公比为2的等比数列

合集下载

人教新课标版数学高二B必修5学案 2.3.2 等比数列的前n项和(一)

人教新课标版数学高二B必修5学案 2.3.2 等比数列的前n项和(一)

2.3.2 等比数列的前n 项和(一)明目标、知重点 1.掌握等比数列的前n 项和公式及公式证明思路.2.会用等比数列的前n 项和公式解决有关等比数列的一些简单问题.1.等比数列前n 项和公式:(1)公式:S n =⎩⎪⎨⎪⎧a 1(1-q n)1-q =a 1-a n q 1-q (q ≠1)na 1(q =1). (2)注意:应用该公式时,一定不要忽略q =1的情况. 2.等比数列前n 项和公式的变式若{a n }是等比数列,且公比q ≠1,则前n 项和S n =a 11-q (1-q n )=A (q n -1).其中A =a 1q -1.3.错位相减法推导等比数列前n 项和的方法叫错位相减法.一般适用于求一个等差数列与一个等比数列对应项积的前n 项和.国际象棋起源于古代印度.相传国王要奖赏象棋的发明者,问他想要什么.发明者说:“请在象棋的第一个格子里放1颗麦粒,第二个格子放2颗麦粒,第三个格子放4颗麦粒,以此类推,每个格子放的麦粒数都是前一个格子的两倍,直到第64个格子.请给我足够的麦粒以实现上述要求”.国王觉得这个要求不高,就欣然同意了.假定千粒麦子的质量为40 g ,据查目前世界年度小麦产量约6亿 t ,根据以上数据,判断国王是否能实现他的诺言. 探究点一 等比数列前n 项和公式的推导思考1 在情境导学中,如果把各格所放的麦粒数看成是一个数列,那么这个数列是怎样的一个数列?通项公式是什么?答 所得数列为1,2,4,8,…,263.它是首项为1,公比为2的等比数列,通项公式为a n =2n -1. 思考2 在情境导学中,国王能否满足发明者要求的问题,转化为数列的怎样的一个问题? 答 转化为求通项为a n =2n-1的等比数列前64项的和.思考3 类比求等差数列前n 项和的方法,能否用倒序相加法求数列1,2,4,8,…,263的和?为什么?答 不能用倒序相加法,因为对应各项相加后的和不相等.思考4 对于S 64=1+2+4+8+…+262+263,用2乘以等式的两边可得2S 64=2+4+8+…+262+263+264,对这两个式子作怎样的运算能解出S 64?答 比较两式易知,两式相减能消去同类项,解出S 64,即S 64=1-2641-2=264-1≈1.84×1019.思考5 类比思考4中求和的方法,如何求等比数列{a n }的前n 项和S n ? 答 设等比数列{a n }的首项是a 1,公比是q ,前n 项和为S n . S n 写成:S n =a 1+a 1q +a 1q 2+…+a 1q n -1.① 则qS n =a 1q +a 1q 2+…+a 1q n -1+a 1q n .② 由①-②得:(1-q )S n =a 1-a 1q n . 当q ≠1时,S n =a 1(1-q n )1-q.当q =1时,由于a 1=a 2=…=a n ,所以S n =na 1.思考6 下面提供了两种推导等比数列前n 项和公式的方法.请你补充完整. 方法一 由等比数列的定义知: a 2a 1=a 3a 2=a 4a 3=…=a n a n -1=q . 当q ≠1时,由等比性质得: a 2+a 3+a 4+…+a n a 1+a 2+a 3+…+a n -1=q ,即S n -a 1S n -a n=q . 故S n =a 1-a n q 1-q =a 1(1-q n )1-q .当q =1时,易知S n =na 1.方法二 由S n =a 1+a 2+a 3+…+a n 得: S n =a 1+a 1q +a 2q +…+a n -1q =a 1+q ·(a 1+a 2+…+a n -1) =a 1+q ·(S n -a n )从而得(1-q )·S n =a 1-a n q . 当q ≠1时,S n =a 1-a n q1-q ;当q =1时,S n =na 1.小结等比数列{a n}的前n 项和S n可以用a 1,q ,a n表示为S n=⎩⎪⎨⎪⎧na 1,q =1a 1-a nq1-q ,q ≠1.例1 “一尺之棰,日取其半,万世不竭”,怎样用学过的知识来说明它? 解 这句话用现代文叙述是“一尺长的木棒,每天取它的一半,永远也取不完”.如果每天取出的木棒的长度排成一个数列,则得到一个首项为a 1=12,公比q =12的等比数列,它的前n 项和为S n =12×[1-(12)n ]1-12=1-(12)n .不论n 取何值,1-S n =(12)n 总大于0,这说明一尺长的木棒,每天取它的一半,永远也取不完.反思与感悟 涉及等比数列前n 项和时,要先判断q =1是否成立,防止因漏掉q =1而出错. 跟踪训练1 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________. 答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2. 因此S n =a 1(1-q n )1-q=2n +1-2.例2 等比数列{a n }的公比q =12,a 8=1,求它的前8项和S 8.解 方法一 因为a 8=a 1q 7,所以a 1=a 8q 7=27.因此S 8=a 1(1-q 8)1-q =27[1-(12)8]1-12=28-1=255.方法二 把原数列的第8项当作第一项,第1项当作第8项,即顺序颠倒,也得到一个等比数列{b n },其中b 1=a 8=1,q ′=2,所以前8项和S 8=b 1(1-q ′8)1-q ′=1-281-2=255.反思与感悟 等比数列的前n 项和公式和通项公式中共涉及a 1,a n ,q ,n ,S n 五个基本量,已知其中三个量,可以求出另外的两个量,我们可以简称为“知三求二”. 跟踪训练2 求下列等比数列前8项的和: (1)12,14,18,…; (2)a 1=27,a 9=1243,q <0.解 (1)因为a 1=12,q =12,所以S 8=12[1-(12)8]1-12=255256.(2)由a 1=27,a 9=1243,可得1243=27·q 8.又由q <0,可得q =-13.所以S 8=27[1-(-13)8]1-(-13)=1 64081.探究点二 等比数列前n 项和的实际应用例3 某工厂去年1月份的产值为a 元,月平均增长率为p (p >0),求这个工厂去年全年产值的总和.解 该工厂去年2月份的产值为a (1+p )元,3月,4月……的产值分别为a (1+p )2元,a (1+p )3元,……,去年12个月的产值组成以a 为首项,1+p 为公比的等比数列,因此,该厂去年全年的总产值为S 12=a [1-(1+p )12]1-(1+p )=a [(1+p )12-1]p .答 该工厂去年全年的总产值为a [(1+p )12-1]p元.反思与感悟 解应用题先要认真阅读题目,尤其是一些关键词:“平均每年的销售量比上一年的销售量增加10%”.理解题意后,将文字语言向数字语言转化,建立数学模型,再用数学知识解决问题.跟踪训练3 一个热气球在第一分钟上升了25 m 的高度,在以后的每一分钟里,它上升的高度都是它在前一分钟里上升高度的80%.这个热气球上升的高度能超过125 m 吗? 解 用a n 表示热气球在第n 分钟上升的高度, 由题意,得a n +1=45a n ,因此,数列{a n }是首项a 1=25,公比q =45的等比数列.热气球在前n 分钟内上升的总高度为 S n =a 1+a 2+…+a n=a 1(1-q n)1-q =25×⎣⎡⎦⎤1-⎝⎛⎭⎫45n 1-45=125×⎣⎡⎦⎤1-⎝⎛⎭⎫45n <125. 故这个热气球上升的高度不可能超过125 m. 探究点三 错位相减法求和例4 求和:S n =x +2x 2+3x 3+…+nx n (x ≠0). 解 分x =1和x ≠1两种情况.当x =1时,S n =1+2+3+…+n =n (n +1)2.当x ≠1时,S n =x +2x 2+3x 3+…+nx n , xS n =x 2+2x 3+3x 4+…+(n -1)x n +nx n +1, ∴(1-x )S n =x +x 2+x 3+…+x n -nx n +1 =x (1-x n )1-x -nx n +1.∴S n =x (1-x n )(1-x )2-nx n +11-x.综上可得S n=⎩⎪⎨⎪⎧n (n+1)2 (x =1)x (1-x n)(1-x )2-nxn +11-x (x ≠1且x ≠0).反思与感悟 一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n b n }的前n 项和时,可采用错位相减法.跟踪训练4 求数列1,3a,5a 2,7a 3,…,(2n -1)·a n -1的前n 项和.解 (1)当a =0时,S n =1.(2)当a =1时,数列变为1,3,5,7,…,(2n -1), 则S n =n [1+(2n -1)]2=n 2.(3)当a ≠1且a ≠0时,有S n =1+3a +5a 2+7a 3+…+(2n -1)a n -1① aS n =a +3a 2+5a 3+7a 4+…+(2n -1)a n ② ①-②得S n -aS n =1+2a +2a 2+2a 3+…+2a n -1-(2n -1)a n , (1-a )S n =1-(2n -1)a n +2(a +a 2+a 3+a 4+…+a n -1) =1-(2n -1)a n +2·a (1-a n -1)1-a=1-(2n -1)a n+2(a -a n )1-a,又1-a ≠0,∴S n =1-(2n -1)a n 1-a +2(a -a n )(1-a )2.综上,S n=⎩⎪⎨⎪⎧1 (a =0)n 2(a =1)1-(2n -1)a n1-a +2(a -a n )(1-a )2(a ≠0且a ≠1).1.等比数列1,x ,x 2,x 3,…的前n 项和S n 为( ) A.1-x n 1-xB.1-x n -11-xC.⎩⎪⎨⎪⎧1-x n1-x ,x ≠1n , x =1 D.⎩⎪⎨⎪⎧1-x n -11-x ,x ≠1n , x =1答案 C解析 当x =1时,S n =n ;当x ≠1时,S n =1-x n 1-x.2.设等比数列{a n }的公比q =2,前n 项和为S n ,则S 4a 2等于( )A .2B .4 C.152 D.172答案 C解析 方法一 由等比数列的定义, S 4=a 1+a 2+a 3+a 4=a 2q +a 2+a 2q +a 2q 2,得S 4a 2=1q +1+q +q 2=152. 方法二 S 4=a 1(1-q 4)1-q,a 2=a 1q ,∴S 4a 2=1-q 4(1-q )q =152. 3.等比数列{a n }的各项都是正数,若a 1=81,a 5=16,则它的前5项的和是( ) A .179 B .211 C .243 D .275 答案 B解析 ∵q 4=a 5a 1=1681=(23)4,∴q =23,∴S 5=a 1-a 5q 1-q =81-16×231-23=211.4.某厂去年产值为a ,计划在5年内每年比上一年产值增长10%,从今年起5年内,该厂的总产值为________. 答案 11a (1.15-1)解析 注意去年产值为a ,今年起5年内各年的产值分别为1.1a,1.12a,1.13a,1.14a,1.15a .∴1.1a +1.12a +1.13a +1.14a +1.15a =11a (1.15-1).1.在等比数列的通项公式和前n 项和公式中,共涉及五个量:a 1,a n ,n ,q ,S n ,其中首项a 1和公比q 为基本量,且“知三求二”.2.前n 项和公式的应用中,注意前n 项和公式要分类讨论,即q ≠1和q =1时是不同的公式形式,不可忽略q =1的情况.3.一般地,如果数列{a n }是等差数列,{b n }是等比数列且公比为q ,求数列{a n ·b n }的前n 项和时,可采用错位相减的方法求和.一、基础过关1.设数列{(-1)n }的前n 项和为S n ,则S n 等于( ) A.n [(-1)n -1]2B.(-1)n +1+12C.(-1)n +12D.(-1)n -12答案 D解析 S n =(-1)[1-(-1)n ]1-(-1)=(-1)n -12.2.在各项都为正数的等比数列{a n }中,首项a 1=3,前3项和为21,则a 3+a 4+a 5等于( ) A .33 B .72 C .84 D .189 答案 C解析 由S 3=a 1(1+q +q 2)=21且a 1=3, 得q 2+q -6=0.∵q >0,∴q =2.∴a 3+a 4+a 5=q 2(a 1+a 2+a 3)=22·S 3=84.3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2等于( )A .11B .5C .-8D .-11 答案 D解析 由8a 2+a 5=0得8a 1q +a 1q 4=0,∴q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11.4.等比数列{a n }的前n 项和为S n ,已知S 3=a 2+10a 1,a 5=9,则a 1等于( ) A.13 B .-13 C.19 D .-19 答案 C解析 设等比数列{a n }的公比为q ,由S 3=a 2+10a 1得a 1+a 2+a 3=a 2+10a 1,即a 3=9a 1,q 2=9,又a 5=a 1q 4=9,所以a 1=19.5.设等比数列{a n }的前n 项和为S n ,若a 1=1,S 6=4S 3,则a 4=________. 答案 3解析 S 6=4S 3⇒a 1(1-q 6)1-q =4·a 1(1-q 3)1-q⇒q 3=3(q 3=1舍去). ∴a 4=a 1·q 3=1×3=3.6.如果数列{a n }满足a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…,是首项为1,公比为2的等比数列,那么a n =________. 答案 2n -1解析 a n -a n -1=a 1q n -1=2n -1,即⎩⎪⎨⎪⎧a 2-a 1=2,a 3-a 2=22,…a n-a n -1=2n -1.相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1.7.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q . 解 当q =1时,S n =na 1,∴S 3+S 6=3a 1+6a 1=9a 1=S 9≠2S 9; 当q ≠1时,a 1(1-q 3)1-q +a 1(1-q 6)1-q =2×a 1(1-q 9)1-q ,得2-q 3-q 6=2-2q 9,∴2q 9-q 6-q 3=0,解得q 3=-12或q 3=1(舍去),∴q =-342.二、能力提升8.一弹性球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( ) A .300米 B .299米 C .199米 D .166米 答案 A解析 小球10次着地共经过的路程为100+100+50+…+100×⎝⎛⎭⎫128=2993964≈300(米). 9.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于 ( )A .-6(1-3-10)B.19(1-3-10) C .3(1-3-10) D .3(1+3-10)答案 C解析 先根据等比数列的定义判断数列{a n }是等比数列,得到首项与公比,再代入等比数列前n 项和公式计算.由3a n +1+a n =0,得a n +1a n =-13,故数列{a n }是公比q =-13的等比数列.又a 2=-43,可得a 1=4.所以S 10=4⎣⎡⎦⎤1-(-13)101-⎝⎛⎭⎫-13=3(1-3-10).10.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 答案 13解析 由已知4S 2=S 1+3S 3, 即4(a 1+a 2)=a 1+3(a 1+a 2+a 3). ∴a 2=3a 3,∴{a n }的公比q =a 3a 2=13.11.求和:1×21+2×22+3×23+…+n ·2n . 解 设S n =1×21+2×22+3×23+…+n ·2n则2S n =1×22+2×23+…+(n -1)×2n +n ·2n +1∴-S n =21+22+23+…+2n -n ·2n +1=2(1-2n )1-2-n ·2n +1=2n +1-2-n ·2n +1 =(1-n )·2n +1-2∴S n =(n -1)·2n +1+2.12.为保护我国的稀土资源,国家限定某矿区的出口总量不能超过80吨,该矿区计划从2013年开始出口,当年出口a 吨,以后每年出口量均比上一年减少10%.(1)以2013年为第一年,设第n 年出口量为a n 吨,试求a n 的表达式;(2)因稀土资源不能再生,国家计划10年后终止该矿区的出口,问2013年最多出口多少吨?(保留一位小数)参考数据:0.910≈0.35.解 (1)由题意知每年的出口量构成等比数列,且首项a 1=a ,公比q =1-10%=0.9,∴a n =a ·0.9n -1 (n ≥1).(2)10年的出口总量S 10=a (1-0.910)1-0.9=10a (1-0.910). ∵S 10≤80,∴10a (1-0.910)≤80,即a ≤81-0.910, ∴a ≤12.3.故2013年最多出口12.3吨.三、探究与拓展13.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和. 解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和为S n , 即S n =a 1+a 22+…+a n 2n -1,① S n 2=a 12+a 24+…+a n 2n .② 所以,当n >1时,①-②得S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n =1-(1-12n -1)-2-n 2n =n 2n . 所以S n =n 2n -1.当n =1时也成立. 综上,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n 2n -1的前n 项和S n =n 2n -1.。

等比数列的判断和证明进阶洋葱数学

等比数列的判断和证明进阶洋葱数学

等比数列的判断和证明进阶洋葱数学1. 引言1.1 等比数列的概念等比数列是数学中常见的一种数列,指的是一个数列中每一项与它的前一项成等比例关系的数列。

换句话说,等比数列中任意相邻两项的比值都是恒定的,这个恒定比值称为公比,通常用字母q表示。

1,2,4,8,16就是一个公比为2的等比数列。

在等比数列中,首项表示数列中的第一个数,通常用字母a表示。

数列中第n项的表示一般为an=a*q^(n-1),其中n为项数。

等比数列的通项公式为an=a*q^(n-1),其中n为项数。

等比数列的前n项和公式为Sn=a*((q^n)-1)/(q-1)。

等比数列具有明显的规律性和对称性,能够通过一些性质和公式来描述和推导等比数列的特点和性质。

在接下来的文章中,我们将进一步讨论等比数列的判断方法、首项和公比的关系、等比中项的性质、等比数列的特点和应用以及如何进行等比数列的证明方法。

通过深入研究,我们可以更加全面地了解等比数列在数学中的重要性和应用价值。

1.2 等比数列的性质等比数列的性质包括等比数列的负项、任意项和等比中项的性质。

我们来看等比数列的负项。

如果一个数列是等比数列,那么它的任意一项和它的相反数都可以构成一个等比数列。

这是因为对于任意一项a,其相反数-b也是等比数列的一项,且它们的比值相同,即-b/a等于公比q。

等比数列的性质之一是每一项和其相反数构成一个等比数列。

等比数列的任意项也具有一定的性质。

假设一个等比数列的首项为a,公比为q,则它的第n项可以表示为a*q^(n-1)。

这个公式可以帮助我们快速计算等比数列任意一项的值,从而更好地理解等比数列的规律。

等比数列的等比中项也有着特殊的性质。

等比数列的等比中项是指两个相邻项的平方根,即等比数列中第n项与第n+1项的平方根。

这个性质有利于我们在不知道等比数列具体项的情况下,通过已知项求解中间项的值。

等比数列的性质包括每一项与其负项构成等比数列、任意项的计算公式以及等比中项的特殊性质。

高中数学选择性必修二 精讲精炼 4 等比列(精练)(含答案)

高中数学选择性必修二 精讲精炼 4  等比列(精练)(含答案)

4.3 等比数列(精练)【题组一 等比数列的判断或证明】1(2021·全国)有下列四个说法:①等比数列中的某一项可以为0;①等比数列中公比的取值范围是(,)-∞+∞;①若一个常数列是等比数列,则这个常数列的公比为1;①若2b ac =,则a ,b ,c 成等比数列.其中说法正确的个数为( ) A .0 B .1 C .2 D .3【答案】B【解析】对于①,因为等比数列中的各项都不为0,所以①不正确; 对于①,因为等比数列的公比不为0,所以①不正确;对于①,若一个常数列是等比数列,则这个常数不为0,根据等比数列的定义知此数列的公比为1,所以①正确;对于①,只有当a ,b ,c 都不为0时,a ,b ,c 才成等比数列,所以①不正确. 因此,正确的说法只有1个, 故选:B.2.(2021·全国高二专题练习)以下条件中,能判定数列是等比数列的有( ) ①数列1,2,6,18,…; ①数列{}n a 中,已知212a a =,322a a =;①常数列a ,a ,…,a ,…;①数列{}n a 中,1(0)n na q q a +=≠,其中*n N ∈.A .1个B .2个C .3个D .4个【答案】A【解析】①中,数列不符合等比数列的定义,故不是等比数列;①中,前3项是等比数列,多于3项时,无法判定,故不能判定是等比数列; ①中,当0a =时,不是等比数列;①中,数列符合等比数列的定义,是等比数列. 故选:A.3.(2021·全国高二单元测试)已知数列{}n a 是等比数列,则下列数列中:①{}3n a ;①{}2n a ;①12n a ⎧⎫⎨⎬⎩⎭,等比数列的个数是( ) A .0个 B .1个C .2个D .3个【答案】C【解析】设{}n a 的公比为q ,则3331n n a q a -=,112112n n a q a -=,故{}3n a 、12n a ⎧⎫⎨⎬⎩⎭均为等比数列. 取2n n a =,2n a n b =,则31212324,216,2256a a ab b b ======,此时32124,16b b b b ==,3212b bb b ≠,故{}2n a 不是等比数列, 故选:C.4.(2021·全国)设x R ∈,记不超过x 的最大整数为[]x ,如[]2.52=,[]2.53-=-,令{}[]x x x =-,则⎪⎪⎩⎭,⎣⎦,三个数构成的数列 A .是等比数列但不是等差数列 B .是等差数列但不是等比数列 C .既是等差数列又是等比数列 D .既不是等差数列也不是等比数列 【答案】A【解析】⎪⎪⎩⎭-,⎣⎦=1,故三个数成等比,选A .5.(2021·吉林延边二中高二月考)下列命题中正确的是( ) A .若a ,b ,c 是等差数列,则log 2a ,log 2b ,log 2c 是等比数列 B .若a ,b ,c 是等比数列,则log 2a ,log 2b ,log 2c 是等差数列 C .若a ,b ,c 是等差数列,则2a ,2b ,2c 是等比数列 D .若a ,b ,c 是等比数列,则2a ,2b ,2c 是等差数列 【答案】C【解析】若1a b c ===-,则对数无意义,A,B 错误;对C ,若a ,b ,c 是等差数列,则2a c b +=,所以()2222222a c a c b b +⋅===,正确;对D ,若1,2,4a b c ===,则22,24,216a b c ===,显然2222a c b +≠⨯,错误. 故选:C.6(2021·全国高二专题练习)已知不全相等的实数a ,b ,c 成等比数列,则一定不可能...是等差数列的为( )A .a ,c ,bB .2a ,2b ,2cC .||a ,||b ,||cD .1a ,1b ,1c【答案】D【解析】因为不全相等的实数a ,b ,c 成等比数列,所以该等比数列的公比1q ≠,显然有0,0a q ≠≠,2,b aq c aq ==, A :若a ,c ,b 成等差数列,显然2c a b =+成立,即22aq a aq =+,化简为2210q q --=,解得12q =-,或1q =(舍去),所以假设成立,故a ,c ,b 有可能是等差数列;B :若2a ,2b ,2c 成等差数列,显然2222b a c =+成立,即222244a q a a q =+,化简为:42410q q -+=,解得:22q =显然q =q =所以假设成立,故2a ,2b ,2c 有可能成等差数列;C :若||a ,||b ,||c 成等差数列,显然2||b a c =+,即22aq a aq =+,化简为:2210q q -+=,解得1q =,因为1q ≠,所以1q =-,因此假设成立, 故||a ,||b ,||c 有可能 成等差数列;D :若1a ,1b ,1c 成等差数列,显然1112b a c⋅=+,即21112aq a aq ⋅=+, 化简为:2210q q -+=,解得1q =,而1q ≠,因此假设不成立,故1a ,1b ,1c一定不可能成等差数列,故选:D7.(2021·辽宁阜新·高二期末)(多选)已知等比数列{}n a 中,满足11a =,公比3q =-,则( ) A .数列{}13n n a a ++是等比数列 B .数列{}1n n a a +-是等差数列 C .数列{}1n n a a +是等比数列 D .数列{}3log n a 是等差数列 【答案】CD【解析】等比数列{}n a 中,满足11a =,公比3q =-,()13n n a -=-.对于A ,()()()()11133331130n n n nn n n a a --+⎡⎤⎡⎤+=-+-=-+-⋅=⎣⎦⎣⎦,不是等比数列,故A 错误; 对于B ,()()()1143333n n nn n a a -+-=---=⋅-,是等比数列,故B 错误;对于C ,()()()1211333n n n n n a a --+=-⋅-=-,是等比数列,故C 正确;对于D ,()133log log 31n n a n -=-=-,是等差数列,故D 正确.故选:CD.8.(2021·全国)(多选)若{}n a 是等比数列,则( )A .{}2n a 是等比数列B .{}1n n a a ++是等比数列C .1n a ⎧⎫⎨⎬⎩⎭是等比数列D .{}1n n a a +⋅是等比数列【答案】ACD【解析】因为{}n a 是等比数列,所以设其公比为q ,即1n na q a +=. 因为2212n na q a +=,所以{}2n a 是等比数列,所以A 选项正确; 因为11111n n n na a a q a ++==,所以1n a ⎧⎫⎨⎬⎩⎭是等比数列,所以C 选项正确;; 因为2211n n n na a q a a +++=,所以{}1n n a a +是等比数列,所以D 选项正确; 当1q =-时,10n n a a ++=,所以此时1{}n n a a ++不是等比数列,所以B 选项错误. 故选:ACD9.(2021·深圳市皇御苑学校)(多选)已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是 A .1{}na B .22log ()n a C .1{}n n a a ++ D .12{}n n n a a a ++++【答案】AD【解析】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列,1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD .10.(2021·全国高二专题练习)已知数列{a n }满足a 1=1,na n +1=2()1n +a n ,设b n =na n.(1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式.【答案】(1)b 1=1,b 2=2,b 3=4;(2)是,理由见解析;(3)12n n a n -=⋅.【解析】(1)由条件可得a n +1=2(1)n n+a n . 将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4. 将n =2代入得,a 3=3a 2,所以,a 3=12. 从而b 1=1,b 2=2,b 3=4.(2)数列{b n }是首项为1,公比为2的等比数列.理由如下: 由条件可得11n a n ++=2n an,即b n +1=2b n ,又b 1=1, 所以数列{b n }是首项为1,公比为2的等比数列. (3)由(2)可得12n na n-=,所以12n n a n -=⋅. 【题组二 等比数列基本量计算】1.(2021·全国高二课时练习)在数列{}n a 中,11a =,点()1,n n a a +在直线2y x =上,则4a 的值为( ) A .7 B .8 C .9 D .16【答案】B【解析】因为点()1,n n a a +在直线2y x =上,所以12n n a a +=, 因为11a =,所以{}n a 是首项为1,公比为2的等比数列,所以3341128a a q =⋅=⨯=.故选:B.2.(2021·北京牛栏山一中高二期中)已知等比数列{}n a 的前n 项和为S n ,下表给出了S n 的部分数据:那么数列{}n a 的第四项4a 等于( ) A .81 B .27 C .-81或81 D .-27或27【答案】B【解析】由题意得,等比数列{}n a 中,1545181a S S a =-⎧⎨-==-⎩,故481q =,3q =±, 因为10S <,44110qS q -=->,由410q ->,所以10q ->, 所以3q =-,所以()13n n a -=--,故3341(3)27a a q ==--=. 故选:B .3.(2021·全国高二课时练习)记正项等比数列{}n a 的前n 项和为n S ,若34a =,425S S =,则6S =( ) A .2 B .-21 C .32 D .63【答案】D【解析】设正项等比数列{}n a 的公比为()0q q >, 因为34a =,425S S =,所以()()212311111145a q a a q a q a q a a q ⎧=⎪⎨+++=+⎪⎩,即()2123441a q q q q ⎧=⎪⎨+=+⎪⎩,解得121q a =⎧⎨=⎩, 所以()666112216312S ⨯-==-=-.故选:D.4.(2021·全国高二课时练习)在160与5中间插入4个数,使它们同这两个数成等比数列,则这4个数依次为___________.【答案】80,40,20,10【解析】不妨设等比数列16{},160,5n a a a ==,公比为q则561a a q =,即 5=160q 5,① q 5=132,① q =12. 故2342131415180,40,20,10a a q a a q a a q a a q ========① 这4个数依次为80,40,20,10. 故答案为:80,40,20,105.(2021·全国高二课时练习)在等比数列{a n }中,若a 3=3,a 10=384,则公比q =___________. 【答案】2【解析】33a =,10384a =,7103a a q ∴=,73843q ∴=,即771282q ==,2q ∴=,故答案为:2.6.(2021·上海市进才中学高二月考)在2,x ,8,y 四个数中,前三个数成等比数列,后三个成等差数列,则x y -=___________ 【答案】8-或24-.【解析】由已知得216,16x x y ==+解得412x y =⎧⎨=⎩或420x y =-⎧⎨=⎩,8x y ∴-=-或24x y -=-.故答案为:8-或24-.7.(2021·全国高二课时练习)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________. 【答案】45【解析】设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即 ()()()()()()2232141,24113,aq aq a aq aq aq ⎧-=-+-⎪⎨-=-+-⎪⎩整理得22(1)3,(1)6,a q aq q ⎧-=⎨-=⎩ 解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45. 故答案为:458.(2021·全国高二专题练习)等比数列{a n }中,公比为q ,前n 项和为S n . (1)若a 1=-8,a 3=-2,求S 4; (2)若S 6=315,q =2,求a 1. 【答案】(1)-15或-5;(2)5.【解析】(1)由题意可得2312184a q a -===-, 所以12q =-或12q =.当12q =-时,4418125112S ⎡⎤⎛⎫---⎢⎥⎪⎝⎭⎢⎥⎣⎦==-⎛⎫-- ⎪⎝⎭;当12q =时,44181215112S ⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦==--; 综上所述,415S =-或45S =-.(2)()6161231512a S -==-,解得15a =.9.(2021·全国高二课时练习)已知数列{}n a 是等比数列. (1)若13a =,2q,6n =,求n S ;(2)若1 2.7a =-,13q =-,190n a =,求n S ;(3)若11a =-,464a =,求q 与4S ; (4)若332a =,392S =,求1a 与q . 【答案】(1)189; (2)9145-; (3)4q =-,451S =; (4)13,12a q ==或116,2a q ==-. 【解析】(1)因为13a =,2q,6n =,可得6616(1)3(12)189112a q S q -⨯-===--.(2)因为1 2.7a =-,13q =-,且190n a =,所以11112.7()(1)91903111451()3nn n a a q a q S q q--⨯---====-----. (3)设等比数列{}n a 的公比为q ,因为11a =-,464a =,可得331164a q q =-⨯=, 即364q =-,解得4q =-,所以4414(1)1[1(4)]5111(4)a q S q --⨯--===---. (4)设等比数列{}n a 的公比为q ,因为332a =,392S =, 当1q =时,可得332n a a ==,此时392S =,满足题意; 当1q ≠时,可得23131332(1)912a a q a q S q ⎧==⎪⎪⎨-⎪==⎪-⎩,解得116,2a q ==-. 【题组三 等比数列中项性质】1.(2021·全国)若三个数1,2,m 成等比数列,则实数m =( )A .8B .4C .3D .2【答案】B【解析】因为1,2,m 为等比数列,故212m=即4m =,故选:B. 2.(2021·全国高二课时练习)在等比数列{}n a 中,已知37,a a 是方程2610x x -+=的两根,则5a = A .1 B .1- C .±1 D .3【答案】A【解析】在等比数列{}n a 中,因为37,a a 是方程2610x x -+=的两个根,所以373760,10,a a a a +=>⋅=>所以3750,0,0,a a a >>>因为23751,a a a ⋅==所以51,a =选A.3.(2021·全国)在正项等比数列{}n a 中,已知1234a a a =,45612a a a =,11324n n n a a a -+=,则n 等于( ) A .11 B .12 C .14 D .16【答案】C【解析】设等比数列{}n a 的公比为q ,则312324a a a a ==,3456512a a a a ==,所以,395223a q a ==,则1333q =,因为311324n n n na a a a -+==,则3364323248134n n a q a -====,即24333n -=,解得14n =.故选:C. 4.(2021·全国)在等比数列{}n a 中,5673a a a =,67824a a a =,则789a a a 的值为( ) A .48 B .72 C .144 D .192【答案】D【解析】由5673a a a =,得363a =,由67824a a a =,得3724a =,所以337362483a q a ===, 所以3789678248192a a a a a a q ==⨯=.故选:D5.(2021·新蔡县第一高级中学)已知1k ≠,则等比数列2log a k +,4log a k +,8log a k +的公比为( ) A .12 B .13C .14D .以上答案都不对【答案】B【解析】设数列的公比为()0q q ≠,2log a k +,4log a k +,8log a k +的公比相当于2log a k +,21log 2a k +,21log 3a k +的公比,相当于21log a k +,21log 2a k +,21log 3a k +的公比, 令2log a t k =,即相当于1t +,12t +,13t +的公比, ①()211123t t t ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭,解得14t =-,则314t +=,1124t +=, ①公比111243134t q t +===+. 故选:B6.(2021·北京清华附中高二期中)已知等比数列{}n a 的各项均为正数,且33a =,则3132333435log log log log log a a a a a ++++=( )A .52B .5C .10D .15【答案】B【解析】因为等比数列{}n a 的各项均为正数,且33a =,所以()5313233343531234533log log log log log log log a a a a a a a a a a a ++++=⋅⋅⋅⋅=53log 35==.故选:B.7.(2021·江西省铜鼓中学高二开学考试(文))已知1-,a ,b ,9-成等差数列,1-,c ,d ,e ,9-成等比数列,则b ad-=( ). A .83B .89C .89-D .89或89-【答案】B【解析】因为1-,a ,b ,9-成等差数列,所以公差'9(1)884133d ----===--, 所以'83b a d -==-,因为1-,c ,d ,e ,9-成等比数列,所以d 是1-和9-的等比中项, 所以21(9)9d =-⨯-=,解得3d =或3d =-, 因为等比数列中奇数项同号,所以3d =-,所以88339b ad --==-, 故选:B【题组四 等比数列的前n 项和性质】1.(2021·安徽宣城·高二期中(文))设n S 是等比数列{}n a 的前n 项和,若34S =,4566a a a ++=,则96S S =( ) A .32B .1910 C .53D .196【答案】B【解析】设等比数列{}n a 的公比为q ,若1q =,则456133a a a a S ++==,矛盾. 所以,1q ≠,故()()33341345631111a q a q q a a a q Sqq--++===--,则332q =, 所以,()()()63113631151112a q a q S q S qq--==+⋅=--, ()()()9311369311191114a q a q S q qS qq--==++=--, 因此,9363192194510S S S S =⋅=. 故选:B.2.(2021·全国高二课时练习)一个等比数列的前7项和为48,前14项和为60,则前21项和为( ) A .180 B .108 C .75 D .63【答案】D【解析】由题意得S 7,S 14-S 7,S 21-S 14组成等比数列48,12,3, 即S 21-S 14=3,①S 21=63. 故选:D3.(2021·新余市第一中学高二月考)已知等比数列前20项和是21,前30项和是49,则前10项和是( ) A .7 B .9C .63D .7或63【答案】A【解析】设等比数列{}n a 的公比为q ,前n 项和为n S , 则()10102010111220121010S S a a a q a a a q S -=+++=+++=,()20203020212230121010S S a a a q a a a q S -=+++=+++=,所以,()()2202201010103020S S S S S q S -==⋅-,()()21010214921S S -=-, 整理可得21010704410S S -+=,解得107S =或63.当1063S =时,201042S S -=-,则10422633q =-=-,显然不成立,故107S =. 故选:A.4.(2021·全国)设等比数列{a n }的前n 项和记为S n ,若S 10①S 5=1①2,则S 15①S 5=( ) A .34B .23C .12D .13【答案】A【解析】:①数列{a n }为等比数列,且其前n 项和记为S n , ①S 5,S 10-S 5,S 15-S 10成等比数列. ①S 10∶S 5=1∶2,即S 10=12S 5, ①等比数列S 5,S 10-S 5,S 15-S 10的公比为1055-S S S =-12. ①S 15-S 10=-12(S 10-S 5)=14S 5.①S 15=14S 5+S 10=34S 5.①S 15①S 5=34.故选:A.5.(2021·全国高二课时练习)已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( ). A .11 B .12 C .13 D .14【答案】B【解析】由题意可得所有项之和S S +奇偶是所有偶数项之和的4倍,①4S S S +=奇偶偶, 设等比数列{}n a 的公比为q ,由等比数列的性质可得S qS =偶奇,即1S S q=奇偶, ①14S S S q +=偶偶偶,①0S ≠偶,①解得13q =, 又前3项之积3123264a a a a ==,解得24a =,①2112a a q==. 故选:B.6.(2021·北京海淀·)已知等比数列{}n a 的前n 项和3=+n n S r ,则2a =__________,r =__________. 【答案】6 1-【解析】因等比数列{}n a 的前n 项和3=+nn S r ,于是得113a S r ==+,2221(3)(3)6a S S r r =-=+-+=,32332(3)(3)18a S S r r =-=+-+=,数列公比32123a a q a a ===,解得1r =-, 此时31n n S =-,当2n ≥时,1113323n n n n n n a S S ---=-=-=⋅,12a =满足上式,即123,n n a n N -*=⋅∈,有1123323nn n n a a +-⋅==⋅是非零常数,则{}n a 是等比数列, 所以26,1a r ==-. 故答案为:6;1-.7.(2021·全国高二课时练习)设等比数列{}n a 的前n 项和为n S ,若633S S =,则96SS =______. 【答案】73【解析】1q ≠,否则61316233S a S a ==≠. ①()()6136331111311a q S q q S a q q--==+=--, ①32q =.①()()9193962661111271112311a q S q qS q a q q----====----. 故答案为:738.(2021·全国高二课时练习)等比数列{a n }中,前n 项和为S n ,S 3=2,S 6=6,则a 10+a 11+a 12=________. 【答案】16【解析】由S 3,S 6-S 3,S 9-S 6,S 12-S 9成等比数列,此数列首项为S 3=2 其公比6336222S S q S --===,得S 12-S 9=2×23=16.故答案为:169.(2021·全国)若数列{}n a 为等比数列,且121a a +=,344a a +=,则910a a +=___________. 【答案】256 【解析】①{}n a 是等比数列,①12a a +,34a a +,56a a +,78a a +,910a a +为等比数列, 且公比34124a a q a a +==+, ①491014256a a +=⨯=. 故答案为:25610.(2021·全国)已知正项等比数列{}n a 共有2n 项,它的所有项的和是奇数项的和的3倍,则公比q =______. 【答案】2【解析】设等比数列{}n a 的奇数项之和为S 奇,偶数项之和为S 偶, 则()24213211321n n n S a a a a q a q a q q a a a qS --=+++=+++=+++=奇偶,由23n S S =奇,得()13S q S +=奇奇,因为0n a >,所以0S >奇,所以13q +=,2q .故答案为:2.11.(2021·全国高二课时练习)已知等比数列{}n a 共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________. 【答案】2【解析】由题意, 设奇数项的和为1S ,偶数项的和为2S ,得1211228080240160S S S S S S -==-⎧⎧⇒⎨⎨+=-=-⎩⎩ 故公比21160280S q S -===- 故答案为212.(2021·全国高二课时练习)设S n 是等比数列{}n a 的前n 项和,若51013S S =,则52010S S S =+________. 【答案】118【解析】设等比数列{}n a 的公比为q ,由已知1q ≠,因为515(1)1a q S q -=-,10551110(1)(1)(1)11a q a q q S q q--+==--,05511113S S q ==+,52q =,1053S S =, 2055105101120555(1)(1)(1)(1)(1)(1)(12)(14)1511a q a q q q S S q q S S q q --++===++=++=--.①55102055131518S S S S S S ==++.故答案为:118. 13.(2021·全国)已知等比数列{}n a 的前n 项和2133n n S t -=⋅-,则实数t 的值为______.【答案】3【解析】由2133n n S t -=⋅-,得13133n n t S ⎛⎫=⋅- ⎪⎝⎭.当1q =时,1n S na =,不合乎题意.当1q ≠时,()1111111n n n a q a a S q qq q -==----,令11a A q =-,则()1nn S A q =-, 所以,13t=,解得3t =.故答案为:3.14.(2021·柳州市第二中学(理))已知等比数列{}n a 的前n 项和为13n n S t +=+,则数列的通项公式n a =______________. 【答案】23n ⋅.【解析】由13n n S t +=+得,当1n =时,21139a S t t ==+=+,当2n =时,1232327a a S t t +==+=+,2927t a t ++=+,所以218a =当3n =时,433233354a S S =-=-=,因为数列{}n a 是等比数列,所以3221a a a =,即()1818549t ⨯=⨯+,所以3t =-,16a =,公比213a q a ==, 所以1116323n n n na a q --===⋅⋅.故答案为:23nn a =⋅.15(2021·全国高二专题练习)已知等比数列{}n a 的前n 项和13n n S λ+=+,则1a λ+=______.【答案】3【解析】2n ≥时,11(3)(3)23n n nn n n a S S λλ+-=-=+-+=⨯,又119a S λ==+,数列{}n a 等比数列, ①3212a a a a =,即1854918λ=+,解得3λ=-. ①13a λ+=. 故答案为:3.【题组五 等比数列的单调性】1.(2021·全国)等比数列{}n a 是递增数列,若5160a a -=,4224a a -=,则公比q 为( ) A .12 B .2C .12或2-D .2或12【答案】D【解析】因为等比数列{}n a 是递增数列,则数列{}n a 的公比q 满足0q >且1q ≠, 所以,()()421512421116052421a q a a q a a q a q q --+====--,即22520q q -+=,解得12q =或2. 若12q =,则()2421131248a a a q q a -=-=-=,解得164a =-, 此时1111642n n n a a q --==-⨯,此时数列{}n a 为递增数列,合乎题意; 若2q,则()242111624a a a q q a -=-==,解得14a =,此时1111422n n n n a a q --+==⨯=,此时数列{}n a 为递增数列,合乎题意.综上所述,12q =或2. 故选:D.2.(2021·陕西新城·西安中学高三(文))在等比数列{a n }中,279a a =且a 8>a 9,则使得110n a a ->的自然数n 的最大值为( ) A .10 B .9 C .8 D .7【答案】C【解析】因为279a a =,即()26811a q a q =,所以51a =,又因为89a a >,所以数列{}n a 为单调递减,因为()()44549111110n n n n a a q q a q q q a ---=-=-=->, 所以901n q q ->=,所以9n <.又因为n 为整数,故max 8n =. 故选:C3.(2021·全国高二课时练习)已知等比数列{a n }的前n 项和为S n ,则“S n +1>S n ”是“{a n }单调递增”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D【解析】110++>⇒>n n n S S a ,例如102=>n na ,但是数列{}n a 不单调递增,故不充分; 数列{}n a 单调递增,例如12n na =-,但是1n n S S +<,故不必要;故选:D 4.(2021·福建省福州第一中学高三开学考试(理))(多选)设{}n a 是各项为正数的等比数列,q 是其公比,n T 是其前n 项的积,且67T T <,789T T T =>,则下列结论正确的是( ) A .1q > B .81a =C .106T T >D .7T 与8T 均为n T 的最大值【答案】BD 【解析】由题意知,A :由67T T <得71a >,由78=T T 得887=1T a T =, 所以87=1a q a <,又0q >,所以01q <<,故A 错误; B :由78=T T 得887=1T a T =,故B 正确; C :因为{}n a 是各项为正数的等比数列,(01)q ∈,, 有12789101a a a a a a >>>>=>>>,所以2210789108996=()1T a a a a a a a T ==<, 所以106T T <,故C 错误;D :1278910T T T T T T <<<<>>>,则7T 与8T 均为n T 的最大值,故D 正确. 故选:BD5.(2021·江苏连云港·高三月考)(多选)设等比数列{}n a 的公比为q ,前n 项和为n S ,前n 项积为n T ,并满足条件()()120202021202020211,1,110a a a a a >⋅>-⋅-<,则下列结论中正确的有( ) A .1q > B .20212020S S >C .202020221a a ⋅<D .2020T 是数列{}n T 中的最大值【答案】BCD【解析】依题意等比数列{}n a 满足条件: 11a >,202020211a a ⋅>,()()20202021110a a --<,若1q ≥,则2019202020201202111,1a a qa a q =⋅>=⋅>, 则2020202110,10a a ->->,则()()20202021110a a -->与已知条件矛盾. 所以1q ≥不符合,故A 选项错误. 由于11a >,202020211a a ⋅>,()()20202021110a a --<,所以202020211,01a a ><<,01q <<,0n a >, 则2021202020212020S a S S =+>, 所以B 选项正确,又20202022220211a a a =⋅<.所以C 选项正确.因此,前2020项都大于1, 从第2021项开始起都小于1, 因此2020T 的值是n T 中最大的. 所以D 选项正确.故选:BCD.6.(2021·全国高二课时练习)(多选)关于递增等比数列{}n a ,下列说法不正确的是( )A .当101a q >⎧⎨>⎩B .10a >C .1q >D .11nn a a +< 【答案】BCD【解析】A ,当101a q >⎧⎨>⎩时,从第二项起,数列的每一项都大于前一项,所以数列{}n a 递增,正确;B ,当10a > ,0q <时,{}n a 为摆动数列,故错误;C ,当10a <,1q >时,数列{}n a 为递减数列,故错误;D ,若10a >,11nn a a +<且取负数时,则{}n a 为 摆动数列,故错误, 故选:BCD .7.(2021·全国高二课时练习)若一个数列的第m 项等于这个数列的前m 项的乘积,则称该数列为“m 积数列”.若各项均为正数的等比数列{}n a 是一个“2020积数列”,且11a >,则当其前n 项的乘积取最大值时,n 的值为________. 【答案】1009或1010【解析】设数列{}n a 的公比为q . 由题意可得,20201232020a a a a a =⋅⋅⋅⋅,①12320191a a a a ⋅⋅⋅⋅=,①212019220183201710101a a a a a a a ⋅=⋅=⋅===.又11a >,①01q <<,数列{}n a 为递减等比数列, 10091a >,10101a =,10111a <,则当其前n 项的乘积取最大值时,n 的值为1009或1010. 故答案为:1009或10108.(2021·西城·北京育才学校高二期中)等比数列满足如下条件:①10a <;①数列{}n a 单调递增,试写出满足上述所有条件的一个数列的通项公式n a =________. 【答案】12n-(答案不唯一) 【解析】满足上述所有条件的一个数列的通项公式12n na =-. 故答案为:12n-(答案不唯一) 9.(2021·湖北黄州·黄冈中学高三)设数列{}n a 的前n 项和为n S ,写出{}n a 的一个通项公式n a =________,满足下面两个条件:①{}n a 是单调递减数列;①{}n S 是单调递增数列. 【答案】12n⎛⎫⎪⎝⎭(答案不唯一)【解析】根据前n 项和数列是单调递增的,可以判定数列的各项,从第二项起,各项都是大于零的,由数列本身为单调递减数列,结合各项的值的要求,可以考虑公比在0到1之间的等比数列的例子,12nn a ⎛⎫= ⎪⎝⎭就是符合条件的例子, 故答案为:12n⎛⎫⎪⎝⎭(答案不唯一)【题组六 等比数列的实际运用】1.(2021·全国高二课时练习)中国人口已经出现老龄化与少子化并存的结构特征,测算显示中国是世界上人口老龄化速度最快的国家之一,再不实施“放开二胎”新政策,整个社会将会出现一系列的问题.若某地区2015年人口总数为45万,实施“放开二胎”新政策后专家估计人口总数将发生如下变化:从2016年开始到2025年每年人口比上年增加0.5万人.从2026年开始到2035年每年人口为上一年的99%. (1)求实施新政策后第n 年的人口总数a n 的表达式;(注:2016年为第一年)(2)若新政策实施后的2016年到2035年人口平均值超过49万,则需调整政策,否则继续实施.问到2036年是否需要调整政策?【答案】(1)a n =*10*450.5,110,500.99,1120,.n n n n N n n N -⎧+≤≤∈⎨⨯≤≤∈⎩;(2)2036年不需要调整政策. 【解析】解:(1)当n ≤10时,数列{a n }是首项为45.5,公差为0.5的等差数列, 所以a n =45.5+0.5×(n -1)=45+0.5n .当n ≥11时,数列{a n }是以0.99为公比的等比数列. 又a 10=50,所以a n =50×0.99n -10,因此新政策实施后第n 年的人口总数a n (单位:万人)的表达式为a n =*10*450.5,110,500.99,1120,.n n n n N n n N -⎧+≤≤∈⎨⨯≤≤∈⎩(2)设S n 为数列{a n }的前n 项和,则从2016年到2035年共20年,由等差数列及等比数列的求和公式得 S 20=S 10+(a 11+a 12+…+a 20)()1049.510.9910911045.52210.99-⨯=⨯+⨯+- =477.5+4950×(1-0.9910)≈950.8(万),所以新政策实施后的2016年到2035年的年人口均值为2020S =47.54万. 因为47.54<49,故到2036年不需要调整政策.2.(2021·全国高二课时练习)某企业进行技术改造,有两种方案:甲方案:一次性贷款10万元,第一年便可获得利润1万元,以后每年比上年增加30%的利润; 乙方案:每年贷款1万元,第一年可获得利润1万元,以后每年比前一年多获利5 000元.两种方案的期限都是10年,到期一次性归还本息.若银行贷款利息均以年息10%计算,试比较两个方案哪个获得纯利润更多?(计算精确到千元,参考数据:1.110≈2.594,1.310≈13.796)【答案】甲方案的获利较多.【解析】根据题意,分析可得甲方案是等比数列,乙方案是等差数列.甲方案获利:1+(1+30%)+(1+30%)2+…+(1+30%)9 =101(1.31)1.31--≈42.65(万), 而银行的利息成本为10(1+0.1)10=25.94万元,那么甲的纯利润为42.65-25.94≈16.7万元;乙方案:逐年获利成等差数列,前10年共获利:1+(1+0.5)+(1+2×0.5)+…+(1+9×0.5) =10(1 5.5)2⨯+=32.50(万元),贷款的本利和为:1.1[1+(1+10%)+…+(1+10%)9]=17.534(万元),①乙方案扣除本利后的净获利为:32.50-17.534≈15.0(万元).所以,甲方案的获利较多.3.(2021·全国高二课时练习)一航模小组进行飞机模型实验,飞机模型在第一分钟时间里上升了15米高度.(1)若通过动力控制系统,使得飞机模型在以后的每一分钟里,上升的高度都比它前一分钟上升的高度少2米,达到最大高度后保持飞行,问飞机模型上升的最大高度是多少?(2)若通过动力控制系统,使得飞机模型在以后的每一分钟上升的高度是它在前一分钟里上升高度的80%,那么这个飞机模型上升的最大高度能超过75米吗?请说明理由.【答案】(1)64米;(2)不能超过,理由见解析.【解析】(1)由题意,飞机模型每分钟上升的高度构成115a =,2d =-的等差数列,则12(1)(1)15(2)2216n n n n n S na d n n n --=+=+⨯-=-+当8n =时,8()64n max S S ==即,飞机模型在第8分钟上升到最大高度为64米.(2)不能超过.由题意,飞机模型每分钟上升的高度构成115b =,0.8q =的等比数列, 则1(1)15(10.8)75(10.8)7510.2n n n n b q S q --===-<- 所以,这个飞机模型上升的最大高度不能超过75米.4.(2021·全国高二课时练习)某企业年初有资金1000万元,如果该企业经过生产经营,每年资金增长率为50%,但每年年底都要扣除消费资金x 万元,余下的资金投入再生产.为实现5年后,资金达到2 000万元(扣除消费资金后),那么每年年底扣除的消费资金应是多少万元?(精确到1万元)【答案】424万元.【解析】设a n 表示第n 年年底扣除消费资金后的资金,则:a 1=1 000(1+12)-x ,a 2=[1 000(1+12)-x ](1+12)-x=1 000(1+12)2-x (1+12)-x ,a 3=[1 000(1+12)2-x (1+12)-x ](1+12)-x=1 000(1+12)3-x (1+12)2-x (1+12)-x ,a 4=1 000(1+12)4-x (1+12)3-x (1+12)2-x (1+12)-x ,a 5=1 000(1+12)5-x (1+12)4-x (1+12)3-x (1+12)2-x (1+12)-x . 则1 000×(32)5-x [(32)4+(32)3+…+1]=2 000, ①1 000×(32)5-5312312x ⎛⎫- ⎪⎝⎭⋅-=2 000.解得x ≈424(万元).①每年年底扣除的消费资金为424万元.5.(2021·江苏姑苏·苏州中学高二月考)某渔业养殖基地在2020年底共养殖各种鱼共13万尾,为向应国家号召,拟大力发展水产养殖.(1)今年1月份投入鱼苗3万尾,如果从2月份起,以后的每个月比上一个月多投入鱼苗2000尾,那么今年底共有养殖鱼的数量是多少万尾?(精确到0.1,不计鱼苗损耗,确保成活)(2)现计划今年投入鱼苗60万尾,到2023年底至少养殖800万尾,若今后新投入鱼苗的数量每年比上一年以等比递增,问2022年和2023年至少各投入多少万尾才能完成计划?( 3.5,精确到1万个)【答案】(1)62.2万尾;(2)2022年至少投入180万尾,2023年至少投入540万尾,才能完成计划.【解析】(1)依题意,2021年每月投入的数量构成一个首项为3万,公差为0.2万的等差数列,2021年底一共养殖的数量为12113120.249.22⨯⨯+⨯=万尾, 所以2021年年底共有鱼13+49.2=62.2万尾;(2)依题意,从2021年起,每年新投入的数量构成一个首项为60万的等比数列,设公比为q ,且1q >,于是得260606080013q q ++≥-,即2727060q q +-≥,解得132q ≥≈, 所以2022年至少投入180万尾,2023年至少投入540万尾,才能完成计划.。

专题32 等比数列(解析版)

专题32  等比数列(解析版)
(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为 =q.
(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等比中项⇔a,G,b成等比数列⇒G2=ab.
【小问2详解】由(1)知, ,所以 ,即 ,亦即 ,解得 ,所以满足等式的解 ,故集合 中的元素个数为 .
3.(2022·浙江卷T20)已知等差数列 的首项 ,公差 .记 的前n项和为 .
(1)若 ,求 ;
(2)若对于每个 ,存在实数 ,使 成等比数列,求d的取值范围.
【答案】(1) (2)
【分析】(1)利用等差数列通项公式及前 项和公式化简条件,求出 ,再求 ;
2023高考一轮复习讲与练
专题32等比数列
练高考 明方向
1.(2022·全国乙(理)T8)已知等比数列 的前3项和为168, ,则 ()
A.14B.12C.6D.3
【答案】D
【分析】设等比数列 的公比为 ,易得 ,根据题意求出首项与公比,再根据等比数列的通项即可得解.
【详解】解:设等比数列 的公比为 ,若 ,则 ,与题意矛盾,
基本方法:
等比数列的三种常用判定方法:
定义法:若 =q(q为非零常数,n∈N*),则{an}是等比数列
等比中项法:若数列{an}中,an≠0,且a =an·an+2(n∈N*),则数列{an}是等比数列
通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N*),则{an}是等比数列
(Ⅰ)证明 是等比数列,并求其通项公式;
(Ⅱ)若 ,求 .
【答案】(Ⅰ) ;(Ⅱ) .

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用

高中数学基本数学思想:函数与方程思想在数列中的应用函数思想和方程思想是学习数列的两大精髓.“从基本量出发,知三求二.”这是方程思想的体现.而“将数列看成一种特殊的函数,等差、等比数列的通项公式和前n项和公式都是关于n的函数.”则蕴含了数列中的函数思想.借助有关函数、方程的性质来解决数列问题,常能起到化难为易的功效。

以下是小编给大家带来的方程思想在数列上的应用,仅供考生阅读。

函数与方程思想在数列中的应用(含具体案例)本文列举几例分类剖析:一、方程思想1.知三求二等差(或等比)数列{an}的通项公式,前n项和公式集中了等差(或等比)数列的五个基本元素a1、d(或q)、n、an、Sn.“知三求二”是等差(或等比)数列最基本的题型,通过解方程的方法达到解决问题的目的.例1等差数列{an}的前n项和为Sn,已知a10=30,a20=50,(1)求数列{an}的通项公式;(2)若Sn=242,求n的值.解(1)由a10=a1+9d=30,a20=a1+19d=50,解得a1=12,因为n∈N*,所以n=11.2.转化为基本量在等差(等比)数列中,如果求得a1和d(q),那么其它的量立即可得.例2在等比数列{an}中,已知a6―a4=24,a3a5=64,求{an}的前8项的和S8.解a6―a4=a1q3(q2―1)=24.(1)由a3a5=(a1q3)2=64,得a1q3=±8.将a1q3=―8代入(1),得q2=―2(舍去);将a1q3=8代入(1),得q=±2.当q=2时,a1=1,S8=255;当q=―2时,a1=―1,S8=85.3.加减消元法利用Sn求an利用Sn求an是求通项公式的一种重要方法,其实这种方法就是方程思想中加减消元法的运用.例3(2011年佛山二模)已知数列{an}、{bn}中,对任何正整数n都有:a1b1+a2b2+a3b3+…+an―1bn―1+anbn=(n―1)?2n+1.若数列{bn}是首项为1、公比为2的等比数列,求数列{an}的通项公式.解将等式左边看成Sn,令Sn=a1b1+a2b2+a3b3+…+an―1bn―1+anbn.依题意Sn=(n―1)?2n+1,(1)又构造Sn―1=a1b1+a2b2+a3b3+…+an―1bn―1=(n―2)?2n―1+1,(2)两式相减可得Sn―Sn―1=an?bn=n?2n―1(n≥2).又因为数列{bn}的通项公式为bn=2n―1,所以an=n (n≥2).当n=1,由题设式子可得a1=1,符合an=n.从而对一切n∈N*,都有an=n.所以数列{an}的通项公式是an=n.4.等差、等比的综合问题这一类的综合问题往往还是回归到数列的基本量去建立方程组.例4设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2,a3+4构成等差数列,求数列{an}的通项公式.解根据求和定义和等差中项建立关于a1,a2,a3的方程组.由已知得a1+a2+a3=7,(a1+3)+(a3+4)2=3a2.解得a2=2.设数列{an}的公比为q,由a2=2,可得a1=2q,a3=2q.又S3=7,可知2q+2+2q=7,即2q2―5q+2=0,解得q1=2,q2=12.由题意得q>1,所以q=2.可得a1=1,从而数列{an}的通项为an=2n―1.二、函数思想数列是一类定义在正整数或它的有限子集上的特殊函数.可见,任何数列问题都蕴含着函数的本质及意义,具有函数的一些固有特征.如一次、二次函数的性质、函数的单调性、周期性等在数列中有广泛的应用.如等差数列{an}的通项公式an=a1+(n―1)d=dn+(a1―d),前n项和的公式Sn=na1+n(n―1)2d=d2n2+(a1―d2)n,当d≠0时,可以看作自变量n的一次和二次函数.因此我们在解决数列问题时,应充分利用函数有关知识,以它的概念、图象、性质为纽带,架起函数与数列间的桥梁,揭示了它们间的内在联系,从而有效地分解数列问题.1.运用函数解析式解数列问题在等差数列中,Sn是关于n的二次函数,故可用研究二次函数的方法进行解题.例5等差数列{an}的前n项的和为Sn,且S10=100,S100=10,求S110,并求出当n为何值时Sn有最大值.分析显然公差d≠0,所以Sn是n的二次函数且无常数项.解设Sn=an2+bn(a≠0),则a×102+b×10=100,a×1002+b×100=10.解得a=―11100,b=11110.所以Sn=―11100n2+11110n.从而S110=―11100×1102+11110×110=―110.函数Sn=―11100n2+11110n的对称轴为n=111102×11100=55211=50211.因为n∈N*,所以n=50时Sn有最大值.2.利用函数单调性解数列问题通过构造函数,求导判断函数的单调性,从而证明数列的单调性.例6已知数列{an}中an=ln(1+n)n (n≥2),求证an>an+1.解设f(x)=ln(1+x)x(x≥2),则f ′(x)=x1+x―ln(1+x)x2. 因为x≥2,所以x1+x<1,ln(1+x)>1,所以f ′(x)<0.即f(x)在[2,+∞)上是单调减函数.故当n≥2时,an>an+1.例7已知数列{an}是公差为1的等差数列,bn=1+anan.(1)若a1=―52,求数列{bn}中的最大项和最小项的值;(2)若对任意的n∈N*,都有bn≤b8成立,求a1的取值范围.(1)分析最大、最小是函数的一个特征,一般可以从研究函数的单调性入手,用来研究函数最大值或最小值的方法同样适用于研究数列的最大项或最小项.解由题设易得an=n―72,所以bn=2n―52n―7.由bn=2n―52n―7=1+22n―7,可考察函数f(x)=1+22x―7的单调性.当x<72时,f(x)为减函数,且f(x)<1;当x>72时,f(x)为减函数,且f(x)>1.所以数列{bn}的最大项为b4=3,最小项为b3=―1.(2)分析由于对任意的n∈N*,都有bn≤b8成立,本题实际上就是求数列{bn}中的最大项.由于bn=1+1n―1+a1,故可以考察函数f(x)=1+1x―1+a1的形态.解由题,得an=n―1+a1,所以bn=1+1n―1+a1.考察函数f(x)=1+1x―1+a1,当x<1―a1时,f(x)为减函数,且f(x)<1;当x>1―a1时,f(x)为减函数,且f(x)>1.所以要使b8是最大项,当且仅当7<1―a1<8,所以a1的取值范围是―73.利用函数周期性解数列问题例8数列{an}中a1=a2=1,a3=2,anan+1an+2an+3=an+an+1+an+2+an+3且anan+1an+2≠1成立.试求S100=a1+a2+…+a100的值.分析从递推式不易直接求通项,观察前几项a1=1,a2=1,a3=2,a4=4,a5=1,a6=1,a7=2,a8=4,a9=1,…可猜测该数列是以4为周期的周期数列.解由已知两式相减得通过上述实例的分析与说明,我们可以发现,在数列的教学中,应重视方程函数思想的渗透,应该把函数概念、图象、性质有机地融入到数列中,通过数列与函数知识的相互交汇,使学生的知识网络得以不断优化与完善,同时也使学生的思维能力得以不断发展与提高.高中数学思想方法介绍,高中数学解题思想方法与讲解数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果。

2022年高中数学第二章数列5-1等比数列的前n项和练习含解析新人教A版必修

2022年高中数学第二章数列5-1等比数列的前n项和练习含解析新人教A版必修

课时训练13 等比数列的前n项和一、等比数列前n 项和公式的应用1.已知等比数列的公比为2,且前5项和为1,那么前10项的和等于( )A.31B.33C.35D.37答案:B解析:∵S 5=1,∴a 1(1-25)1-2=1,即a 1=131.∴S 10=a 1(1-210)1-2=33.2.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n答案:D解析:S n =a 1(1-q n)1-q =a 1-a n q 1-q =1-23a n1-23=3-2a n ,故选D .3.(2015福建厦门高二期末,7)设S n 为等比数列{a n }的前n 项和,若27a 2-a 5=0,则S 4S 2等于( )A.-27 B.10C.27D.80答案:B解析:设等比数列{a n }的公比为q ,则27a 2-a 2q 3=0,解得q=3,∴S 4S 2=a 1(1-q 4)1-q ·1-q a 1(1-q 2)=1+q 2=10.故选B .4.(2015课标全国Ⅰ高考,文13)在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和.若S n=126,则n= .答案:6解析:∵a n+1=2a n,即an+1a n=2,∴{a n}是以2为公比的等比数列.又a1=2,∴S n=2(1-2n)1-2=126.∴2n=64,∴n=6.5.设数列{a n}是首项为1,公比为-2的等比数列,则a1+|a2|+a3+|a4|= .答案:15解析:由数列{a n}首项为1,公比q=-2,则a n=(-2)n-1,a1=1,a2=-2,a3=4,a4=-8,则a1+|a2|+a3+| a4|=1+2+4+8=15.二、等比数列前n项和性质的应用6.一个等比数列的前7项和为48,前14项和为60,则前21项和为( )A.180B.108C.75D.63答案:D解析:由性质可得S7,S14-S7,S21-S14成等比数列,故(S14-S7)2=S7·(S21-S14).又∵S7=48,S14=60,∴S21=63.7.已知数列{a n},a n=2n,则1a1+1a2+…+1an= .答案:1-1 2n解析:由题意得:数列{a n }为首项是2,公比为2的等比数列,由a n =2n ,得到数列{a n }各项为:2,22,…,2n ,所以1a 1+1a 2+…+1a n =12+122+…+12n .所以数列{1a n }是首项为12,公比为12的等比数列.则1a 1+1a 2+…+1a n =12+122+…+12n=12[1-(12)n]1-12=1-12n.8.在等比数列{a n }中,a 1+a n =66,a 2·a n-1=128,S n =126,求n 和q.解:∵a 2a n-1=a 1a n ,∴a 1a n =128.解方程组{a 1a n =128,a 1+a n =66,得{a 1=64,a n =2,①或{a 1=2,a n =64.②将①代入S n =a 1-a n q 1-q=126,可得q=12,由a n =a 1q n-1,可得n=6.将②代入S n =a 1-a n q 1-q=126,可得q=2,由a n =a 1q n-1可解得n=6.综上可得,n=6,q=2或12.三、等差、等比数列的综合应用9.已知数列{a n }是以1为首项,2为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,设c n =a b n ,T n =c 1+c 2+…+c n ,当T n >2 013时,n 的最小值为( )A.7B.9C.10D.11答案:C解析:由已知a n =2n-1,b n =2n-1,∴c n =a b n =2×2n-1-1=2n -1.∴T n =c 1+c 2+…+c n =(21+22+ (2))-n=2×1-2n1-2-n=2n+1-n-2.∵T n>2013,∴2n+1-n-2>2013,解得n≥10,∴n的最小值为10,故选C.10.已知公差不为0的等差数列{a n}满足S7=77,a1,a3,a11成等比数列.(1)求a n;(2)若b n=2a n,求{b n}的前n项和T n.解:(1)设等差数列{a n}的公差为d(d≠0),由S7=7(a1+a7)2=77可得7a4=77,则a1+3d=11 ①.因为a1,a3,a11成等比数列,所以a32=a1a11,整理得2d2=3a1d.又d≠0,所以2d=3a1 ②,联立①②,解得a1=2,d=3,所以a n=3n-1.(2)因为b n=2a n=23n-1=4·8n-1,所以{b n}是首项为4,公比为8的等比数列.所以T n=4(1-8n)1-8=23n+2-47.(建议用时:30分钟) 1.在等比数列{a n}中,a1=3,a n=96,S n=189,则n的值为( ) A.5B.4C.6D.7答案:C解析:显然q≠1,由a n=a1·q n-1,得96=3×q n-1.又由S n=a1-anq1-q,得189=3-96q1-q.∴q=2.∴n=6.2.等比数列{a n}的前n项和为S n,若S1,S3,S2成等差数列,则{a n}的公比等于( )A.1B.12C.-12D.1+√52答案:C解析:设等比数列{a n}的公比为q,由2S3=S1+S2,得2(a1+a1q+a1q2)=a1+a1+a1q,整理得2q2+q=0,解得q=-12或q=0(舍去).故选C.3.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( )A.2B.12C.4D.14答案:C解析:a3=3S2+2,a4=3S3+2,等式两边分别相减得a4-a3=3a3即a4=4a3,∴q=4.4.设S n为等比数列{a n}的前n项和,8a2+a5=0,则S5S2=( )A.11B.5C.-8D.-11答案:D解析:设等比数列的首项为a1,公比为q,则8a1q+a1q4=0,解得q=-2.∴S5S2=a1(1-q5)1-qa1(1-q2)1-q=1-q51-q2=-11.5.设{a n}是任意等比数列,它的前n项和,前2n项和与前3n项和分别为X,Y,Z,则下列等式中恒成立的是( )A.X+Z=2YB.Y(Y-X)=Z(Z-X)C.Y2=XZD.Y(Y-X)=X(Z-X)答案:D解析:S n=X,S2n-S n=Y-X,S3n-S2n=Z-Y,不妨取等比数列{a n}为a n=2n,则S n,S2n-S n,S3n-S2n成等比数列,∴(Y-X)2=X(Z-Y),整理得D正确.6.某住宅小区计划植树不少于100棵,若第一天植2棵,以后每天植树的棵数是前一天的2倍,则需要的最少天数n (n ∈N *)等于 . 答案:6解析:由题意知每天植树的棵数组成一个以2为首项,2为公比的等比数列,所以S n =2(1-2n)1-2=2(-1+2n )≥100,∴2n ≥51,∴n ≥6.7.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为 . 答案:3116解析:易知公比q ≠1.由9S 3=S 6,得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q=2.∴{1a n }是首项为1,公比为12的等比数列.∴其前5项和为1-(12)51-12=3116.8.在等比数列{a n }中,若a 1=12,a 4=-4,则公比q= ;|a 1|+|a 2|+…+|a n |= .答案:-2 2n-1-12解析:设等比数列{a n }的公比为q ,则a 4=a 1q 3,代入数据解得q 3=-8,所以q=-2;等比数列{|a n |}的公比为|q|=2,则|a n |=12×2n-1,所以|a1|+|a2|+|a3|+…+|a n|=12(1+2+22+…+2n-1)=12(2n-1)=2n-1-12.9.已知等差数列{a n}的前n项和为S n,且满足a2=4,a3+a4=17.(1)求{a n}的通项公式;(2)设b n=2a n+2,证明数列{b n}是等比数列并求其前n项和T n. (1)解:设等差数列{a n}的公差为d.由题意知{a3+a4=a1+2d+a1+3d=17,a2=a1+d=4,解得a1=1,d=3,∴a n=3n-2(n∈N*).(2)证明:由题意知,b n=2a n+2=23n(n∈N*),b n-1=23(n-1)=23n-3(n∈N*,n≥2),∴bnb n-1=23n23n-3=23=8(n∈N*,n≥2),又b1=8,∴{b n}是以b1=8,公比为8的等比数列.∴T n=8×(1-8n)1-8=87(8n-1).10.已知公差不为0的等差数列{a n}的首项a1为a(a∈R),且1a1,1a2,1a4成等比数列.(1)求数列{a n}的通项公式;(2)对n∈N*,试比较1a2+1a22+1a23+…+1a2n与1a1的大小.解:(1)设等差数列{a n}的公差为d,由题意可知(1a2)2=1a1·1a4,即(a1+d)2=a1(a1+3d),从而a1d=d2,因为d≠0,∴d=a1=a.故通项公式a n=na.(2)记T n=1a2+1a22+…+1a2n,因为a2n=2n a,所以T n=1a(12+122+ (12))=1 a ·12[1-(12)n]1-12=1a[1-(12)n].从而,当a>0时,T n<1 a 1 ;当a<0时,T n>1 a 1 .。

高中数学第4章数列3、1等比数列的概念3、2等比数列的通项公式、提升训练苏教版选择性必修第一册

高中数学第4章数列3、1等比数列的概念3、2等比数列的通项公式、提升训练苏教版选择性必修第一册

等比数列的概念等比数列的通项公式基础过关练题组一等比数列的概念及其应用1.有下列四个说法:①等比数列中的某一项可以为0;②等比数列中公比的取值范围是(-∞,+∞);③若一个常数列是等比数列,则这个常数列的公比为1;④若b2=ac,则a,b,c成等比数列.其中正确说法的个数为()A.0B.1C.2D.32.已知数列a,a(1-a),a(1-a)2,…是等比数列,则实数a的取值范围是()A.a≠1B.a≠0或a≠1C.a≠0D.a≠0且a≠13.(2021湖北黄石第二中学高三一模)已知函数f(x)=log k x(k为常数,k>0且k≠1).下列条件中,能使数列{a n}为等比数列的是(填序号).①数列{f(a n)}是首项为2,公比为2的等比数列;②数列{f(a n)}是首项为4,公差为2的等差数列;③数列{f(a n)}是首项为2,公差为2的等差数列的前n项和构成的数列.题组二等比数列的通项公式4.(2021江苏无锡锡山高级中学高二期中)在3和81之间插入2个数,使这4个数成等比数列,则公比q为()A.±2B.2C.±3D.35.(2021江苏镇江四校高三第一次联考)在正项等比数列{a n}中,若a6,3a5,a7依次成等差数列,则{a n}的公比为.6.(2020江苏南通高三考前模拟)已知等比数列{a n}的公比q=2,且a1·a2·a3·…·a30=1,则a3·a6·a9·…·a30=.7.(2020湖北宜昌示范高中协作体高二期末)已知数列{a n}是首项为1的等比数列,数列{b n}满足b1=2,b2=5,且a n b n+1=a n b n+a n+1.(1)求数列{a n}的通项公式;(2)求数列{b n}的前n项和S n.题组三等比中项8.(2020四川广元高一期末)两数√2+1与√2-1的等比中项是()A.1B.-1C.±1D.129.(2020重庆一中高二上期中)已知等差数列{a n}的公差为2,且a3是a1与a7的等比中项,则a1等于()A.6B.4C.3D.-110.已知a是1,2的等差中项,b是-1,-16的等比中项,则ab等于()A.6B.-6C.±6D.±1211.(多选)(2020山东临沂高二期末)已知三个数1,a,4成等比数列,则圆锥曲线x2+y2y=1的离心率可能为()A.√22B.√32C.√62D.√3题组四等比数列的性质12.(2021江苏宿迁桃州中学高二调研考试)已知各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6= ()A.5√2B.7C.6D.4√213.(2021浙江十校联盟高三联考)已知数列{a n}为等比数列,则“a1<0,q>1”是“{a n}为递减数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件14.(2020四川外国语大学附属学校阶段检测)已知等比数列{a n}是递减数列,且满足a1+a4=18,a2a3=32,则a5= ()A.32B.16C.2D.115.在正项等比数列{a n}中,a1a5-2a3a5+a3a7=36,a2a4+2a2a6+a4a6=100,求数列{a n}的通项公式.能力提升练题组一等比数列的通项公式及其应用1.(2020河北保定高一期末,)已知数列a1,y2y1,…,y yy y-1,…是首项为1,公比为2的等比数列,则log2a n= ()A.n(n+1)B.y(y-1)4C.y(y+1)2D.y(y-1)22.(2021河南豫南九校高二联考,)音乐中使用的乐音在高度上不是任意定的,它们是按照严格的数学方法确定的.我国明代数学家、音乐理论家朱载堉创立了十二平均律,他是第一个利用数学使音律公式化的人.十二平均律的生律法是精确规定八度的比例,把八度分成13个半音,使相邻两个半音的频率之比为常数,如下表所示,其中a1,a2,…,a13表示这些半音的频率,它们满足log2(y y+1y y)12=1(i=1,2,…,12).若某一半音与D8的频率之比为√23,则该半音为()A.F8B.GC.G8D.A3.(2020江苏南京师大附中高三高考模拟,)各项均正且公差不为0的等差数列{a n}的第1项、第2项、第6项恰好是等比数列{b n}的连续三项(顺序不变),设S n=1y1y2+1y2y3+…+1y y y y+1,若对一切的n∈N*,S n≤1y1恒成立,则a1的最小值为.4.(2021江苏徐州新沂第一中学高二月考,)在各项均为正偶数的数列a1,a2,a3,a4中,前三项依次成公差为d(d>0)的等差数列,后三项依次成公比为q的等比数列.(1)若a1=4,q=32,则d=;(2)若a4-a1=88,则q的所有可能的值构成的集合为.5.(2021广东深圳、汕头、潮州、揭阳名校高三联考,)从①前n项和S n=n2+p(p∈R),②a6=11且2a n+1=a n+a n+2这两个条件中任选一个,填在下面的横线上,并完成解答.在数列{a n}中,a1=1,,其中n∈N*.(1)求数列{a n }的通项公式;(2)若a 1,a n ,a m 构成等比数列,其中m ,n ∈N *,且m >n >1,求m 的最小值.题组二 等比数列的性质及综合应用 6.(2021江苏宿迁桃州中学高二调研,)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1= ( )A.n (2n -1)B.(n +1)2C.n 2D.(n -1)27.(2021安徽示范高中培优联盟高二联赛,)已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=3√3,b 1+b 6+b 11=-3π4,则tan y 3+y 91-y 4·y 8的值是 ()A.-√3B.√22 C.-√22 D.18.(2020重庆第一中学高一月考,)正项数列{a n }满足:a n +a n +1+a n +2=a n a n +1a n +2,a 1+a 3=6,若前三项构成等比数列且满足a 1<a 2<a 3,S n 为数列{a n }的前n 项和,则[S 2 020]([x ]表示不超过x 的最大整数)的值为(参考数据:√5≈2.236) ( ) A.4 040 B.4 041 C.5 384 D.5 385 9.(2021江苏苏州高二期中,)已知等比数列{a n }为递增数列,若a 1+a 4=7,a 2+a 3=6,则a 1+a 2= .10.(2020广西南宁第三中学高三月考,)等差数列{a n }的前n 项和为S n ,a 3=3,其中a 1,a 3,a 9成等比数列,且数列{a n }不是常数列. (1)求数列{a n }的通项公式;(2)设b n=1,b n的前n项和为T n,求证:T n<2.y y11.(2020山西太原第五中学高二阶段测试,)已知数列{a n}的前n项和为S n,且S n=2a n-2.(1)求数列{a n}的通项公式;(2)设b n=log2a1+log2a2+…+log2a n,求使(n-8)b n≥nk对任意n∈N*恒成立的实数k的取值范围.12.(2020辽宁省实验中学高二上期中,)黄河被称为我国的母亲河,它的得名据说来自于河水的颜色,黄河因携带大量泥沙所以河水呈现黄色,黄河的水源来自青海高原,从源头开始1 000 km的河水是非常清澈的.只是在刘家峡水库附近,清澈的黄河和携带大量泥沙的洮河汇合,在两条河流的交汇处,水的颜色一清一浊,互不交融,形成了一条奇特的水中分界线,设黄河和洮河在汛期的水流量均为2 000 m3/s,黄河水的含沙量为2 kg/m3,洮河水的含沙量为20 kg/m3,假设从交汇处开始沿岸设有若干个观测点,两股河水在流经相邻的观测点的过程中,其混合效果相当于两股河水在1秒内交换1 000 m3的水量,即从洮河流入黄河1 000 m3的水混合后,又从黄河流入1 000 m3的水到洮河再混合.(1)求经过第二个观测点时,两股河水的含沙量;(2)从第几个观测点开始,两股河水的含沙量之差小于0.01 kg/m3?(不考虑泥沙沉淀)答案全解全析基础过关练1.B对于①,因为等比数列中的各项都不为0,所以①不正确;对于②,因为等比数列的公比不能为0,所以②不正确;对于③,若一个常数列是等比数列,则这个常数列的各项均不为0,根据等比数列的定义知此数列的公比为1,所以③正确;对于④,只有当a,b,c都不为0时,a,b,c才成等比数列,所以④不正确.因此,正确的说法只有1个,故选B.2.D由于a,a(1-a),a(1-a)2,…是等比数列,所以需同时满足a≠0,1-a≠0,所以a≠0且a ≠1.3.答案②解析①中,f(a n)=2n,即log k a n=2n,得a n=y2y,∵y y+1y y =y2y+1y2y=y2y≠常数,∴数列{a n}不是等比数列;②中,f(a n)=4+(n-1)×2=2n+2,即log k a n=2n+2,得a n=k2n+2,且a1=k4≠0,∵y y+1y y =y2(y+1)+2y2y+2=k2,且k2为非零常数,∴数列{a n}是以k4为首项,k2为公比的等比数列;③中,f(a n)=2n+y(y-1)2×2=n2+n,即log k a n=n2+n,得a n=k n(n+1),∵y y+1y y =y(y+1)(y+2)y y(y+1)=k2(n+1)≠常数,∴数列{a n}不是等比数列.4.D若使这4个数成等比数列,则81=3q3,解得q=3.故选D.5.答案 2解析设正项等比数列{a n}的公比为q,q>0,由a6,3a5,a7依次成等差数列,可得6a5=a6+a7,即有6a1q4=a1q5+a1q6,化简,得q2+q-6=0,解得q=2(q=-3舍去),则{a n }的公比为2. 6.答案 1024解析 因为{a n }为等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=1,所以a 1·a 1q ·a 1q 2·…·a 1q 29=y 130q1+2+3+…+29=y 1302435=1,所以y 110=2-145,所以a 3·a 6·a 9·…·a 30=y 110q 155=y 1102155,所以a 3·a 6·a 9·…·a 30=2-145×2155=210=1024.7.解析 (1)将n =1代入已知等式,得a 1b 2=a 1b 1+a 2,∴a 2=a 1b 2-a 1b 1=3a 1. ∴{a n }是首项为1,公比为3的等比数列,∴a n =1·3n -1=3n -1. (2)由(1)及已知得b n +1-b n =y y +1y y=3,∴{b n }是首项为2,公差为3的等差数列,∴b n =2+3(n -1)=3n -1, ∴S n =y (y 1+y y )2=y (2+3y -1)2=3y 2+y2.解题模板关于a 1和q 的求法通常有以下两种:(1)根据已知条件,建立关于a 1,q 的方程组,通过解方程组求出a 1,q ,这是常规方法. (2)充分利用各项之间的关系,直接求出q 后,再求a 1,这种方法带有一定的技巧性,能简化运算.8.C 设两数的等比中项为x ,则x 2=(√2+1)·(√2-1)=1,∴x =±1,故等比中项为±1. 9.B 依题意得y 32=a 1a 7,∴(a 1+4)2=a 1(a 1+12),解得a 1=4.故选B.10.C 由题意可得a =1+22=32,b 2=(-1)×(-16)=16,解得b =±4,∴ab =±6.11.AD 由1,a ,4成等比数列,得a =±2. 当a =2时,曲线x 2+y 22=1表示焦点在y 轴上的椭圆,此时离心率为√2-1√2=√22; 当a =-2时,曲线x 2-y 22=1表示焦点在x 轴上的双曲线,此时离心率为√2+11=√3.故选AD.12.A 由等比数列的性质知a 1a 2a 3,a 4a 5a 6,a 7a 8a 9成等比数列,所以a 4a 5a 6=5√2. 13.A 若等比数列{a n }满足a 1<0,q >1,则数列{a n }为递减数列, 故“a 1<0,q >1”是“{a n }为递减数列”的充分条件;因为当等比数列{a n }满足a 1>0,0<q <1时,数列{a n }也是递减数列, 所以“a 1<0,q >1”不是“{a n }为递减数列”的必要条件.综上所述,“a 1<0,q >1”是“{a n }为递减数列”的充分不必要条件,故选A.14.D 设等比数列{a n }的公比为q.由a 2a 3=32可得a 1a 4=32,又a 1+a 4=18,且等比数列{a n }为递减数列,所以a 1=16,a 4=2,所以q 3=y 4y 1=18,故q =12,所以a 5=a 4×12=1,故选D .15.解析 设等比数列{a n }的公比为q (q >0).因为数列{a n }为等比数列,所以a 1a 5=y 32,a 3a 7=y 52,所以由题意可得y 32-2a 3a 5+y 52=36. 同理,得y 32+2a 3a 5+y 52=100.所以{(y 3-y 5)2=36,(y 3+y 5)2=100,因为a n >0, 所以{y 3-y 5=-6,y 3+y 5=10或{y 3-y 5=6,y 3+y 5=10,解得{y 3=2,y 5=8或{y 3=8,y 5=2,易得{y 1=12,y =2或{y 1=32,y =12.所以a n =12×2n -1=2n -2或a n =32×(12)y -1=26-n.能力提升练1.D 由题意可得yy y y -1=1×2n -1=2n -1(n ≥2),而a n =a 1×y 2y 1×y 3y 2×…×y y y y -1=1×21+2+…+(n -1)=2y (y -1)2(n ≥2), 当n =1时,a 1=1也满足该式,故a n =2y (y -1)2(n ∈N *),所以log 2a n =y (y -1)2,故选D .2.答案 B信息提取 (1)把八度分成13个半音;(2)相邻两个半音的频率之比是常数;(3)log 2(y y +1y y)12=1(i =1,2,…,12). 数学建模 本题是以音乐中音律的划分为背景的实际问题,由“相邻两个半音的频率之比为常数”可构建等比数列模型.实际问题可转化为已知yy y 4=√23求a n ,进而求出a n 对应的半音.根据log 2(y y +1y y)12=1可得y y +1y y=2112,即数列{a n }是公比为2112的等比数列,利用等比数列的通项公式即可求解. 解析依题意可知a n >0(n =1,2,…,12,13).由于a 1,a 2,…,a 13满足log 2(y y +1y y )12=1(i =1,2,…,12),则(y y +1y y )12=2⇒yy +1y y=2112,所以数列{a n }(n =1,2,…,12,13)为等比数列,设其公比为q ,则q =2112,D 8对应的频率为a 4,又所求半音与D 8的频率之比为√23=213=(2112)4,故所求半音对应的频率为a 4·(2112)4=a 8,其对应的半音为G. 3.答案 13解析 设等差数列{a n }的公差为d (d ≠0),由题意得y 22=a 1a 6,即(y 1+y )2=a 1(a 1+5d ), 因为d ≠0,所以d =3a 1,所以a n =a 1+(n -1)d =(3n -2)a 1,则S n =1y 1y 2+1y 2y 3+…+1y y y y +1=13y 11y 1-1y 2+1y 2-1y 3+…+1y y -1yy +1=13y 1·3yy 1y 1·(3y +1)y 1=y(3y +1)y 12,所以y(3y +1)y 12≤1y 1,则a 1≥y3y +1.因为y 3y +1=13(1-13y +1)<13,所以a 1≥13,故a 1的最小值为13. 4.答案 (1)4 (2){53,87}解析 (1)若a 1=4,q =32,则a 2=4+d ,a 3=4+2d ,y 3y 2=4+2y 4+y =32, 解得d =4.(2)根据题意,设这个数列的四项分别为a 1,a 1+d ,a 1+2d ,a 1+88,其中a 1和d 均为正偶数,根据后三项依次成等比数列,可得(a 1+2d )2=(a 1+d )(a 1+88), 整理得a 1=4y (22-y )3y -88,由a 1>0,可得(d -22)(3d -88)<0,所以22<d <883,则d 的可能值为24,26,28. 当d =24时,a 1=12,a 2=36,a 3=60,q =53;当d =26时,a 1=2085(舍);当d =28时,a 1=168,a 2=196,a 3=224,q =87.综上所述,q 的所有可能的值构成的集合为{53,87}. 方法总结判断数列{a n }是不是等比数列的方法:(1)定义法:判断y y +1y y是不是常数; (2)等比中项法:判断y y +1y y =y y y y -1(n ≥2,n ∈N *)是否成立. 5.解析 选择条件①:(1)当n =1时,由S 1=a 1=1,得p =0,故S n =n 2. 当n ≥2时,有S n -1=(n -1)2,所以a n =S n -S n -1=2n -1(n ≥2). 经检验,a 1=1符合此式,所以a n =2n -1(n ∈N *). (2)由a 1,a n ,a m 构成等比数列,得y y 2=a 1a m , 由(1)得a n =2n -1(n ∈N *),故有(2n -1)2=1×(2m -1), 化简,得m =2n 2-2n +1=2(y -12)2+12.因为m ,n 是大于1的正整数,且m >n ,所以当n =2时,m 取得最小值,最小值为5. 选择条件②:(1)由2a n +1=a n +a n +2,得a n +1-a n =a n +2-a n +1, 所以数列{a n }是等差数列,设其公差为d. 因为a 1=1,a 6=a 1+5d =11,所以d =2. 所以a n =a 1+(n -1)d =2n -1(n ∈N *).(2)因为a 1,a n ,a m 构成等比数列,所以y y 2=a 1a m ,即(2n -1)2=1×(2m -1),化简,得m =2n 2-2n +1=2(y -12)2+12. 因为m ,n 是大于1的正整数,且m >n ,所以当n =2时,m 取得最小值,最小值为5.6.C 因为{a n }为等比数列,所以a 1·a 2n -1=a 2·a 2n -2=…=a 5·a 2n -5=22n,所以log 2a 1+log 2a 3+…+log 2a 2n -1=log 2(a 1a 2n -1)y2=log 2(22y)y2=log 22y 2=n 2.故选C.7.D 在等差数列{b n }中,b 1+b 6+b 11=3b 6=-3π4,∴b 6=-π4,∴b 3+b 9=2b 6=-π2,在等比数列{a n }中,a 1·a 6·a 11=3√3,即y 63=3√3,∴a 6=√3,∴1-a 4a 8=1-(√3)2=-2,则tan y 3+y 91-y 4·y 8=tan -π2-2=tan π4=1.故选D .8.C 依题意得a 1+a 2+a 3=a 1a 2a 3,a 1+a 3=6,y 22=a 1·a 3, 故6+a 2=y 23,即(a 2-2)[(a 2+1)2+2]=0,解得a 2=2.联立{y 1+y 3=6,y 1·y 3=4,结合a 1<a 2<a 3,可解得a 1=3-√5,a 3=3+√5.依题意得a 2+a 3+a 4=a 2·a 3·a 4⇒a 4=3-√5,a 3+a 4+a 5=a 3·a 4·a 5⇒a 5=2,a 4+a 5+a 6=a 4·a 5·a 6⇒a 6=3+√5,所以数列{a n }是周期为3的周期数列,且a 1+a 2+a 3=8,故S 2020=S 673×3+1=673×8+a 1=5387-√5,又√5≈2.236,所以[S 2020]=5384.故选C . 9.答案 4解析 设等比数列{a n }的公比为q ,由题意,得{y 1(1+y 3)=7,①y 1y (1+y )=6,②②①,得y 1y (1+y )y 1(1+y 3)=y (1+y )(1+y )(1-y +y 2)=y 1-y +y 2=67, 解得q =32或q =23,经验证可知当q =23时,{a n }不是递增数列,故q =32,所以a 1+a 2=a 1(1+q )=6y =4. 10.解析 (1)设等差数列{a n }的公差为d (d ≠0). 因为a 1,a 3,a 9成等比数列, 所以y 32=a 1·a 9, 即32=(3-2d )(3+6d ), 解得d =1或d =0(舍去), 所以a n =a 3+(n -3)·1=n.(2)证明:由(1)知,a 1=1,所以S n =na 1+y (y -1)2×d =y (y +1)2,所以b n =1y y=2y (y +1)=2(1y -1y +1),则T n =b 1+b 2+…+b n =211-12+12-13+…+1y -1y +1 =2(1-1y +1)<2.11.解析 (1)由S n =2a n -2可得a 1=2. 因为S n =2a n -2,所以当n ≥2时,a n =S n -y y -1=2a n -2y y -1,即a n =2a n -1,所以数列{a n }是以2为首项,2为公比的等比数列,所以a n =2n(n ∈N *). (2)由(1)知a n =2n,所以b n =log 2a 1+log 2a 2+…+log 2a n =1+2+3+…+n =y (y +1)2.所以(n -8)b n ≥nk 对任意n ∈N *恒成立等价于(y -8)(y +1)2≥k 对任意n ∈N *恒成立,等价于k ≤[(y -8)(y +1)2]min.设c n =12(n -8)(n +1),n ∈N *,则当n =3或n =4时,c n 取得最小值-10,所以k ≤-10.12.解析 (1)在第二个观测点时,洮河流入黄河1000m 3的水混合后,黄河的含沙量为2×2000+20×10003000=8(kg/m 3),又从黄河流入1000m 3的水到洮河再混合后,洮河的含沙量为8×1000+20×10002000=14(kg/m3).(2)设在第n个观测点时黄河的含沙量为a n kg/m3,洮河的含沙量为b n kg/m3,由题意有a1=2,b1=20,且a n+1=1000y y+2000y y3000=2y y+y y3,b n+1=1000y y+1000y y+12000=y y+1+y y2=y y+2y y3,所以b n+1-a n+1=13(b n-a n),又b1-a1=18≠0,所以{b n-a n}是首项为18,公比为13的等比数列,∴b n-a n=18×(13)y-1.根据题意,有18×(13)y-1<0.01,即3n-1>1800,n∈N*,解得n>7,所以从第8个观测点开始,两股河水的含沙量之差小于0.01kg/m3.。

人教A版选择性必修二同步 第四章数列达标测试卷(含答案)

人教A版选择性必修二同步 第四章数列达标测试卷(含答案)

第四章达标测试卷(时间:120分钟满分:150分)一.单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列的通项公式a n是()A.B.C.D.【答案】C【解析】依题意,数列{an}的前几项为:a1==;a2==;a3==;……则其通项公式a n=.2.已知数列{a n}满足.若{a n}是递增数列,则实数a的取值范围是()A.(1,2] B.(2,3)C.[2,3)D.(1,3)【答案】B【解析】若{a n}是递增数列,则即,即,即2<a<3,即实数a的取值范围是(2,3),故选:B3.在等差数列{a n}中,若a4,a8是方程x2﹣4x+3=0的两根,则a6的值是()A.B.C.2 D.﹣2【答案】C【解析】等差数列{a n}中,若a4,a8是方程x2﹣4x+3=0的两根,∴a4+a8=4=2a6,∴a6=2,故选:C4.已知数列a1,是首项为8,公比为的等比数列,则a4等于()A.8 B.32 C.64 D.128【答案】C【解析】提示:数列a1,是首项为8,公比为的等比数列,则=8×=1.a4=a1×××=8×4×2×1=64.故选:C5.首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.则d的取值范围()A.d≤﹣2或d≥2B.﹣2≤d≤2C.d<0D.d>0【答案】A【解析】足S5S6+15=0,则(5a1+10d)(6a1+15d)+15=0,整理可得,有解,故△=81d2﹣8(1+10d2)≥0,解可得,d或d.故选:A6.《九章算术》是人类科学史上应用数学的最早巅峰,书中有如下问题:“今有女子善织,日益功,疾,初日织六尺,今一月织十一匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织6尺,一月织了十一匹三丈,问每天增加多少尺布?”若一个月按30天算,记该女子一个月中的第n天所织布的尺数为a n,则的值为()A.B.C.D.【答案】C【解析】由题意可得:每天织布的量组成了等差数列{a n},a1=6(尺),S30=11×40+30=470(尺),设公差为d(尺),则30×6+d=470,解得d=.则===.7.设数列{a n}满足a n+1﹣a n=2(n+1),a1=2,则数列{(﹣1)n•a n}的前200项和是()A.20100 B.20200 C.40200 D.40400【答案】B【解析】a n+1﹣a n=2(n+1),a1=2,可得a n=a1+(a2﹣a1)+…+(a n﹣a n﹣1)=2+4+6+…+2n=n(2+2n)=n(n+1),(﹣1)n•a n=(﹣1)n•n(n+1),数列{(﹣1)n•a n}的前200项和为﹣1×2+2×3﹣3×4+4×5﹣5×6+…﹣199×200+200×201=2×(2+4+…+200)=2××100×202=20200,故选:B8.各项均为正数的等差数列{a n}的前n项和为S n,,S2m﹣1=38,则m等于()A.38 B.20 C.10 D.9【答案】C【解析】由,利用等差数列的性质可得:2a m﹣=0,a m>0.解得a m=2.∴S2m﹣1==(2m﹣1)a m=38,则m=10.故选:C二.多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得4分,选对但不全的得2分,有选错的得0分)9.已知数列{a n}为等差数列,其前n项和为S n,且2a1+3a3=S6,则下列结论正确的是()A.a10=0 B.S10最小C.S7=S12D.S19=0【答案】ACD【解析】A.因为数列{a n}为等差数列,2a1+3a3=S6,即5a1+6d=6a1+15d,即a1+9d=a10=0,故A正确;B.因为a10=0,所以S9=S10,但是无法推出数列{a n}的单调性,故无法确定S10是最大值还是最小值.故B错误;C.因为a8+a9+a10+a11+a12=5a10=0,所以S12=S7+a8+a9+a10+a11+a12=S7+0=S7,故C正确;D.S19==19a10=0,所以D正确.故选:ACD10.下列关于公差d>0的等差数列{a n}的四个命题中真命题是()A.数列{a n}是递增数列;B.数列{na n}是递增数列;C.数列是递增数列;D.数列{a n+3nd}是递增数列;【答案】AD【解析】A∵对于公差d>0的等差数列{a n},a n+1﹣a n=d>0,∴数列{a n}是递增数列成立,A是真命题.对于数列{na n},第n+1项与第n项的差等于(n+1)a n+1﹣na n=(n+1)d+a n,不一定是正实数,B是假命题.对于数列,第n+1项与第n项的差等于﹣==,不一定是正实数,C是假命题.对于数列{a n+3nd},第n+1项与第n项的差等于a n+1+3(n+1)d﹣a n﹣3nd=4d>0,数列{a n+3nd}是递增数列成立,D 是真命题.故选:AD11.已知数列{a n}的前n项和为S n,S n=2a n﹣2,若存在两项a m,a n,使得a m a n=64,则()A.数列{a n}为等差数列B.数列{a n}为等比数列C.a12+a22+…+a n2=D.m+n为定值【答案】BD【解析】S n=2a n﹣2,可得n=1时,a1=S1=2a1﹣2,即a1=2,n≥2时,a n=S n﹣S n﹣1=2a n﹣2﹣2a n﹣1+2,化为a n=2a n﹣1,则{a n}为首项为2,公比为2的等比数列,故A错,B对;由a n=2n,可得a n2=4n,则a12+a22+…+a n2=4+16+…+4n==,故C错;存在两项a m,a n,使得a m a n=64,可得2m+n=26,即m+n=6,故D对.故选:BD12.若数列{a n}满足:对任意正整数n,{a n+1﹣a n}为递减数列,则称数列{a n}为“差递减数列”.给出下列数列{a n}(n∈N*),其中是“差递减数列”的有()A.a n=3n B.a n=n2+1 C.a n=D.a n=ln【答案】CD【解析】A∵a n+1﹣a n=3(n+1)﹣3n=3,∴数列{a n}不为“差递减数列”.同理可得:B不为“差递减数列”.C∵a n+1﹣a n==,∴数列{a n}为“差递减数列”.同理可得:D为“差递减数列”.故选:CD三.填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知等比数列{a n}的前n项和S n满足S n=2+a n+1,则a1=.【答案】-2【解析】根据题意,等比数列{a n}的前n项和S n满足S n=2+a n+1,则有S n﹣1=2+a n,两式相减可得:S n﹣S n﹣1=a n+1﹣a n,即a n=a n+1﹣a n,变形可得a n+1=2a n,即等比数列{a n}的公比为2;在S n=2+a n+1中,令n=1可得:a1=2+a2,即a1=2+2a1,解可得a1=﹣214.已知数列{a n}满足a n>0,且lga n,lga n+1,lga n+2成等差数列,若a3a4a6a7=4,则a5=.【答案】【解析】由题意可得,lga n+lga n+2=2lga n+1,即,即数列{a n}为等比数列,由等比数列的性质可得,a3a4a6a7==4,∵a n>0,则a5=.15.已知正项数列{a n}中,若存在正实数p,使得对数列{a n}中的任意一项a k,也是数列{a n}中的一项,称数列{a n}为“倒置数列”,p是它的“倒置系数”,若等比数列{a n}的项数是m,数列{a n}所有项之积是T,则T=(用m和p表示).【答案】【解析】∵数列{a n}是项数为m的有穷正项等比数列,取p=a1•a m>0,对数列{a n}中的任意一项a i(1≤i≤m),=也是数列{a n}中的一项,由“倒置数列”的定义可知,数列{a n}是“倒置数列”.又∵数列{a n}所有项之积是T,∴T 2=(a 1a 2…a m )(a m a m ﹣1…a 1)=,则 16.已知正项等比数列{a n }满足a 2020=2a 2018+a 2019,若存在两项a m ,a n 使得,则的最小值是 ,此时m 2+n 2= . 【答案】,20 【解析】根据题意,设正项等比数列{a n }的公比为q ,若{a n }满足a 2020=2a 2018+a 2019,则有q 2=2+q ,解得q =2或q =﹣1(舍去),若存在两项a m ,a n 使得,即a m •a n =16a 12,变形可得2m +n ﹣2=16=24,则有m +n =6, 则=+=×(m +n )×(+)=×(5++), 又由+≥2×=4,当且仅当n =2m 即n =2m =4时,等号成立, 则=×(5++)≥(5+4)=,此时m 2+n 2=20;三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .【解析】(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2,∴a n =2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8, b 1+4d =32, 解得⎩⎪⎨⎪⎧b 1=-16,d =12. 从而b n =-16+12(n -1)=12n -28,所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 18.(本小题满分12分)(2020•邵阳一模)已知数列{a n }的前n 项和S n =2a n ﹣a 1,且满足a 1,a 2+,a 3成等差数列. (1)求数列{a n }的通项公式;(2)设数列{}的前n项和为T n,求使|T n﹣2|<成立的n的最小值.【解析】(1)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1,(n≥2),从而a2=2a1,a3=2a2=4a1,又∵a1,a2+,a3成等差数列,∴a1+a3=a2+1,∴a1+4a1=4a1+1,解得a1=1,∴{a n}的通项公式为:a n=2n﹣1;(2)由(1)得=,所以T n==2﹣,由|T n﹣2|<,即<,∴2n﹣1>500,即2n>1000,∴n的最小值是10.19.(本小题满分12分)在①a4=b4,②a2+b5=2,③S6=﹣24这三个条件中任选一个,补充在下面问题中,若问题中的正整数k存在,求k的值;若k不存在,请说明理由.设S n为等差数列{a n}的前n项和,{b n}是等比数列,,b1=a5,b3=﹣9,b6=243.是否存在k,使得S k>S k﹣1且S k+1<S k?【解析】选择①a4=b4,又b1=a5,b3=﹣9,b6=243.则b1﹣d=﹣9q,﹣9q3=243,b1q2=﹣9,a1+3d=b1﹣d.解得q=﹣3,b1=﹣1,d=﹣28.a1=111.∴a n=111﹣28(n﹣1)=139﹣28n.假设存在k使得S k>S k﹣1且S k+1<S k.则139﹣28k>0,139﹣28(k+1)<0,化为:<k<,解得k=4.故答案为:4.20.(本小题满分12分)等差数列{a n}的前n项和为S n,已知a1=﹣7,公差d为大于0的整数,当且仅当n=4时,S n取得最小值.(1)求公差d及数列{a n}的通项公式;(2)求数列{|a n |}的前20项和.【解析】(1)设等差数列{a n }的公差为d ,则 依题意,可知:,即, 即,解得.∵公差d 为大于0的整数,∴d =2.∴a n =a 1+(n ﹣1)d =﹣7+2(n ﹣1)=2n ﹣9.(2)由题意,当n ≤4时,a n <0;当n ≥5时,a n >0. 故|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+…+|a 20|=﹣(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 20) ===272. ∴数列{|a n |}的前20项和为272.21.(本小题满分12分)已知等差数列{a n }满足:a 3=7,a 5+a 7=26,{a n }的前n 项和为S n .(1)求a n 及S n ;(2)令b n =1a 2n -1(n ∈N *),求数列{b n }的前n 项和T n . 【解析】(1)设等差数列{a n }的首项为a 1,公差为d . 因为a 3=7,a 5+a 7=26,所以⎩⎪⎨⎪⎧ a 1+2d =7,2a 1+10d =26, 解得⎩⎪⎨⎪⎧a 1=3,d =2.所以a n =3+2(n -1)=2n +1, S n =3n +n (n -1)2×2=n 2+2n . 所以a n =2n +1,S n =n 2+2n .(2)由(1)知a n =2n +1,所以b n =1a 2n -1=1(2n +1)2-1=14·1n (n +1)=14·)111(+-n n , 所以T n =14·(1-12+12-13+…+1n -1n +1)=14·(1-1n +1)=n 4(n +1),即数列{b n }的前n 项和T n =n 4(n +1). 22.(本小题满分12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2na n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .【解析】(1)证明:由已知可得a n +12n +1=a n a n +2n, 即2n +1a n +1=2n a n +1,即2n +1a n +1-2na n=1. ∴数列{2na n}是公差为1的等差数列. (2)由(1)知2n a n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n .S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。

2的数列公式

2的数列公式

2的数列公式2的数列公式是指以2为公比的等比数列。

等比数列是一种数列,其中每一项与前一项的比值都相等。

而以2为公比的等比数列中的每一项都是前一项的2倍。

下面将通过几个例子来说明2的数列公式的应用和性质。

考虑一个以2为公比的等比数列:2,4,8,16,32,64...... 这个数列中的每一项都是前一项的2倍。

可以看出,数列中的每一项都是2的幂次方,即第n项可以表示为2^n,其中n表示项的位置。

例如,第1项是2^1=2,第2项是2^2=4,第3项是2^3=8,以此类推。

接下来,我们来看一下2的数列公式在实际问题中的应用。

假设有一只兔子,它每个月生一对小兔子,小兔子出生后第一个月就可以生育。

假设初始时有一对兔子,第一个月产仔1对,第二个月产仔2对,第三个月产仔4对,以此类推。

我们可以用2的数列公式来表示每个月的兔子对数。

第n个月的兔子对数可以表示为2^(n-1)。

通过这个公式,我们可以计算出每个月的兔子对数,从而了解兔子数量的增长情况。

进一步地,2的数列公式还可以用来计算某个数列中的任意一项。

例如,如果我们知道一个数列的前几项,想要计算第n项的值,我们可以使用2的数列公式来求解。

假设我们知道一个数列的前三项分别是2,6,18,我们想要计算第4项的值。

根据2的数列公式,第n项可以表示为2^n。

所以第4项的值等于2^4=16。

除了上述应用,2的数列公式还在其他领域有着广泛的应用。

在计算机科学中,2的数列公式常被用于计算数据存储空间的增长情况。

例如,计算机内存的容量通常以2的幂次方来表示,这样可以更方便地进行存储和管理。

此外,在金融领域,2的数列公式也可以用来计算复利的增长情况。

复利是指在定期利息计算中,将利息加到本金中,再次计算利息的一种方式。

复利的计算可以使用2的数列公式来简化。

2的数列公式是一种以2为公比的等比数列的表示方式。

它在数学、生物、计算机科学、金融等领域都有广泛的应用。

通过2的数列公式,我们可以计算等比数列中任意一项的值,了解兔子数量的增长情况,计算数据存储空间的增长情况,以及计算复利的增长情况。

数字推理

数字推理

一1.0,1,3,7,15,31,()A.32B.45C.52D.632.12,36,8,24,11,33,15,()A.30B.35C.40D.453.7,16,34,70,()A.140B.142C.144D.1484.2,5,2,20,3,4,3,36,5,6,5,150,8,5,8,()A.280B.320C.340D.3605.6,14,30,62,()A.85B.92C.126D.2501.【解析】从题干中各数字之间的关系来看,后一个数减去前一个数后得到一个新的数列:1,2,4,8,16,可以看出新数列是一个公比为2,首项为1的等比数列,因此下一个差数是32,括号内的数为31+32=63,这就是二级等比数列。

故本题正确答案为D。

2.【解析】本题初看较乱,但仔细分析可得出这是一道两个数为一组的数列,在每组数中,后一个数是前一个数的3倍,15×3=45。

故本题正确答案为D。

3.【解析】仔细观察,本题既可以通过三级数列变化,即相邻两数相减得到一个等比数列9,18,36,所以下一个数为72,因此答案为72+70=142;也可以通过另一种方法来解,即后一项都为前一项的2倍再加上一个常数2。

4.【解析】本题初看较难,但仔细分析后便发现,这是一道4个数字为一组的乘法数列题,在每组数字中,前3个数相乘等于第4个数,即2×5×2=20,3×4×3=36,5×6×5=150,依此规律,括号内之数则为8×5×8=320。

故本题正确答案为B。

5.【解析】本题仔细分析后可知,后一个数是前一个数的2倍加2,14=6×2+2,30=14×2+2,62=30×2+2,依此规律,括号内之数为62×2+2=126。

故本题正确答案为C。

二、1、2,2,0,-4,()A. 6B. 8C. -10D. -122、32,8,4,3,()A.4B.3C.2D.13、1,2,2,3,4 ,()A.4B.5C.6D.74、3,7,16,107,()A.1707B.1704C.1086D.10725、1.1, 2.2, 4.3,7.4,11.5,()A. 16.6B. 15.6C. 15.5D. 16.51【解析】C。

管理类专业学位联考综合能力数列-试卷1_真题-无答案

管理类专业学位联考综合能力数列-试卷1_真题-无答案

管理类专业学位联考综合能力(数列)-试卷1(总分80,考试时间90分钟)1. 问题求解1. 已知{an}为等差数列,且a2一a5+a8=9,则a1+a2+…+a9=( ).A. 27B. 45C. 54D. 81E. 1622. 已知{an}为等差数列,若a2和a10是方程x2一10x一9=0的两个根,则a5+a7=( ).A. -10B. 一9C. 9D. 10E. 123. 某人在保险柜中存放了M元现金,第一天取出它的,以后每天取出前一天所取的,共取了7天,保险柜中剩余的现金为( ).A.B.C.D.E.4. 在等差数列{an}中a2=4,a4=8.若则n=( ).A. 16B. 17C. 19D. 20E. 215. 在一次数学考试中,某班前6名同学的成绩恰好成等差数列.若前6名同学的平均成绩为95分,前4名同学的成绩之和为388分,则第6名同学的成绩为( )分.A. 92B. 91C. 90D. 89E. 886. 设{an}是非负等比数列,若=( ).A. 255B.C.D.E.7. 一所四年制大学每年的毕业生七月份离校,新生九月份入学,该校2001年招生2000名,之后每年比上一年多招200名,则该校2007年九月底的在校学生有( ).A. 14000名B. 11600名C. 9000名D. 6200名E. 3200名8. 若等差数列{an}满足5a7一a3一12=0,则( ).A. 15B. 24C. 30D. 45E. 609. 若等比数列{an}满足a2a4+2a2a5+a2a8=25,且a1>0,则a3+a5=( ).A. 8B. 5C. 2D. 一2E. 一510. 在下边的表格中,每行为等差数列,每列为等比数列,x+y+z=( ).A. 2B.C. 3D.E. 411. 某地震灾区现居民住房的总面积为a平方米.当地政府计划每年以10%的住房增长率建设新房,并决定每年拆除固定数量的危旧房.如果10年后该地的住房总面积正好比现有住房面积增加一倍,那么,每年应该拆除危旧房的面积是( )平方米?(注:1.19≈2.4,1.110≈2.6,1.111≈2.9精确到小数点后一位)A.B.C.D.E. 以上结论都不正确12. 等比数列{an}中,a3、a8是方程3x2+2x一18=0的两个根,则a4a7=( ).A. -9B. 一8C. -6D. 6E. 813. 若数列{an}中,an≠0(n≥1),前n项和Sn满足,则是( ).A. 首项为2,公比为的等比数列B. 首项为2,公比为2的等比数列C. 既非等差也非等比数列D. 首项为2,公差为的等差数列E. 首项为2,公差为2的等差数列14. 一个球从100米高处自由落下,每次着地后又跳回前一次高度的一半再落下.当它第10次着地时,共经过的路程是( )米(精确到1米且不计任何阻力).A. 300B. 250C. 200D. 150E. 10015. 果数列{an}的前n项的和,那么这个数列的通项公式是( ).A. an=(n2+n+1)B. an=3×2nC. an=3n+1D. an=2×3nE. 以上结论均不正确16. 下列通项公式表示的数列为等差数列的是( ).A.B. an=n2-1C. an=5n+(-1)nD. an=3n一1E.17. 已知等差数列{an}中a2+a3+a10+a11=64,则S12=( ).A. 64B. 81C. 128D. 192E. 18818. =( ).A.B.C.D.E. 以上结论均不正确19. 若6,a、c成等差数列,且36、a2、c2也成等差数列,则c=( ).A. -6B. 2C. 3或一2D. 一6或2E. 以上结论都不正确2. 条件充分性判断A.条件(1)充分,但条件(2)不充分。

高中数列精选大题50题(带详细答案)

高中数列精选大题50题(带详细答案)

高中数列精选大题50题(带详细答案)1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式; (2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值.3 .已知函数x ab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。

4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上.(1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++…12n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由. 8 .已知数列),3,2(1335,}{11 =-+==-n a a a a n n n n 且中(I )试求a 2,a 3的值; (II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式; (2)令n nn S T 2=,①当n 为何正整数值时,1+>n n T T :②若对一切正整数n ,总有m T n ≤,求m 的取值范围。

2012公务员数字推理50题(附解析)

2012公务员数字推理50题(附解析)

公务员考试数字推理50题1. 2, 4, 7, 18, 56,()A.186 B.208 C.158 D.1321.【答案】C。

解析:三级等差数列变式。

2 4 7 18 56 (158)作差2 3 11 38 (102)作差1 8 27 (64)↓ ↓ ↓ ↓13 23 33(43)底数是连续的自然数2. 1, 5, 19, 81, 411,()A.2473 B.2485 C.1685 D.18572.【答案】A。

解析:1×2+3=5、5×3+4=19、19×4+5=81、81×5+6=411、411×6+7=(2473),其中第二个乘数2、3、4、5、(6)和加数3、4、5、6、(7)都是连续自然数。

3. 3, 3, 12, 21, 165,()A.649 B.606 C.289 D.3433.【答案】B。

解析:第一项的平方+第二项=第三项,以此类推,212+165=(606)。

4. 0,,,,,()A.B.C.D.4.【答案】A。

解析:分式数列。

各项依次写为、、、、、()。

分子:0 1 3 7 15 (31)作差1 2 4 8 (16)公比为2的等比数列分母:6、3、9、12、21、(33)构成和数列,规律为第一项+第二项=第三项。

5. 7, 11, 16, 25, 54,()A.98 B.127 C.172 D.2035.【答案】D。

解析:前两项之差乘以连续自然数列等于第三项。

(11-7)×4=16、(16-11)×5=25、(25-16)×6=54、(54-25)×7=(203)。

6. 3, 7, 16, 41, 90,()A.121 B.211 C.181 D.2566.【答案】B。

解析:二级等差数列变式。

3 7 16 41 90 (211)作差4 9 25 49 (121)↓ ↓ ↓ ↓ ↓22 32 52 72 (112)底数是连续质数7. 3, 12, 30, 63, 117,()A.187 B.198 C.193 D.1967.【答案】B。

小学六年级找出等比数列的公比

小学六年级找出等比数列的公比

小学六年级找出等比数列的公比等比数列是数学中的一个重要概念,它在我们日常生活中有着广泛的应用。

在小学六年级的数学学习中,我们需要学会找出等比数列的公比。

本文将介绍什么是等比数列以及如何找出等比数列的公比。

一、什么是等比数列等比数列是指一个数列中每个数与前一个数的比值相等,这个比值称为公比。

换句话说,等比数列中的任意一项与其前一项的比值都相等。

例如,数列1,2,4,8,16就是一个等比数列,公比为2。

因为每一项与前一项的比值都为2。

二、如何找出等比数列的公比要找出等比数列的公比,我们可以通过两种方法进行计算。

方法一:计算相邻两项的比值首先,我们计算数列中相邻两项的比值,如果这些比值都相等,则这个比值就是等比数列的公比。

例如,现在有一个数列:3,6,12,24,48。

我们可以计算每一项与它的前一项的比值:6/3=2,12/6=2,24/12=2,48/24=2。

可以发现,这个数列中所有相邻两项的比值都为2。

因此,这个数列的公比为2。

方法二:计算任意两项的比值除了计算相邻两项的比值之外,我们还可以计算任意两项的比值,如果这些比值也都相等,则这个比值同样是等比数列的公比。

例如,现在有一个数列:2,4,8,16,32。

我们可以计算任意两项的比值:4/2=2,8/4=2,16/8=2,32/16=2。

可以发现,这个数列中任意两项的比值都为2。

因此,这个数列的公比也是2。

三、总结通过以上的介绍,我们可以得出以下结论:1. 如果一个数列中所有相邻两项的比值都相等,则这个比值是等比数列的公比。

2. 如果一个数列中任意两项的比值都相等,则这个比值同样是等比数列的公比。

在小学六年级的数学学习中,我们需要通过观察、计算等方法来找出等比数列的公比。

希望通过本文的介绍,能帮助大家更好地理解和掌握等比数列的概念及相关知识。

等比数列与等差数列

等比数列与等差数列

等比数列与等差数列
等比数列是指数列中的每一项与它前一项的比值相等的数列。

比如:1,2,4,8,16,32,64, ... 就是一个以2为比例的等比数列。

等差数列是指数列中的每一项与它前一项的差值相等的数列。

比如:1,3,5,7,9,11,13, ... 就是一个以2为公差的等差数列。

等比数列和等差数列都是常见的数列,它们都有一定的规律,可以使用数学公式来表示。

等比数列可以使用通项公式an = a1 * r^(n-1)来表示,其中a1为首项,r为公比,n为项数。

等差数列可以使用通项公式an = a1 + (n-1)d来表示,其中a1为首项,d为公差,n为项数。

这两种数列在数学中有很多应用,比如在金融领域中用于计算复利或利率,还可以用于计算物理中的运动问题,以及在计算机算法中的循环计算等。

等比数列定义

等比数列定义

等比数列定义等比数列是指一个数列中后一项与前一项的比值相等的数列。

比值常量称为公比,用字母q表示。

例如,数列1, 2, 4, 8, 16, …中,每一项与前一项的比值都是2,因此这是一个公比为2的等比数列。

等比数列的定义包含以下几个要素:1. 首项:等比数列中的第一项,用a1表示。

2. 公比:相邻两项的比值相等,用q表示。

3. 通项公式:可以用首项和公比来表示数列中任意一项的公式,即an = a1 * q^(n-1)。

4. 无穷项:数列中有无限多个项,即该数列没有截止项。

等比数列是比较常见的一种数列,它可以在数学中有很多应用,如金融、几何、物理等领域。

其中最常见的应用是利率计算,由于等比数列的本质是几何级数,因此可以用来计算复利。

例如,假设我们想要计算1000元本金每年按照5%的复利利率投资10年后所获得的本金和利息总和,我们可以用等比数列公式来计算:首先,我们可以把每年的利息计算出来,利率为5%时,公比为1.05。

因此,第一年的利息为1000*0.05=50元,第二年的利息为(1000+50)*0.05=52.50元,第三年的利息为(1050+52.50)*0.05=55.13元,以此类推。

利用等比数列公式,我们可以计算出10年后的本金和利息总和:S10 = a1 * (1 - q^10) / (1 - q)其中,a1为首项,即1000元本金;q为公比,即1.05。

S10 = 1000 * (1 - 1.05^10) / (1 - 1.05) ≈ 1628元因此,投资10年后,本金和利息总和为1628元。

除了金融领域以外,等比数列还可以应用于几何问题中。

例如,在等边三角形中,若从顶点向底边作垂线,则垂线与底边上的点构成的线段长度就构成一个等比数列。

总之,等比数列是一种重要的数学概念,其定义和应用涉及到多个领域,对于学生来说,熟练运用等比数列可以帮助他们更好地理解数学知识并解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

公比为2的等比数列
数学中,等比数列是指一个数列中的每个数字都是前一个数字乘以一个常数的结果。

这个常数称为公比。

当公比为2时,我们称之为公比为2的等比数列。

公比为2的等比数列可以用以下公式表示:
a1, a2, a3, …, an = a1, 2a1, 4a1, 8a1, …, 2^(n-1) * a1
其中a1为首项,an为第n项。

公比为2的等比数列在数学中有着广泛的应用,特别是在金融、工程和科学领域。

下面我们将介绍一些关于公比为2的等比数列的应用。

1. 投资
在金融领域,公比为2的等比数列可以用来计算复利。

复利是指利息在每个计息周期内都会被加入到本金中,从而产生更多的利息。

如果我们将本金投资于一个年利率为r的银行,那么n年后的本金可以用以下公式计算:
P * (1 + r)^n
其中P为本金,r为年利率,n为投资年限。

如果我们将本金投资于一个年利率为r的银行,并且每年将利息重新投资于该银行,那么n年后的本金可以用以下公式计算: P * (1 + r)^n
其中P为本金,r为年利率,n为投资年限。

2. 工程
在工程领域,公比为2的等比数列可以用来计算复合增长。

复合增长是指一个变量在每个周期内都会以固定的比率增长。

例如,一个城市的人口每年增长5%,那么10年后,该城市的人口将增长多少?
假设该城市的人口为P0,增长率为r,那么10年后该城市的人口可以用以下公式计算:
P10 = P0 * (1 + r)^10
其中,r为年增长率。

3. 科学
在科学领域,公比为2的等比数列可以用来描述物理量的变化。

例如,一个物理量每秒钟增加一倍,那么该物理量可以用以下公式表示:
a1, a2, a3, …, an = a1, 2a1, 4a1, 8a1, …, 2^(n-1) * a1
其中a1为初始值,an为第n秒钟的值。

公比为2的等比数列还可以用来描述生物学和生态学中的增长和衰退。

例如,一个生物种群每年增长一倍,那么该生物种群可以用以下公式表示:
a1, a2, a3, …, an = a1, 2a1, 4a1, 8a1, …, 2^(n-1) * a1
其中a1为初始种群数量,an为第n年的种群数量。

总之,公比为2的等比数列在数学中有着广泛的应用。

它可以用来计算复利、复合增长、物理量的变化、生物种群的增长和衰退等。

因此,熟练掌握公比为2的等比数列的概念和应用是非常重要的。

相关文档
最新文档