单容液位控制系统设计说明

合集下载

单容水箱液位定值控制系统

单容水箱液位定值控制系统

单容水箱液位定值控制系统一、实验目的1.理解单容水箱液位定值控制的基本方法及原理;2.了解压力传感器的使用方法;3.学习PID控制参数的配置。

二、实验设备1.控制理论实验平台2.数据采集卡一块3.PC机1台4.THBDY-1单容水箱液位控制系统三、实验原理单容水箱液位定值控制系统的控制对象为一阶单容水箱,主要的实验项目为单容水箱液位定值控制。

其执行机构为微型直流水泵,正常工作电压为24V。

直流微型水泵控制方式主要有调压控制以及PWM控制,在本实验中采用PWM控制直流微型水泵的转速来实现对单容水箱液位的定值控制。

PWM调制与晶体管功率放大器的工作原理参考实验十三的相关部分。

控制器采用了工业过程控制中所采用的最广泛的控制器——PID控制器。

通过计算机模拟PID控制规律直接变换得到的数字PID控制器,它是按偏差的比例(P)、积分(I)、微分(D)组合而成的控制规律。

水箱液位定值控制系统一般有由电流传感器构成大电流反馈环。

在高精度液位控制系统中,电流反馈是必不可少的重要环节。

这里为了方便测量与观察反馈信号,通常把电流反馈信号转化为电压信号:反馈端输出端串接一个250Ω的高精度电阻。

本实验电压与液位的关系为:H液位=(V反馈-1)×12.5 单位:mm 水箱液位控制系统方框图为:四、实验步骤1.实验接线1.1 将水箱面板上的“LT –”与实验台的“GND”相连接;水箱面板上的“LT +”与实验台的“AD1”相连接。

1.2将水箱面板上的“输入–”与实验台的“GND”相连接;水箱面板上的“输入+”与实验台的“DA1”相连接。

1.3将水箱面板上的“输出–”与“水泵电源–”连接;水箱面板上的“输出+”与“水泵电源+”连接。

1.4打开实验平台的电源总开关。

2.压力变送器调零本实验在开始实验前必须对压力变送器调零操作。

具体方法为:2.1 将水箱中打满水,然后再全部放到储水箱中;2.2 旋开压力变送器的后盖,用小一字螺丝刀调节压力变送器中电路板上有“Z”标识的调零电位器,让压力变送器的输出电压为1V;2.3 再次向水箱中打水,并观察水箱液位与压力变送器输出电压的对应情况,其对应关系为:H液位=(V反馈-1)×12.5(当液位为10cm时,输出电压应为1.8V左右),如不对应,再重复步骤2.1、2.2直到对应为至;2.4 如果步骤1)、2)、3)还不能调好水箱液位与压力变送器输出电压的对应情况,那么可适度调节压力变送器中电路板上有“S”标识的增益电位器,再重复步骤2.1、2.2、2.3直到对应为至。

液位控制系统——过程控制课程设计

液位控制系统——过程控制课程设计
通过对控制器程序的设计,使我掌握了运用SIMATIC S7-200型PLC实现PID算法控制以及单闭环液位控制系统的设计方法,使我对小型液位控制系统的硬件及软件设计具备了综合分析和独立思考的能力。
参考文献
[1]林锦国.过程控制.第3版.南京.东南大学出版社.2011
[2]范永久.化工测量及仪表.北京.化工工业出版社.2002
2个中间结果参数:PVn-1为上一次的归一化测量值;Mx是计算中的中间参量,是积分之和。可见,9个参数中有:1个输出变量,1个输入变量,5个常数,2个中间变量。设定值SPn、采样时间Ts和3个PID参数共5个常数应事先确定,并在程序初始化时、或在每次执行PID模块指令前,存放到数值存储区,以供调用。
[7]潘新民.微型计算机控制技术.第2版.北京.电子工业出版社.2011
[8]廖常初.PLC编程及应用.北京.机械工业出版社.2002
MOVR0.0,VD124//关闭微分作用
MOVB 100, SMB34 //100ms放入特殊内存字节SMB34,用于控制中断0的时间间隔
ATCH INT_0, 10//调用中断程序
ENI//全局性启用中断
INT0
LD SM0.0//RUN模式下,SM0.0=1
ITDAIW0, AC0//模拟量输入映像寄存器AIW0的数转双精度数存入AC0寄存器
可得到:Mn = Kc*(SPn-PVn)+Kc*(Ts/Ti)* (SPk-PVk)
+Kc*(Td/Ts)*[(SPn—PVn)-(SPn-PVn-1)]
=Kc*(SPn-PVn)+Kc*(Ts/Ti)*(SPn-PVn)
+Kc*(Td/Ts)*[PVn-1—PVn]+Mx

单容水箱液位控制系统的设计

单容水箱液位控制系统的设计

单容水箱液位控制系统辨识一、单容水箱液位控制系统原理单容水箱液位控制系统是一个单回路反馈控制系统,它的控制任务是使水箱液位等于给定值所要求的高度;并减小或消除来自系统内部或外部扰动 的影响。

单回路控制系统由于结构简单、投资省、操作方便、且能满足一般 生产过程的要求,故它在过程控制中得到广泛地应用。

图 1-1为单容水箱液位控制系统方块图。

当一个单回路系统设计安装就绪之后,控制质量的好坏与控制器参数的 选择有着很大的关系。

合适的控制参数,可以带来满意的控制效果。

反之, 控制器参数选择得不合适,则会导致控制质量变坏,甚至会使系统不能正常 工作。

因此,当一个单回路系统组成以后,如何整定好控制器的参数是一个 很重要的实际问题。

一个控制系统设计好以后,系统的投运和参数整定是十 分重要的工作。

图1-2是单容液位控制系统结构图GK-07图i-i 单容水箱液位控制系统的方块图系统由原来的手动操作切换到自动操作时,必须为无扰动,这就要求调节器的输出量能及时地跟踪手动的输出值,并且在切换时应使测量值与给定 值无偏差存在。

图1-2是单容水箱液位控制系统结构图。

一般言之,具有比例(P )调节器的系统是一个有差系统,比例度3的大 小不仅会影响到余差的大小,而且也与系统的动态性能密切相关。

比例积分电帖泵204上水箱(PI)调节器,由于积分的作用,不仅能实现系统无余差,而且只要参数3, Ti选择合理,也能使系统具有良好的动态性能。

图1-2单容液位控制系统结构图比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的作用,从而使系统既无余差存在,又能改善系统的动态性能(快速性、稳定性等)。

在单位阶跃作用下,P、PI、PID调节系统的阶跃响应分别如图1-3中二、单容水箱液位控制系统建模2.1液位控制的实现液位控制的实现除模拟PID调节器外,可以采用计算机PID算法控制。

首先由差压传感器检测出水箱水位;水位实际值通过单片机进行A/D转换,变成数字信号后,被输入计算机中;最后,在计算机中,根据水位给定值与实际输出值之差,利用PID程序算法得到输出值,再将输出值传送到单片机中,由单片机将数字信号转换成模拟信号。

PLC课程设计单容水箱液位控制系统的设计

PLC课程设计单容水箱液位控制系统的设计

目录封面--------------------------1 目录--------------------------2 引言--------------------------3 一、总体设计方案--------------4基本任务----------------------4 基本要求----------------------4 主要性能指标------------------ 4 扩展功能----------------------4 控制方法选择------------------ 4 系统组成----------------------5 二、控制系统设计-------------- 5控制程序流程图----------------- 5 控制程序设计思路--------------- 6 系统变量定义及分配表----------- 6 系统接线图设计----------------- 6 三、系统调试及结果分析--------7系统调试-----------------------7 结果分析-----------------------8 结束语---------------------8 参考文献-------------------8 附录:源程序图-----------------9引言在人们生活以及工业生产等诸多领域经常涉及到液位和流量的控制问题, 例如居民生活用水的供应, 饮料、食品加工, 溶液过滤, 化工生产等多种行业的生产加工过程, 通常需要使用蓄液池, 蓄液池中的液位需要维持合适的高度, 既不能太满溢出造成浪费, 也不能过少而无法满足需求。

由于液体本身的属性及控制机构的摩擦、噪声等的影响,控制对具有一定的纯滞后和容量滞后的特点,液位上升的过程缓慢,呈非线性。

因此液位控制装置的可靠性与控制方案的准确性是影响整个系统性能的关键,因此液面高度是工业控制过程中一个重要的参数,特别是在动态的状态下,采用适合的方法对液位进行检测、控制,能收到很好的效果。

单容水箱液位控制系统的设计

单容水箱液位控制系统的设计

单容水箱液位控制系统的设计水箱液位控制系统是指利用传感器等技术手段实时监测水箱液位,并通过控制装置调节供水和排水流量,使水箱的液位保持在设定的范围内的系统。

1.系统组成(1)传感器:负责实时监测水箱液位,常用的传感器有浮球传感器、电阻传感器、超声波传感器等。

传感器要具有高精度、稳定性好、可靠性高等特点。

(2)控制装置:根据传感器反馈的液位信号,控制水泵或排水装置,调节供水和排水流量,使水箱液位保持在设定的范围内。

控制装置可以采用微控制器、PLC等。

(3)供水装置:负责向水箱供水,可以是普通水泵、恒压供水设备等。

供水装置的选型要考虑流量、扬程等参数。

(4)排水装置:负责将多余的水排出水箱,可以是排水泵、电磁阀等。

排水装置的选型要考虑排水能力、响应时间等参数。

(5)控制面板:提供操作和显示功能,用于设定液位控制的参数和实时显示液位情况。

2.系统原理(1)运行原理:系统根据设定的最低液位和最高液位,当液位低于最低液位时,控制装置开启供水装置;当液位高于最高液位时,控制装置开启排水装置。

当液位处于最低液位和最高液位之间时,控制装置停止供水和排水装置。

(2)至空调和给排水系统的作用:当液位低于最低液位时,系统将启动供水装置,为空调系统提供水源;当液位高于最高液位时,系统将启动排水装置,将多余的水排出,保证水箱不溢出。

3.系统设计要点(1)传感器的选择:根据实际情况选择不同类型的传感器。

传感器的安装位置要合理,避免水箱漏水或传感器受到污染。

(2)控制装置的设计:根据传感器反馈的液位信号,计算控制装置的输出信号,控制供水和排水装置的运行。

要考虑控制装置的响应时间、动作准确性等参数。

(3)供水装置和排水装置的选型:选型要根据水箱的容量和液位控制需求确定。

要考虑流量、扬程、动力源等因素。

(4)安全保护措施:系统应具备过液位保护、过流量保护、电源故障保护等功能,确保系统的安全可靠性。

(5)控制面板的设计:控制面板应具有操作简便、参数设定方便、实时显示液位等功能。

单容液位定值控制系统

单容液位定值控制系统

实验五单容液位控制系统一、实验目的1、了解简单过程控制系统的构成。

2、掌握简单过程控制的原理。

3、控制要求:超调量σ<20%,调节时间Ts≤3T,余差<5%。

二、实验设备及参考资料1、PCS过程控制实验装置(使用其中:电动调节阀、DDC控制单元、上水箱及液位变送器、水泵1系统等)2、智能电动调节阀使用手册和液位变送器的调试(一般出厂之前已调试好)方法。

三、实验系统流程图:四、实验原理本实验采用计算机控制,将液位控制在设定高度。

根据上水箱液位信号输出给计算机,计算机根据P、I、D参数进行PID运算,输出信号给电动调节阀,然后由电动调节阀控制水泵1供水系统的进水流量,从而达到控制设定液位基本恒定的目的。

图11单容水箱液位过程控制的方块原理图五、实验步骤1、按附图单容液位控制实验接线图接好实验导线和通讯线。

2、将控制台背面右侧的通讯口(在电源插座旁)与上位机连接。

3、将手动阀门1V1、1V10、V4、V5打开,其余阀门全部关闭。

4、先打开实验对象的系统电源,然后打开控制台上的总电源,再打开DDC控制单元电源。

5、在控制板上打开水泵1、电动调节阀。

6、在信号板上打开电动调节阀输入信号、上水箱输出信号。

7、打开计算机上的 MCGS运行环境,选择系统管理菜单中的用户登录,登录用户。

8、选择单回路控制实验的电动阀支路单容液位控制实验。

9、首先在纯比例状态下整定系统,Kc由小到大,此时Ti、Td置0,调整Kc值,直到最好效果,记录此Kc值。

10、在PI状态下整定系统,在9结束情况下,Ti由大到小变化,加入积分作用,调整Kc值,整定好系统,记录参数,比较9、10结果,分析比例、积分对系统的影响,记录曲线。

10、整定参数值的计算,按照实验一得到的参数查表1-2,计算后得出P、I、D参数输入计算机中。

11、选择计算机控制方式。

待系统稳定后,观察过渡过程曲线是否符合要求。

调整参数后,再得到过渡过程曲线,直到满意。

12、观察计算机上的实时曲线和历史曲线。

单容水箱液位PID控制系统设计

单容水箱液位PID控制系统设计
2、必须在老师的指导下,启动计算机系统 和单片机控制屏。
3、若参数设置不当,可能导致系统失控, 不能达到设定值。
实验报告要求
1、绘制单容水箱液位控制系统的方块图。 2、用接好线路的单回路系统进行投运练习,并叙
述无扰动切换的方法。
3、P调节时,作出不同δ值下的阶跃响应曲线。 4、PI调节时,分别作出Ti不变、不同δ值时的阶跃
3)、用计算机记录实验时所有的过渡过程实时曲线, 并进行分析。
思考问题
1、如何实现减小或消除余差?纯比例控制 能否消除余差?
2、试定性地分析三种调节器的参数δ、(δ、 Ti)和(δ、Ti和Td)的变化对控制过程各 产生什么影响?
注意事项
1、实验线路接好后,必须经指导老师检查 认可后才能接通电源。
实验内容与步骤
2、比例积分调节器(PI)控制
1)、在比例调节实验的基础上,加入积分作用,观察被控制量是 否能回到设定值,以验证在PI控制下,系统对阶跃扰动无余差 存在。
2)、固定比例度δ值,改变PI调节器的积分时间常数值Ti,然后观 察加阶跃扰动后被调量的输出波形,并记录不同Ti值时的超调 量σp。
响应曲线和δ不变、不同Ti值时的阶跃响应曲线。 5、画出PID控制时的阶跃响应曲线,并分析微分D
的作用。
6、比较P、PI和PID三种调节器对系统余差和动态 性能的影响。
3)、固定积分时间T i于某一中间值,然后改变δ的大小,观察加 扰动后被调量输出的动态波形,并列表记录不同δ值下的超调 量σp。
4)、选择合适的δ和Ti值,使系统对阶跃输入扰动的输出响应为一 条较满意的过渡过程曲线。此曲线可通过改变设定值(如设定 值由50%变为60%)来获得。
实验内容与步骤
3、比例积分微分调节(PID)控制

单容水箱液位控制系统设计

单容水箱液位控制系统设计

单容水箱液位控制系统设计一、引言单容水箱液位控制系统是一种常见的工业自动化控制系统。

它主要用于监测和控制水箱的液位,确保水箱中的液位保持在特定的范围内。

本文将介绍单容水箱液位控制系统的设计原理、硬件电路设计、软件设计以及系统测试和实施。

二、设计原理1.传感器模块传感器模块用于监测水箱中的液位。

一种常用的传感器是浮球传感器,它随着液位的变化而移动,从而输出不同的电信号。

传感器模块将传感器输出的信号转换为数字信号,并传送给控制器模块进行处理。

2.控制器模块控制器模块是整个系统的核心,它接收传感器模块传来的信号,并根据预设的液位范围进行判断和控制。

控制器模块通常使用单片机或者嵌入式系统来实现。

它可以通过开关控制执行器模块的工作状态,以调节水箱的液位。

3.执行器模块执行器模块用于控制水箱的进水和排水。

在液位过低时,执行器模块打开水泵,使水箱进水;在液位过高时,执行器模块关闭水泵,使水箱排水。

执行器模块可以采用继电器、驱动电机等元件来实现。

三、硬件电路设计1.传感器模块传感器模块将传感器的信号转换为数字信号。

可以使用模拟到数字转换器(ADC)将传感器输出的模拟电压转换为数字信号,然后通过串口等方式传送给控制器模块。

2.控制器模块控制器模块可以使用单片机或者嵌入式系统来实现。

它需要包括输入接口、控制逻辑和输出接口。

输入接口负责接收传感器模块传来的信号,控制逻辑通过判断液位范围来控制执行器模块的工作状态,输出接口负责向执行器模块发送控制信号。

3.执行器模块执行器模块根据控制器模块的信号控制水箱的进水和排水。

可以使用继电器或驱动电机等元件来实现。

进水时,可以通过开启水泵或开启电磁阀等方式;排水时,可以通过关闭水泵或关闭电磁阀等方式。

四、软件设计软件设计主要包括控制器模块的程序设计。

程序需要实时监测传感器模块的信号,并根据预设的液位范围进行判断和控制。

可以使用状态机或者PID控制算法来实现。

1.状态机状态机通过定义不同的状态和状态转移条件来实现控制逻辑。

单容水箱液位控制系统设计

单容水箱液位控制系统设计

单容水箱液位控制系统设计一、引言水箱是常见的储水设备,广泛应用于家庭、工业和农业等领域。

为了保证水箱的水位稳定和安全,需要设计一种液位控制系统来监测和控制水箱的液位。

本文将介绍一个单容水箱液位控制系统的设计思路和实现方法。

二、系统设计思路1.系统功能要求2.系统组成液位传感器用于检测水箱的液位,并将检测到的液位信号传输给控制器。

控制器根据液位传感器的信号以及设定范围来判断蓄水或排水的需求,并通过控制阀门的开闭来实现液位的控制。

执行器是用于控制阀门开闭的装置,可以是电磁阀、电动阀或脚踏阀等。

人机界面用于显示水箱的液位信息和设置控制参数,可以是液晶显示屏或者计算机控制界面。

3.系统工作原理水箱液位控制系统的工作原理如下:当水箱液位低于设定范围的下限时,控制器会发送信号给执行器,使其打开阀门,进水进入水箱。

当水箱液位达到设定范围的上限时,控制器会发送信号给执行器,使其关闭阀门,停止进水进入水箱。

当水箱液位高于设定范围的上限时,控制器会发送信号给执行器,使其打开阀门,排水排出水箱。

当水箱液位低于设定范围的下限时,控制器会发送信号给执行器,使其关闭阀门,停止排水排出水箱。

三、系统实现方法1.液位传感器的选择与安装在单容水箱液位控制系统中,可以使用浮球式液位传感器或者压力式液位传感器。

浮球式液位传感器安装在水箱内部,通过浮球的上下运动来检测液位变化。

压力式液位传感器安装在水箱外部,通过测量水箱外部水压来间接推算液位变化。

2.控制器的设计与实现控制器可以使用微控制器或者可编程逻辑控制器(PLC)来实现。

控制器需要实现以下功能:(1)接收液位传感器的信号,并进行信号处理和滤波;(2)判断水箱液位是否低于设定范围的下限或高于设定范围的上限;(3)根据判断结果控制执行器的开闭。

3.执行器的选择与控制执行器可以根据具体需求选择合适的类型,如电磁阀、电动阀或脚踏阀。

执行器控制的开闭可以通过控制信号来实现。

4.人机界面的设计与实现人机界面可以使用液晶显示屏或者计算机控制界面来显示水箱的液位信息和设置控制参数。

单容水箱液位恒值控制系统设计

单容水箱液位恒值控制系统设计

过程控制系统课程设计专业:自动化设计题目:单容水箱液位恒值控制系统设计班级:自动化0841学生姓名:王欢学号:15指导教师:尹振红分院院长:许建平教研室主任:方健电气工程学院一、课程设计任务书1. 设计内容针对某厂的液位控制过程与要求实现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。

具体设计内容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。

2. 设计要求1)以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。

2)PLC控制器采用PID算法,各项控制性能满足要求:超调量≤15%,稳态误差≤±0.1;调节时间ts≤60s;3)组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线;并能显示历史曲线。

4)选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数;5)通过S7-200PLC编程软件Step7实现PLC程序设计与调试;6)分析系统基本控制特性,并得出相应的结论;7)设计完成后,提交打印设计报告。

3. 参考资料1)邵裕森,戴先中主编.过程控制工程(第2版).北京:机械工业出版社.2003 2)崔亚嵩主编.过程控制实验指导书(校内)3)廖常初主编.PLC编程及应用(第2版).北京:机械工业出版社.20074)吴作明主编.工业组态软件与PLC应用技术.北京:北京航空航天大学出版社.20074. 设计进度(2011年12月5日至2011年12月19日)时间设计内容2011.12.5 布置设计任务、查阅资料、进行硬件系统设计2011.12.6~7 编制PLC控制程序,并上机调试;2011.12.8~9 利用MCGS组态软件建立该系统的工程文件2011.12.12~13 进行MCGS与PLC的连接与调试进行PID参数整定2011.12.14~15 系统运行调试,实现单容水箱液体定值控制2011.12.16 答辩2011.12.17~19 写设计报告书5. 设计时间及地点设计时间:上午:8:00~11:00下午:1:00~4:00晚上:6:00~9:00设计地点:新实验楼,过程控制实验室(310)机房(323)二、评语及成绩课程设计成绩:指导教师:过程控制系统课程设计报告班级:自动化0841姓名:王欢学号: 15指导教师:尹振红撰写日期: 2011-12-16摘要本文根据液位系统过程机理,建立了单容水箱的数学模型。

液位控制系统设计说明

液位控制系统设计说明

液位控制系统设计说明1.引言2.系统组成2.1液位传感器:用于实时测量液体容器中的液位,并将测量值传输给控制器。

常见的液位传感器有浮球式液位传感器、压力式液位传感器等。

2.2控制器:接收液位传感器传输的液位信息,并根据预设的液位设定值进行控制动作。

控制器可以采用PLC(可编程逻辑控制器)或微处理器等。

2.3执行机构:根据控制器的指令,对液位进行调节。

常见的执行机构有阀门、泵等。

3.设计考虑在液位控制系统的设计过程中,需要考虑以下几个方面:3.1系统准确度:液位控制系统需要具备较高的测量准确度和控制精度。

因此,需要选择合适的液位传感器和控制器,并进行校准以提高系统的准确度。

3.2系统稳定性:液位控制系统需要具备良好的稳定性,以保证液位控制的精确性。

在设计过程中,可以采用反馈控制方法来提高系统的稳定性。

3.3安全性:液位控制系统需要具备良好的安全性,以避免因液位控制不准确导致的安全事故。

在设计过程中,需要考虑故障判断与报警系统,以及紧急停机装置等。

4.系统设计步骤4.1确定液位控制的目标和要求:明确需要控制的液位范围、控制精度等指标。

4.2选择合适的液位传感器:根据液体性质和工艺要求,选择适合的液位传感器,并确定传感器的测量范围和准确度。

4.3选择合适的控制器:根据需要控制的液位范围和控制精度,选择适合的控制器,并确定控制器的输出信号类型。

4.4确定执行机构:根据需要的控制方式,选择适合的执行机构,并确定执行机构的控制动作方式和控制信号类型。

4.5进行系统集成:将液位传感器、控制器和执行机构进行连接,并进行系统调试和测试。

4.6系统优化与改进:根据实际运行情况,对液位控制系统进行优化和改进,以提高系统稳定性和控制精度。

5.结论液位控制系统是工业生产过程中常见的一种控制系统,其设计涉及液位传感器、控制器和执行机构等多个组成部分。

在设计过程中,需要考虑系统的准确度、稳定性和安全性等因素。

通过合理的设计和优化,可以实现对液位的精确测量和控制,满足工业生产过程对液位的要求。

单容水箱液位控制系统设计

单容水箱液位控制系统设计

辽宁工程技术大学计算机控制技术课程设计设计题目单容水箱液位控制系统设计指导教师院(系、部)专业班级学号姓名日期《计算机控制技术》课程综合设计任务书摘要本文根据液位系统过程机理,建立了单容水箱的数学模型。

介绍了PID控制的基本原理及数字PID算法,利用simulink软件对系统进行系统仿真,并进行了整定PID参数,得到整定后的仿真曲线。

系统由进出水阀门,C51单片机,A/D转换器,D/A转换器,传感器,显示电路和键盘电路等组成。

整个过程保持出水阀的开度比例不变,由传感器检测电路连续不断地相应液位值,送入A/D转换器中处理,输出的数字量送给单片机,控制显示电路实时显示实际液位值,由键盘输入设定值,控制器比较其值控制进水阀门的开度比例,以保持液位稳定在要求范围内。

关键词:单容水箱;水箱建模;液位控制;PID算法AbstractBased on the process mechanism of the liquid level system, this paper establishes the mathematical model of the single-capacity water tank. The basic principle of PID control and the digital PID algorithm are introduced. The system simulation is performed using simulink software, and the PID parameters are adjusted to obtain the simulation curve after the tuning.The system consists of inlet and outlet valves, C51 microcontroller, A/D converter, D/A converter, sensor, display circuit and keyboard circuit. Throughout the entire process, the proportion of opening of the outlet valve is kept constant, and the corresponding level value of the sensor detection circuit is continuously sent to the A/D converter for processing. The output digital quantity is sent to the SCM, and the control display circuit displays the actual liquid level in real time. Value, the set value is input by the keyboard, and the controller compares the value to control the opening ratio of the inlet valve to keep the liquid level stable within the required range.Key words:Single capacity water tank;Water tank modeling;Liquid level control;PID algorithm目录0 前言 (1)1 设计方案 (2)概述 (2)系统结构 (2)2 水箱系统建模 (3)水箱结构图 (3)水箱模型计算 (3)3 硬件设计 (5)C51单片机最小系统 (5)传感器 (5)A/D转换模块 (5)D/A转换模块 (5)显示模块 (6)键盘模块 (6)调节阀 (6)4 PID算法与软件设计 (7)PID算法分析 (7)位置式PID (8)主程序流程图 (10)显示子程序 (11)键盘子程序 (11)A/D子程序 (11)5 系统仿真 (12)系统自衡仿真 (12)simulink仿真图 (12)simulink曲线 (13)6 结论 (14)参考文献 (15)附录:系统硬件电路图 (16)0 前言液位控制技术在现实生活、生产中发挥了重要作用,比如,民用水塔的供水,如果水位太低,则会影响居民的生活用水;工矿企业的排水与进水,排水或进水控制得当与否,关系到车间的生产状况;锅炉汽包液位的控制,如果锅炉内液位过低,会使锅炉过热,可能发生事故;精流塔液位控制,控制精度与工艺的高低会影响产品的质量与成本等。

单容水箱液位恒值控制系统设计

单容水箱液位恒值控制系统设计

过程控制系统课程设计专业:自动化设计题目:单容水箱液位恒值控制系统设计班级:自动化0841学生姓名:王欢学号:15指导教师:尹振红分院院长:许建平教研室主任:方健电气工程学院一、课程设计任务书1. 设计内容针对某厂的液位控制过程与要求实现模拟控制,其工艺过程如下:用泵作为原动力,把水从低液位池抽到高液位池,实现对高液位池液位高度的自动控制。

具体设计内容是利用西门子S7-200PLC作为控制器,实现对单容水箱液位高度的定值控制,同时利用MCGS组态软件建立单容水箱液位控制系统的监控界面,实现实时监控的目的。

2. 设计要求1)以RTGK-2型过程控制实验装置中的单个水箱作为被控对象、PLC作为控制器、静压式压力表作为检测元件、电动调节阀作为执行器构成一个单容水箱单闭环控制系统,实现对水箱液位的恒值控制。

2)PLC控制器采用PID算法,各项控制性能满足要求:超调量≤15%,稳态误差≤±0.1;调节时间ts≤60s;3)组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;实时显示液位给定值实时曲线、液位测量值实时曲线和PID输出值实时曲线;并能显示历史曲线。

4)选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数;5)通过S7-200PLC编程软件Step7实现PLC程序设计与调试;6)分析系统基本控制特性,并得出相应的结论;7)设计完成后,提交打印设计报告。

3. 参考资料1)邵裕森,戴先中主编.过程控制工程(第2版).北京:机械工业出版社.2003 2)崔亚嵩主编.过程控制实验指导书(校内)3)廖常初主编.PLC编程及应用(第2版).北京:机械工业出版社.20074)吴作明主编.工业组态软件与PLC应用技术.北京:北京航空航天大学出版社.20074. 设计进度(2011年12月5日至2011年12月19日)时间设计内容2011.12.5 布置设计任务、查阅资料、进行硬件系统设计2011.12.6~7 编制PLC控制程序,并上机调试;2011.12.8~9 利用MCGS组态软件建立该系统的工程文件2011.12.12~13 进行MCGS与PLC的连接与调试进行PID参数整定2011.12.14~15 系统运行调试,实现单容水箱液体定值控制2011.12.16 答辩2011.12.17~19 写设计报告书5. 设计时间及地点设计时间:上午:8:00~11:00下午:1:00~4:00晚上:6:00~9:00设计地点:新实验楼,过程控制实验室(310)机房(323)二、评语及成绩课程设计成绩: 指导教师:评分项目 评分标准量化 分数1.独立分析与解决问题的能力很强较强一般不能102组态界面设计、PLC 程序编制及系统调试 界面程序 硬件 分析 调试 353.报告撰写情况 规范 整洁 逻辑 杂乱 有错误 25 4.辅导答疑 积极 认真 应付 消极 10 5.设计态度 积极认真应付消极10 7.出勤全勤缺勤次数 10附加评语量化总分过程控制系统课程设计报告班级:自动化0841姓名:王欢学号: 15指导教师:尹振红撰写日期: 2011-12-16摘要摘要本文根据液位系统过程机理,建立了单容水箱的数学模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1 系统设计理解 (1)1.1 前言 (1)2 系统方案确定、系统建模及原理介绍 (1)2.1 控制方案的确定 (1)2.2 控制系统建模 (1)2.2.1 被告...................................................... ....................... .............................. (1)2.2.2 系统建模 (2)3 系统构成 (4)3.1 控制系统结构 (4)3.2 控制系统框图 (4)4 系统各环节分析 (5)4.1 调节器PID控制 (5)4.2 执行器分析 ................................................... ......................... ............................ . (6)4.3 检测与传输链路分析 (6)4.4 被控对象分析 (6)5 系统仿真 (7)5.1 系统结构图及参数设置 (7)6 仪器选择 (10)6.1 PID调节器选择 (10)6.2 执行器选型 (11)6.2.1 变频器选型 (11)6.2.2 电机选型 (11)6.2.3 泵的选择 (12)6.3 差压变送器的选择 (12)7 课程设计结束语 (14)参考文献 (15)1.对系统设计的理解1.1 前言过程控制已广泛应用于矿山、冶金、机械、化工、电力等领域。

在液位控制方面,如:水塔供水、工矿企业排水、锅炉汽包液位控制、精馏塔液位控制等,发挥着重要作用。

在这些生产领域中,操作基本上是劳动密集型或危险的。

很容易因为操作失误而引发事故,给制造商造成经济损失。

可以看出,在实际生产中,液位控制的准确性和控制效果直接影响工厂的生产成本、经济效益和安全系数。

因此,为了保证安全条件和方便操作,有必要研究和开发先进的液位控制方法和策略。

本设计以单容量水箱的液位控制系统为研究对象。

由于单回路反馈控制系统结构简单,投资少,操作方便,能满足一般生产工艺要求,已广泛应用于液位控制。

回路反馈控制。

其控制任务是使罐体液位保持在给定值所要求的高度,减少或消除来自系统和外界干扰的影响。

通过系统方案的选择、工艺流程图的设计和系统框图的确定、各环节仪器的选择、控制算法的选择、系统的仿真和设置控制参数完成。

2、系统方案确定、系统建模及原理介绍2.1 控制方案的确定介绍中提到,单回路反馈控制系统因其结构简单、投资少、操作方便、能满足一般生产工艺要求而被广泛应用于液位控制。

除了模拟PID调节器外,还可以通过计算机PID算法实现液位控制。

水箱水位由差压传感器检测;水位实际值通过单片机进行A/D转换,再转换成数字信号输入计算机;在计算机中,根据水位给定值与实际输出值的差值,采用PID程序算法得到输出值,然后传送给单片机,单片机将数字转换为信号转换成模拟信号;最后由单片机输出的模拟信号控制交流逆变器,进而控制电机转速,从而形成闭环系统,实现水位的计算机化。

自动控制。

2.2 控制系统建模2.2.1 被控对象本设计讨论的是单容量水箱的液位控制问题,因此有必要了解被控对象——上水箱的结构和特点。

如图2-1所示,水箱的出水量与水压有关,水压几乎与水位成正比。

这样,当水箱的适当,在不溢流的情况下,当水水位上升时,它的出水量也在增加。

因此,如果阀门V2的开度箱进水量恒定时,水位的上升速度会逐渐减慢,最终达到平衡。

可见,单容量水箱系统是一个自平衡系统。

图 2-1 具有自平衡功能的单体积液位对象2.2.2 系统建模本设计研究中只有一个受控对象,即单容量水箱(图2-1)。

为了更好地对对象进行计算机控制,需要建立被控对象的数学模型。

如前所述,单容积罐是一种自平衡系统。

根据它的这一特点,我们可以用阶跃响应测试方法对其进行建模:如图2-1所示,一个简单的水箱液位控制对象,输出变量为液位H ,水箱进水量QV1由水阀调节,水箱出水量QV2由水箱的开度决定出水阀。

显然,任何时候的水位变化都满足物质平衡关系。

根据动态物质平衡关系,有dt dVQ Q V V =-21(2-1)式中,V ——水箱中液体的储存容量(液体的体积);t ——时间;dV/dt ——存储量的变化率。

设罐的横截面积为 A ,A 为常数,因为H A V ⨯=(2-2)所以dtdH A dt dV ⨯=(2-3) 静态时,dV/dt=0,Q V1 =Q V2 ;当Q V1变化时,液位H 也随之变化,水箱出口阀V 2处的静压也随之变化,流量Q V2也随之变化。

改变必然会发生。

由流体力学可知,在湍流的情况下,液位H 与流速之间存在非线性关系。

但是,当变化很小时,为简单起见,经过线性化后,可以近似认为流出量Q V2与液位H 呈正相关,与水的水阻R s 成反比出口阀 V 2 ,即sV R H Q =2(2-4) 在讨论被控对象的特性时,研究的是不受任何人为控制的被控对象,因此出口阀的开度保持不变,阻力Rs 不变。

将式(2-4)和Yes (2-3)代入式(2-1),可得1V s s Q R H dtdH R A ⨯=+⨯⨯(2-5) 令T=AR s ,K=R s ,代入式(2-5),可得1V Q K H dtdH T ⨯=+⨯(2-6) 式(2-6)是用于描述单容量水箱控制对象的微分方程,是一阶常系数微分方程。

式中的T 称为时间常数,K 称为被控对象的放大系数,它们反映了被控对象的特性。

在零初始条件下,对上式进行拉普拉斯变换,得到:1)(1)()(+==Ts K Q H G s s s (2-7) 设输入流量s R Q s /0)(1=,R 0为常数,则输出液位高度为:Ts KR s KR Ts s KR H s /1)1(000)(+-=+=(2-8) 即10()(1)t T h t KR e -=-(2-9)当 t →∞, 0)(KR h =∞, 所以我们有0()h K R ∞==输出稳态值阶跃输入(2-10)所以液面会稳定在一个新的平衡状态,此时Q V1 =Q V2 。

这就是被控对象的自平衡特性,即当输入变量的变化破坏了被控对象的平衡并导致输出变量发生变化时,被控对象本身可以恢复平衡而无需人为干预。

当 t=T 时,有100()(1)0.6320.632()h T KR e KR h -=-==∞(2-11)式(2-9)表明一阶惯性连杆的响应曲线是一个单调上升的指数函数,如图2-2所示。

由公式(2-11)可知,曲线上升到稳态值的63.2%所对应的时间就是水箱的时间常数T 。

时间常数T 也可以通过坐标原点与响应曲线相切,该切线与稳态值的交点对应的时间就是时间常数T 。

图 2-2 阶跃响应曲线三、系统组成3.1 控制系统结构由上述原理和单容积液位控制系统的建模过程,可以得出控制系统的工艺流程图3-1:图 3-1 单容积液位控制系统工艺流程图3.2 控制系统框图结合系统结构图3-1,可以很容易地画出系统的控制框图。

如图 3-2 所示:图 3-2 单容积液位控制系统框图4、系统各环节分析4.1 调节器PID 控制在液位控制系统中,常采用PID 控制作为控制规律。

常规PID 控制系统原理框图如图4-1所示:图4-1 PID 控制系统原理框图PID 控制器为线性控制器,根据给定值r(t)和实际输出值c(t)形成控制偏差()()()e t r t c t =-(4-1)偏差的比例(P )、积分(I )和微分(D )可以组合起来形成一个控制量来控制被控对象,所以称为PID 控制器。

其控制律为0()1()()()t D P I T de t u t K e t e t dt T dt ⎡⎤=++⎢⎥⎣⎦⎰(4-2)写成传递函数的形式为()1()(1)()P D I U s G s K T s E s T s ==++(4-3)式中p K ——比例系数;I T - 积分时间常数;D T - 微分时间常数;综合考虑系统的稳定性、响应速度、超调量和稳态精度,PID 控制器各校正环节的作用如下:(1) 比例链接用于加快系统的响应速度,提高系统的调整精度。

p K 该值越大,系统响应速度越快,系统调整精度越高,但容易产生超调,甚至导致系统不稳定。

p K 该值过小会降低调节精度,响应速度变慢,延长调节时间,恶化系统的静、动态特性。

(2) 积分链接主要用于消除系统的稳态误差。

I T 该值越小,系统的静态误差消除越快,但如果I T 太小,则会在响应过程的早期出现积分饱和现象,从而导致响应过程中出现较大的超调。

如果I T 过大,将难以消除系统的静态误差,影响系统的调整精度。

(3) 差分链接它可以改善系统的动态特性,其主要作用是抑制响应过程中任何方向的偏差变化,并提前预测偏差变化。

但如果D T 过大,则会提前制动响应过程,从而延长调整时间,降低系统的抗干扰性能。

4.2 执行器分析经分析,在单容积液位控制系统中,执行器(包括变频器、电机、泵等环节)可视为比例环节。

当然,执行环节在整个控制过程中有一定的滞后性,可以在控制过程中加入延迟滞后环节。

对于这里的比例链接,建议取比例放大K=5。

延迟滞后环节,不妨取延迟时间τ=1。

4.3 检测传输链路分析经分析,在出口阀的差压传递检测环节,当变化较小时,该环节可以看成是线性环节,即也可以看成比例环节。

由于检测和传输滞后较小,宜取比例放大系数K=1。

4.4 被控对象分析通过查阅相关资料和网页,得出水阀的水阻力,R s =0.05,即K = 0.05。

因为 T=AR s ,我们不妨取 T=2。

所以受控对象有一个传递函数:1205.0)(1)()(+==s Q H G s s s 经过以上环节的分析,可以得到系统的具体点结构图,如图4-2所示图4-2 系统的具体结构5. 系统仿真5.1 系统结构图及参数设置上述参数确定后,即可得到系统的仿真结构图。

具体参数设置过程见下表5-1:根据有关资料,对于液位系统,时间常数大,比例大。

一般不需要微分作用,只有在要求高时才加积分作用。

所以初始设定TI =0,TD=0,延迟时间τ=1。

表 5-1 系统结构及参数设置表KP =1; TI=0; TD=0;τ=1KP = 5 ; TI= 0 ; TD= 0 ;τ = 1KP = 10 ; TI= 0 ; TD= 0 ;τ = 1KP = 15 ; TI= 0 ; TD= 0 ;τ = 1KP = 20 ; TI= 0 ; TD= 0 ;τ = 1KP = 4 ; TI= 0 ; TD= 0 ;τ = 1KP=4; TI=1; TD=0;τ = 1KP=4; TI=3; TD=0;τ = 1可通过分析上表中PID参数在不同设定值下的响应曲线结果得出,理想控制各参数的设定结果可参考:KP =4; TI=0; TD=0;τ=1。

相关文档
最新文档