有理数的混合运算-学生版
第3讲有理数加减乘除及混合运算(学生版)
第3讲有理数加减乘除及混合运算1.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加。
(2)绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;(3)互为相反数的两个数相加得0;(4)一个数同0相加,仍得这个数。
2.有理数减法法则即减去一个数,等于加这个数的相反数。
有理数的减法可以转化为加法来进行。
如果你记不住上面的加减法规则,请参照以下:傻瓜加减法则1、遇见小数减大数,负号表示“差多少”(其实就是符号不同的两数相加的情况)2、遇见减去负数时,负负得正变加号(其实就是小学的去括号变号问题)3.有理数乘法的法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.4.几个有理数相乘时积的符号法则:几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.几个有理数相乘,有一个因数为0,积就为0.注意:第一个因数是负数时,可省略括号.5.有理数的除法法则:除以一个数,等于乘上这个数的倒数,0不能做除数.(两数相除,同号得正,异号得负,并把绝对值相除.)0除以任何一个不为0的数,都得0.【例题1】选择正确答案(1)若a+b=a b+,则a 、b 的关系是( )A 、a 、b 绝对值相等B 、a 、b 异号C 、a 、b 的和是非负数D 、a 、b 同号或其中至少一个为0 (2)若一个有理数减去它的相反数是一个负数,则( ) A 、这个有理数一定是负数 B 、这个有理数一定是正数C 、这个有理数可以为正数、负数D 、这个有理数为零(3)已知有理数a 、b 、c 在数轴上的位置如图所示。
则下列结论错误的是( ) A 、b +c<0 B 、-a +b +c<0 C 、a b+>a c+ D 、a b+<a c+(4)已知|a|>a,|b|>b,且|a|>|b|,则( ) A 、a>b B 、a<b C 、不能确定 D 、a=b(5)一个数在数轴上对应点与其相反数在数轴上对应点的距离为12单位长,则这个数是( ) A 、12或-12 B 、14或-14 C 、12或-14 D 、-12或14【例题2】计算:(1) 7.27.27.2---+ (2) 13616--++-【例题3】计算:.)702.11()6514(537(6155(5213(---++++-+)532()]57()323(6.8[324-+-++-+【例题4】如果x ,y 表示有理数,且x ,y 满足条件|x|=5,|y|=2,|x-y|=y-x ,那么x+y 的值是多少?【练习1】|x|=4,|y|=6,求代数式|x+y|的值【例题5】完成下列填空1、两数相乘,同号得 ,异号得 ,并把绝对值 。
《有理数的混合运算》教案(15篇)
《有理数的混合运算》教案《有理数的混合运算》教案(15篇)作为一名老师,就有可能用到教案,借助教案可以有效提升自己的教学能力。
那么教案应该怎么写才合适呢?下面是小编精心整理的《有理数的混合运算》教案,欢迎阅读与收藏。
《有理数的混合运算》教案1教学目标1.进一步掌握有理数的运算法则和运算律;2.使学生能够熟练地按有理数运算顺序进行混合运算;3.注意培养学生的运算能力.教学重点和难点重点:有理数的混合运算.难点:准确地掌握有理数的运算顺序和运算中的符号问题.课堂教学过程设计一、从学生原有认知结构提出问题1.计算(五分钟练习):(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;(24)3.4×104÷(-5).2.说一说我们学过的有理数的运算律:加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.二、讲授新课前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.审题:(1)运算顺序如何?(2)符号如何?说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.《有理数的混合运算》教案2【学习目标】1.掌握有理数的混合运算法则,并能熟练地进行有理数的加、减、乘、除、乘方的混合运算;2.通过计算过程的反思,获得解决问题的经验,体会在解决问题的过程中与他人合作的重要性;【学习方法】自主探究与合作交流相结合。
1.3.2 有理数的加减混合运算
1.3.2有理数的减法第2课时有理数的加减混合运算课题第2课时有理数的加减混合运算教学目标知识与技能能进行有理数的加减混合运算,正确理解有理数的加减混合运算就是先把减法统一成加法,然后再变成省略加号和括号的和的形式,能根据具体问题适当运用运算律简化运算.过程与方法1.经历从具体的情境中抽象出有理数的加减混合运算的过程,体会从数学的角度理解问题的方法.2.在通过有理数的加减混合运算解决问题的过程中,培养学生浓厚的学习兴趣和应用数学的意识,并能根据具体问题,适当运用运算律简化运算,提高解题的灵活性.情感态度感受不同数学知识之间的紧密联系,养成善于思考、积极运用所学知识解决问题的习惯.教学重点熟练掌握有理数的加减混合运算,并利用运算律简化运算.教学难点1.省略加号与括号的代数和的计算.2.在运算中灵活地使用运算律.教具多媒体教学活动教学步骤师生活动设计意图回顾问题1:回顾一下有理数的加法法则.问题2:回顾有理数加法的运算律.问题3:回顾有理数的减法法则.处理方式:1.由学生直接回答即可;2.学生回答后教师补充,强调加法的运算律可以简化运算,希望同学们加以应用;口算:(1)2-7=__-5__;(2)(-2)-7=__-9__;(3)(-2)-(-7)=__5__;(4)2+(-7)=__-5__;(5)(-2)+(-7)=__-9__;(6)7-2=__5__;(7)(-2)+7=__5__;(8)2-(-7)=__9__.设计本环节的目的是让学生掌握前几节课学过的有理数的加法、减法法则和有理数加法的运算律,为后续学习做好铺垫.活动一:创设情境导入新课问题:计算(-20)+(+3)-(-5)-(+7)分析:这个算式中有加法,也有减法,可以根据有理数减法法则,把它改为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。
解:原式=处理方式:教师引导总结,在进行运算时,首先利用减法法则将减法运算转化成加法运算,再利用加法的运算律简化运算;也可以按顺序从左往右运算.这就是今天我们将要学习有理数的加减混合运算.板书:有理数的加减混合运算 活动二:实践探究交流新知 【探究1】计算:(1)(+9)-(+10)+(-2)-(-8)+3;(2)-32+(-61)-(-41)-(+21) (3)5+(-3.2)+1.1+(-1.4)归纳:引入相反数后,,加减混合运算可以统一为加法运算。
八年级数学上册专题2.6有理数的混合运算专项训练(40题)同步特训(学生版+解析)
专题2.6 有理数的混合运算专项训练(40题)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对有理数混合运算的理解!1.(2023春·河北唐山·七年级统考期末)计算:(512−59)÷(−536) 2.(2023春·辽宁大连·七年级统考期末)计算:(−10)+3[(−4)2÷(−8)−(1+32)×2].3.(2023春·上海浦东新·六年级上海市民办新竹园中学校考期中)计算:[(−1)2018+(1−12)×13]+(−32+2)4.(2023春·安徽安庆·七年级统考期末)计算:−16−(0.5−13)÷16×[−2−(−3)3]−|23−32|.5.(2023春·河南南阳·七年级统考期中)计算: (12−1)×(13−1)×(13−1)×...×(12022−1) . 6.(2023春·河南南阳·七年级统考期中)计算 (1)(−15)×(18−13)÷(−124); (2)−12020×[4−(−3)2]+3÷|−34|;7.(2023春·黑龙江双鸭山·七年级统考期末)计算: (1)−12×(−16+34−512);(2)−1×[−32×(−23)2−2]×(−32).8.(2023春·云南昭通·七年级统考期末)计算: (1)(−21)÷7+3×(−4)−(−12); (2)−12020+(−2)3×(−12)−|−1−5|.9.(2023春·四川凉山·七年级统考期末)计算 (1)−14+(1−0.5)×13×[3−(−3)2](2)(−13+15−215)×(−60)10.(2023春·上海嘉定·六年级统考期末)计算: (1)3.2−23+35.(2)323×2215+523×1315−2×1315.11.(2023春·七年级课时练习)计算下列各题: (1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587);(2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}.12.(2023春·湖北武汉·七年级统考期末)计算: (1)11+(−7)−12−(−5)(2)−22×5−(−2)3÷4 -22×5-(-2)3÷4 13.(2023春·辽宁葫芦岛·七年级统考期末)计算 (1)(12−56−712)×(−12)(2)−32÷3+(12−23)×12−(−1)202214.(2023春·全国·七年级期末)计算: (1)(−34+156−78)×(−24)(2)−23+|5−8|+24÷(−3)15.(2023春·辽宁大连·七年级统考期末)计算: (1)42×(−23)+(−34)÷(−0.25); (2)2×(−3)3−4×(−3)+15.16.(2023春·湖南湘潭·七年级校联考期中)计算. (1)(−12.5)×(+317)×(−45)×(−0.1); (2)−12−(23−78+112−56)×(−24);(3)482425÷(−48);(4)7777×13879+29÷(−17777)−3859×7777. 17.(2023春·辽宁抚顺·七年级统考期中)计算: (1)(−49)−(+91)−(−5)+(−9); (2)(14+38−712)÷124;(3)(−1)2021×|−112|−(0.5)÷(−13).(4)−23×(−8)−(−12)3×(−16)+49×(−3)218.(2023春·山东菏泽·七年级统考期中)计算: (1)(1−16+34)×(−48)(2)−14+(−2)÷(−13)−|−9| (3)(−1)2÷12×[6−(−2)3]19.(2023春·山东德州·七年级校联考期中)计算 (1)(−0.5)−(−314)+2.75−(+712);(2)(−49)÷75×57÷(−25)(3)−22÷43−[22−(1−12×13)]×12;20.(2023春·甘肃酒泉·七年级统考期中)计算 (1)(−7)+(+15)−(−25)(2)7.54+(−5.72)−(−12.46)−4.28 (3)−24×(−56+38−112)(4)−13×3+6×(−13)(5)−22+3×(−1)4−(−4)×5 (6)(−3)÷34×43×(−15)21.(2023春·重庆万州·七年级重庆市万州新田中学校考期中)计算: (1)8+(−10)+(−2)−(−5) (2)(−0.5+13+16)÷124 (3)53÷[4×(−34)2−1](4)−14−(−3)3÷[(12−23)−|0.52−13|]22.(2023春·河南南阳·七年级统考期中)计算: (1)−32−(+11)+(−9)−(−16); (2)(−45911)÷|−9|(用简便方法计算);(3)(−3)2−(112)3×29−6÷|−23|3;(4)(−12+34)×(−2)3+(−4)2÷2×12.23.(2023春·河南驻马店·七年级统考期中)计算: (1)(1112−76+34−1324)×(−48);(2)−9+5×|−3|−(−2)2÷4;(3)−18+(−4)2÷14−(1−32)×(13−0.5). 24.(2023春·福建漳州·七年级校考期中)计算: (1)−41−28+(−19)+(−22) (2)(−20)×(−115)+4÷(−23)(3)(12+56−712)×(−24)(4)−32−24÷(−4)×12+(−1)202225.(2023春·湖北襄阳·七年级统考期末)计算: (1)(−7)−(+5)+(−4)−(−10) (2)115×(13−12)×311÷54(3)(−10)4+[(−4)2−(3+32)×2].26.(2023春·海南海口·七年级统考期末)计算 (1)5×(−3)+(−12)×(−34)−52 (2)(−48)×(56−1+712−18)(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12)27.(2023春·河北唐山·七年级统考期中)计算: (1)35−3.7−(−25)−1.3 (2)(−34+712−58)÷(−124)(3)−32+1÷4×14−|−114|×(−0.5)228.(2023春·山东滨州·七年级统考期末)计算:(1)(134−78−712)÷(−78); (2)−1100÷(−12)3−17×[2−(−4)2].29.(2023春·山东临沂·七年级统考期末)计算: (1)23−|−5|−(−2)÷12;(2)−14−(1−0.5)×13×[2−(−3)2].30.(2023春·云南昆明·七年级校考期中)计算: (1)13+(−56)+47+(−34) (2)(16−314+23)×(−42)(3)2×(−5)+22−3÷12 (4)−22+|6−10|−3×(−1)202331.(2023·山东潍坊·七年级统考期中)计算下列各题: (1)(﹣12)﹣(﹣65)+(﹣8)﹣710(2)(﹣34+712﹣59)÷(﹣136) (3)﹣3×22﹣(﹣3×2)3(4)﹣32+16÷(﹣2)×12﹣(﹣1)2017(5)(﹣14﹣56+89)×62+(﹣2)2×(﹣14) (6)14÷73+0.25×815﹣27×14+715×0.25 (7)(﹣32)2×23÷|﹣3|+(﹣0.25)÷(12)6(8)(﹣2)3﹣35[3×(﹣23)2﹣14]+8[(12)3﹣(﹣12)2﹣1].32.(2023·山东济宁·七年级校考期中)计算下列各题 (1)−5.53+4.26+(−8.47)−(−2.38) (2)−0.125×(−47)×8×(−7) (3)(1112−76+34−1324)×(−48) (4)−12018+12+(−12)×[−2−(−3)]33.(2023春·山东聊城·七年级统考期中)计算 (1)−449−(+556)+(−559)−(−56)(2)2×(−137)−234×13+(−137)×5+14×(−13)(3)16÷(−2)3−(−12)3×(−4)+2.5(4)(−1)2019+|−22+4|−(12−14+18)×(−24)34.(2023春·七年级课时练习)计算: (1)(−323)−(−2.4)+(−13)−(+425)(2)[−23+(−35)]+[1+(−23)×(−35)] (3)(−1)4−{35−[(13)2+0.4×(−112)÷(−2)2]}(4)[(223+334)(223−334)+(223−334)2]÷(334−223) 35.(2023春·七年级课时练习)计算(1)−33−(12+56−712)×(−24)(2)−212+12÷(−2)×|−83|36.(2023春·七年级课时练习)计算(1)−225−(+3411)+(−35)−(−1311) (2)(-81) ÷214×(−49)÷8+(−2)÷14÷(−12)37.(2023春·七年级课时练习)计算: (1)(−2878+1479)÷7;(2)(−1313)÷5−123÷5+13×15; (3)112×[3×(−23)−1]−13×(−8)−8; (4)−|−13|−|−34×23|−|12−13|;(5)(213−312+718)÷(−116)+(−116)÷(213−312+718). 38.(2023春·七年级课时练习)计算: (1)-(-2.5)+(+2.2)-3.1+(-0.5)-(+1.1) (2) −0.5−314+(−2.75)+712专题2.6 有理数的混合运算专项训练(40题)【北师大版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,可加强学生对有理数混合运算的理解!1.(2023春·河北唐山·七年级统考期末)计算:(512−59)÷(−536)【答案】1【分析】先将除法变成乘法,再去括号运算即可. 【详解】解:(512−59)÷(−536)=(512−59)×(−365)=512×(−365)−59×(−365) =−3+4 =1.【点睛】本题主要考查有理数的混合运算,掌握有理数的混合运算的法则是解题的关键. 2.(2023春·辽宁大连·七年级统考期末)计算:(−10)+3[(−4)2÷(−8)−(1+32)×2]. 【答案】−1022【分析】按照先计算乘方,再计算乘除法,最后计算加减法,有括号先计算括号的运算顺序求解即可. 【详解】解:原式=−1000+[16÷(−8)−(1+9)×2]=−1000+(−2−10×2)=−1000−2−20=−1022.【点睛】本题主要考查了含乘方的有理数混合计算,熟知相关计算法则是解题的关键.3.(2023春·上海浦东新·六年级上海市民办新竹园中学校考期中)计算:[(−1)2018+(1−12)×13]+(−32+2) 【答案】−556【分析】先计算有理数的乘方,再计算括号内的减法、有理数的乘法,然后计算有理数的减法即可.【详解】解:原式=(1+12×13)+(−9+2)=(1+16)−7=116−7=−556【点睛】本题考查了含乘方的有理数混合运算,熟记有理数的运算法则是解题关键.4.(2023春·安徽安庆·七年级统考期末)计算:−16−(0.5−13)÷16×[−2−(−3)3]−|23−32|. 【答案】−27【分析】先计算括号内的,并要先计算乘方,再计算乘除,最后计算加减即可. 【详解】解:原式=−1−16×6×[−2−(−27)]−|8−9|=−1−25−1=−27.【点睛】本题考查有理数混合运算,熟练掌握有理数混合运算法则是解题的关键.5.(2023春·河南南阳·七年级统考期中)计算: (12−1)×(13−1)×(13−1)×...×(12022−1) . 【答案】−12022【分析】计算出每个括号内的减法运算,观察相邻两个因数的分子分母,第一项的分母可以与第二项的分子约分,第二项的分母可以与第三项的分子约分,以此类推,化简式子计算出最终结果. 【详解】解:(12−1)×(13−1)×(14−1)×...×(12022−1),=(−12)×(−23)×(−34)×...×(−20212022), =−12022.【点睛】本题考查了有理数的复杂运算,解决此题的关键是观察式子的一般规律子再利用简便运算计算结果. 6.(2023春·河南南阳·七年级统考期中)计算 (1)(−15)×(18−13)÷(−124); (2)−12020×[4−(−3)2]+3÷|−34|; 【答案】(1)−1 (2)9【分析】(1)按照有理数四则混合运算法则计算即可; (2)先算乘方、然后按照有理数四则混合运算法则计算即可. 【详解】(1)解:(−15)×(18−13)÷(−124)=−15×(324−824)×(−24)=−15×(−524)×(−24)=−1.(2)解:−12020×[4−(−3)2]+3÷|−34|=−1×(4−9)+3×43=5+4=9.【点睛】本题主要考查了有理数四则混合运算、含乘方有理数四则混合运算等知识点,灵活运用相关运算法则成为解答本题的关键.7.(2023春·黑龙江双鸭山·七年级统考期末)计算: (1)−12×(−16+34−512);(2)−1×[−32×(−23)2−2]×(−32). 【答案】(1)−2 (2)−9【分析】(1)利用乘法分配律求解即可; (2)按照有理数的运算顺序,进行计算即可求解.【详解】(1)解:原式=(−12)×(−16)+(−12)×34+(−12)×(−512)=2+(−9)+5=−2;(2)解:原式=−1×(−9×49−2)×(−32)=−1×(−4−2)×(−32)=−1×(−6)×(−3 2 )=−9.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则是解题的关键.8.(2023春·云南昭通·七年级统考期末)计算:(1)(−21)÷7+3×(−4)−(−12);(2)−12020+(−2)3×(−12)−|−1−5|.【答案】(1)−3(2)−3【分析】(1)先算乘除,再算加减;(2)先乘方,去绝对值,再乘除,最后算加减.【详解】(1)解:(−21)÷7+3×(−4)−(−12)=−3−12+12=−3;(2)−12020+(−2)3×(−12)−|−1−5|=−1−8×(−12)−6=−1+4−6=−3.【点睛】本题考查有理数的运算.熟练掌握有理数的运算法则,以及运算顺序,是解题的关键.9.(2023春·四川凉山·七年级统考期末)计算(1)−14+(1−0.5)×13×[3−(−3)2](2)(−13+15−215)×(−60)【答案】(1)−2(2)16【分析】(1)首先进行有理数的乘方计算,然后计算括号里面的数字,最后进行计算乘法和加法即可;(1)利用乘法分配律进行简便计算即可得出答案.【详解】(1)解:原式=−1+12×13×(−6)=−1−1=−2;(2)解:原式=−13×(−60)+15×(−60)−215×(−60)=20−12+8=16.【点睛】本题主要考查了有理数混合运算,熟练掌握相关运算法则和运算律是解题关键.10.(2023春·上海嘉定·六年级统考期末)计算:(1)3.2−23+35.(2)323×2215+523×1315−2×1315.【答案】(1)4715(2)11【分析】(1)首先把小数化为分数,再进行有理数的加减运算,即可求得结果;(2)利用有理数乘法分配律的逆用,进行运算,即可求得结果.【详解】(1)解:3.2−23+35=165−23+35=4815−1015+915=48−10+915=4715;(2)解:323×2215+523×1315−2×1315=323×2215+(523×1315−2×1315)=323×2215+1315×(523−2)=323×2215+1315×323=323×(2215+1315) =323×3 =11.【点睛】本题考查了有理数的混合运算及运算律,熟练掌握和运用有理数的运算律是解决本题的关键.11.(2023春·七年级课时练习)计算下列各题:(1)3.587-(-5)+(-512)+(+7)-(+314)-(+1.587);(2)(-1)5×{[-423÷(-2)2+(-1.25)×(-0.4)]÷(-19)-32}. 【答案】(1)原式=514;(2)原式=3. 【分析】(1)运用加法的运算律,把小数与小数相加,整数与整数相加,分数与分数相加;(2)把带分数化为假分数,除法转化为乘法,再按有理数的混合运算法则计算.【详解】(1)原式=3.587+5-512+7-314-1.587 =(3.587-1.587)+(5+7)+(-512-314) =2+12-834=514.(2)原式=-1×{[-143÷4+0.5]÷(-19)-9}=-1×[(-23)÷(-19)-9]=-1×(6-9)=-1×(-3)=3.12.(2023春·湖北武汉·七年级统考期末)计算:(1)11+(−7)−12−(−5)(2)−22×5−(−2)3÷4 -22×5-(-2)3÷4【答案】(1)−3;(2)-18【分析】(1)根据有理数的加减运算法则进行计算即可得到答案;(2)先进行乘方运算,再进行有理数乘除运算,最后进行有理数减法运算即可得到答案.【详解】(1)解:11+(−7)−12−(−5)=11−7−12+5=−3;(2)解:−22×5−(−2)3÷4=−4×5−(−8)÷4=−20−(−2)=−18.【点睛】本题考查了有理数的混合运算,乘方运算,熟练掌握相关运算法则是解题关键.13.(2023春·辽宁葫芦岛·七年级统考期末)计算(1)(12−56−712)×(−12)(2)−32÷3+(12−23)×12−(−1)2022【答案】(1)11(2)−6【分析】(1)根据乘法分配律计算;(2)先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算;注意乘法分配律的运用.【详解】(1)(12−56−712)×(−12)=12×(−12)−56×(−12)−712×(−12)=−6+10+7=11(2)−32÷3+(12−23)×12−(−1)2022=−9÷3+12×12−23×12−1=−3+6−8−1=−6【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.14.(2023春·全国·七年级期末)计算:(1)(−34+156−78)×(−24) (2)−23+|5−8|+24÷(−3)【答案】(1)-5(2)-13【详解】试题分析:(1)根据乘法分配律先去括号,然后根据有理数的乘法计算即可;(2)根据乘方、绝对值、和有理数的除法计算即可.试题解析:(1)(1)(−34+156−78)×(−24) =(−34)×(−24)+116×(−24)+(−78)×(−24) =18-44+21=-5 (2)−23+|5−8|+24÷(−3)=-8+3-8=-1315.(2023春·辽宁大连·七年级统考期末)计算:(1)42×(−23)+(−34)÷(−0.25); (2)2×(−3)3−4×(−3)+15.【答案】(1)−25(2)−27【分析】(1)根据有理数四则混合运算法则计算即可.(2)先算乘方,后算乘除,最后算加减.【详解】(1)42×(−23)+(−34)÷(−0.25)=−28+3=−25;(2)2×(−3)3−4×(−3)+15=−54+12+15=−27.【点睛】此题考查了有理数的运算,解题的关键是熟悉有理数四则混合运算法则.16.(2023春·湖南湘潭·七年级校联考期中)计算.(1)(−12.5)×(+317)×(−45)×(−0.1);(2)−12−(23−78+112−56)×(−24);(3)482425÷(−48);(4)7777×13879+29÷(−17777)−3859×7777.【答案】(1)−317(2)−24(3)−1150(4)777700【分析】(1)先根据有理数的乘法法则确定符号,再结合乘法交换律即可计算结果;(2)根据有理数乘方法则,结合乘法分配律即可计算结果;(3)根据有理数乘除运算法则,结合乘法分配律即可计算结果;(4)根据有理数乘除运算法则,逆用乘法分配律即可计算结果.【详解】(1)解:(−12.5)×(+317)×(−45)×(−0.1)=−504×317×45×110=−(504×45×110)×317=−317;(2)解−12−(23−78+112−56)×(−24)=−1−[23×(−24)−78×(−24)+112×(−24)−56×(−24)]=−1−(−16+21−2+20)=−1+16−21+2−20=−24;(3)解:482425÷(−48)=(48+2425)×(−148) =48×(−148)+2425×(−148) =−1−150 =−1150; (4)解:7777×13879+29÷(−17777)−3859×7777=7777×13879+29×(−7777)−3859×7777 =7777×(13879−29−3859) =7777×100=777700.【点睛】本题考查了有理数的混合运算,乘法运算律,熟练掌握相关运算法则是解题关键.17.(2023春·辽宁抚顺·七年级统考期中)计算:(1)(−49)−(+91)−(−5)+(−9);(2)(14+38−712)÷124; (3)(−1)2021×|−112|−(0.5)÷(−13). (4)−23×(−8)−(−12)3×(−16)+49×(−3)2 【答案】(1)-144(2)1(3)0(4)66【分析】(1)统一成省略加号和括号的和的形式,再结合有理数加法法则解答;(2)先转化为乘法,再利用乘法分配律解答;(3)先乘方,再乘除,最后计算加减;(4)先乘方,再乘除,最后计算加减、注意负号的作用;【详解】(1)(−49)−(+91)−(−5)+(−9)=-49+5-91-9=-44-100=-144(2)(14+38−712)÷124 =14×24+38×24−712×24=6+9-14=1 (3)(−1)2021×|−112|−(0.5)÷(−13)=−1×32−12×(−3) =0(4)−23×(−8)−(−12)3×(−16)+49×(−3)2=64+18×(-16)+4 =64-2+4=66【点睛】本题考查含有乘方的有理数的混合运算,是重要考点,掌握相关知识是解题关键.18.(2023春·山东菏泽·七年级统考期中)计算:(1)(1−16+34)×(−48) (2)−14+(−2)÷(−13)−|−9|(3)(−1)2÷12×[6−(−2)3]【答案】(1)−76(2)−4(3)28【分析】(1)利用乘法分配律进行计算即可得到答案;(2)先分别计算出乘方、绝对值、商,最后再加减即可;(3)按照先乘方,再乘除,有括号的先算括号内的顺序进行计算即可得到答案,计算中注意符号.【详解】(1)(1−16+34)×(−48)=1×(−48)−16×(−48)+34×(−48)=−48+8−36=−76(2)−14+(−2)÷(−13)−|−9|=−1+(−2)×(−3)−9=−1+6−9=−4(3)(−1)2÷12×[6−(−2)3]=1×2×[6−(−8)]=1×2×14= 28【点睛】本题考查有理数的计算,熟练掌握有理数的计算法则和计算顺序,是解题的关键.19.(2023春·山东德州·七年级校联考期中)计算(1)(−0.5)−(−314)+2.75−(+712);(2)(−49)÷75×57÷(−25)(3)−22÷43−[22−(1−12×13)]×12;【答案】(1)−2(2)1(3)−41【分析】(1)根据有理数加减运算法则直接计算即可得到答案;(2)根据有理数乘除运算法则直接计算即可得到答案;(3)先算乘方运算,再按照运算顺序及相关运算法则计算即可得到答案.【详解】(1)解:(−0.5)−(−314)+2.75−(+712)=(−12)−(−314)+234−(+712) =(−12)+314+234−712=(−12−712)+(314+234)=−8+6(2)解:(−49)÷75×57÷(−25)=(−49)×57×57÷(−25)=(−25)÷(−25)=1;(3)解:−22÷43−[22−(1−12×13)]×12=−4÷43−[4−(1−12×13)]×12=−4×34−[4−(1−16)]×12=−3−(4−56)×12=−3−(246−56)×12=−3−196×12=−3−38=−41.【点睛】本题考查有理数混合运算,涉及乘方运算、有理数加减乘除运算,熟练掌握相关运算法则及运算顺序是解决问题的关键.20.(2023春·甘肃酒泉·七年级统考期中)计算(1)(−7)+(+15)−(−25)(2)7.54+(−5.72)−(−12.46)−4.28(3)−24×(−56+38−112)(4)−13×3+6×(−13)(5)−22+3×(−1)4−(−4)×5(6)(−3)÷34×43×(−15)【答案】(1)33(2)10(3)13(5)19(6)80【分析】(1)根据有理数加减运算法则即可解答;(2)先去括号,然后再利用加法结合律即可解答;(3)直接运用乘法分配律计算即可;(4)根据有理数四则混合运算法则计算即可;(5)先算乘方、然后根据有理数四则混合运算法则计算即可;(6)根据有理数乘除混合运算法则计算即可.【详解】(1)解:(−7)+(+15)−(−25)=−7+15+25=33.(2)解:7.54+(−5.72)−(−12.46)−4.28=7.54+(−5.72)+12.46−4.28=(7.54+12.46)+[(−5.72)−4.28]=20−10=10.(3)解:−24×(−56+38−112)=−56×(−24)+38×(−24)−112×(−24)=20−9+2=13.(4)解:−13×3+6×(−13)=−1−2=−3.(5)解:−22+3×(−1)4−(−4)×5=−4+3×1+20=−4+3+20=19.(6)解:(−3)÷34×43×(−15)=(−3)×43×43×(−15)=(−4)×43×(−15)=−163×(−15)=80.【点睛】本题主要考查了有理数加减运算、有理数乘除运算、有理数乘方运算、有理数运算律等知识点,灵活应用相关运算法则成为解答本题的关键.21.(2023春·重庆万州·七年级重庆市万州新田中学校考期中)计算:(1)8+(−10)+(−2)−(−5)(2)(−0.5+13+16)÷124(3)53÷[4×(−34)2−1](4)−14−(−3)3÷[(12−23)−|0.52−13|]【答案】(1)1(2)0(3)43(4)−109【分析】(1)先将减法化成加法,再按加法法则计算即可;(2)先将除法转化成乘法,然后运用乘法分配律计算即可,最后计算加法;(3)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;(4)按有理数混合运算顺序:从高级到低计算,有括号先计算括号即可;【详解】(1)解:原式=8+(−10)+(−2)+5=(8+5)+[(−10)+(−2)]=13−12=1;(2)解:原式=(−12+13+16)×24=−12×24+13×24+16×24=−12+8+4=0;(3)解:原式=53÷[4×916−1]=53÷[94−1]=53÷54=43;(4)解:原式=−1+27÷[−16−|14−13|]=−1+27÷[−16−112]=−1+27÷(−312)=−1−108=−109.【点睛】本题考查有理数的混合运算,绝对值,熟练掌握有理数混合运算法则是解题的关键.22.(2023春·河南南阳·七年级统考期中)计算:(1)−32−(+11)+(−9)−(−16);(2)(−45911)÷|−9|(用简便方法计算);(3)(−3)2−(112)3×29−6÷|−23|3;(4)(−12+34)×(−2)3+(−4)2÷2×12.【答案】(1)−36(2)−5111(3)−12(4)2【分析】(1)减法转化为加法,再进一步计算即可;(2)原式变形为(−45−911)×19,再进一步计算即可;(3)先计算乘方、除法转化为乘法,再计算乘法,最后计算减法即可; (4)先计算乘方,再计算乘除,最后计算加法即可. 【详解】(1)原式=−32−11−9+16, =−52+16, =−36;(2)原式=(−45−911)×19,=−45×19−911×19, =−5−111, =−5111; (3)原式=9−278×29−6×278,=9−34−814,=−12;(4)原式=14×(−8)+16÷2×12,=−2+8×12,=−2+4, =2;【点睛】本题主要考查含乘方的有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则. 23.(2023春·河南驻马店·七年级统考期中)计算: (1)(1112−76+34−1324)×(−48);(2)−9+5×|−3|−(−2)2÷4;(3)−18+(−4)2÷14−(1−32)×(13−0.5).【答案】(1)2 (2)5 (3)6123【分析】(1)根据乘法分配律计算即可; (2)先算乘方,再算乘除法,最后算加减即可;(3)先算乘方和括号内的式子,然后再计算括号外的乘除法,最后算加减法即可. 【详解】(1)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48) =−44+56+(−36)+26=2(2)−9+5×|−3|−(−2)2÷4=−9+5×3−4÷4 =−9+15−1=5(3)−18+(−4)2÷14−(1−32)×(13−0.5)=−1+64−(−8)×(−16)=−1+64−43=6123【点睛】本题主要考查有理数的混合运算,熟练掌握运算法则是解答本题的关键,注意乘法分配律的应用. 24.(2023春·福建漳州·七年级校考期中)计算: (1)−41−28+(−19)+(−22) (2)(−20)×(−115)+4÷(−23)(3)(12+56−712)×(−24)(4)−32−24÷(−4)×12+(−1)2022 【答案】(1)−110 (2)18 (3)−18 (4)−5【分析】(1)原式利用减法法则变形,计算即可求出值; (2)原式从先乘除后加减计算即可求出值; (3)原式利用乘法分配律计算即可求出值;(4)原式先计算乘方,然后乘除法,最后减法即可求出值. 【详解】(1)解:−41−28+(−19)+(−22)=(−41−19)+(−28−22)=−60+(−50)=−110;(2)解:(−20)×(−115)+4÷(−23)=(−20)×(−65)+4×(−32)=24−6=18;(3)解:(12+56−712)×(−24)=12×(−24)+56×(−24)−712×(−24) =−12−20+14 =−32+14=−18;(4)解:−32−24÷(−4)×12+(−1)2022=−9+6×12+1=−8+3=−5.【点睛】此题考查了有理数的混合运算,以及乘法分配律,熟练掌握运算法则及运算律是解本题的关键. 25.(2023春·湖北襄阳·七年级统考期末)计算: (1)(−7)−(+5)+(−4)−(−10) (2)115×(13−12)×311÷54(3)(−10)4+[(−4)2−(3+32)×2].【答案】(1)−6; (2)−225;(3)9992.【分析】(1)根据有理数的加减混合运算进行计算即可得到答案; (2)先计算括号内,再进行有理数乘除计算即可得到答案; (3)先计算乘方和括号内,再去括号进行加减计算即可得到答案. 【详解】(1)解:(−7)−(+5)+(−4)−(−10)=−7−5−4+10=−6; (2)解:115×(13−12)×311÷54=115×(−16)×311×45 =−115×16×311×45=−225;(3)解:(−10)4+[(−4)2−(3+32)×2]=10000+(16−12×2) =10000+16−24=9992.【点睛】本题考查了有理数的四则运算,乘方运算,熟练掌握相关运算法则是解题关键. 26.(2023春·海南海口·七年级统考期末)计算 (1)5×(−3)+(−12)×(−34)−52(2)(−48)×(56−1+712−18)(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12) 【答案】(1)−8.5 (2)−14 (3)75【详解】(1)解:5×(−3)+(−12)×(−34)−52=−15+9−52=−8.5;(2)(−48)×(56−1+712−18)=56×(−48)−1×(−48)+712×(−48)−18×(−48) =−40+48−28+6=−14;(3)[(−1)2023+(−3)2×(13−12)]×310÷(−0.12) =[−1+9×(−16)]×310÷(−0.01)=(−1−32)×310÷(−0.01)=(−52)×310÷(−0.01)=75.【点睛】此题考查了有理数的混合运算,正确掌握有理数的乘方运算法则,乘法分配律,及四则混合运算的计算法则是解题的关键.27.(2023春·河北唐山·七年级统考期中)计算: (1)35−3.7−(−25)−1.3 (2)(−34+712−58)÷(−124)(3)−32+1÷4×14−|−114|×(−0.5)2【答案】(1)−4 (2)19 (3)−914【分析】(1)减法转化为加法,再利用加法交换律和结合律计算即可; (2)将除法转化为乘法,再利用乘法分配律计算即可;(3)根据有理数的混合运算顺序和运算法则计算即可. 【详解】(1)解:35−3.7−(−25)−1.3=35−3.7+25−1.3 =(35+25)+(−3.7−1.3)=1+(−5)=−4;(2)(−34+712−58)÷(−124)=(−34+712−58)×(−24)=−34×(−24)+712×(−24)−58×(−24)=18−14+15=19;(3)−32+1÷4×14−|−114|×(−0.5)2=−9+1×14×14−54×14=−9+116−516 =−9+(116−516) =−9+(−14)=−914.【点睛】本题考查有理数的混合运算.解题的关键是掌握有理数混合运算顺序和运算法则. 28.(2023春·山东滨州·七年级统考期末)计算: (1)(134−78−712)÷(−78); (2)−1100÷(−12)3−17×[2−(−4)2].【答案】(1)−13 (2)10【分析】(1)根据除以一个数等于乘以这个数的倒数和乘法分配律计算即可. (2)先算乘方,再算括号里面的,再计算乘除,最后算加减. 【详解】(1)解:原式=(74−78−712)×(−87) =74×(−87)−78×(−87)−712×(−87) =−2+1+23=−13(2)解:原式=(−1)÷(−18)−17×(2−16)=8−17×(−14)=8+2 =10【点睛】本题考查了含乘方的有理数混合运算,熟练掌握运算法则是解题的关键. 29.(2023春·山东临沂·七年级统考期末)计算: (1)23−|−5|−(−2)÷12;(2)−14−(1−0.5)×13×[2−(−3)2].【答案】(1)22 (2)16【分析】(1)根据绝对值性质,有理数四则混合运算法则直接运算即可得到答案; (2)先算乘方,再算乘除,最后算加减即可得到答案; 【详解】(1)解:原式=23−5−(−4)=18+4=22;(2)解:原式=−1−12×13×(2−9)=−1−16×(−7)=−1+76=16.【点睛】本题考查含乘方有理数混合运算,解题的关键是注意符号选取及去绝对值.30.(2023春·云南昆明·七年级校考期中)计算:(1)13+(−56)+47+(−34)(2)(16−314+23)×(−42)(3)2×(−5)+22−3÷12(4)−22+|6−10|−3×(−1)2023【答案】(1)−30(2)−26(3)−12(4)3【分析】(1)根据有理数的加减法即可得到答案;(2)根据乘法分配和有理数的加减法即可得到答案;(3)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;(4)根据幂的乘方、有理数的乘除法和有理数的加减法即可得到答案;【详解】(1)解:原式=13+47+(−56)+(−34)=60+(−90)=−30;(2)解:原式=16×(−42)−314×(−42)+23×(−42)=−7−(−9)+(−28)=−35+9=−26;(3)解:原式=−10+4−6=−12;(4)解:原式=−4+4−3×(−1) =−4+4+3=3.【点睛】本题主要考查有理数的混合运算,掌握有理数的运算性质是解题的关键.31.(2023·山东潍坊·七年级统考期中)计算下列各题:(1)(﹣12)﹣(﹣65)+(﹣8)﹣710(2)(﹣34+712﹣59)÷(﹣136)(3)﹣3×22﹣(﹣3×2)3(4)﹣32+16÷(﹣2)×12﹣(﹣1)2017(5)(﹣14﹣56+89)×62+(﹣2)2×(﹣14)(6)14÷73+0.25×815﹣27×14+715×0.25 (7)(﹣32)2×23÷|﹣3|+(﹣0.25)÷(12)6(8)(﹣2)3﹣35[3×(﹣23)2﹣14]+8[(12)3﹣(﹣12)2﹣1].【答案】(1)﹣1912(2)26(3)204(4)﹣12(5)﹣63(6)214(7)﹣1512(8)﹣1715 【详解】试题分析:(1)直接利用有理数加减运算法则计算得出答案;(2)利用乘法分配律,用括号里的每一项分别乘以﹣36,再进行加减运算即可;(3)直接利用有理数混合运算法则计算得出答案;(4)直接利用有理数混合运算法则计算得出答案;(5)利用乘法分配律,用括号里的每一项分别乘以36,再进行混合运算即可;(6)直接利用有理数混合运算法则计算得出答案;(7)直接利用有理数混合运算法则计算得出答案;(8)直接利用有理数混合运算法则计算括号里面,进而得出答案.试题解析:(1)(﹣12)﹣(﹣)+(﹣8)﹣=﹣12+﹣8﹣=﹣20+=﹣19;(2)(﹣+﹣)÷(﹣)=﹣×(﹣36)+×(﹣36)﹣×(﹣36)=27﹣21+20=26;(3)﹣3×22﹣(﹣3×2)3=﹣3×4+216=204;(4)﹣32+16÷(﹣2)×﹣(﹣1)2017=﹣9﹣4+1=﹣12;(5)(﹣﹣+)×62+(﹣2)2×(﹣14)=﹣×36﹣×36+×36﹣4×14=﹣9﹣30+32﹣56=﹣63;(6)14÷+0.25×﹣×14+×0.25=6+0.25×(+)﹣4=2+=2;(7)(﹣)2×÷|﹣3|+(﹣0.25)÷()6=××﹣×64=﹣16=﹣15;(8)(﹣2)3﹣[3×(﹣)2﹣14]+8[()3﹣(﹣)2﹣1] =﹣8﹣×(﹣1)+8×(﹣﹣1)=﹣8﹣+1﹣2﹣8=﹣17.点睛:此题主要考查了有理数的混合运算,关键是掌握有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.32.(2023·山东济宁·七年级校考期中)计算下列各题(1)−5.53+4.26+(−8.47)−(−2.38)(2)−0.125×(−47)×8×(−7)(3)(1112−76+34−1324)×(−48)(4)−12018+12+(−12)×[−2−(−3)]【答案】(1)-7.36;(2)-4;(3)2;(4)-1.【分析】分别根据有理数的加、减、乘、除法进行计算,有乘方的先算乘方,再算乘除,最后算加减法.【详解】(1)−5.53+4.26+(−8.47)−(−2.38)=−5.53+4.26−8.47+2.38=−5.53−8.47+4.26+2.38=−14+6.64=−7.36;(2)−0.125×(−47)×8×(−7)=−18×47×8×7=-4;(3)(1112−76+34−1324)×(−48)=1112×(−48)−76×(−48)+34×(−48)−1324×(−48)=−44+56−36+26=2;(4)−12018+12+(−12)×[−2−(−3)]=−1+12+(−12)×(−2+3)=−1+12−12=-1.【点睛】此题考查有理数的加、减、乘、除、乘方运算,掌握正确的计算顺序是解题的关键.33.(2023春·山东聊城·七年级统考期中)计算(1)−449−(+556)+(−559)−(−56) (2)2×(−137)−234×13+(−137)×5+14×(−13)(3)16÷(−2)3−(−12)3×(−4)+2.5(4)(−1)2019+|−22+4|−(12−14+18)×(−24)【答案】(1)−15,(2)-49,(3)0,(4)8【分析】(1)利用减法法则把加减法统一成加法,相加即可得到结果;(2)运用加法交换律和结合律,把含有相同因数的两个式子相加;再用乘法分配律的逆运算,进行简便运算即可;(3)先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(4)按照乘方、绝对值、乘法分配律进行运算即可.【详解】(1)−449−(+556)+(−559)−(−56) =−449−556−559+56 =(−449−559)+(−556+56) =−10−5=−15(2)2×(−137)−234×13+(−137)×5+14×(−13)=[2 ×(−137)+(−137)×5]+[− 234×13+14×(−13 )] =(−137)×(5+2)+13×(−234−14)=-10-39=-49(3)16÷(−2)3−(−12)3×(−4)+2.5=16÷(−8)−(−18)×(−4)+2.5=−2−12+2.5 =0(4)(−1)2019+|−22+4|−(12−14+18)×(−24) =−1+0−[12×(−24)−14×(−24)+18×(−24)]=−1+12−6+3=8【点睛】此题考查了有理数的混合运算,熟练掌握运算法则及恰当的运用运算律是解本题的关键.34.(2023春·七年级课时练习)计算:(1)(−323)−(−2.4)+(−13)−(+425) (2)[−23+(−35)]+[1+(−23)×(−35)] (3)(−1)4−{35−[(13)2+0.4×(−112)÷(−2)2]} (4)[(223+334)(223−334)+(223−334)2]÷(334−223)【答案】(1)−6(2)215(3)1336(4)−513【分析】(1)先算同分母分数,再计算加减法;(2)先算乘法,再去括号,再算同分母分数,再计算加减法;(3)先算乘方,再算乘除,最后算加减;如果有括号,要先做括号内的运算;(4)根据乘法分配律简便计算.【详解】(1)解:(−323)−(−2.4)+(−13)−(+425)原式=(−323)+2.4−13−4.4=(−323−13)+(2.4−4.4)=−4−2。
《有理数的混合运算》教案
《有理数的混合运算》教案一、教学目标1. 让学生掌握有理数的加法、减法、乘法、除法的运算规则。
2. 培养学生解决实际问题的能力,提高学生对有理数混合运算的理解和应用。
3. 培养学生合作学习、积极思考的学习态度。
二、教学内容1. 有理数的加法运算:同号相加,异号相减。
2. 有理数的减法运算:减去一个数,等于加上这个数的相反数。
3. 有理数的乘法运算:两数相乘,同号得正,异号得负。
4. 有理数的除法运算:除以一个不等于0的数,等于乘这个数的倒数。
5. 有理数混合运算的顺序:先乘除后加减,同一级运算按从左到右的顺序进行。
三、教学重点与难点1. 重点:掌握有理数的加法、减法、乘法、除法运算规则。
2. 难点:有理数混合运算的顺序和运用。
四、教学方法1. 采用情境教学法,让学生在实际问题中感受有理数混合运算的重要性。
2. 运用合作学习法,让学生分组讨论、交流,共同解决问题。
3. 采用讲解法、示范法,引导学生掌握运算规则。
4. 运用练习法,巩固所学知识。
五、教学过程1. 导入新课:通过生活实例,引出有理数混合运算的问题。
2. 讲解与示范:讲解有理数的加法、减法、乘法、除法运算规则,并进行示范。
3. 练习与讨论:学生分组进行练习,讨论解决遇到的问题。
4. 总结与归纳:引导学生总结运算规则,归纳解题方法。
5. 巩固练习:布置课后作业,让学生进一步巩固所学知识。
6. 课堂小结:对本节课的内容进行总结,强调重点和难点。
7. 课后反思:鼓励学生反思自己的学习过程,总结经验。
六、教学评价1. 课后作业:布置有关有理数混合运算的习题,要求学生在规定时间内完成,以检验学生对知识的掌握情况。
2. 课堂练习:课堂上设置不同难度的练习题,让学生当场解答,及时反馈学习效果。
3. 小组讨论:组织小组讨论活动,评估学生在团队合作中的表现和问题解决能力。
4. 个人报告:要求学生就某个有理数混合运算问题进行个人研究,并做口头报告,评价学生的独立研究和表达能力。
苏科版数学七年级上册2.8《有理数的混合运算》教学设计1
苏科版数学七年级上册2.8《有理数的混合运算》教学设计1一. 教材分析《有理数的混合运算》是苏科版数学七年级上册第2.8节的内容。
本节内容是在学生已经掌握了有理数的加减乘除运算的基础上进行教学的,主要让学生掌握有理数的混合运算的运算顺序和运算法则,提高学生的运算能力,培养学生解决实际问题的能力。
二. 学情分析面对七年级的学生,他们已经掌握了有理数的加减乘除运算,但对于混合运算,他们可能还存在着一定的困难。
因此,在教学过程中,需要教师耐心引导,让学生逐步理解和掌握混合运算的运算顺序和运算法则。
三. 教学目标1.让学生掌握有理数的混合运算的运算顺序和运算法则。
2.提高学生的运算能力,培养学生解决实际问题的能力。
3.培养学生的逻辑思维能力,提高学生的学习兴趣。
四. 教学重难点1.教学重点:让学生掌握有理数的混合运算的运算顺序和运算法则。
2.教学难点:混合运算中,不同运算符的优先级判断和运算顺序。
五. 教学方法采用问题驱动法、案例教学法和小组合作法进行教学。
通过问题驱动,引导学生思考和探索混合运算的运算顺序和运算法则;通过案例教学,让学生理解和掌握混合运算的实际应用;通过小组合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和习题。
2.准备教学PPT,进行辅助教学。
3.准备黑板和粉笔,进行板书。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入混合运算的概念,激发学生的学习兴趣。
例如:小明买了一本书,价格为25元,后来又买了一支笔,价格为5元,请问小明一共花费了多少钱?2.呈现(10分钟)通过PPT呈现混合运算的定义和运算顺序,让学生初步了解混合运算的规则。
例如:有理数的混合运算包括加、减、乘、除四种运算,运算顺序为:先乘除,后加减,同级别从左到右。
3.操练(15分钟)让学生通过PPT上的习题进行实战演练,巩固混合运算的运算顺序和运算法则。
教师在这个过程中,要对学生进行实时指导,解答学生的疑问。
人教版七年级上册数学第1章 有理数 有理数的混合运算 (4)
C.2S2-2S
D.2S2-2S-2
【点拨】因为2100=S,所以2100+2101+2102+…+2199+2200 =S+2S+22S+…+299S+2100S =S(1+2+22+…+299+2100) =S(1+2100-2+2100) =S(2S-1) =2S2-S.
【答案】A
*10.(2020·德州)如图是用黑色棋子摆成的美丽图案,按照 这样的规律摆下去,第10个这样的图案需要黑色棋 子的个数为( )
第一章 有理数
1.5 有理数的乘方 第2课时 有理数的混合运算
提示:点击 进入习题
1 见习题 2 见习题 3 C
4D
答案显示
5D
6C
7 见习题 8 特殊到一般 9 A 10 C
11 见习题 12 见习题 13 见习题 14 见习题
1.有理数混合运算的顺序:
(1)先__乘__方______,再___乘__除_____,最后__加__减______; (2)同级运算,从______到______进行; (3) 如 有 括 号 , 先 做左_______右_ 的 运 算 , 按 _计算: (1)(2020·山西)(-4)2×-123- (-4+1);
解:原式=16×-18-(-3)=-2+3=1. (2)(中考·宜昌)23×1-14×0.5;
原式=8×1-14×12=8×34×12=3.
(3)--22-3÷-13+0×-23;
解:原式=-4-3÷(-1)+0×(-8)=-4+3+0=-1.
______括号、____括__号括内号依次进行. 小
中
大
2 . 计 算 : - 16 - 14 ×[5 - ( - 3)2] = __-__1__- 14 ×(5 - ___9_____) = ___-__1___-14×__(-__4_)___=___-__1___-__(-__1_)___=___0_____.
第2章《有理数及其运算》知识讲练(学生版)
2023-2024学年北师大版数学七年级上册章节知识讲练知识点01:有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:细节剖析:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态00C表示冰点表示正数与负数的界点0非正非负,是一个中性数2.数轴:规定了原点、正方向和单位长度的直线.细节剖析:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.细节剖析:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.数a的绝对值记作a.(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.知识点02:有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数. (2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0. (4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行; ③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行. 细节剖析:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc) (3)分配律:a(b+c)=ab+ac(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩知识点03:有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.知识点04:科学记数法把一个大于10的数表示成10n a ⨯的形式(其中1≤10a <,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•藁城区二模)若要等式4〇(﹣6)=﹣2成立,“〇”中应填的运算符号是( ) A .+B .﹣C .×D .÷2.(2分)(2023•江岸区模拟)小王在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.则小王写下的四个整数的积可能是( ) A .80B .90C .100D .1203.(2分)(2022秋•沧州期末)我们定义一种新运算:a *b =a 2﹣b .例如:1*2=12﹣2=﹣1,求(﹣4)*[2*(﹣3)]的值为( ) A .﹣23B .﹣3C .4D .94.(2分)(2022秋•沧州期末)在原点为O 的数轴上,从左到右依次排列的三个点A ,M ,B ,满足MA =MB ,将点A ,M ,B 表示的数分别记为a ,m ,b .若b =8,BM =3OM ,则m 的值是( )A .﹣2B .﹣4C .2D .2或﹣45.(2分)(2022秋•庐阳区校级期末)有理数a 、b 、c 在数轴上的位置如图所示.下列式子错误的是( )A .a <c <bB .|a ﹣b |=﹣(a ﹣b )C .|a ﹣1|=a ﹣1D .|c ﹣a |=c ﹣a6.(2分)(2022秋•海港区校级期末)有理数a 、b 、c 在数轴上位置如图,则|a ﹣c |﹣|a +b |+|b ﹣c |的值为( )A.2a B.2a+2b﹣2c C.0 D.﹣2c7.(2分)(2022秋•汝城县期末)如果|a+2|+(b﹣1)2=0,那么(a+b)2009的值是()A.﹣2009 B.2009 C.﹣1 D.18.(2分)(2019秋•云冈区期末)下列四个算式:①﹣2﹣3=﹣1;②2﹣|﹣3|=﹣1;③(﹣2)3=﹣6;④﹣2÷=﹣6.其中,正确的算式有()A.0个B.1个C.2个D.3个9.(2分)(2022秋•南关区校级期末)如图,数轴上的A,B两点所表示的数分别是a,b,如果|a|>|b|且ab<0,那么该数轴的原点O的位置应该在()A.点A的左边B.点B的右边C.点A与点B之间且靠近点AD.点A与点B之间且靠近点B10.(2分)(2022秋•栾城区校级期末)已知三个数a+b+c=0,则这三个数在数轴上表示的位置不可能是()A.B.C.D.二.填空题(共10小题,满分20分,每小题2分)(2023春•莱山区期末)若a>b>0,则1,1+a,1+b这三个数用“>”连接起来为.(2分)11.12.(2分)(2023春•肇东市期末)若|a|=5,b=6且a<b,则2a﹣b=.13.(2分)(2022秋•鄄城县期末)点A在数轴上距原点3个单位长度,若将点A向右移动4个单位长度,再向左移动1个单位长度,此时点A所表示的数是.14.(2分)(2023春•泉港区期末)如图,完全重合的两个等边△ABC、等边△DEF的边BC、EF都在数轴上,点B、C在数轴上所对应的数分别为3、9.若将△ABC向左平移m个单位,△DEF向右平移m个单位.当点E、C为线段BF的三等分点时,则m的值为.15.(2分)(2022秋•邯山区校级期末)若|x﹣2|+(y+3)2=0,则y x=.16.(2分)(2022秋•平谷区期末)黑板上写着7个数,分别为:﹣8,a,1,13,b,0,﹣6,它们的和为﹣10,若每次从中任意擦除两个数,同时写上一个新数(新数为所擦除的两个数的和加上1),这样操作若干次,直至黑板上只剩下一个数,则所剩的这个数是.17.(2分)(2022秋•朝阳区校级期末)若|m﹣3|与(n﹣4)2互为相反数,则(﹣m)n的值为.18.(2分)(2022秋•安岳县期末)定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2写作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)写作(﹣3)④,读作“(﹣3)的圈4次方”.一般地,把(a≠0)记作:aⓝ,读作“a的圈n次方”.特别地,规定:a①=a.通过以上信息,请计算:2022②×(﹣)④+(﹣1)⑰=.19.(2分)(2022秋•黄埔区校级期末)已知a,b,c在数轴上的位置如图所示,化简:|a﹣b|+|b+c|+|c﹣a|=.20.(2分)(2022秋•深圳校级期中)已知a,b,c,d分别是一个四位数的千位,百位,十位,个位上的数字,且低位上的数字不小于高位上的数字,当|a﹣b|+|b﹣c|+|c﹣d|+|d﹣a|取得最大值时,这个四位数的最小值是.三.解答题(共8小题,满分60分)21.(6分)(2022秋•沧州期末)计算:(1);(2).22.(6分)(2023春•肇东市期末)有理数a,b,c在数轴上的位置如图所示.化简代数式:|a﹣b|+|a+b|+|b﹣c|.23.(8分)(2022秋•鞍山期末)小明和同学们玩扑克牌游戏.游戏规则是:从一副扑克牌(去掉“大王”“小王”)中任意抽取四张,根据牌面上的数字进行混合运算,其中J代表11、Q代表12、K代表13,若每张牌上的数字只能用一次,并使得运算结果等于24.(1)小明抽到的牌如图所示,请帮小明列出一个结果等于24的算式;(2)请你抽取任意数字不相同的4张扑克牌,并列出一个结果等于24的算式.24.(8分)(2022秋•祁阳县期末)如图,在数轴上点A表示数a,点B表示数b,点C表示数c,a,c满足|a+4|+(c﹣2)2=0,b是最大的负整数.(1)a=,b=,c=.(2)若将数轴折叠,使得点A与点C重合,则点B与数表示的点重合;(3)点A,B,C开始在数轴上运动,若点A和点B分别以每秒0.4个单位长度和0.3个单位长度的速度向左运动,同时点C以每秒0.2个单位长度的速度向左运动,点C到达原点后立即以原速度向右运动,运动时间为t秒,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,请问:5AB﹣BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求出5AB﹣BC的值.25.(8分)(2022秋•海兴县期末)如图,已知在一条不完整的数轴上,从左到右的点A,B,C对应的数分别是a,b,c,AC=5,BC=3.(1)若a+b=0,则原点在点B的(填“左侧”或“右侧”);(2)设原点为O,若bc<0,且,求a+b+c的值;(3)在(2)的条件下,数轴上一点D表示的数为d,若BD=2OC,求d的值.26.(8分)(2022秋•曹县期末)观察下列三个等式:,,,我们称使等式a﹣b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b),例如数对,,都是“有趣数对”,请回答下列问题:(1)数对是“有趣数对”吗?试说明理由.(2)若是“有趣数对”,求a的值.(3)若(2,m2+2m)是“有趣数对”,求10﹣6m2﹣12m的值.27.(8分)(2022秋•二七区期末)【概念学习】定义新运算:求若干个相同的有理数(均不等于0)的商的运算叫做除方.比如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等,类比有理数的乘方,我们把2÷2÷2写作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)写作(﹣3)④,读作“(﹣3)的圈4次方”.一般地,把记作:aⓝ,读作“a的圈n次方”.特别地,规定:a①=a.【初步探究】(1)直接写出计算结果:2023②=;(2)若n为任意正整数,下列关于除方的说法中,正确的有;(横线上填写序号)A.任何非零数的圈2次方都等于1B.任何非零数的圈3次方都等于它的倒数C.圈n次方等于它本身的数是1或﹣1D.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)请把有理数a(a≠0)的圈n(n≥3)次方写成幂的形式:aⓝ=;(4)计算:﹣1⑧﹣142÷(﹣)④×(﹣7)⑥.28.(8分)(2022秋•德州期末)如图所示,在数轴上点A表示的数是4,点B位于点A的左侧,与点A的距离是10个单位长度.(1)点B表示的数是,并在数轴上将点B表示出来.(2)动点P从点B出发,沿着数轴的正方向以每秒2个单位长度的速度运动.经过多少秒点P与点A的距离是2个单位长度?(3)在(2)的条件下,点P出发的同时,点Q也从点A出发,沿着数轴的负方向,以1个单位每秒的速度运动.经过多少秒,点Q到点B的距离是点P到点A的距离的2倍?。
新人教版人教版七年级数学上精品导学案有理数加减乘除混合运算教案教师用教学案学生用学案教学设计含答案解
有理数加减乘除混合运算(教师用)一、教学目标(一)知识与技能:进一步掌握有理数混合运算的法则以及能合理地使用运算律简化运算.(二)过程与方法:鼓励学生通过独立运算、教师点拨、小组合作交流按有理数混合运算法则和运算律进行混合运算.(三)情感态度与价值观:注意培养学生的运算能力;锻炼学生克服困难的意识和细心的情感态度. 二、教学重点、难点重点:能熟练地运用有理数的运算法则进行有理数的加、减、乘、除混合运算.难点:准确地掌握有理数混合运算的法则和使用运算律简化运算以及运算中的符号问题. 三、教学过程 复习巩固(1)加法:同号两数相加,取_____的符号,并把绝对值_____. 乘法:两数相乘,同号_____,并把绝对值_____.(2)加法:绝对值不相等的异号两数相加,取___________加数的符号,并用_____的绝对值_____较小的绝对值. 乘法:两数相乘,异号_____,并把绝对值_____. (3)加法:一个数同0相加,___________. 乘法:任何数与0相乘,___________.(4)减法:减去一个数,等于_____这个数的_______.除法:除以一个________的数,等于___这个数的_____.有理数的混合运算,在没有括号的前提下,先做____,再算____,同级运算_______________,如果有括号的先做____________,和小学里的四则运算顺序相一致. 例8 计算:(1) -8+4÷(-2) (2) (-7)×(-5)-90÷(-15) 解:(1) 原式=-8+(-2)=-10 (2) 原式=35-(-6)=35+6=41 练习 计算:(1) 6-(-12)÷(-3) (2) 3×(-4)+(-28)÷7 (3) (-48)÷8-(-25 )×(-6) (4) 42×(-32)+(-43)÷(-0.25) 解:(1)原式=6-4=2(2)原式=-12+(-4)=-16 (3)原式=-6-150=-156 (4)原式=-28+3=-25例9 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元. 这个公司去年总的盈亏情况如何?解:记盈利额为正数,亏损额为负数. 公司去年全年盈亏额(单位:万元)为 (-1.5)×3+2×3+1.7×4+(-2.3)×2 =-4.5+6+6.8-4.6 =3.7答:这个公司去年全年盈利3.7万元.计算器计算器是一种方便实用的计算工具,用计算器进行比较复杂的数的计算,比笔算要快捷得多. 例如,可以用计算器计算例9中的 (-1.5)×3+2×3+1.7×4+(-2.3)×2 如果计算器带符号键,只需按键就可以得到答案3.7.不同品牌的计算器的操作方法可能有所不同,具体参见计算器的使用说明. 练习用计算器计算:(1) 357+(-154)+26+(-212)=_____________(2) -5.13+4.62+(-8.47)-(-2.3)=_____________ (3) 26×(-41)+(-35)×(-17)=_____________(4) 1.252÷(-44)-(-356)÷(-0.196)≈_____________课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思这节课主要讲授了有理数的加减乘除混合运算. 运算顺序“先乘除后加减”学生早已熟练掌握,让学生学会分析题目中所包含的运算是本节课的重难点. 在教学时,要注意结合学生平时练习中出现的问题,及时纠正和指导,培养学生良好的解题习惯.有理数加减乘除混合运算(学生用)一、教学目标(一)知识与技能:进一步掌握有理数混合运算的法则以及能合理地使用运算律简化运算.(二)过程与方法:鼓励学生通过独立运算、教师点拨、小组合作交流按有理数混合运算法则和运算律进行混合运算.(三)情感态度与价值观:注意培养学生的运算能力;锻炼学生克服困难的意识和细心的情感态度. 二、教学重点、难点重点:能熟练地运用有理数的运算法则进行有理数的加、减、乘、除混合运算.难点:准确地掌握有理数混合运算的法则和使用运算律简化运算以及运算中的符号问题. 三、教学过程 复习巩固(1)加法:同号两数相加,取_____的符号,并把绝对值_____. 乘法:两数相乘,同号_____,并把绝对值_____.(2)加法:绝对值不相等的异号两数相加,取___________加数的符号,并用_____的绝对值_____较小的绝对值. 乘法:两数相乘,异号_____,并把绝对值_____. (3)加法:一个数同0相加,___________. 乘法:任何数与0相乘,___________.(4)减法:减去一个数,等于_____这个数的_______.除法:除以一个________的数,等于___这个数的_____.有理数的混合运算,在没有括号的前提下,先做____,再算____,同级运算_______________,如果有括号的先做____________,和小学里的四则运算顺序相一致. 例8 计算:(1) -8+4÷(-2) (2) (-7)×(-5)-90÷(-15) 练习 计算:(1) 6-(-12)÷(-3) (2) 3×(-4)+(-28)÷7 (3) (-48)÷8-(-25 )×(-6) (4) 42×(-32)+(-43)÷(-0.25)例9 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元. 这个公司去年总的盈亏情况如何?计算器计算器是一种方便实用的计算工具,用计算器进行比较复杂的数的计算,比笔算要快捷得多. 例如,可以用计算器计算例9中的 (-1.5)×3+2×3+1.7×4+(-2.3)×2不同品牌的计算器的操作方法可能有所不同,具体参见计算器的使用说明. 练习用计算器计算:(1) 357+(-154)+26+(-212)=_____________(2) -5.13+4.62+(-8.47)-(-2.3)=_____________ (3) 26×(-41)+(-35)×(-17)=_____________(4) 1.252÷(-44)-(-356)÷(-0.196)≈_____________课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思这节课主要讲授了有理数的加减乘除混合运算. 运算顺序“先乘除后加减”学生早已熟练掌握,让学生学会分析题目中所包含的运算是本节课的重难点. 在教学时,要注意结合学生平时练习中出现的问题,及时纠正和指导,培养学生良好的解题习惯.。
《2.7有理数的混合运算》作业设计方案-初中数学苏科版24七年级上册
《有理数的混合运算》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《有理数的混合运算》的练习,使学生能够熟练掌握有理数的加、减、乘、除及乘方运算,并能正确进行混合运算,提高其数学运算能力和思维逻辑能力。
二、作业内容本作业内容主要围绕有理数的混合运算展开,具体包括:1. 基础练习:包括有理数的加、减、乘、除运算,以及简单的混合运算,旨在巩固学生的基础知识。
2. 混合运算实践:设计一系列含有多种运算符号和运算步骤的题目,要求学生正确运用运算顺序和运算法则进行计算。
3. 实际应用题:结合生活实际,设置与购物、测量等相关的应用题,让学生在解决实际问题的过程中掌握有理数的混合运算。
4. 错题纠正:针对学生在练习中常犯的错误,设计相应的题目,要求学生找出并改正错误。
三、作业要求1. 学生需认真审题,理解题意,按照运算顺序和运算法则进行计算。
2. 学生在进行混合运算时,应先进行括号内的运算,再按照先乘除后加减的顺序进行。
3. 学生需注意运算过程中的进位、退位及小数点的处理。
4. 学生在完成作业后,需自行检查答案,并尝试用不同的方法进行验证。
5. 学生在遇到困难时,应先尝试独立思考,如无法解决,可查阅教材或向老师请教。
四、作业评价1. 教师将对学生的作业进行批改,评价学生的完成情况和正确性。
2. 教师将根据学生的作业情况,给予相应的鼓励和指导,帮助学生发现问题并改正错误。
3. 教师将根据学生的作业情况,调整教学计划和教学方法,以提高教学效果。
五、作业反馈1. 教师将在课堂上对共性问题进行讲解和纠正,帮助学生掌握正确的解题方法。
2. 教师将鼓励学生之间进行交流和讨论,分享解题经验和技巧。
3. 教师将要求学生将错题记录在错题本上,以便日后复习和巩固。
4. 教师将定期收集学生的作业,进行分析和总结,为后续教学提供参考。
通过以上作业设计,旨在通过系统的练习和反馈,帮助学生全面掌握《有理数的混合运算》的技巧和方法,从而提高其数学能力和学习效率。
(完整版)有理数混合运算的解题方法和技巧
一、理解运算顺序有理数混合运算的运算顺序:①从高级到低级:先算乘方,再算乘除,最后算加减;有理数的混合运算涉及多种运算,确定合理的运算顺序是正确解题的关键.例1:计算:3+50÷22×(51-)-1 ②从内向外:如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的。
例2:计算:()[]232315.011--⨯⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛⨯-- ③从左向右:同级运算,按照从左至右的顺序进行。
例3:计算:⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-÷⎪⎪⎭⎫ ⎝⎛--388712787431 二、应用四个原则:1、整体性原则:乘除混合运算统一化乘,统一进行约分;加减混合运算按正负数分类,分别统一计算,或把带分数的整数、分数部分拆开,分别统一计算。
2、简明性原则:计算时尽量使步骤简明,能够一步计算出来的就同时算出来;运算中尽量运用简便方法,如五个运算律的运用.3、口算原则:在每一步的计算中,都尽量运用口算,口算是提高运算率的重要方法之一,习惯于口算,有助于培养反应能力和自信心。
4、分段同时性原则:对一个算式,一般可以将它分成若干小段,同时分别进行运算。
如何分段呢?主要有:(1)运算符号分段法。
有理数的基本运算有五种:加、减、乘、除和乘方,其中加减为第一级运算,乘除为第二级运算,乘方为第三级运算。
在运算中,低级运算把高级运算分成若干段。
一般以加号、减号把整个算式分成若干段,然后把每一段中的乘方、乘除的结果先计算出来,最后再算出这几个加数的和。
即(先乘方、后乘除、再加减。
)把算式进行分段,关键是在计算前要认真审题,妥用整体观察的办法,分清运算符号,确定整个式子中有几个加号、减号,再以加减号为界进行分段,这是进行有理数混合运算行之有效的方法。
(2)括号分段法,有括号的应先算括号里面的。
在实施时可同时分别对括号内外的算式进行运算.(3)绝对值符号分段法.绝对值符号除了本身的作用外,还具有括号的作用,从运算顺序的角度来说,先计算绝对值符号里面的,因此绝对值符号也可以把算式分成几段,同时进行计算。
《第二章5有理数的混合运算》作业设计方案-初中数学北师大版24七年级上册
《有理数的混合运算》作业设计方案(第一课时)一、作业目标本作业设计旨在通过《有理数的混合运算》的练习,使学生能够熟练掌握有理数的加、减、乘、除及乘方运算,并能正确进行混合运算,提高其数学运算能力和思维逻辑能力。
二、作业内容本作业内容主要围绕有理数的混合运算展开,具体包括:1. 基础练习:包括有理数的加、减、乘、除运算,以及简单的混合运算题目,旨在让学生熟练掌握基本运算规则。
2. 混合运算进阶练习:题目中包含更多的数据变换和复杂的运算步骤,如分数与小数的互化、带有括号的运算等,旨在提升学生的混合运算能力。
3. 实际应用题:通过设置与生活实际相关的应用场景,如商品打折计算、时间与速度的计算等,让学生在解决实际问题的过程中运用所学知识。
三、作业要求1. 独立完成:学生需独立完成作业,不得抄袭他人答案或使用其他不正当手段。
2. 细心计算:在混合运算过程中,学生需注意运算顺序和计算细节,确保答案的准确性。
3. 反思总结:学生应对自己的解题过程进行反思总结,找出错误原因并加以改正。
4. 合理规划时间:学生需合理安排时间,确保在规定时间内完成作业。
四、作业评价1. 正确性评价:根据学生的答案,评价其计算的正确性。
2. 解题思路评价:评价学生的解题思路是否清晰、逻辑是否合理。
3. 进步情况评价:关注学生在本次作业与以往作业中的进步情况,给予相应的鼓励和指导。
五、作业反馈1. 错误订正:针对学生在作业中出现的错误,进行详细的订正指导,帮助学生找出错误原因并改正。
2. 课堂讲解:在下一课时的课堂上,针对学生在作业中普遍出现的问题进行讲解,帮助学生加深理解。
3. 表扬鼓励:对在作业中表现优秀的学生进行表扬和鼓励,激发学生的学习积极性。
4. 个别辅导:对学习困难的学生进行个别辅导,帮助他们解决学习中的问题。
六、后续跟进措施1. 定期复习:定期复习《有理数的混合运算》的课程内容,巩固学生的知识基础。
2. 拓展练习:提供更多的拓展练习题目,帮助学生进一步提高数学运算能力和思维逻辑能力。
有理数加减混合计算题100道(学生使用)
有理数运算练习(一) 【加减混合运算】注意:只要求计算准确有理数加法法则(同学们抄一遍,背熟):1. 同号两数相加,取相同的符号,并把绝对值相加;2. 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得零;3. 一个数与零相加,仍得这个数。
一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5);(5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.加法交换律(抄一遍):a+b=b+a加法结合律(抄一遍):(a+b )+c=a+(b+c)3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68;(3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37);(5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12;(7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫ ⎝⎛++-5112.1; (4))432()413(-+-; (5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-有理数减法法则(同学们抄一遍,背熟):减去一个数等于加上这个数的相反数,即a-b=a+(-b).二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.6.1、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2); (5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18);(3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ -6.5-(-6.3)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算 (1)-7+13-6+20; (2)-4.2+5.7-8.4+10; (3)(-53)+51-54; (4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)4.7-3.4+(-8.3); (2)(-2.5)-21+(-51); (3)21-(-0.25)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)33.1-(-22.9)+(-10.5); (2)(-8)-(-15)+(-9)-(-12);(3)0.5+(-41)-(-2.75)+21; (4)(-32)+(-61)-(-41)-21; (5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-3.4; (2)(-21.6)+3-7.4+(-52); (3)31+(-45)+0.25; (4)7-(-21)+1.5; (5)49-(-20.6)-53; (6)(-56)-7-(-3.2)+(-1); (7)11512+丨-11611丨-(-53)+丨212丨; (8)(- 9.9)+ 1098 + 9.9 +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-0.5+1.75+3.25+(-7.5)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪; (5)-0.5-(-413)+2.75-(+217); (6)3745124139257526+-+。
第13讲有理数的混合运算(检测卷)(学生版)
2023年人教版小升初数学衔接同步真题汇编拔高检测卷第13讲有理数的混合运算考试时间:90分钟试卷满分:100分姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023•安次区二模)若﹣5□5×1=0成立,则“□”中的运算符号是()A.+ B.﹣C.×D.÷2.(2分)(2023•通榆县模拟)若等式(﹣2)□(﹣1)=﹣2+1成立,则□中应填入的运算符号是()A.+ B.﹣C.×D.÷3.(2分)(2022秋•澄迈县期末)如图,有理数a,b,c,d在数轴上的对应点分别是A,B,C,D,若b+d =6,则a+c()A.b+d B.小于6 C.等于6 D.大于64.(2分)(2022秋•重庆期末)日常生活中我们使用的数是十进制数,数的进位方法是“逢十进一”.而计算机使用的数是二进制数,即数的进位方法是“逢二进一”.二进制数只使用数字0、1,如二进制数1101记为1101(2),1101(2)通过式子1×23+1×22+0×2+1可以转换为十进制数13.仿照上面的转换方法,将二进制数11101(2)转换为十进制数是()A.15 B.29 C.30 D.335.(2分)(2022秋•海兴县期末)下列计算结果最大的是()A.﹣2﹣2+2 B.﹣2×2﹣2 C.2﹣(﹣2)2÷2 D.22+|2﹣22|6.(2分)(2022秋•庐江县期末)下列运算正确的是()A.﹣B.﹣6﹣2×3=﹣8×3=﹣24C.3÷=3÷1=3 D.﹣(﹣2)3=87.(2分)(2022秋•晋州市期末)在算式(﹣2)□(﹣3)的“□”中填上运算符号“+”“﹣”“×”或“÷”,要使运算的结果最小,则添加的运算符号是()A.+ B.﹣C.×D.÷8.(2分)(2022秋•新乡县校级期末)按如图的程序计算,若输出的结果是﹣3,则输入的符合要求的x有()A.1个B.2个C.3个D.无数个9.(2分)(2022秋•南海区期中)定义一种新运算“*”:,则(4*3)*(5*6)=()A.24 B.22 C.﹣22 D.﹣2410.(2分)(2022秋•如皋市期中)取一个自然数,若它是奇数,则加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如,取自然数5,经过下面5步运算可得1,如图所示.56342 1如果自然数m恰好经过5步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•光明区期末)字母a表示一个有理数,下列关于a的运算:①a2=(﹣a)2②﹣a3=(﹣a)3③﹣a2=(﹣a)2④a3=|a3|,其中一定成立的有(把你认为正确的序号都填上).12.(2分)(2022秋•君山区期末)若a,b互为相反数,c,d互为倒数,m的绝对值是2,则的值为.13.(2分)(2022秋•中原区期末)如图,刘老师把教室里的白板密码设置成了数学问题,小明同学看到图片后思索了片刻,之后输入密码,顺利地进入了白板页面,那么她输入的密码是.账号:wenxinzhijiawen⊕5*3*6=wen301848xin⊕2*6*7=xin144256jia⊕6*6*6=密码14.(2分)(2022秋•自贡期末)1﹣4+42﹣43+……﹣499+4100=.(不需算出最后结果)15.(2分)(2022秋•射洪市期末)计算:=.16.(2分)(2022秋•五常市期末)若a、b互为倒数,c、d互为相反数,则5(c+d)5﹣3ab=.17.(2分)(2022秋•隆回县期末)定义一种新的运算“*”,并且规定:a*b=a2﹣2b.则(﹣3)*(﹣1)=.18.(2分)(2022秋•宛城区期末)规定符号*运算为a*b=ab﹣a2+|b|+1,那么﹣3*4=.19.(2分)(2022秋•惠州期中)已知x,y互为相反数,m,n互为倒数,a的绝对值等于2,则x+y+a2+mn =.20.(2分)(2022秋•南海区期中)已知,计算13+23+33+⋅⋅⋅+203=.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2022秋•曲阜市期末)计算题(1)(﹣2)﹣(﹣3)+(+7)﹣(+11);(2);(3)﹣12022+16÷(﹣2)3×|﹣3﹣1|.22.(6分)(2022秋•曹县期末)观察下列三个等式:,,,我们称使等式a﹣b=ab成立的一对有理数a,b为“有趣数对”,记为(a,b),例如数对,,都是“有趣数对”,请回答下列问题:(1)数对是“有趣数对”吗?试说明理由.(2)若是“有趣数对”,求a的值.(3)若(2,m2+2m)是“有趣数对”,求10﹣6m2﹣12m的值.23.(8分)(2022秋•恩施州期末)对于任意四个有理数x,y,m,n,我们给它一个规定:(x,y)☆(m,n)=2x+m﹣yn,例如:(4,2)☆(5,6)=2×4+5﹣2×6=1请根据上述规定的运算解决下列问题:(1)计算:(2,﹣2)☆(3,4);(2)计算:(﹣2,﹣3)☆(3,4)﹣(2,﹣12)☆(﹣3,﹣);(3)若有理数(3x﹣2,﹣)☆(2,x﹣1)﹣(1,2)☆(3,4)=7,求x的值.24.(8分)(2022秋•朝阳区期末)阅读材料,并回答问题对于某种满足乘法交换律的运算,如果存在一个确定的有理数n,使得任意有理数a和它进行这种运算后的结果都等于a本身,那么n叫做这种运算下的单位元.如果两个有理数进行这种运算后的结果等于单位元,那么这两个有理数互为逆元.由上述材料可知:(1)有理数在加法运算下的单位元是,在乘法运算下的单位元是;在加法运算下,3的逆元是,在乘法运算下,某个数没有逆元,这个数是;(2)在有理数范围内,我们定义一种新的运算:x*y=x+y﹣xy,例如3*2=3+2﹣3×2=﹣1.①求在这种新的运算下的单位元;②在这种新的运算下,求任意有理数m的逆元(用含m的代数式表示).25.(8分)(2022秋•兴化市校级期末)探究规律,完成相关题目:小明说:“我定义了一种新的运算,叫※(加乘)运算.”然后他写出了一些按照※(加乘)运算的运算法则进行运算的算式:(+5)※(+2)=+7;(﹣3)※(﹣5)=+8;(﹣3)※(+4)=﹣7:(+5)※(﹣6)=﹣11;0※(+8)=8;0※(﹣8)=8;(﹣6)※0=6;(+6)※0=6.小亮看了这些算式后说:“我知道你定义的※(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)观察以上式子,类比计算:①※=,※(+1)=;(2)计算:(﹣2)※[0※(﹣1)];(括号的作用与它在有理数运算中的作用一致,写出必要的运算步骤)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的※(加乘)运算中还适用吗?请你任选一个运算律,判断它在(加乘)运算中是否适用,并举例验证.(举一个例子即可)26.(8分)(2022秋•辛集市期末)小刚与小明在玩数字游戏,现有5张写着不同数字的卡片(如图),小刚请小明按要求抽出卡片,完成下列问题:(1)从中抽取2张卡片,使这2张卡片上数字的乘积最大,如何抽取?最大值是多少?(2)从中抽取2张卡片,使这2张卡片上数字相除的商最小?如何抽取?最小值是多少?(3)从中抽取4张卡片,用学过的运算方法,使结果为24,如何抽取?写出运算式子.(一种即可)27.(8分)(2022秋•遂川县期末)问题探索:如图,将一根木棒放在数轴(单位长度为1cm)上,木棒左端与数轴上的点A重合,右端与数轴上的点B重合.(1)若将木棒沿数轴向右水平移动,则当它的左端移动到点B时,它的右端在数轴上所对应的数为30;若将木棒沿数轴向左水平移动,则当它的右端移动到点A时,它的左端在数轴上所对应的数为6,由此可得这根木棒的长为cm.(2)图中点A所表示的数是,点B所表示的数是.实际应用:由(1)(2)的启发,请借助“数轴”这个工具解决下列问题:(3)一天,妙妙去问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要35年才出生;你若是我现在这么大,我就115岁啦!”请问妙妙现在多少岁了?28.(8分)(2022秋•定陶区期末)随着的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品也改变了原来的销售模式,实行了网上销售.刚大学毕业的李明把自家的冬枣产品也放到了网上实行包邮销售,他原计划每天卖100斤冬枣,但实际每天的销售量与计划量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤);星期一二三四五六日+4 ﹣2 ﹣5 +10 ﹣9 +23 ﹣7 与计划量的差值(1)根据记录的数据可知前三天共卖出多少斤?(2)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售多少斤?(3)若冬枣每斤按7元出售,每斤的运费平均2元,那么李明本周共收入多少元?。
《1.12有理数的混合运算》作业设计方案-初中数学华东师大版24七年级上册
《有理数的混合运算》作业设计方案(第一课时)一、作业目标本作业设计旨在通过有理数的混合运算练习,巩固学生对有理数概念的理解,提高学生的计算能力和逻辑思维能力,为后续学习打下坚实的基础。
二、作业内容本次作业围绕《有理数的混合运算》的核心内容,具体包含以下几个方面:1. 有理数的基本概念和分类,包括正数、负数和零的定义与特点。
2. 有理数的四则混合运算规则及方法,特别是带有负数的计算问题。
3. 结合实际问题,进行有理数混合运算的实际应用。
具体练习题目类型包括:1. 简单的四则运算题,用于巩固基本运算法则。
2. 涉及负数运算的复杂题,提高计算难度和逻辑性。
3. 结合实际生活情境的应用题,如温度变化、购物找零等场景下的有理数混合运算。
三、作业要求1. 学生需独立完成作业,不得抄袭他人答案。
2. 计算过程中要遵循四则运算的顺序和规则,确保计算步骤的准确性和完整性。
3. 针对应用题部分,学生需理解题意,正确运用所学知识进行计算和解答。
4. 作业需使用规范的数学符号和格式书写,保证答案的清晰易懂。
5. 如有不懂或疑惑的地方,需记录在作业本上,并寻求老师或同学的帮助。
四、作业评价1. 老师将根据学生作业的准确性和完整性进行评价。
2. 对于计算过程中出现错误的学生,老师将指出错误原因并指导其改正。
3. 对于完成度较高、解题思路清晰的学生,老师将给予表扬和鼓励。
4. 作业评价结果将作为学生平时成绩的一部分,计入期末总评。
五、作业反馈1. 老师将及时批改作业,并在课堂上进行讲解和点评。
2. 对于普遍存在的问题和难点,老师将重点讲解和辅导。
3. 学生需根据老师的反馈和建议,及时调整学习方法和策略,提高学习效果。
4. 鼓励学生在课后与同学交流学习心得和解题方法,共同进步。
六、附加建议为帮助学生更好地掌握有理数的混合运算,建议家长在家中辅导孩子时,多出一些实际生活中的数学问题,让孩子在实际操作中加深对有理数混合运算的理解和运用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、有理数的运算(1)有理数的加法:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值. ③一个数同0相加,仍得这个数.(2)有理数的减法:减去一个数,等于加这个数的相反数.()a b a b -=+-(3)有理数的乘法:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.(4)有理数的除法:除以一个不等于0的数,等于乘这个数的倒数.1a b a b ÷=⋅ (0b ≠ )(5)有理数的乘方:求n 个相同因数的积的运算叫做乘方.二、科学计数法把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是整数),此种记法叫做科学记数法.一、有理数的加法有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值. ③一个数同0相加,仍得这个数. 有理数加法的运算步骤:法则是运算的依据,根据有理数加法的运算法则,可以得到加法的运算步骤: ①确定和的符号;②求和的绝对值,即确定是两个加数的绝对值的和或差.有理数的混合运算知识回顾知识讲解有理数加法的运算律:+=+(加法交换律)①两个加数相加,交换加数的位置,和不变.a b b a②三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.++=++(加法结合律)a b c a b c()()有理数加法的运算技巧:①分数与小数均有时,应先化为统一形式.②带分数可分为整数与分数两部分参与运算.③多个加数相加时,若有互为相反数的两个数,可先结合相加得零.④若有可以凑整的数,即相加得整数时,可先结合相加.⑤若有同分母的分数或易通分的分数,应先结合在一起.⑥符号相同的数可以先结合在一起.二、有理数的减法有理数减法法则:减去一个数,等于加这个数的相反数.()a b a b-=+-有理数减法的运算步骤:①把减号变为加号(改变运算符号)②把减数变为它的相反数(改变性质符号)③把减法转化为加法,按照加法运算的步骤进行运算.有理数加减混合运算的步骤:①把算式中的减法转化为加法;②省略加号与括号;③利用运算律及技巧简便计算,求出结果.注意:根据有理数减法法则,减去一个数等于加上它的相反数,因此加减混合运算可以依据上述法则转变为只有加法的运算,即为求几个正数,负数和0的和,这个和称为代数和.为了书写简便,可以把加号与每个加数外的括号均省略,写成省略加号和的形式.三、有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数同0相乘,都得0.有理数乘法运算律:①两个数相乘,交换因数的位置,积相等. ab ba =(乘法交换律)②三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等. ()abc a bc =(乘法结合律) ③一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. ()a b c ab ac +=+(乘法分配律)有理数乘法法则的推广:① 几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数的个数是偶数时,积为正数;负因数的个数是奇数时,积为负数.② 几个数相乘,如果有一个因数为0,则积为0.③ 在进行乘法运算时,若有带分数,应先化为假分数,便于约分;若有小数及分数,一般先将小数化为分数,或凑整计算;利用乘法分配律及其逆用,也可简化计算. 在进行有理数运算时,先确定符号,再计算绝对值,有括号的先算括号里的数.四、有理数的除法有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.1a b a b÷=⋅,(0b ≠)两数相除,同号得正,异号得负,并把绝对值相除; 0除以任何一个不等于0的数,都得0.有理数除法的运算步骤:首先确定商的符号,然后再求出商的绝对值.五、有理数的乘方求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂,在中,a 叫做底数,n 叫做指数,读作a 的n 次幂。
注意: ()()221221nn n n a a a a++-=-=-,,,六、科学计数法科学记数法:把一个大于10的数表示成10n a ⨯的形式(其中110a ≤<,n 是整数),此种记法叫做科学记数法.例如:5200000210=⨯就是科学记数法表示数的形式. 710200000 1.0210=⨯也是科学记数法表示数的形式.有效数字: 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字.如:0.00027有两个有效数字:2,7 ;1.2027有5个有效数字:1,2,0,2,7.n a注意:万410=,亿810=常考点及易错点:科学计数法中的单位转换,精确到什么位与保留有效数字的差别.记忆方法:移动几位小数点问题.比如:1800000要科学记数法,实际就是小数点向左移动到1和8之间,移动了6位,故记为61.810⨯.七、有理数的混合运算要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.一、有理数的加法【例1】 计算下列各题:(1)(一11)+(一9); (2)(一3.5)+(+7); (3)(一1.08)+0;.(4)(23+)+(23-) (5)[(-22)+(-27)]+(+27);(6)(-22)+[(-27)+(+27)]【变式练习】计算:(1)()()()()()-+++-+-++36475同步练习(2)()()-⎛⎝ ⎫⎭⎪+-+-⎛⎝ ⎫⎭⎪++++⎛⎝ ⎫⎭⎪234025*********..(3)+⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪++⎛⎝ ⎫⎭⎪+-⎛⎝ ⎫⎭⎪5751432527225914【例2】 小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( )A .4℃B .9℃C .-1℃D .-9℃【例3】 绝对值不大于10的所有整数的和等于( )A .-10B .0C .10D .20【例4】 已知a ,b ,c 的位置如图,化简:|a -b |+|b +c |+|c -a |= ______________二、有理数的减法【例5】 计算(1)(3)(5)--+ (2)()()+59-- 【变式练习】计算bca同步课程˙有理数的混合运算(1)21(4)(3)33-+-⑵21(6)(9)|3|7.49.2(4)55-+-+-+++-⑶17(14)(5)( 1.25)88-+++-⑷111(8.5)3(6)11332-++-+【例6】 对于任何有理数a ,下列各式中一定为负数的是( )A .()3a --+B .a -C .1a -+D .1a --【例7】 a ,b 在数轴上的位置如图所示,则a ,b ,a +b ,a -b 中,负数的个数是( )A .1个B .2个C .3个D .4个【例8】 两个数的差是负数,则这两个数一定是( )A .被减数是正数,减数是负数B .被减数是负数,减数是正数C .被减数是负数,减数也是负数D .被减数比减数小【例9】 如果a ,b 均为有理数,且b <0,则a ,a-b ,a +b 的大小关系是( )A .a <a +b <a -bB .a <a -b <a +bC .a +b <a <a -bD .a -b <a +b <a三、有理数的乘法【例10】下面计算正确的是( )A .-5×(-4)×(-2)×(-2)=5×4×2×2=80B .12×(-5)=-50C .(-9)×5×(-4)×0=9×5×4=180D .(-36)×(-1)=-36 【变式练习】 1337⎛⎫-⨯= ⎪⎝⎭316169⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭___________ba【变式练习】(1)4113(3)11559211⎛⎫⎛⎫⎛⎫-⨯-⨯-⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)11171113()71113⨯⨯⨯++;(3)()()999812512412161616⎛⎫⎛⎫⎛⎫-⨯---⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (4)111112211142612⎛⎫-⨯-+- ⎪⎝⎭【例11】若两个有理数的和与积都是正数,则这两个有理数( )A .都是负数B .一正一负且正数的绝对值大C .都是正数D .无法确定【例12】a 、b 、c 为非零有理数,它们的积必为正数的是( )A .0a >,b .c 同号B .0b >,a .c 异号C .0c >,a .b 异号D .a .b .c 同号【例13】已知|x |=3,|y |=2,且x •y <0,则x +y 的值等于( )A .5或-5B .1或-1C .5或1D .-5或-1【例14】有理数a ,b ,c 在数轴上对应的点的位置如图所示,给出下面四个命题:(1)abc <0 (2)|a -b |+|b -c |=|a -c | (3)(a-b )(b-c )(c-a )>0 (4)|a |<1-bc 其中正确的命题有( )A .4个B .3个C .2个D .1个四、有理数的除法【例15】下列关于0的说法中,正确的个数是( )①0既不是正数,也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值.b ac-11A .1B .2C .3D .4【例16】下列运算有错误的是( )A .()()13333÷-=⨯-B .()()15522⎛⎫-÷-=-⨯- ⎪⎝⎭ C .8-(-2)=8+2 D .2-7=(+2)+(-7)【变式练习】计算:(1)111321335⎛⎫⎛⎫⎛⎫-÷÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (2)()()112103523⎛⎫⎛⎫-÷-⨯-÷- ⎪ ⎪⎝⎭⎝⎭(3)231(4)()324+÷⨯÷-; (4)71()2(3)93-÷⨯+;【例17】两个有理数的商为正,则( )A .和为正B .和为负C .至少一个为正D .积为正数【例18】用“>”或“<”填空(1)如果0abc>,0ac <那么b _____ 0 ; (2)如果0a b>,0bc <那么ac _______0 .五、有理数的乘方【例19】计算:(1) (2)【例20】计算:【例21】观察下面三行数:3)4(-4)2(-)2()3(]2)4[()3()2(223-÷--+-⨯-+-.....…… ①.....…… ②.....…… ③(1)第①行按什么规律排列?(2)第②③行与第①行分别有什么关系? (3)取每行第10个数求这几个数的和?六、科学计数法【例22】我国第六欢人口普查的结果表明,目前肇庆市的人口约为4050000人,这个数用科学记教法表示为( )A .410405⨯ B .51005.4⨯C .61005.4⨯D .71005.4⨯【例23】某种鲸的体重约为1.36×105kg .关于这个近似数,下列说法正确的是( ) A .精确到百分位,有3个有效数字 B .精确到个位,有6个有效数字 C .精确到千位,有6个有效数字 D .精确到千位,有3个有效数字【例24】用四舍五入法按要求对0.05049分别取近似值,其中错误的是( )A .0.1(精确到0.1)B .0.05(精确到百分位)C .0.05(精确到千分位)D .0.050(精确到0.001)【例25】据国家统计局2011年4月28日发布的《2011年第六次全国人口普查主要数据公报(第一号)》,总人口为1370536875人,这一数字用科学记数法表示为( )(保留四个有效数字) A .91037.1⨯ B .81037.1⨯ C .910371.1⨯ D .810371.1⨯七、有理数的混合运算【例26】计算(1)13502215⎛⎫+÷⨯-- ⎪⎝⎭ (2)()21110.5233⎡⎤⎛⎫⎡⎤--⨯⨯-- ⎪⎢⎥⎣⎦⎝⎭⎣⎦ 2-48-1632-64066-1830-661-24-816-32同步课程˙有理数的混合运算(3)()()()22101423212125.0-⨯-+--⎪⎭⎫ ⎝⎛-÷-(4)(-32 )×(-1115 )-32 ×(-1315 )+32 ×(-1415 )八、有理数的大小比较【例27】下列各数中,比-1小的数是( )A .0B .1C .-2D .2【例28】比较111234--,,的大小,结果正确的是( ) A .111234-<-< B . 111243-<<-C .111432<-<-D .111324-<-<【例29】给出两个结论:(1)a b b a -=-,(2)1123->-.其中( )A .只有(1)正确B .只有(2)正确C .(1)和(2)都正确D .(1)和(2)都不正确【例30】a ,b ,c 在数轴上的位置如图.则在1a c b c a a---+,,,中,最大的一个是( )A .a -B .c b -C .c a +D .1a-bac -11【例31】若b <0,则a+b ,a ,a-b 的大小关系为( ) A .a+b >a >a-b B .a-b >a >a+b C .a >a-b >a+b D .a-b >a+b >a【习题1】式子-2-(-1)+3-(+2)省略括号后的形式是( )A .2+1-3+2B .-2+1+3-2C .2-1+3-2D .2-1-3-2【习题2】计算:1+2-3+4+5-6+7+8-9+…+97+98-99+100= 1684_______【习题3】计算()74 1.6 2.54÷--÷之值为何( ) A .-1.1 B .-1.8 C .-3.2 D .-3.9【习题4】下列判断:①若ab =0,则a =0或b =0;②若22a b =,则a =b ;③若22ac bc =,则a b =;④若a b =,则()()a b a b +⋅-是正数.其中正确的有( )A .①④B .①②③C .①D .②③【习题5】下列计算正确的是( )A .113122-⨯=-B .()32321---=C .16363÷⨯=D .()220051111324⎛⎫--= ⎪⎝⎭ 【习题6】下列算式中:(1)0-(-3)=-3;(2)(-2)×|-3|=-6;(3)5÷ ×5=5;(4)23=6,正确的个数有( )A .4个B .3个C .2个D .1个【习题7】已知|x |=0.19,|y |=0.99,且0<yx ,则x -y 的值为( ) A .1.18或-1.18 B .0.8或-1.18 C .0.8或-0.8 D .1.18或-0.8【习题8】计算:-2-(-3)+(-8)+42= ______;(2)计算:(122)637+-×(-42)= ________. 【习题9】若a .b .c 在数轴上位置如图所示,则必有( )A .abc >0B .ab -ac >0C .(a+b )c >0D .(a-c )b >0【习题10】有理数a ,b 在数轴上的位置如图所示,则在a +b ,a -b ,ab ,3a ,23a b 这五个数中,正数的个数是( )A .2B .3C .4D . 5 c b a -2-1210ba 1-10课后练习【习题11】定义a※b=a b,则(1※2)※3=_________。