥BC,则∠MCB=∠CMD,再证EN∥MC,得∠NFC =∠ENF,然后证NF∥MB,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠MCB=∠CMD,∵∠BNE=∠CMD,∴∠BNE=∠MCB,∴EN∥MC,∴∠NFC=∠ENF,∵∠BEN=∠NFC,∴∠BEN=∠ENF,∴NF∥MB,∴四边形MENF为平行四边形.21.【分析】(1)直接利用平移的性质得出平移规律即可;(2)利用旋转的性质得出对应点位置进而得出答案;(3)利用弧长公式进而求出答案.【解答】解:(1)AB先向右平移4个单位,再向下平移6个单位与ED重合;故答案为:右,4,下,6;(2)如图所示:P(2,1),画出△DEF;(3)点C在旋转过程中所经过的路径长l=.22.【分析】证OA=OB,OE=OB,则OA=OE,再由OB=OD,得四边形ABED是平行四边形,然后证AE=BD,即可得出结论.【解答】证明:∵∠ABD=∠EAB,∴OA=OB,∵AE∥BC,∴∠AEB=∠EBC,∵∠DBE=∠EBC,∴∠AEB=∠DBE,∴OE=OB,∴OA=OE,∵OB=OD,∴四边形ABED是平行四边形,∵OA=OB,OA=OE,∴OA=OE=OB=OD,∴AE=BD,∴平行四边形ABED为矩形.23.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司5月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的运输费为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.24.【分析】(1)由题知,AB沿AM翻转到AB′,可通过折叠的性质推出,线段AB=AB′=10,利用勾股定理即可求得B′的坐标,然后根据待定系数法即可求得AB′的解析式;(2)利用勾股定理求出点M坐标,然后根据待定系数法即可求得直线AM的解析式.【解答】解:(1)∵A(6,0),AB=10,∴OA=6,AB′=10,∵AB′2=AO2+B′O2∴OB′=8,∴B′(0,±8),设直线AB′的解析式为y=kx±8,把A(6,0)代入得,0=6k±8,∴k=﹣或,∴直线AB′的函数表达式为y=﹣x+8或y=x﹣8;(2)在△MOB中,设OM=a,则MB=OB′﹣MO=8﹣a,∵AB=10,OA=6,∴OB=4,∴OB2=MB2﹣MO2即16=(8﹣a)2﹣a2,∴a=3,M(0,±3),设直线MA的解析式为y=kx+b,∴或,解得:或,∴直线AM的解析式为:y=﹣x+3或y=x﹣3.25.【分析】(1)先证出四边形AEPQ为平行四边形,关键是找一组邻边相等,由AD平分∠BAC和PE∥AQ可证∠EAP=∠EP A,得出AE=EP,即可得出结论;(2)S菱形AEPQ=EP•h,S平行四边形EFBQ=EF•h,若菱形AEPQ的面积为四边形EFBQ面积的一半,则EP=EF,因此P为EF中点时,S菱形AEPQ=S四边形EFBQ.【解答】(1)证明:∵EF∥AB,PQ∥AC,∴四边形AEPQ为平行四边形,∴∠BAD=∠EP A,∵AB=AC,AD平分∠CAB,∴∠CAD=∠BAD,∴∠CAD=∠EP A,∴EA=EP,∴四边形AEPQ为菱形.(2)解:P为EF中点,即AP=AD时,S菱形AEPQ=S四边形EFBQ∵四边形AEPQ为菱形,∴AD⊥EQ,∵AB=AC,AD平分∠BAC,∴AD⊥BC,∴EQ∥BC,又∵EF∥AB,∴四边形EFBQ为平行四边形.作EN⊥AB于N,如图所示:则S菱形AEPQ=EP•EN=EF•EN=S四边形EFBQ.。

青岛版八年级下册数学期末测试卷及含答案(全优)

青岛版八年级下册数学期末测试卷及含答案(全优)

青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、关于x的一元一次不等式+2≤的解为()A.x≤B.x≥C.x≤D.x≥2、下列计算正确的是()A. B. C. D.3、下列y关于x的函数中,是正比例函数的为()A.y=x 2B.y=C.y=D.y=4、一次函数y=kx+b的图象经过(m,1)、(-1,m),其中m>1,则k、b ( )A.k>0且b<0B.k>0且b>0C.k<0且b<0D.k<0且b>05、下列二次根式中能与合并的二次根式的是()A. B. C. D.6、在同一直角坐标系中,函数y=ax2+b与y=ax+b(a,b都不为0)的图象的相对位置可以是( )A. B. C. D.7、下列各组数据中能作为直角三角形的三边长的是()A.1,1,B.6,8,11C.3,4,5D.1,3,8、下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.9、下列图案中是中心对称图形但不是轴对称图形的是()A. B. C.D.10、不等式组的解集在数轴上表示正确的是()A. B. C. D.11、如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PMN的面积;③△PAB的周长;④∠APB的大小;⑤直线MN,AB之间的距离.其中会随点P的移动而不改变的是()A.①②③B.①②⑤C.②③④D.②④⑤12、如图,点、、、、都在方格子的格点上,若是由绕点按顺时针方向旋转得到的,则旋转的角度为( )A.60°B.135°C.45°D.90°13、如图,在正方形ABCD纸片上有一点P,PA=1,PD=2,PC=3,现将△PCD 剪下,并将它拼到如图所示位置(C与A重合,P与G重合,D与D重合),则∠APD的度数为()A.150°B.135°C.120°D.108°14、不等式组的解集是()A. x>4B.﹣2<x<0C.﹣2<x<4D.无解15、若二次根式有意义,则X的取值范围为()A.x≠1B.x≥1C.x<lD.全体实数二、填空题(共10题,共计30分)16、一个三角形的三边分别是、1、,这个三角形的面积是________.17、如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP 绕点A顺时针旋转后与△ACP1重合,如果AP=5,那么线段PP1的长等于________.18、已知:如图,四边形ABCD中,AB=BC=1,CD= ,AD=1,且∠B=90°.则四边形ABCD的面积为________.(结果保留根号)19、一次函数的图象不经过第________象限.20、如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒,连接DE,当△BDE是直角三角形时,t的值________.21、如图,在Rt△ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的大小为________.22、点M是直线y=2x+3上的动点,过点M作MN⊥x轴于点N,当点M位于第二象限时,在y轴上有一点P,使△MNP为等腰直角三角形,则点P的坐标为________ .23、如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是________.24、如图,在直角坐标系中,的圆心A的坐标为,半径为1,点P 为直线上的动点,过点P作的切线,切点为Q,则切线长PQ 的最小值是________.25、如图,正方形ABCD的面积为2 cm2,对角线交于点O1,以AB、AO1为邻边做平行四边形AO1C1B,对角线交于点O2,以AB、AO2为邻边做平行四边形AO2C2B,…,以此类推,则平行四边形AO6C6B的面积为________cm2.三、解答题(共5题,共计25分)26、计算①3 ﹣| |②.27、商店以7元/件的进价购入某种文具1 000件,按10元/件的售价销售了500件.现对剩下的这种文具降价销售,如果要保证总利润不低于2 000元,那么剩下的文具最低定价是多少元?28、嘉嘉参加机器人设计活动,需操控机器人在5×5的方格棋盘上从A点行走至B点,且每个小方格皆为正方形,主办单位规定了三条行走路径R1, R2,R3,其行经位置如图与表所示:路径编号图例行径位置第一条路径R1A→C→D→B第二条路径R2A→E→D→F→B第三条路径R3A→G→B已知A、B、C、D、E、F、G七点皆落在格线的交点上,且两点之间的路径皆为直线,在无法使用任何工具测量的条件下,请判断R1、R2、R3这三条路径中,最长与最短的路径分别为何?请写出你的答案,并完整说明理由.29、在△ABC中,若AC=15,BC=13,AB边上的高CD=12,求△ABC的周长.30、解不等式组,并将它的解集表示在如图所示的数轴上.参考答案一、单选题(共15题,共计45分)1、D2、D3、C4、D5、C7、C8、B9、C10、A11、B12、D13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

青岛版八年级下册数学期末测试卷及含答案(完整版)

青岛版八年级下册数学期末测试卷及含答案(完整版)

青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,已知两直线l1:y=x和l2:y=kx﹣5相交于点A(m,3),则不等式x≥kx﹣5的解集为()A.x≥6B.x≤6C.x≥3D.x≤32、如图,菱形ABCD的面积为96,正方形AECF的面积为72,则菱形的边长为()A.10B.12C.8D.163、64的立方根是()A.±8B.±4C.8D.44、实数,在数轴上的位置如图所示,则下列结论正确的是()A. B. C. D.5、如图,在菱形ABCD中,E,F分别是AB,AC的中点,如果EF=2,那么菱形ABCD周长是( )A.4B.8C.12D.166、某储运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往青岛,这列货车可挂两种不同规格的货厢50节.已知甲种货物35吨和乙种货物15吨可装满一节型货厢,甲种货物25吨和乙种货物35吨可装满一节型货厢,按此要求安排两种货厢的节数,有几种运输方案()A.1种B.2种C.3种D.4种7、如图,等腰直角三角形ABC的直角边AB的长为6cm,将△ABC绕点A逆时针旋转15°后得到△AB′C′,AC与B′C′相交于点H,则图中△AHC′的面积等于()A.12﹣6B.14﹣6C.18﹣6D.18+68、下列说法中,错误的是()A.有一条对角线平分一个内角的平行四边形是菱形B.对角线互相垂直且平分的四边形是菱形C.一条对角线平分另一条对角线的四边形是平行四边形D.三角形的一条中位线与第三边上的中线互相平分9、若a>b,则不等式的解集为()A.x≤bB.x<aC.b≤x<aD.无解10、如图,在矩形ABCD中,F是BC中点,E是AD上一点,且∠ECD=30º,∠BEC=90º,EF=4cm,则矩形的面积为( )cm2.A.16B.C.D.3211、如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为()A. B.2 C.2 D.12、不等式组的解集在数轴上表示正确的是A. B.C.D.13、已知四边形ABCD是平行四边形,若要使它成为正方形,则应增加的条件是()A.AC⊥BDB.AC=BDC.AC=BD且AC⊥BDD.AC平分∠BAD14、如图所示,平移后得到,已知,,则()A. B. C. D.15、8的立方根是()A. 4B.2C.±2D.-2二、填空题(共10题,共计30分)16、若实数a、b满足,则=________.17、如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的点F处,已知AD=10,AB=6,则FC的长是________.18、将函数y=x2﹣x﹣2的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的图形是函数y=|x2﹣x﹣2|的图象,已知过点D(0,4)的直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为________.19、对于实数a,b,我们定义符号max{a,b},其意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若y关于x的函数关系式为:y=max{x+3,﹣x+1},则该函数y的最小值是________.20、如图,在一次测绘活动中,某同学站在点A处观测停放于B、C两处的小船,测得船B在点A北偏东75°方向150米处,船C在点A南偏东15°方向120米处,则船B与船C之间的距离为________米(精确到0.1 ).21、如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y 轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为________.22、如图,是一块钜形的场地,长=101米,宽=52米,从A、B两处入口的中路宽都为1米,两小路汇合处路口宽为2米,其余部分种植草坪面积为________米223、如图,在边长为8的菱形ABCD中,∠BAD=45°,BE⊥AD于点E,以B为圆心,BE为半径画弧,分别交AB、CB于点F、G,则图中阴影部分的面积为________(结果保留π)24、丁丁参加了一次智力竞赛,共回答了30道题,题目的评分标准是这样的:答对一题加5分,一题答错或不答倒扣1分.如果在这次竞赛中丁丁的得分要超过100分,那么他至少要答对________题.25、如图,∠A=15°,∠C=90°,DE垂直平分AB交AC于E,若BC=4cm,则AC=________cm.三、解答题(共5题,共计25分)26、计算:+ ﹣+3 ×.27、(1)计算:;(2)已知x=+1,y=﹣1,求代数式x2﹣y2的值.28、物理学中的自由落体公式:S= gt2, g是重力加速度,它的值约为10米/秒2,若物体降落的高度S=125米,那么降落的时间是多少秒?29、如图,修公路遇到一座山,于是要修一条隧道.为了加快施工进度,想在小山的另一侧同时施工.为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量∠ABD=135°,BD=800米,求直线L上距离D点多远的C处开挖?(≈1.414,精确到1米)30、如图,在△ABC中AC=BC,D,E,F分别是AB,AC,BC的中点,连接DE,DF.求证:四边形DFCE是菱形.参考答案一、单选题(共15题,共计45分)1、B2、A3、D4、D5、D6、C7、C8、C9、A10、C11、B12、A13、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

【完整版】青岛版八年级下册数学期末测试卷

【完整版】青岛版八年级下册数学期末测试卷

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、若式子有意义,则x的取值范围为()A.x≤2B.x≤2且x≠1C.x≥2D.x≥12、不等式组的所有整数解是( )A.-1,0B.-2,-1C.0,1D.-2,-1,03、如图是一只鱼,将图案平移后得到的是()A. B. C. D.4、已知P1(x1, y1),P2(x2, y2)是一次函数y=﹣x+2图象上的两点,下列判断中,正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y25、若一次函数的图象经过,两点,则的值为()A. B. C. D.6、在实数,π,,3.5,,0,3.02002,中,无理数共有()A.4个B.5个C.6个D.7个7、下列各式计算错误的是( )A. B. C.D.8、下列函数是y关于x的二次函数的是()A. B. C. D.9、八年级某班级部分同学去植树,若每人平均植树7课,还剩9棵,若每人平均植树9棵,则有1位同学植树的棵数不到8棵.若设同学人数为x人,植树的棵数为(7x+9)棵,下列各项能准确地求出同学人数与种植的树木的数量的是()A.7x+9≤8+9(x﹣1)B.7x+9≥9(x﹣1)C.D.10、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.11、如果a=(-99)0,b=(-0.1)-1, c=(-)-2,那么a、b.c 三数的大小关系为()A.a>c>bB.c>a>bC.a>b>cD.c>b>a12、如图,将△ABC向右平移得到△DEF,已知A,D两点的距离为1,CE=2,则BF的长为()A.5B.4C.3D.213、如图所示,数轴上点A所表示的数为,则的值是( )A. B. C. D.14、在计算器上按键显示的结果是()A.3B.-3C.-1D.115、实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.a﹣c>b﹣cB.a+c<b+cC.ac>bcD.二、填空题(共10题,共计30分)16、如图,将周长为10的△ABC沿BC方向平移1个单位得到△DEF,则四边形ABFD的周长为________.17、已知+=y+4,则y x的值为________ .18、如果0<a<1,那么a,1和的大小关系(用“<”连接)是________.19、点(-2,3)关于原点对称的点的坐标是________20、已知一个矩形的对角线的长为4,它们的夹角是60°,则这个矩形的较短的边长为________,面积为 ________.21、如图,直线l是四边形ABCD的对称轴,请再添加一个条件:________,使四边形ABCD成为菱形(不再标注其它字母)。

青岛版八年级下册数学期末测试卷及含答案(名师推荐)(黄金题型)

青岛版八年级下册数学期末测试卷及含答案(名师推荐)(黄金题型)

青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知,下列不等式中,变形正确的是().A. B. C. D.2、的平方根是()A.4B.±4C.±2D.23、如图,在6个边长为1的小正方形及其部分对角线构成的图形中,如图从A 点到B点只能沿图中的线段走,那么从A点到B点的最短距离的走法共有()A.1种B.2种C.3种D.4种4、老王以每kg0.8元的价格从批发市场购进若干kg西瓜到市场销售,在销售了部分西瓜后,余下的每kg降价0.2元,全部售完,销售金额与卖瓜的kg数之间的关系如图所示,那么老王赚了()A.32元B.36元C.38元D.44元5、下面各组数是三角形三边长,其中为直角三角形的是()A.8,12,15B.5,6,8C.8,15,17D.10,15,206、如图,在中,直径,于点,点M为线段上一个动点,连接CM、DM,并延长DM与弦交于点,设线段的长为,的面积为,则下列图象中,能表示与的函数关系的图象大致是()A. B. C.D.7、下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为()①②③④A.42B.46C.68D.728、下列各式中正确的是()A. =﹣5B.﹣=﹣3C.(﹣)2=4D. ﹣=39、下列说法正确的是()A.﹣4是﹣16的平方根B.4是(﹣4)2的平方根C.(﹣6)2的平方根是﹣6D. 的平方根是±410、在⊙O中,弦AB的长为8,圆心O到AB的距离为3,若OP=4,则点P与⊙O的位置关系是()A.P在⊙O内B.P在⊙O上C.P在⊙O外D.P与A或B重合11、如图,将一块长方形纸片ABCD沿BD翻折后,点C与E重合,若∠ADE = 30°,EH = 2,则BC的长度为()A.8B.7C.6.5D.612、在△ABC中,BC=5,AC=4,AB=3,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A+∠B=90°13、在实数,0,,,,3.121121112…(每两个2之间依次多一个1)中无理数的个数有( ).A.5个B.4个C.3个D.2个14、若代数式有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x 0D.x≥0且x≠115、如图,在平行四边形ABCD中,∠C=120°,AD=2AB=4,点H、G分别是边CD、BC上的动点.连接AH、HG,点E为AH的中点,点F为GH的中点,连接EF,则EF的最大值与最小值的差为()A.1B. ﹣1C.D.2﹣二、填空题(共10题,共计30分)16、把下列各数填在相应的表示集合的大括号内:,﹣0. ,﹣(﹣2),﹣,1.732,,0,,1.1010010001…(每两个1之间依次多一个0)整数{________…}正分数{________…}无理数{________…}实数 {________…}.17、已知正三角形的边心距为,那么它的边长为________.18、在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为________.19、如图,平行四边形ABCD中,对角线AC,BD相交于点O,点E是CD的中点,则△ODE与△AOB的面积比为________.20、如图,在菱形ABCD中,E是AB的中点,且DE⊥AB,AB=10,则∠ABC=________,对角线AC的长为________.21、若式子在实数范围内有意义,则a的取值范围是________.22、已知2a-1的平方根是±3,3a+b-1的立方根是4,则a+2b=________.23、在Rt△ABC中,∠C=90°,cosB=0.6,把这个直角三角形绕顶点C旋转后得到Rt△A'B'C,其中点B'正好落在AB上,A'B'与AC相交于点D,那么B′D:CD=________.24、已知菱形ABCD的边长为5cm,对角线BD的长为6cm,菱形的面积为________ cm²25、知,,则的值为________.三、解答题(共5题,共计25分)26、已知:2m+2的平方根是±4;3m+n的立方根是-1,求:2m-n的算术平方根.27、如图,字母b的取值如图所示,化简|b-2|+.28、已知3既是(x-1)的算术平方根,又是(x-2y+1)的立方根,求x2-y2的平方根.29、解不等式组并在数轴上表示出它的解集.30、已知如图,四边形ABCD中,,,,,.求这个四边形的面积.参考答案一、单选题(共15题,共计45分)1、C2、C3、C4、C5、C6、A7、C8、B9、B10、A11、D12、A13、C14、B15、C二、填空题(共10题,共计30分)17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

青岛版八年级下册数学期末测试卷(全国通用)

青岛版八年级下册数学期末测试卷(全国通用)

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图所示,点B,D在数轴上,OB=3,OD=BC=1,,以D为圆心,DC长为半径画弧,与数轴正半轴交于点A,则点A表示的实数是()A. B. C. D.2、等边三角形的一边长为6cm,则以这边上高线为边长的正方形的面积为()A.36cm 2B.27cm 2C.18cm 2D.12cm 23、如图,直线y=kx和y=ax+4交于A(1,k),则不等式kx﹣6<ax+4<kx 的解集为()A.1<x<B.1<x<3C.﹣<x<1D. <x<34、下列计算正确的是( )A. B. C. D.5、下列判断:①立方根等于它本身的数是0和1;②任何非负数都有两个平方根;③算术平方根不可能是负数;④任何有理数都有立方根,它不是正数就是负数;⑤不带根号的数都是有理数;其中错误的有().A.2个B.3个C.4个D.5个6、下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式﹣2x<8的解集是x<﹣4 C.不等式x>﹣5的负整数解是有限个 D.﹣40是不等式2x<﹣8的一个解7、点A(3,m)、B(2,n)都在直线y=-4x+3上,则m、n关系是()A.m>nB.m<nC.m=nD.不能确定8、下列各式中,正确的是()A. B. C. D.9、满足下列条件的△ABC,不是直角三角形的是()A.b 2=a 2﹣c 2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=3:4:510、如图,平行四边形ABCD的一边AB∥y轴,顶点B在x轴上,顶点A,C在双曲线y1=(k1>0,x>0)上,顶点D在双曲线y2=(k2>0,x>0)上,其中点C的坐标为(3,1),当四边形ABCD的面积为时,k2的值是()A.7.5B.9C.10.5D.2111、如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5mB.12mC.13mD.18m12、已知a<b,则下列不等式一定成立的是( )A. B. C. D.13、下列各组线段中的三个长度:①9,12,15;②7,24,25;③32, 42,52;④3a,4a,5a(a>0);⑤m2﹣n2, 2mn,m2+n2(m,n为正整数,且m>n)其中可以构成直角三角形的有()A.5组B.4组C.3组D.2组14、下列实数中,属于无理数的是()A. B. C. D.15、如果1﹣x是负数,那么x的取值范围是()A.x>0B.x<0C.x>1D.x<1二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,……,依次进行下去,若点A(,0),B(0,2),则点B2019的坐标为________.17、已知菱形的周长为20㎝,两条对角线的比为3:4,则菱形的面积为________.18、正方形ABCD中,E为DC边上一点,且DE=1,将AE绕点E逆时针旋转90度,得到EF,连接AF,FC,则FC=________.19、再下列各题中的空格处,填上适当的不等号:(1)________ ;(2)(﹣1)2________ (﹣2)2;(3)|﹣a|________ 0;(4)4x2+1________ 0;(5)﹣x2________ 0;(6)2x2+3y+1________ x2+3y.20、如图,把△PQR沿着PQ的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR面积的一半,若PQ=,则此三角形移动的距离PP′=________.21、如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O'A',则点A的对应点A'的坐标为________。

(典型题)青岛版八年级下册数学期末测试卷

(典型题)青岛版八年级下册数学期末测试卷

青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、下列各式中,正确的是()A. =±5B.± =4C. =﹣4D. =﹣32、下图可以看作是一个等腰直角三角形旋转若干次而生成的,则每次旋转的度数可以是()A. B. C. D.3、若式子有意义,则一次函数的图象可能是()A. B. C.D.4、已知不等式组其解集在数轴上表示正确的是()A. B. C.D.5、以下列各组数为三角形的三边,能构成直角三角形的是A.4,5,6B.1,1,C.6,8,11D.5,12,236、若a>b,则下列不等式变形错误的是()A.a+1>b+1B. >C.4﹣3a>4﹣3bD.3a﹣4>3b﹣4(3,0),按同样的方式平移直线y=-7、通过平移把点A(1,-3)移到点A12x-3得到y=kx+b,则k,b的值分别为()A.k=-2,b=-4B.k=2,b=2C.k=-2,b=-2D.k=-2,b=48、下列手机软件图标中,属于中心对称的是()A. B. C. D.9、一个直角三角形的面积是30,其两直角边的和是17,则其斜边长为( )A.17B.26C.30D.1310、不等式2x﹣7<5﹣2x的非负整数解有()A.1个B.2个C.3个D.4个11、若反比例函数的图象过点(﹣2,1),则一次函数y=kx﹣k的图象过A.第一、二、四象限B.第一、三、四象限C.第二、三、四象限 D.第一、二、三象限12、已知a<b,下列式子不成立的是()A.a+1<b+1B.3a<3bC.﹣a>﹣ bD.如果c<0,那么<13、一矩形两对角线之间的夹角有一个是60°,且这角所对的边长5cm,则对角线长为()A.5cmB.10cmC.5 cmD.无法确定14、若以一个二元一次方程组中的两个方程作为一次函数画图象,所得的两条直线相交,则此方程组()A.无解B.有唯一解C.有无数个解D.以上都有可能15、下列说法正确的是()A.无限小数都是无理数B.9的平方根是3C.平方根等于本身的数是0 D.数轴上的每一个点都对应一个有理数二、填空题(共10题,共计30分)16、已知一次函数的图象不经过第三象限,则的取值范围是________.17、如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,则关于x的不等式x+b>kx﹣1的解集________.18、如图,小亮为了测量校园里教学楼的高度,他站在离教学楼的处仰望教学楼顶部仰角为.已知小亮的高度是则教学楼的高度约为________ 结果精确到.19、写出的一个有理化因式:________.20、如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为________cm2.(结果保留π)21、如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为________22、如图,△ABC,∠ACB=90°,点D,E分别在AB,BC上,AC=AD,∠CDE=45°,CD与AE交于点F,若∠AEC=∠DEB,CE= ,则CF=________23、如图,在矩形中,,,点是边上一点,连接,将沿折叠,使点落在点处.当为直角三角形时,________.24、已知:如图,在△ABC中,∠B=30°,∠C=45°,AC=2,求:(1)AB的长为________(2)S=________△ABC25、如图,菱形的边长为4,,分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点,直线交于点,连接,则的长为________.三、解答题(共5题,共计25分)26、解不等式组:.27、已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.28、先化简(1﹣)÷•,从﹣1,1,0,中选一个适当的数作为x,再求值.29、阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n个数可以用[ ﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.30、已知:如图,矩形ABCD,点E是BC上一点,连接AE,AF平分∠EAD交BC 于F.求证:AE=EF.参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、D5、B6、C7、D8、C9、D10、C11、A12、D13、B14、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

青岛版八年级下册数学期末测试卷
一、单选题(共15题,共计45分)
1、若平行四边形的一边长为2,面积为,则此边上的高介于( )
A.3与4之间
B.4与5之间
C.5与6之间
D.6与7之间
2、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家妈妈8:30从家出发,乘车沿相同路线去姥姥家在同一直角坐标系中,小亮和妈妈的行进路程与北京时间的函数图象如图所示,根据图象得到如下结论,其中错误的是()
A.9:00妈妈追上小亮
B.妈妈比小亮提前到达姥姥家
C.小亮骑自行车的平均速度是
D.妈妈在距家13km处追上小亮
3、下列说法中正确的是()
A.平移和旋转都不改变图形的形状和大小
B.任意多边形都可以进行镶嵌
C.有两个角相等的四边形是平行四边形
D.对角线互相垂直的四边形是菱形
4、如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()
A.50
B.50
C.50 -50
D.50 +50
5、如图,将绕点逆时针旋转得到点的对应点分别为则的长为()
A. B. C. D.
6、下列命题中:真命题的个数是()
①两条对角线互相平分且相等的四边形是正方形;
②菱形的一条对角线平分一组对角;
③顺次连结四边形各边中点所得的四边形是平行四边形;
④两条对角线互相平分的四边形是矩形;
⑤平行四边形对角线相等.
A.1
B.2
C.3
D.4
7、对于一次函数y=x+6,下列结论错误的是()
A.函数值随自变量增大而增大
B.函数图象与两坐标轴围成的三角形面积为18.
C.函数图象不经过第四象限
D.函数图象与x轴交点坐标是(0,﹣6)
8、关于的不等式只有2个正整数解,则的取值范围为
A. B. C. D.
9、的立方根是()
A.8
B.2
C.4
D.±4
10、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是()

A.(-4,3)
B.(-3,4)
C.(3,-4)
D.(4,-3)
11、下列选项中,对任意实数a都有意义的二次根式是()
A. B. C. D.
12、下列运算错误的是()
A. B. C. D.
13、在实数,,,中,最大的数是()
A. B. C. D.
14、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )
A.甲的速度是4km/h
B.乙的速度是10km/h
C.乙比甲晚出发
1h D. 甲比乙晚到B地3h
15、一次函数y=-3x-2的图象不经过()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
二、填空题(共10题,共计30分)
16、如图,三角形DEF是三角形ABC沿射线BC平移的得到的,BE=2,DE与AC 交于点G,且满足DG=2GE.若三角形CEG的面积为1,CE=1,则点G到AD的距离为________.
17、不等式组的解集为________.
18、的平方根是________,已知一个数的平方是,则这个数的立方是
________.
19、如图,在平面直角坐标系中,▱ABCD的顶点B位于y轴的正半轴上,顶点C,D位于x轴的负半轴上,双曲线y=(k<0,x<0)与▱ABCD的边AB,AD
交于点E、F,点A的纵坐标为10,F(﹣12,5),把△BOC沿着BC所在直线翻折,使原点O落在点G处,连接EG,若EG∥y轴,则△BOC的面积是
________.
20、等腰三角形底边长10cm,周长为36cm,则一底角的正切值为________
21、如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为________.
22、在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的面积为
________.
23、如图,在Rt△ABC中,∠ACB = 90°,,点D、E分别在边AB上,且AD = 2,∠DCE = 45°,那么DE =________.
24、如图,折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处,已知CD=1,∠B=30°,则AC的长是________.
25、如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,则△AB′C的面积为________
三、解答题(共5题,共计25分)
26、解不等式组:.
27、如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.
28、解不等式组,并把它的解集在数轴上表示出来.
29、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,且DE∥AC,AE∥BD.求OE的长.
30、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.若AB=6,AD=12,BE=8,求:DF的长,以及四边形DCEF的面积。

参考答案
一、单选题(共15题,共计45分)
1、B
2、D
3、A
4、D
5、B
6、B
7、D
8、C
9、B
10、A
11、C
12、A
13、B
15、A
二、填空题(共10题,共计30分)
16、
17、
18、
19、
20、
21、
22、
23、
24、
25、
三、解答题(共5题,共计25分)
26、
28、
29、
30、。

相关文档
最新文档