七年级数学上册第二章整式的加减2.2整式的加减(3)课件新版新人教版

合集下载

人教版七年级数学上册整式的加减(第2课时)去括号课件

人教版七年级数学上册整式的加减(第2课时)去括号课件
2小时后两船相距(单位:km) 2(50+a)+2(50-a)=100+2a+100-2a=200.
(2)2小时后甲船比乙船多航行多少千米?
解:2小时后甲船比乙船多航行(单位:km) 2(50+a)-2(50-a)=100+2a-100+2a=4a.
例3:先化简,再求值:已知x=-4,y= 1 ,
归纳总结
去括号法则
1.如果括号外的因数是正数,去括号后原括号内 各项的符号与本来的符号相同;
2.如果括号外的因数是负数,去括号后原括号内 各项的符号与本来的符号相反.
议一议
讨论比较 +(x-3)与 -(x-3)的区分?
+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3)
注意:准确理解去括号的规律,去括号时括号 内的每一项的符号都要考虑,做到要变都变,要 不变,则都不变;另外,括号内原有几项去掉括 号后仍有几项.
(3)原式=abc-(2ab-3abc+ab+4abc) =abc-3ab-abc=-3ab.
二 去括号化简的应用 例2 两船从同一港口出发反向而行,甲船顺水, 乙船逆水,两船在静水中速度都是50千米/时,水 流速度是a千米/时. 问: (1)2小时后两船相距多远?
解:顺水速度=船速+水速=(50+a)km/h, 逆水速度=船速-水速=(50-a)km/h.
典例精析
例1 化简下列各式: (1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b);
解:(1)原式=8a+2b+5a-b =13a+b;
(2)原式=(5a-3b)-(3a2-6b) =5a-3b-3a2+6b =-3a2+5a+3b;

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版

2024秋七年级数学上册第二章整式的加减2.2整式的加减2去括号教案(新版)新人教版
六、拓展与延伸
1.提供与本节课内容相关的拓展阅读材料:
《代数运算指南》:这本书详细介绍了代数的基本概念和运算方法,包括整式的加减、乘除等。通过阅读这本书,学生可以进一步加深对整式加减的理解和掌握。
《数学问题解决策略》:这本书提供了一系列的数学问题解决方法,包括代数问题的解决方法。学生可以通过阅读这本书,学习到更多的数学问题解决策略,提高解决问题的能力。
九.重点题型整理
1. 去括号
(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。
例题:去括号:-(a + b)= -a - b
(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
例题:去括号:-(a - b)= a - b
2. 合并同类项
(1)找出整式中的同类项,即具有相同字母和相同指数的项。
(2)解决实际问题,如计算购物找零、面积计算等。
例题:综合应用:计算购物找零:28 - 5(3 + 2) - 1 = 28 - 5*5 - 1 = 28 - 25 - 1 = 2
5. 整式加减的实际应用
(1)将整式加减应用于实际问题,如购物找零、计算面积等。
例题:实际应用:计算购物找零:32 - 5(4 + 2) = 32 - 5*6 = 32 - 30 = 2
在教学过程中,我发现学生们对去括号和合并同类项这两个重点内容的理解存在一定的困难。因此,我特别强调了这两个重点,并通过举例和比较来帮助学生理解。通过小组讨论和实践活动,学生们能够更好地将理论知识应用到实际问题中,提高了解决问题的能力。
在教学过程中,我也注意到了学生的参与度和互动情况。通过鼓励学生提问和参与小组讨论,我能够及时解答学生的疑问,帮助学生克服难点,提高学习效果。

人教版七年级初中数学上册第二章整式的加减-整式的加减(整式加减运算)PPT课件

人教版七年级初中数学上册第二章整式的加减-整式的加减(整式加减运算)PPT课件

b
1.5a
2b
解:小纸盒的表面积是(2ab+2bc+2ca
)c2
大纸盒的表面积是( 6ab+8bc+6ca)c2
新知探究
求 1 x 2( x 1 y 2 ) ( 3 x 1 y 2 ) 的值,其中 x 2, y 2
2
3
2
3
3
1
1 2
3
1 2
解: x 2( x y ) ( x y )
第二章 整式的加减
2.2.3 整 式 加 减 运 算
人教版七年级(初中)数学上册
授课老师:11
前 言
学习目标
1、熟练进行整式的加减运算。
2、利用去括号法则会进行整式的化简。
重点难点
重点:熟练进行整式的加减运算。
难点:利用去括号法则会进行整式的化简。
新知探究
(1)(2x-3y)+(5x+4y)
整式加减运算需注意:
A.14a+6b
B.7a+3b
C.10a+10b
D.12a+8b
提示:1.先求另一边边长。
2.长方形周长=(长+宽)*2
课堂练习
3.计算
(1) 3xy-4xy-(-2xy)
(2) (-x+2x2 +5)- (4x2 -3-6x)
课堂练习
4.填空
如果用a,b分别表示一个两位数的十位数字和个位数字,
小红买这种笔记本3本,买圆珠笔2支;
小明买这种笔记本4本,买圆珠笔3支.
问:买这些笔记本和圆珠笔,小红和小明一共花费多少钱?
分析
笔记本花费
圆珠笔花费

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)

人教版初中数学七年级上册教学课件 第二章 整式的加减 (第1课时)

探究新知
知识点 1 同类项的概念
猴子要搬新家啦!有八只小猴子,每只身上都标有一个
单项式,你能根据这些单项式的特征将这些小猴子分到
不同的房间里吗?(用几个房间都可以)
8n
-7a2b
3ab2
2a2b
8n 6xy
5n
-3xy
-ab2
探究新知
8n 5nn
3ab2 -ab2
6xy -3xy
-7a2b 2a2b
法则
(1)系数相加;
合并同类项 (一加两不变) (2)字母连同它的指数不变.
步骤 一容
教材作业 从课后习题中选取
自主安排 配套练习册练习
3
3
巩固练习
当x=2019时,求多项式x4-5x2+2x3-x4+5x2-2x3+2x-1的值.
解: x4-5x2+2x3-x4+5x2-2x3+2x-1 = (x4-x4)+(-5x2+5x2)+(2x3-2x3)+2x-1 = 2x-1 当x=2019时,原式=2×2019-1=4037.
探究新知
(2)3a+2b=5ab ×
(5)3x2+2x3=5x5 ×
(3)5y2-3y2=2 ×
(6)a+a-5a=-3a √
注:(2)(4)(5)中的单项式不是同类项,不能合并. (3)是同类项,但合并结果不对.
的同类探项究.新知
素养考点 1 合并同类项
4a2 3b2 2ab 3a2 b2.
解: 4a2 3b2 2ab 3a2 b2 找
探究新知
归纳总结
同类项的判别方法: (1)同类项只与字母及其指数有关,与系数无关,与

七年级上册数学精品课件:第二章第二节 整式的加减

七年级上册数学精品课件:第二章第二节 整式的加减
(2)做大纸盒比做小纸盒多用料 (6ab+8bc+6ca)-(2ab+2bc+2ca) =6ab+8bc+6ca- 2ab-2bc-2ca =4ab+6bc+4ca(2cm )
总结归纳
整式加减解决实际问题的一般步骤: ⑴ 根据题意列代数式; ⑵ 去括号、合并同类项.; ⑶ 得出最后结果.
例5

1 x 2(x 1 y2的) 值(,3 x 1 y2 )
总结归纳
1.几个整式相加减,通常用括号把每一个整式 括起来,再用加、减连接,然后进行运算.
2.整式加减实际上就是: 去括号、合并同类项.
3.运算结果,常将多项式的某个字母(如x)的
降幂(升幂)排列.
二 整式的加减的应用 例3 一种笔记本的单价是x元,圆
珠笔的单价是y元.小红买这种笔 记本3本,买圆珠笔2支;小明买 这种笔记本4本,买圆珠笔3支.买 这些笔记本和圆珠笔,小红和小 明一共花费多少钱?
小红和小明一共花费(单位:元)
(3x+4x)+(2y+3y)=7x+5y
例4 做大小两个长方体纸盒,尺寸如下(单位:cm): 长宽高
小纸盒 a b c 大纸盒 1.5a 2b 2c
(1)做这两个纸盒共用料多少平方厘米?
c ab
2c 2b
1.5a
解:小纸盒的表面积是(2ab+2b+c 2ca )c2m 大纸盒的表面积是(6ab+8bc+ 6ca )c2 m
例1 计算: (1)(2a-3b)+(5a+4b);(2)(8a-7b)-(4a-5b)
解: (1)(2a-3b)+(5a+4b) =2a-3b+5a+4去b 括号 =7a+b 合并同类项

第2章 2.2 第3课时 整式的加减

第2章  2.2  第3课时 整式的加减

A.x2-5y2+1
B.x2-3y2+1
C.5x2-3y2-1
D.5x2-3y2+1
5.单项式 2xy、6x2y2、-3xy、-5x2y2 的和为 x2y2-xy .
6.化简:116(8x-2)-12(x-1)=
3 8
.
7.计算: (1)(9x-6y)-(5x-4y); 解:原式=4x-2y; (2)3-(1-x)+(1-x-x2); 解:原式=3-x2; (3)(x2+y2)-3(x2-2y2); 解:原式=-2x2+7y2; (4)2(-4y+3)-(-5y-2). 解:原式=-3y+8.
七年级数学(上册)•人教版
第二章 整式的加减
2.2 整式的加减 第3课时 整式的加减
一般地,n 个整式相加减,如果有括号就先 去括号 ,然后再 合并同类项 .
整式的加减运算
1.化简 5(2x-3)+4(3-2x)结果为( A )
A.2x-3
B.2x+9
C.8x-3
D.18x-3
2.下列计算错误的是( C )
11.多项式(4xy-3x2-xy+y2+x2)-(3xy+2y-2x2)的值( D )
A.与 x、y 的值有关
B.与 x、y 的值无关
C.只与 x 的值有关
D.只与 y 的值有关
12.若 M=3x2-5x+2,N=3x2-5x-2,则 M 与 N 的关系是( B )
A.M=NLeabharlann B.M>NC.M<N
D.无法确定
13.三角形的第一条边长为 a+b,第二条边比第一条边长(a+2),第三条边
比第二条边短 3,这个三角形的周长为( B )
A.5a+3b
B.5a+3b+1
C.5a-3b+1

人教版七年级上册数学第二章2.2整式的加减

人教版七年级上册数学第二章2.2整式的加减
2(50+a)-2(50-a) =100+2a-100+2a =4a
化简
(1)12(x – 0.5) =12x – 12×0.5 =12x – 6
(2)5(1 1 x) 5
51 5 1 x 5
5 x
(3)– 5a+(3a – 2) – (3a – 7)
= – 5a + 3a – 2 – 3a + 7
=(3-5)a+(2-1)b = -2a+b 当a=-2,b=1时,原式=-2×(-2)+1=5
(2)3x-4x2+7-3x+2x2+1,其中x = -3.
解: 3x-4x2+7-3x+2x2+1 =(-4+2)x2+ (3-3)x+ (7+1) = -2x2+8
当x = -3时,原式 = -2×(-3)2+8 = -10
(1)2 h后两船相距多远? (2)2 h后甲船比乙船多航行多少km?
解:顺水航速 = 船速 + 水速 =(50+a)km/h 逆水航速 = 船速 - 水速 =(50-a)km/h
(1)2h小时后两船相距(单位:km)
2(50+a)+2(50-a) =100+2a+100-2a
=200
(2)2h后甲船比乙船多航行(单位:km)
= – 5a + 5
(4)1(9 y 3)(2 y 1)
3
19y 132y1
3
3
5y
飞机的无风航速为a km/h,风速为20km/h。飞
机顺风飞行4h的行程是多少?飞机逆风飞行3h的 行程是多少?两个行程相差多少?
解:飞机顺风飞行4h的行程是 4(20+a)km 飞机逆风飞行3h的行程是 3(a-20)km

人教版七年级上册整式的加减(第3课时)课件

人教版七年级上册整式的加减(第3课时)课件
2.2 整式的加减
2.2 整式的加减(3)
课题引入
1.某学生合唱团出场时第一排站了n名,从第二排起每一排
都比前一排多一人,一共站了四排,则该合唱团一共有多少名
学生参加?
答案:+(+1)+(+2)+(+3)
课题引入
2.一种笔记本的单价是x(元),圆珠笔的单价是y(元),
小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,
求值.如题目要求“化简求值”时,必须
选用解法二求解.
知识梳理
特别讲授
整式的加减错例剖析
合并同类项是用字母表示数中的重要内容,熟练掌握合并同类项
法则、去括号法则是解决问题的关键.如果对合并同类项法则或去括号
的法则理解不透彻,可能会出现下列计算中的错误.
知识梳理
一、对同类项概念理解错误
例1 计算:
1 -22 -8 2 -2
知识梳理
四、去括号法则理解错误
例4 计算:
1 -(-)
(2) -2(- + )
错解: 1 -(-) = --
(2) -2(- + ) = -2-
(2)3-5-3
错解:(1)-22 -8 2 -2 = (-2-8-1)2 = -112
2 3-5-3 = 2-3 = -
正解:(1) -22 -8 2 -2 = (-2-1)2 -8 2 = -32 -8 2
(2) 3-5-3 = 2-3
(2) 6 + 6 + 8 − 2 + 2 + 2
= 6 + 6 + 8 − 2 − 2 − 2
= 4 + 4 + 6
因此做这两个纸盒共用料 8 + 8 + 10 平方厘米,

人教版数学七年级上册 第二章 整式的加减复习课件2(共38张PPT)

人教版数学七年级上册 第二章  整式的加减复习课件2(共38张PPT)
2
因为 x 是正数,
所以 10x>8x
所以 梯形的面积比长方形的面积大
10x-8x=2x
即 梯形的面积比长方形的面积大2x cm2
4、一公园的成票价是15元,儿童买半票,甲旅行团有 x(名)成年人和y (名)儿童;乙旅行团的成人数是 甲旅行团的2倍,儿童数比甲旅行团的2倍少8人,这两 个旅行团的门票费用总和各是多少?
返回
练 习(二):
1、下列各组是不是同类项:
(1) 4abc 与 4ab 不是
(2) -5 m2 n3 与 2n3 m2 是 (3) -0.3 x2 y 与 y x2 是
2、合并下列同类项:
(1) 3xy – 4 xy – xy = ( –2xy ) (2) -a-a-2a=( –4a )
(3) 0.8ab3 - a3 b+0.2ab3 =( ab3 - a3 b ) 3、若5x2 y与是 x m yn同类项,则m=( 2) n=( 1)
练习(二)

合并同类项: 定义、法则、步骤
去括号: 法 则 减
整式的加减: 步 骤
练习(三)
练 习(一):
1、在式子:
2 a

a、 3
1 x
y

x
2
y 、
1 y2
2
、1-x-5xy2、-x
中,哪些是单项式,哪些是多项式?哪些是整式?
单项式有
整式
a、 3
a 、 3
1
2 y2
、-x
x
多项式有 2
x 2
知识结构:
整式的加减
系数
单项式
次数
整式的概念
项,项数,常数
多项式 项,最高次项 次数

人教版七年级上数学教学课件第二章整式全章

人教版七年级上数学教学课件第二章整式全章
n 声扑通跳下水.
注意:在含有字母的式子中若出现乘号,通常将乘 号写作“•”或省略不写.如:100×a可以写成100•a或 100a.
用含有字母的式子填空: 1.边长为a的正方体的表面积为__6_a_2,体积为__a_3__. 2.铅笔的单价是x元,圆珠笔的单价是铅笔单价的2.5倍, 圆珠笔的单价是_2__.5_x__元. 3.全校学生总数是m,其中女生占总数的48%,则男生人 数是 _5_2_%__m____. 4. 一辆汽车的速度是v千米/时,它t小时行驶的 路程为____v_t_____千米. 5.数n的相反数是 __-_n___.
像3ab2与-4ab2 这样,所含字母相同,并且相同字母的指 数也相同的项叫做同类项.几个常数项也是同类项.
1.判断下列各组中的两项是否是同类项: (1) -5ab3与3a3b ( 否 ) (2)3xy与3x( 否 ) (3) -5m2n3与2n3m2( 是 ) (4)53与35 ( 是 ) (5) x3与53 ( 否 )
5 (3) 4a2 3b2 2ab 4a2 4b2.
解:1 xy2 1 xy2
5
(1 1)xy2 5
4 xy2. 5
请你自己做做第(2)、(3)小 题
(1) 运用有理数的运算律计算: 100×2+252×2=____7_0_4___, 100×(-2)+252×(-2)=___-_7_0_4___;
(2) 根据(1)中的方法完成下面的运算, 100t+252t=___3_5__2_t__.
填空: (1) 100t-252t=( -152 )t; (2) 3x2+2x2=( 5 )x2; (3) 3ab2-4ab2=( -1 )ab2. 上述运算有什么共同特点,你能从中得出什么规律? 100t和-252t 都含有相同的字母 t,并且t 的指数都是 1,我们就把100t与-252t 叫做同类项.

七年级数学上册2.2整式的加减(第3课时)教学课件(新版)新人教版

七年级数学上册2.2整式的加减(第3课时)教学课件(新版)新人教版

2
3
23
其中 x 2, y 2 3
解: 1 x 2(x 1 y2 ) ( 3 x 1 y2 )
2
3
23
1 x 2x 2 y2 3 x 1 y2
2
3
23
3x y2
当 x =-2,y = 2 时,原式= (3)(2) (2)2 6 4 6 4

1 2
2


1 3

6

1 2


1 3
2


1
1 3

2 3
1、整式的运算法则:一般的,几个整式相加减, 如果 有括号 就先去括号,然后再 计算 .
2、做化简计算时,先将式子进行化简,再代入 数值进行计算比较简便.
1、计算:
(1)
解:(x 2x2 5) (4x2 3 6x)
(x 2x2 5) (4x2 3 6x) x 2x2 5 4x2 3 6x 6x2 7x 2
(2) (3a2 ab 7) 4a2 2ab 7 解: (3a2 ab 7) (4a2 2ab 7) 3a2 ab 7 4a2 2ab 7 7a2 3ab
例6 计算:
(1) (2x 3y) (5x 4 y) = 2x 3y + 5x 4y = 7x y
(2)(8a-7b)-(4a-5b)
=8a-7b 4a 5b = 4a 2b
(练一练): 1、根据“求多项式 3a-5b 和 2b-4a 的和”
可列为 (3a 5b) (2b 4a) ;化简得 a 3b ;

人教版七年级数学上册第二章 2.2 第3课时 整式的加减课件(共24张PPT)

人教版七年级数学上册第二章  2.2  第3课时 整式的加减课件(共24张PPT)
图2-2-5
8.(1)求单项式5x2y,-2x2y,2xy2,-4x2y的和; (2)求3x2-6x+5与4x2+7x-6的和; (3)求2x2+xy+3y2与x2-xy+2y2的差. 解:(1)5x2y+(-2x2y)+2xy2+(-4x2y) =5x2y-2x2y+2xy2-4x2y =-x2y+2xy2;
第二章 整式的加减 2.2 整式的加减
第3课时 整式的加减
1.整式3x2-2x+1与-2x2-x+3的和是( ) C
A.5x2-x-2
B.2x2-4x+4
C.x2-3x+4
D.x2+3x-4
2.[2019·乐清]计算6a2-5a+3与5a2+2a-1的差,结果正确的是( ) D
A.a2-3a+4
14.(1)化简:2(x2y+xy)-3(x2y-xy)-4x2y; (2)若2a10xb与-a2by是同类项,求(1)中式子的值. 解:(1)原式=2x2y+2xy-3x2y+3xy-4x2y =-5x2y+5xy; (2)由2a10xb与-a2by是同类项,得到x=15,y=1, 则原式=-15+1=45.
D.4m-2n+4
【解析】 (3m-n)-(m+n-4)=3m-n-m-n+4=2m-2n+4.
4.[2019·广元一模]一个代数式减去-2x得-2x2-2x+1,则这个代数式为( B )
A.-x2+1
B.-2x2-4x+1
C.-2x2+1
D.-2x2-4x
【解析】 这个代数式为-2x2-2x+1+(-2x)=-2x2-2x+1-2x=-2x2-4x+
13.[2019秋·德江期末]小明在计算一个多项式与2x2+3x-7的差时,因误以为是 加上2x2+3x-7而得到答案5x2-2x+4,求这个多项式及这个问题的正确答案. 解:被减式=5x2-2x+4-(2x2+3x-7) =5x2-2x+4-2x2-3x+7 =3x2-5x+11, 正确答案为3x2-5x+11-(2x2+3x-7) =3x2-5x+11-2x2-3x+7 =x2-8x+18.

数学七年级上人教新课标第二章整式的加减复习课件

数学七年级上人教新课标第二章整式的加减复习课件
x + y 1 , 2π x , ,0, x,2 x 2 a
2
. 中单项式
+ 3 y
,整式 整式
.
(8)以上代数式中,哪些符合书写要求? 以上代数式中,哪些符合书写要求? 以上代数式中
xy 4 ; − 1a ; e− f ; 5
2
1 a b; 2 1 1 × xy ; 3
2
3×b
2
(9)下列各式中哪些是单项式(系数、次数), 下列各式中哪些是单项式(系数、次数) 下列各式中哪些是单项式 哪些是多项式( 次数)? 哪些是多项式(项、次数)?
决策题:1、某移动通讯公司开设了两种通讯业务:“全 决策题 、 球通”使用者缴50元月租费, 然后每通话1分钟再 付话费0.4元;“快捷通”不缴月租费,每通话1分钟, 付话费0.6 元(本题的通话均指市内通话).若一个月 内通话x分钟,两种方式的费用分别为y1 元和y2元. (1)用含x的代数式分别表示y1和y2,则 y1=________,y2=________. (2)某人估计一个月内通话300分钟,应选择哪种移 动通讯合算些?
单 个数字 的 个数字 字母 系数:单项式中的数字因数。 系数:单项式中的数字因数。
单项式
中 字母的项叫 数项 多项式 次数:多项式中次数 次数: 的项的次数。 的项的次数。
1 2 : 多项式的次数 多项式的每 项 次项的次数 次项的次数. 的次数 的
项:式中的每个单项式叫多项式的项。 式中的每个单项式叫多项式的项。
4、整式加减法则: 、整式加减法则:
1 5 4 m−2n n−2 x y 与 − 3x y 练习: 、 练习:1、若 5 是同类项, 是同类项,则m= ,n= 。
2、 下列各题计算的结果对不对?如果不对, 、 下列各题计算的结果对不对?如果不对, 指出错在哪里? 指出错在哪里?

人教版七年级上册数学第2节《整式的加减》参考课件(共16张PPT)

人教版七年级上册数学第2节《整式的加减》参考课件(共16张PPT)
(1)求多项式 求:
的值. 的值.
的值,
第一天水位的变化量为-2acm, 上的数交换位置,计算所得数与原数的和,所得
进货后这个商店有大米多少千克? 例5 已知m是绝对值最小的有理数,且
第二天水位的变化量为0.5acm. 其中


(1)水库中水位第一天连续下降了a 小时,每小时平均
问题.本节课设计了大量的实际问题,可以让学生
2
求:
的值.
例6 若

8x 3xy 将整式化简求值,运2用整式的加法解决简单的实际
86
2
例6 若 a2a b2 0 ,a bb 2 1 3 ,
求:a22abb2的值.
例6 若 a2a b2 0 ,a bb 2 1 3,
求:a22abb2的值.
解:a2 ab20 ①
abb2 13②
①+②得:a2ababb27
10a b 10b a
11a 11b
11(a b)
∴所得数与原数的和能被11整除.
例5 已知m是绝对值最小的有理数,且am1by1 与 3 a x b 3 是同类项, 求 :2 x 2 3 x y 6 x 2 3 m x 2 m x y 9 m y 2的值
例5 已知m是绝对值最小的有理数,且am1by1与
例3(2)某商店原有5袋大米,每袋大米为x千克.
解: 例1 下列各题计算的结果对不对?如果不对
将整式化简求值,运用整式的加法解决简单的实际
例1 下列各题计算的结果对不对?如果不对
把下降的水位变化量记为负, 答:这两天水位总的变化情况为下降了1.
(2)某商店原有5袋大米,每袋大米为x千克.
把上升的水位变化量记为正. 求:

人教版七年级数学上册整式的加减(3)

人教版七年级数学上册整式的加减(3)

2.2 整式的加减
题型二 同类项的概念的综合运用
例题2 [凉山州中考] 如果单项式

么a, b的值分别为( C).
A.a=2, b=3
B.a=1, b=2
C.a=1, b=3
D.a=2, b=2
是同类项, 那
2.2 整式的加减
2.2 整式的加减
锦囊妙计
利用同类项的概念求未知字母的值的方法 当已知所给的两个单项式是同类项, 或已 知两个单项式 可以合并, 或已知两个单项式的 和(或差)仍然是单项式时, 可抓 住同类项的定义 中的两个“相同”, 即“所含字母相同, 相同 字 母的指数相同” , 运用它们构造方程,求出单项 式中待定字 母的值, 从而解决问题.
第二章 整式的加减
2.2 整式的加减
第二章 整式的加减
2.2 整式的加减
考场对接
2.2 整式的加减
考场对接
题型一 辨认同类项
例题1 [上海中考] 下列单项式中, 与a²b是同 类项的是( A ).
A.2a²b
B.A²b²
C.Ab²
D.3ab
2.2 辨认同类项的两个关键条件 (1)所含字母相同;(2)相同字母的指数相同.
2.2 整式的加减
锦囊妙计
新定义问题的解题方法 (1)认真审题, 深刻理解新定义的内容, 了解 新定义的变换法 则;(2)排除干扰, 按新定义的 变换法则去掉新运算符号, 化新为旧, 将它们转 化成我们熟悉的加、减、乘、除、乘方等运算.
谢 谢 观 看!
2.2 整式的加减
锦囊妙计
多项式加减运算中加括号的方法 在多项式加法运算中, 整式可以不加括 号;在多项式减 法运算中, 被减式可以不加括 号, 但减式必须加上括号.

初中数学教学课件:2.2 整式的加减 第3课时(人教版七年级上)

初中数学教学课件:2.2  整式的加减  第3课时(人教版七年级上)

=(4n+6)人
答:该合唱团一共有(4n+6)名同学参加.
2.代数式(x2+ax-2y+7)-(bx2-2x+9y-1)的值与字母x的 取值无关,求a,b的值. 解:(x2+ax-2y+7)-(bx2-2x+9y-1) =x2+ax-2y+7-bx2+2x-9y+1=(1-b)x2+(a+2)x-11y+8 ∵代数式(x2+ax-2y+7)-(bx2-2x+9y-1)的值与字母x
例1
计算:
(1)(2x-3y)+(5x+4y) =2x-3y+5x+4y =7x+y
(2)(8a-7b)-(4a-5b)
=8a-7b-4a+5b =4a-2b
【例2】做大小两个长方形纸盒,尺寸如下(单位:cm)
长 宽 高
小纸盒
大纸盒
a
1.5
b
2b
c
2c
(1) 做这两个纸盒共用料多少平方厘米? (2) 做大纸盒比做小纸盒多用料多少平方厘米?
3.在多项式ax5+bx3+cx-5中,当x=-3时,它的值为7; 当x=3时,它的值是多少?
解:方法一:巧添括号
当x=-3时,原式=(-3)5a+(-3)3b+(-3)c-5 =-35a-33b-3c-5=7, ∴-35a-33b-3c=12, 当x=3时,原式=35a+33b+3c-5=-(-35a-33b-3c)-5 =-12-5=-17.
的取值无关,
∴1-b=0,a+2=0,解得a=-2 ,b=1. 答:a=-2 ,b=1.

人教版七年级数学上册教学课件-2.2整式的加减优秀课件PPT

人教版七年级数学上册教学课件-2.2整式的加减优秀课件PPT
当x =-2,y=3时 原式=-(-2)2×3+(-2)×32
=-12-18 =-30
多项式化简求值的三步书写法
一化简二代三计算
布置作业: 1.教材课后习题 2.小练习册部分习题 3.思考
3(a+b)-2(a+b)+2(a+b)+2 4(a+b)-(a+b)2
用微笑告诉别人,今天的我,比昨天更强。瀑布跨过险峻陡壁时,才显得格外雄伟壮观。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。孤独是 每个强者必须经历的坎。有时候,坚持了你最不想干的事情之后,会得到你最想要的东西。生命太过短暂,今天放弃了明天不一定能得到。只有经历人生 的种种磨难,才能悟出人生的价值。没有比人更高的山,没有比脚更长的路学会坚强,做一只沙漠中永不哭泣的骆驼!一个人没有钱并不一定就穷,但没 有梦想那就穷定了。困难像弹簧,你强它就弱,你弱它就强。炫丽的彩虹,永远都在雨过天晴后。没有人能令你失望,除了你自己人生舞台的大幕随时都 可能拉开,关键是你愿意表演,还是选择躲避。能把在面前行走的机会抓住的人,十有八九都会成功。再长的路,一步步也能走完,再短的路,不迈开双 脚也无法到达。有志者自有千计万计,无志者只感千难万难。我成功因为我志在成功!再冷的石头,坐上三年也会暖。平凡的脚步也可以走完伟大的行程。 有福之人是那些抱有美好的企盼从而灵魂得到真正满足的人。如果我们都去做自己能力做得到的事,我们真会叫自己大吃一惊。只有不断找寻机会的人才 会及时把握机会。人之所以平凡,在于无法超越自己。无论才能知识多么卓著,如果缺乏热情,则无异纸上画饼充饥,无补于事。你可以选择这样的“三 心二意”:信心恒心决心;创意乐意。驾驭命运的舵是奋斗。不抱有一丝幻想,不放弃一点机会,不停止一日努力。如果一个人不知道他要驶向哪个码头, 那么任何风都不会是顺风。行动是理想最高贵的表达。你既然认准一条道路,何必去打听要走多久。勇气是控制恐惧心理,而不是心里毫无恐惧。不举步, 越不过栅栏;不迈腿,登不上高山。不知道明天干什么的人是不幸的!智者的梦再美,也不如愚人实干的脚印不要让安逸盗取我们的生命力。别人只能给 你指路,而不能帮你走路,自己的人生路,还需要自己走。勤奋可以弥补聪明的不足,但聪明无法弥补懒惰的缺陷。后悔是一种耗费精神的情绪,后悔是 比损失更大的损失,比错误更大的错误,所以,不要后悔!复杂的事情要简单做,简单的事情要认真做,认真的事情要重复做,重复的事情要创造性地做。 只有那些能耐心把简单事做得完美的人,才能获得做好困难事的本领。生活就像在飙车,越快越刺激,相反,越慢越枯燥无味。人生的含义是什么,是奋 斗。奋斗的动力是什么,是成功。决不能放弃,世界上没有失败,只有放弃。未跌过未识做人,不会哭未算幸运。人生就像赛跑,不在乎你是否第一个到 达终点,而在乎你有没有跑完全程。累了,就要休息,休息好了之后,把所的都忘掉,重新开始!人生苦短,行走在人生路上,总会有许多得失和起落。 人生离不开选择,少不了抉择,但选是累人的,择是费人的。坦然接受生活给你的馈赠吧,不管是好的还是坏的。现在很痛苦,等过阵子回头看看,会发 现其实那都不算事。要先把手放开,才抓得住精彩旳未来。可以爱,可以恨,不可以漫不经心。我比别人知道得多,不过是我知道自己的无知。你若不想 做,会找一个或无数个借口;你若想做,会想一个或无数个办法。见时间的离开,我在某年某月醒过来,飞过一片时间海,我们也常在爱情里受伤害。1、 只有在开水里,茶叶才能展开生命浓郁的香气。人生就像奔腾的江水,没有岛屿与暗礁,就难以激起美丽的浪花。别人能做到的事,我一定也能做到。不 要浪费你的生命,在你一定会后悔的地方上。逆境中,力挽狂澜使强者更强,随波逐流使弱者更弱。凉风把枫叶吹红,冷言让强者成熟。努力不不一定成 功,不努力一定不成功。永远不抱怨,一切靠自己。人生最大的改变就是去做自己害怕的事情。每一个成功者都有一个开始。勇于开始,才能找到成功的 路。社会上要想分出层次,只有一个办法,那就是竞争,你必须努力,否则结局就是被压在社会的底层。后悔是一种耗费精神的情绪后悔是比损失更大的 损失,比错误更大的错误所以不要后悔。每个人都有潜在的能量,只是很容易:被习惯所掩盖,被时间所迷离,被惰性所消磨。与其临渊羡鱼,不如退而结网。 生命之灯因热情而点燃,生命之舟因拼搏而前行。世界会向那些有目标和远见的人让路。不积跬步,无以至千里;不积小流,无以成江海。骐骥一跃,不 能十步;驽马十驾,功在不舍。锲而舍之,朽木不折;锲而不舍,金石可镂。若不给自己设限,则人生中就没有限制你发挥的藩篱。赚钱之道很多,但是 找不到赚钱的种子,便成不了事业家。最有效的资本是我们的信誉,它小时不停为我们工作。销售世界上第一号的产品——不是汽车,而是自己。在你成

七年级数学上册第二章整式的加减2.2整式的加减第3课时整式的加减作业课件新版新人教版

七年级数学上册第二章整式的加减2.2整式的加减第3课时整式的加减作业课件新版新人教版

A.14
B.10
C.6
D.不能确定
13.已知M=4x2-3x-2,N=6x2-3x+6,则M,N的大小关系是(C ) A.M>N B.M=N
C.M<N D.以上结论都不对
14.当 x=1 时,多项式 ax2+bx+1=3, 则多项式 3(2a-b)-(5a-4b)的值为_2__.
15.已知 A=2x2+ax-5y+1,B=x2+3x-by-4,
(2)(x2-y2)-3(x2-2y2); 解:原式=x2-y2-3x2+6y2=-2x2+5y2.
(3)(9a-2b)-[8a-(5b-2a)]+2c. 解:原式=9a-2b-(8a-5b+2a)+2c= 9a-2b-8a+5b-2a+2c=-a+3b+2c.
8.已知A=3x2-2xy+y2,B=2x2+3xy-4y2,求: (1)A-2B; (2)2A+B. 解:(1)A-2B=(3x2-2xy+y2)-2(2x2+3xy-4y2)= 3x2-2xy+y2-4x2-6xy+8y2=-x2-8xy+9y2. (2)2A+B=2(3x2-2xy+y2)+(2x2+3xy-4y2)= 6x2-4xy+2y2+2x2+3xy-4y2=8x2-xy-2y2.
第二章 整式的加减
2.2 整式的加减 第3课时 整式的加减
1.(2019·黄石)化简13 (9x-3)-2(x+1)的结果是( D ) A.2x-2 B.x+1 C.5x+3 D.x-3
2.已知 A=5a-3b,B=-6a+4b,则 A-B 等于( C ) A.-a+b B.11a+b C.11a-7b D.-a-7b
17.(2018·河北)嘉淇准备完成题目:化简( x2+6x+8)-(6x+5x2+2). 发现系数“ ”印刷不清楚. (1)他把“ ”猜成 3,请你化简:(3x2+6x+8)-(6x+5x2+2); (2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.” 通过计算说明原题中“ ”是几?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例6 计算
(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b).
解: (1) ( 2x-3y)+(5x+4y)去括号,前面是正号,括 号内的不变号 =2x-3y+5x+4y 加法交换律 =2x+5x-3y+4y
=7x+y 合并同类项 (2)(8a-7b)-(4a-5b) =8a-7b-4a+5b 你能说出每步运算的依据 吗? =8a-4a-7b+5b =4a -2b
2) (1) 做这两个纸盒共用料(单位 :cm (2)做大纸盒比做小纸盒多用料(单位:cm2) (2ab+2bc+2ca)+(6ab+8bc+6ca) ( 6ab+8bc+6ca)-(2ab+2bc+2ca)
=2ab+2bc+2ca+6ab+8bc+6ca=8ab+10bc+8ca; =6ab+8bc+6ca-2ab-2bc-2ca=4ab+6bc+4ca.

整式加减运算的最后结果也是一个 整式,一般地,要求这个结果是最简的。
一个最简的整式中不应再有同类项; 但合并同类项之前可能含有括号。 因此,整式加减运算的过程与步骤,包含 以下两个运算:
八字诀
去括号、合并同类项
知识点1 整式的加减运算
A
C
C
4、一公园的成票价是15元,儿童买半票,甲旅行团有 x(名)成年人和y (名)儿童;乙旅行团的成人数是 甲旅行团的2倍,儿童数比甲旅行团的2倍少8人,这两 个旅行团的门票费用总和各是多少?
知识点2 整式的加减的应用
第三条边比第二条边短3,这个三角形的周长为 (B )
4.三角形的第一条边长为a+b,第二条边比第一条边长(a+2),
A.5a+3b
C.5a-3b+1
B.5a+3b+1
D.5a+3b-1
5.一个篮球的单价为a元,一个足球的单价为b元(b>a).小明 买6个篮球和2个足球,小刚买5个篮球和3个足球,则小明比小刚 少花 A.(a-b)元 C.(a-5b)元 B.(b-a)元 D.(5b-a)元 (B )
例3:若3x2-2x+b与x2+bx-1的和中不存在含x的项,求b的值.
写出它们的和,并说明不论x取什么值,它的值总是正数.
解析:所谓不含x项,是指x项的系数为0,若说明无论x取什么值时 两个整式之和总是正数,即说明这个和总大于零. 解:(3x2-2x+b)+(x2+bx-1)=4x2+(b-2)x+(b-1) 令b-2=0,所以b=2. 当b=2时,4x2+(b-2)x+(b-1)=4x2+1.
解析:先根据题意列出代数式,然后去括号,合并同类项.
解析:(1)题中的括号前面分别是+2,-3, 运算时可以直接把它看成性质符号,利用乘法分配律去乘括号 里的每一项;(2)题中去括号,可由内向外,按顺序先去小括号, 再去中括号,最后去大括号,也可由外向内按顺序先去大括号, 再去中括号,最后去小括号,合并同类项既可去掉括号后合并, 也可边去括号边合并同类项.
2.2
整式的加减
第3课时
·
教学目标
让学生从实际背景中去体会进行整式的加减的必要性,并 能灵活运用整式的加减的法则进行运算.
教学重难点 重点:运用整式加减的法则进行运算. 难点:多层括号的整式加减运算.
一般地,n个整式相加减,如果有括号就先 去括号
然后再

合并同类项
.
让我们一起来回答: 1、什么叫同类项?什么叫合并同类项? 2、去括号法则是
解:甲旅行团成人的门票费用为15x元,
儿童的门票费用为:7 .5y 元。 总和是(15x+7.5y) 元 乙旅行团成人数为:2x 门票费用为 :30x 元,
儿童的人数为: 门票费用为: (2y-8) 7.5(2y-8)元。 总和是 [30 x +7.5(2y-8)] 元 即(30 x +15y-60)元
6.计算(x+y)+2(x+y)-4(x+y)的结果为
(B )
A.x+y
B.-x-y
C.-x+y
D.x-y
7.一根铁丝正好可以围成一个长是2a+3b,宽是a+b的长方形 框.把它剪去可围成一个长是a,宽是b的长方形(均不+6b (C ) D.6a+4b
x2y2-xy
整式的加减运算,它的实质就是去括号、合并同类项.
如果是化简求值,应遵循“一化、二代、三计算”的原则,
这样做能减少运算量,使计算简便.
因为不论x取什么值,总有x2≥0,
即4x2≥0,因此总有4x2+1>0.
例4:做大小两个长方体纸盒,尺寸如下(单位:cm):
长 宽 高 b c 小纸盒 a 2b 2c 大纸盒 1.5a (1)做这两个纸盒共用料多少平方厘米?
(2)做大纸盒比做小纸盒多用料多少平方厘米? 解:小纸盒的表面积是 (2ab+2bc+2ca)cm2, 解析:(1)求大、小两个长方体纸盒表面积的和; (2)求大、小两个长方体纸盒表面积的差 . 大纸盒的表面积是(6ab+8bc+6ca)cm2.
相关文档
最新文档