2023年数学中考试题精选:几何综合证明(一)

合集下载

2023年数学中考真题:圆的有关计算及证明精选(一)

2023年数学中考真题:圆的有关计算及证明精选(一)

圆的有关计算及证明2023年数学中考试题精选(一)1.(2023.营口23题)如图,在△ABC中,AB=BC,以BC为直径作圆O与AC将于点D,过点D作DE⊥AB,交CB延长线于点F,垂足为点E.(1)求证:DF为圆O的切线;,求BF的长。

(2)若BE=3,cosC=452.(2023.本溪铁岭辽阳24题)如图,AB是圆O的直径,点C,E在圆O上,∠CAB=2∠EAB,点F在线段AB的延长线上,且∠AFE=∠ABC.(1)求证:EF与圆O相切;,求BC的长。

(2)若BF=1,sin∠AFE=453.(2023.沈阳22题)如图,BE是圆O的直径,点A和点D是圆O上的两点,过点A作圆O的切线交BE延长线于点C.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求圆O半径的长.4.(2023.大连市23题)如图1,在圆O中,AB为圆O的直径,点C为圆O上一点,AD为∠CAB的平分线交圆O于点D,连接OD交BC于点E.(1)求∠BED的度数;(2)如图2,过点A作圆O的切线BC延长线于点F,过点D作DG ∥AF交AB于点G.若AD=2√35,DE=4,求DG的长。

5.(2023.湖北省恩施州23题)如图,△ABC是等腰直角三角形,∠ACB=90°,点O为AB的中点,连接CO交圆O于点E,圆O与AC 相切于点D.(1)求证:BC是圆O的切线;(2)延长CO交圆O于点G,连接AC交圆O于点F,若AC=4√(2),求FG的长.6.(2023.贵州省23题)如图,已知圆O是等边三角形ABC的外接圆,连接CO并延长交AB于点D,交圆O于点E,连接EA,EB.(1)写出图中一个度数为30°的角;____,图中与△ACD全等的三角形是______;(2)求证:△AED∽△CEB;(3)连接OA,OB,判断四边形OAEB的形状,并说明理由。

7.(2023.江苏省24题)如图,在△ABC中,AB=AC,以AB为直径的圆O交边AC于点D,连接BD,过点C作CE∥AB.(1)请用无刻度的直尺和圆规作图:过点B作圆O的切线,交CE 于点F;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD=BF.8.(2023.江西省20题)如图,在△ABC中,AB=4,∠C=64°,以AB为直径的圆O与AC相交于点D,E为优弧ABD上一点,且∠ADE=40°.(1)求BE的长;(2)若∠EAD=76°,求证:CB为圆O的切线.9.(2023.沈阳22题)如图,AB是圆O的直径,点C是圆O上的一点(点C不与点A,B重合),连接AC,BC,点D是AB上的一点,AC=AD,BE交CD的延长线于点E,且BE=BC.(1)求证:BE是圆O的切线;(2)若圆O的半径为5,tanE=1,则BE的长为_____.210.(2023.扬州市25题)如图,在△ABC中,∠ACB=90°,点D是AB∠A,点O在BC上,以点O为圆心的圆经过C、上一点,且∠BCD=12D两点.(1)试判断直线AB与圆O的位置关系,并说明理由;,圆O的半径为3,求AC的长.(2)若sinB=3511.(2023.广西壮族自治区23题)如图,PO平分∠APD,PA与圆O相切于点A,延长AO交PD于点C,过点O作OB⊥PD,垂足为B.(1)求证:PB是圆O的切线;(2)若圆O的半径为4,OC=5,求PA的长.12.(2023.广东省22题)如图1,在矩形ABCD中(AB>AD),对角线AC,BD相交于点O,点A关于BD的对称点为A`,连接AA`交BD于点E,连接CA`.(1)求证:AA`⊥CA`;(2)以点O为圆心,OE为半径作圆.①如图2,圆O与CD相切,求证:AA`=√3CA`;②如图3,圆O与CA`相切,AD=1,求圆O的面积.13.(2023.安徽省20题)已知四边形ABCD内接于圆O,对角线BD是圆O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分⊥BCD; (2)如图2,E为圆O内一点,满足AE⊥BC,CE⊥AB,若BD=3√3,AE=3.求弦BC的长.14.(2023.湖北黄冈市20题)如图,⊥ABC 中,以AB 为直径的圆O 交BC 于点D ,DE 是圆O 的切线 ,且DE⊥AC ,垂足为E ,延长CA 交圆O 于点F.(1)求证:AB=AC ;(2)若AE=3,ED=6,求AF 的长。

2023年山东日照中考数学试题及答案

2023年山东日照中考数学试题及答案

2023年山东日照中考数学试题及答案(满分120分,时间120分钟)第I 卷(选择题36分)一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上.1.计算:()23--的结果是()A.5B.1C.-1D.-52.窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一.下列窗花作品既是轴对称图形又是中心对称图形的是()A. B. C. D.3.芯片内部有数以亿计的晶体管,为追求更高质量的芯片和更低的电力功耗,需要设计4积更小的晶体管.目前,某品牌手机自主研发了最新型号芯片,其晶体管栅极的宽度为0.000000014米,将数据0.000000014用科学记数法表示为()A .81.410-⨯ B.71410-⨯ C.60.1410-⨯ D.91.410-⨯4.如图所示的几何体的俯视图可能是()A.B. C. D.5.在数学活动课上,小明同学将含30︒角的直角三角板的一个顶点按如图方式放置在直尺上,测得123∠=︒,则2∠的度数是().A.23︒B.53︒C.60︒D.67︒6.下列计算正确的是()A.236a a a ⋅= B.()32628m m -=- C.222()x y x y +=+ D.232235ab a b a b +=7.《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出9钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为x ,可列方程为()A .911616x x +=+ B.911616x x -=- C.911616x x +=- D.911616x x -=+8.日照灯塔是日照海滨港口城市的标志性建筑之一,主要为日照近海及进出日照港的船舶提供导航服务.数学小组的同学要测量灯塔的高度,如图所示,在点B 处测得灯塔最高点A 的仰角45ABD ∠=︒,再沿BD 方向前进至C 处测得最高点A 的仰角60ACD ∠=︒,15.3m BC =,则灯塔的高度AD 大约是()(结果精确到1m ,2 1.41≈,3 1.73≈)A.31mB.36mC.42mD.53m9.已知直角三角形的三边,,a b c 满足c a b >>,分别以,,a b c 为边作三个正方形,把两个较小的正方形放置在最大正方形内,如图,设三个正方形无重叠部分的面积为1S ,均重叠部分的面积为2S ,则()A.12S S >B.12S S < C.12S S = D.12,S S 大小无法确定10.若关于x 的方程32122x m x x -=--解为正数,则m 的取值范围是()A.23m >- B.43<m C.23m >-且0m ≠ D.43<m 且23m ≠11.在平面直角坐标系xOy 中,抛物线2(0)y ax bx a =+≠,满足300a b a b +>⎧⎨+<⎩,已知点(3,)m -,(2,)n ,(4,)t 在该抛物线上,则m ,n ,t 的大小关系为()A.t n m<< B.m t n<< C.n t m<< D.n m t<<12.数学家高斯推动了数学科学的发展,被数学界誉为“数学王子”,据传,他在计算1234100+++++ 时,用到了一种方法,将首尾两个数相加,进而得到100(1100)12341002⨯++++++= .人们借助于这样的方法,得到(1)12342n n n ++++++=(n 是正整数).有下列问题,如图,在平面直角坐标系中的一系列格点(),i i i A x y ,其中1,2,3,,,i n = ,且,i i x y 是整数.记n n n a x y =+,如1(0,0)A ,即120,(1,0)a A =,即231,(1,1)a A =-,即30,a = ,以此类推.则下列结论正确的是()A.202340a =B.202443a = C.2(21)26n a n -=- D.2(21)24n a n -=-第Ⅱ卷(非选择题84分)二、填空题:本题共4小题,每小题3分,共12分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13.分解因式:3a b ab -=_________.14.若点()3,1M m m +-在第四象限,则m 的取值范围是__________.15.已知反比例函数63ky x-=(1k >且2k ≠)的图象与一次函数7y x b =-+的图象共有两个交点,且两交点横坐标的乘积120x x ⋅>,请写出一个满足条件的k 值__________.16.如图,矩形ABCD 中,68AB AD ==,,点P 在对角线BD 上,过点P 作MN BD ⊥,交边AD BC ,于点M ,N ,过点M 作ME AD ⊥交BD 于点E ,连接EN BM DN ,,.下列结论:①EM EN =;②四边形MBND 的面积不变;③当:1:2AM MD =时,9625MPE S =△;④BM MN ND ++的最小值是20.其中所有正确结论的序号是__________.三、解答题:本题共6个小题,满分72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.17.(1)化简:281222sin 45-︒---⨯;(2)先化简,再求值:2221244x x x x x x ⎛⎫---÷ ⎪--+⎝⎭,其中12x =-.18.2023年3月22日至28日是第三十届“中国水周”,某学校组织开展主题为“节约用水,共护母亲河”的社会实践活动.A 小组在甲,乙两个小区各随机抽取30户居民,统计其3月份用水量,分别将两个小区居民的用水量()3mx 分为5组,第一组:57x ≤<,第二组:79x ≤<,第三组:911x ≤<,第四组:1113≤<x ,第五组:1315x ≤<,并对数据进行整理、描述和分析,得到如下信息:信息一:甲小区3月份用水量频数分布表用水量(x /m)频数(户)57x ≤<479x ≤<9911x ≤<101113≤<x 51315x ≤<2信息二:甲、乙两小区3月份用水量数据的平均数和中位数如下:甲小区乙小区平均数9.09.1中位数9.2a信息三:乙小区3月份用水量在第三组的数据为:9,9.2,9.4,9.5,9.6,9.7,10,10.3,10.4,10.6.根据以上信息,回答下列问题:(1)=a __________;(2)在甲小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为1b ,在乙小区抽取的用户中,3月份用水量低于本小区平均用水量的户数所占百分比为2b ,比较1b ,2b 大小,并说明理由;(3)若甲小区共有600户居民,乙小区共有750户居民,估计两个小区3月份用水量不低于313m 的总户数;(4)因任务安排,需在B 小组和C 小组分别随机抽取1名同学加入A 小组,已知B 小组有3名男生和1名女生,C 小组有2名男生和2名女生,请用列表或画树状图的方法,求抽取的两名同学都是男生的概率.19.如图,平行四边形ABCD 中,点E 是对角线AC 上一点,连接BE DE ,,且BE DE =.(1)求证:四边形ABCD 是菱形;(2)若10tan 2AB BAC =∠=,,求四边形ABCD 的面积.20.要制作200个A ,B 两种规格的顶部无盖木盒,A 种规格是长、宽、高都为20cm 的正方体无盖木盒,B 种规格是长、宽、高各为20cm ,20cm ,10cm 的长方体无盖木盒,如图1.现有200张规格为40cm 40cm ⨯的木板材,对该种木板材有甲、乙两种切割方式,如图2.切割、拼接等板材损耗忽略不计.(1)设制作A 种木盒x 个,则制作B 种木盒__________个;若使用甲种方式切割的木板材y 张,则使用乙种方式切割的木板材__________张;(2)该200张木板材恰好能做成200个A 和B 两种规格的无盖木盒,请分别求出A ,B 木盒的个数和使用甲,乙两种方式切割的木板材张数;(3)包括材质等成本在内,用甲种切割方式的木板材每张成本5元,用乙种切割方式的木板材每张成本8元.根据市场调研,A 种木盒的销售单价定为a 元,B 种木盒的销售单价定为1202a ⎛⎫-⎪⎝⎭元,两种木盒的销售单价均不能低于7元,不超过18元.在(2)的条件下,两种木盒的销售单价分别定为多少元时,这批木盒的销售利润最大,并求出最大利润.21.在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆.请应用此结论.解决以下问题:如图1,ABC 中,AB AC BAC α=∠=,(60180α<<︒︒).点D 是BC 边上的一动点(点D 不与B ,C 重合),将线段AD 绕点A 顺时针旋转α到线段AE ,连接BE .(1)求证:A ,E ,B ,D 四点共圆;(2)如图2,当AD CD =时,O 是四边形AEBD 的外接圆,求证:AC 是O 的切线;(3)已知1206BC α=︒=,,点M 是边BC 的中点,此时P 是四边形AEBD 的外接圆,直接写出圆心P 与点M 距离的最小值.22.在平面直角坐标系xOy 内,抛物线()2520y ax ax a =-++>交y 轴于点C ,过点C 作x 轴的平行线交该抛物线于点D .(1)求点C ,D 的坐标;(2)当13a =时,如图1,该抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),点P 为直线AD 上方抛物线上一点,将直线PD 沿直线AD 翻折,交x 轴于点(4,0)M ,求点P 的坐标;(3)坐标平面内有两点()1,1,5,1E a F a a ⎛⎫++⎪⎝⎭,以线段EF 为边向上作正方形EFGH .①若1a =,求正方形EFGH 的边与抛物线的所有交点坐标;②当正方形EFGH 的边与该抛物线有且仅有两个交点,且这两个交点到x 轴的距离之差为52时,求a 的值.日照市2023年初中学业水平考试数学试题(满分120分,时间120分钟)注意事项:1.本试题分第I卷和第Ⅱ卷两部分,共6页.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号等填写在答题卡规定的位置上.考试结束后,将本试卷和答题卡一并交回.2.第I卷每小题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,先用橡皮擦干净,再改涂其它答案标号.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内,在试卷上答题不得分;如需改动,先划掉原来的答案,然后再写上新的答案.第I卷(选择题36分)一、选择题:本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将符合题目要求选项的字母代号填涂在答题卡相应位置上.【1题答案】【答案】A【2题答案】【答案】A【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】B【9题答案】【答案】C 【10题答案】【答案】D 【11题答案】【答案】D 【12题答案】【答案】B第Ⅱ卷(非选择题84分)二、填空题:本题共4小题,每小题3分,共12分.不需写出解答过程,请将答案直接写在答题卡相应位置上.【13题答案】【答案】()()11ab a a -+【14题答案】【答案】31m -<<##13m >>-【15题答案】【答案】1.5(满足12k <<都可以)【16题答案】【答案】②③④三、解答题:本题共6个小题,满分72分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤.【17题答案】【答案】(1)54;(2)()22-x ,5-【18题答案】【答案】(1)9.1(2)21b b >,理由见解析(3)甲小区有40户,乙小区有50户(4)38【19题答案】【答案】(1)证明见解析(2)80【20题答案】【答案】(1)()200x -,()200y -(2)制作A 种木盒100个,B 种木盒100个;使用甲种方式切割的木板150张,使用乙种方式切割的木板50张(3)A 种木盒的销售单价定为18元,B 种木盒的销售单价定为11元时,这批木盒的销售利润最大,最大利润为1750元【21题答案】【答案】(1)证明见解析(2)证明见解析(3)32【22题答案】【答案】(1)()02C ,,()52D ,(2)31524P ⎛⎫⎪⎝⎭,(3)①()16,,()46,,()52,;②0.5a =。

2023年全国中考数学试题几何知识应用专题汇编及答案

2023年全国中考数学试题几何知识应用专题汇编及答案

2023年全国中考数学试题几何知识应用专题汇编及答案简介本文档提供了2023年全国中考数学试题中涉及的几何知识应用专题的汇编及答案。

通过深入理解和掌握这些专题,考生可以更好地应对中考中与几何有关的问题,并提高数学成绩。

专题一:平行线与平行四边形题目:1. 已知△ABC中,AB∥CD,AB的延长线与CD相交于点E,若m∠ABC = 50°,求m∠ECD的度数。

答案:130°2. 在平行四边形ABCD中,AB = 10 cm,BC = 8 cm,延长线AB交CD于点E,若m∠EAD = 40°,求m∠BEC的度数。

答案:140°专题二:相似三角形与比例题目:1. 已知△ABC与△DEF相似,且AB = 6 cm,BC = 8 cm,DE = 9 cm,EF = 12 cm,求△ABC与△DEF的周长比值。

答案:3:42. △ABC与△DEF相似,AB = 12 cm,BC = 16 cm,DE = 3 cm,求DE的延长线与BC相交的点F到BC的距离。

答案:4 cm专题三:直角三角形与勾股定理题目:1. 在直角三角形ABC中,AC = 5 cm,BC = 12 cm,求AB的长度。

答案:13 cm2. 直角三角形ABC中,AC = 8 cm,BC = 15 cm,若AB延长线与BC延长线相交于点D,求BD的长度。

答案:7.5 cm专题四:圆的性质与应用题目:1. 在圆O中,弧 AB 的度数是 120°,则它所对的圆心角的度数为多少。

答案:240°2. 已知圆O的半径为5 cm,圆心角的度数是 60°,求弧长的长度。

答案:5π cm专题五:三角形的面积与海伦公式题目:1. △ABC中,AB = 5 cm,BC = 8 cm,CA = 7 cm,求△ABC 的面积。

答案:17.32 cm²2. △ABC中,BC = 6 cm,CA = 8 cm,AB = 10 cm,若△ABC 的面积为24 cm²,求△ABC的高。

2023年中考数学 几何培优专题:线段等量关系的证明(含答案)

2023年中考数学 几何培优专题:线段等量关系的证明(含答案)

2023中考数学 几何培优专题:线段等量关系的证明(含答案)1. 已知:在ABC △中AB AC =,点D 为BC 边的中点,点F 是AB 边上一点,点E 在线段DF 的延长线上,BAE BDF ∠=∠,点M 在线段DF 上,ABE DBM ∠=∠. (1)如图1-1,当45ABC ∠=︒时,求证:2AE MD =;(2)如图1-2,当60ABC ∠=︒时,则线段AE 、MD 之间的数量关系为____________;(3)在(2)的条件下延长BM 到P ,使MP BM =,连接CP ,若7AB =,27AE =,求tan PCB ∠和tan ACP ∠的值.图1-1 图1-2(1)证明:如图1,连接AD .∵AB AC =,BD CD =,∴AD BC ⊥.又∵45ABC ∠=︒,∴cos BD AB ABC =⋅∠,即2AB BD =. ∵BAE BDM ∠=∠,ABE DBM ∠=∠,∴ABE DBM ∽△△.∴2AE AB DM DB ==,∴2AE MD =.(2)∵1cos cos602ABC ∠=︒=,∴1cos 2MD AE ABC AE =⋅∠=⋅,∴2AE MD =.(3)如图2,连接AD ,EP . ∵AB AC =,60ABC ∠=︒, ∴ABC △是等边三角形. 又∵D 为BC 的中点,∴AD BC ⊥,30DAC ∠=︒,12BD DC AB ==.∵BAE BDM ∠=∠,ABE DBM ∠=∠, ∴ABE DBM ∽△△.∴2BE ABBM DB ==,AEB DMB ∠=∠. ∴2EB BM =. 又∵BM MP =, ∴EB BP =.∵60EBM ABC ∠=∠=︒, ∴BEP △为等边三角形, ∴EM BP ⊥, ∴90BMD ∠=︒, ∴90AEB ∠=︒,在Rt AEB △中,AE =7AB =,∴BE∴tan EAB ∠. ∵D 为BC 中点,M 为BP 中点,∴DM//PC .∴MDB PCB ∠=∠,∴EAB PCB ∠=∠.∴tan PCB ∠=.在Rt ABD △中,sin AD AB ABD =⋅∠在Rt NDC △中,tan ND DC NCD =⋅∠,∴NA AD ND =-.过N 作NH AC ⊥,垂足为H .在Rt ANH △中,12NH AN ==,21cos 8AH AN NAH =⋅∠=,∴358CH AC AH =-=,∴tan ACP ∠=.2.如图,在Rt ABC△中,90ACB∠=︒,1AC=,7BC=,点D是边CA延长线的一点,AE BD⊥,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan AFB∠的值;(2)CE AF⋅的值是否随线段AD长度的改变而变化?如果不变,求出CE AF⋅的值;如果变化,请说明理由;(3)当BGE△和BAF△相似时,求线段AF的长.(1)过点E作EH CD⊥于H,如图1,则有90EHA EHD∠=∠=︒.∵90BCD∠=︒,BE DE=,∴CE DE=.∴CH DH=,∴1722 EH BC==.设AH x=,则1DH CH x==+.∵AE BD⊥,∴90 AEH DEH AED∠+∠=∠=︒.∵90AEH EAH∠+∠=︒,∴EAH DEH∠=∠,∴AHE EHD∽△△,∴AH EH EH DH=,∴2EH AH DH=⋅,∴27(1)2x x⎛⎫=+⎪⎝⎭,解得5212x-=(舍负),∴75212tan75212EHEAHAH+∠===-.∵BF//CD,∴AFB EAH∠=∠,∴521tan 7AFB +∠=; (2)CE AF ⋅的值不变.取AB 的中点O ,连接OC 、OE ,如图2, ∵90BCA BEA ∠=∠=︒, ∴OC OA OB OE ===, ∴点A 、C 、B 、E 共圆,∴BCE BAF ∠=∠,180CBE CAE ∠+∠=︒. ∵BF//CD ,∴180BFA CAE ∠+∠=︒, ∴CBE BFA ∠=∠,∴BCE FAB ∽△△, ∴BC CE FA AB=,∴CE FA BC AB ⋅=⋅. ∵90BCA ∠=︒,7BC =,1AC =,∴52AB =,∴752=352CE FA ⋅=⨯;(3)过点E 作EH CD ⊥于H ,作EM BC ⊥于M ,如图3, ∴90EMC MCH CHE ∠=∠=∠=︒, ∴四边形EMCH 是矩形.∵BCE FAB ∽△△,BGE △与FAB △相似, ∴BGE △与BCE △相似, ∴EBG ECB ∠=∠.∵点A 、C 、B 、E 共圆, ∴ECA EBG ∠=∠,∴ECB ECA ∠=∠,∴EM EH =, ∴矩形EMCH 是正方形, ∴CM CH =.∵1452ECB ECA BCA ∠=∠=∠=︒,∴45EBA EAB ∠=∠=︒, ∴EB EA =,∴Rt Rt (HL)BME AHE ≌△△,∴BM AH =.设AH x =,则BM x =,7CM x =-,1CH x =+, ∴71x x -=+,∴3x =,∴4CH =.在Rt CHE △中,42cos 2CH ECH CE CE ∠===, ∴42CE =.由(2)可得352CE FA ⋅=,∴35235=442AF =.3. 已知:ACB △与DCE △为两个有公共顶点C 的等腰直角三角形,且90ACB DCE ∠=∠=︒,AC BC =,DC EC =.把DCE △绕点C 旋转,在整个旋转过程中,设BD 的中点为N ,连接CN .(1)如图3-1,当点D 在BA 的延长线上时,连接AE ,求证:2AE CN =;(2)如图3-2,当DE 经过点A 时,过点C 作CH BD ⊥,垂足为H ,设AC 、BD 相交于F ,若4NH =,16BH =,求CF 的长.(1)证明:延长CN 至点K ,使NK CN =,连接DK , ∵90DCA ACE ∠+∠=︒,90BCE ACE ∠+∠=︒, ∴180DCB ACE ∠+∠=︒,∴KDN CBN ∠=∠,∴DK//BC ,∵DN NB =,CN NK =,DNK BNC ∠=∠, ∴DNK BNC ≌△△,∴DK BC AC ==,∴180KDC DCB ∠+∠=︒,∵KDC ACE ∠=∠, 又∵DK AC =,CD CE =,∵KDC ACE ≌△△, ∴AE CK =,∴2AE CN =;(2)延长CN 交DE 于点P ,延长CH 交DE 于点M ,图3-1D A NB EC图① 图② 备用图D A N BE DF A N H C C B ED B EF A N H KP M C备用图BF AN H CE图3-2A F N H DC B E4. 已知:在ABC △中,90ACB ∠=︒,点P 是线段AC 上一点,过点A 作AB 的垂线,交BP的延长线于点M ,MN AC ⊥于点N ,PQ AB ⊥于点Q ,AQ MN =.(1)如图4-1,求证:PC AN =;(2)如图4-2,点E 是MN 上一点,连接EP 并延长交BC 于点K ,点D 是AB 上一点,连接DK ,DKE ABC ∠=∠,EF PM ⊥于点H ,交BC 延长线于点F ,若2NP =,3PC =,:2:3CK CF =,求DQ 的长.图4-1 图4-2AQNPMAMQDNEPHAQ NPM B CAMQDNEPHB KC F GT图①图②5. 在ABC △中,90ACB ∠=︒.经过点B 的直线l (l 不与直线AB 重合)与直线BC 的夹角等于ABC ∠,分别过点C 、点A 作直线l 的垂线,垂足分别为点D 、点E .(1)若45ABC ∠=︒,1CD =(如图),则AE 的长为_______; (2)写出线段AE 、CD 之间的数量关系,并加以证明; (3)若直线CE 、AB 交于点F ,56CF EF =,4CD =,求BD 的长.(1)2AE =.(2)线段AE 、CD 之间的数量关系为2AE CD =. 证明:如图1,延长AC 与直线l 交于点G . 依题意,可得12∠=∠. ∵90ACB ∠=︒,∴34∠=∠. ∴BA BG =,∴CA CG =.∵AE l ⊥,CD l ⊥,∴CD //AE . ∵C 为AG 的中点,∴2AE CD =.(3)解:当点F 在线段AB 上时,如图2, 过点C 作CG //l 交AB 于点H ,交AE 于点G . ∴2HCB ∠=∠.∵12∠=∠,∴1HCB ∠=∠. ∴CH BH =.∵90ACB ∠=︒,∴34901HCB ∠+∠∠+∠=︒=. ∴34∠∠=.∴CH AH BH ==. ∵CG //l ,∴FCH △∽FEB △. ∴56CF CH EF EB ==. 设5CH x =,6BE x =,则10AB x =. ∴在AEB △中,90AEB ∠=︒,8AE x =. 由(2)得,2AE CD =.∵4CD =,∴8AE =.∴1x =. ∴10AB =,6BE =,5CH =. ∵CG //l ,∴AGH AEB △△∽. ∴12HG AH BE AB ==.∴3HG =. ∴8CG CH HG =+=. ∵CG //l ,CD //AE ,A C()D B E l图1A C3124G D B E l图2AC124D B El3GHF∴四边形CDEG 为平行四边形. ∴8DE CG ==.∴2BD DE BE =-=.当点F 在线段BA 的延长线上时,如图3, 同理可得5CH =,3GH =,6BE =. ∴2DE CG CH HG ==-=. ∴8BD DE BE =+=. ∴2BD =或8.6. 如图,在平面直角坐标系中,直线l 平行x 轴,交y 轴于点A ,第一象限内的点B 在l 上,连结OB ,动点P 满足90APQ ∠=︒,PQ 交x 轴于点C .(1)当动点P 与点B 重合时,若点B 的坐标是(2,1),求P A 的长.(2)当动点P 在线段OB 的延长线上时,若点A 的纵坐标与点B 的横坐标相等,求:PA PC 的值.(3)当动点P 在直线OB 上时,点D 是直线OB 与直线CA 的交点,点E 是直线CP 与y 轴的交点,若ACE AEC ∠=∠,2PD OD =,求:PA PC 的值.(1)∵点P 与点B 重合,点B 的坐标是(2,1), ∴点P 的坐标是(2,1).∴P A 的长为2.(2)过点P 作PM x ⊥轴,垂足为M ,过点P 作PN y ⊥轴,垂足为N ,如图1所示.∵点A 的纵坐标与点B 的横坐标相等, ∴OA AB =.∵90OAB ∠=︒,∴45AOB ABO ∠=∠=︒. ∵90AOC ∠=︒,∴45POC ∠=︒. ∵PM x ⊥轴,PN y ⊥轴,∴PM PN =,90ANP CMP ∠=∠=︒. ∴90NPM ∠=︒.∵90APC ∠=︒. ∵APN CPM ∠=∠,PN PM =,ANP CMP ∠=∠, ∴ANP CMP ≌△△.∴PA PC =. ∴:PA PC 的值为1:1.(3)①若点P 在线段OB 的延长线上,过点P 作PM x ⊥轴,垂足为M ,过点P 作PN y ⊥轴,垂足为N ,PM 与直线AC 的交点为F ,如图2所示. ∵APN CPM ∠=∠,ANP CMP ∠=∠,∴ANP CMP ∽△△.∴PA PNPC PM=. ∵ACE AEC ∠=∠,∴AC AE =. ∵AP PC ⊥,∴EP CP =.∵PM//y 轴,∴AF CF =,OM CM =.∴12FM OA =.设OA x =,∵PF//OA ,∴PDF ODA ∽△△.∴PF PDOA OD=∵2PD OD =,∴22PF OA x ==,12FM x =.∴52PM x =.∵90APC ∠=︒,AF CF =, ∴24AC PF x ==. ∵90AOC ∠=︒,∴OC =.∵90PNO NOM OMP ∠=∠=∠=︒, ∴四边形PMON 是矩形.∴PN OM =.∴5:::2PA PC PN PM x ===. ②点P 在BO 延长线上时,同理可得:32PM x =,24CA PF x ==,OC =.∴12PN OM OC ==.∴3:::PA PC PN PM x ===. 综上所述::PA PC.7. 正方形ABCD 和等腰直角DEF △有公共点D ,点E 在AD 边上,点F 在CD 的延长线上,连接CE ,AF .(1)试判断线段CE 和AF 的数量关系和位置关系,并证明你的结论;(2)将DEF △绕点D 按顺时针方向旋转,当点E 落在AC 上时,设EF 与AD 交于点M . ①求证:AEM CDE ∽△△;②当34AE EC =时,求AM MD的值.(1)CE AF ⊥,CE AF =.证明略 (2)①∵AC 为正方形ABCD 的对角线 ∴45DAC ACD ∠=∠=︒,∵45FED ∠=︒,180FED AEM CED ∠+∠+∠=︒,180MAE AME AEM ∠+∠+∠=︒, ∴CED AME ∠=∠,∴AEM CDE ∽△△,②∵AEM CDE ∽△△,∴AE AMDC=, ∴设3AE a =,4EC a =,则DC =,4AMa=,∴AM ,∴MD =, ∴2425AM MD =. A B C E A BF D CEM8. 已知:在菱形ABCD 中,O 是对角线BD 上的一动点.(1)如图2-1,P 为线段BC 上一点,连接PO 并延长交AD 于点Q ,当O 是BD 的中点时,求证:OP OQ =;(2)如图2-2,连接AO 并延长,与DC 交于点R ,与BC 的延长线交于点S .若4AD =,60DCB ∠=︒,10BS =,求AS 和OR 的长.图2-1 图2-2(1)证明:∵ABCD 为菱形,∴AD//BC ,∴OBP ODQ ∠=∠,∵O 是是BD 的中点,∴OB OD =,在BOP △和DOQ △中,∵OBP ODQ ∠=∠,OB OD =,BOP DOQ ∠=∠,∴(ASA)BOP DOQ ≌△△,∴OP OQ =. (2)解:如图,过A 作AT BC ⊥,与CB 的延长线交于T .∵ABCD 是菱形,60DCB ∠=︒,∴4AB AD ==,60ABT ∠=︒,∴sin 60AT AB =︒=,cos602TB AB =︒=, ∵10BS =,∴12TS TB BS =+=,∴AS = ∵AD//BS ,∴AOD SOB △△∽. ∴42105AO AD OS SB ===, 则25AS OS OS -=,∴75AS OS =,∵AS =75OS AS ==. 同理可得ARD SRC △△∽,∴4263AR AD RS SC ===,则23AS SR RS -=,∴5AS =,∴3RS AS ==∴OR OS RS =-=-=.A DB C S O R TA QDOBP CA DB C SOR9. 在矩形ABCD 中,点P 在AD 上,2AB =,1AP =.将直角尺的顶点放在P 处,直角尺的两边分别交AB ,BC 于点E ,F ,连接EF (如图3-1). (1)当点E 与点B 重合时,点F 恰好与点C 重合(如图3-2),求PC 的长; (2)探究:将直尺从图3-2中的位置开始,绕点P 顺时针旋转,当点E 和点A 重合时停止.在这个过程中,请你观察、猜想,并解答:①tan ∠PEF 的值是否发生变化?请说明理由;②直接写出从开始到停止,线段EF 的中点经过的路线长.图3-1 图3-2(1)在矩形ABCD 中,90A D ∠=∠=︒,1AP =,2CD AB ==,则PB =, ∴90ABP APB ∠+∠=︒,又∵90BPC ∠=︒,∴90APB DPC ∠+∠=︒,∴ABP DPC ∠=∠,∴APB DCP ∽△△,∴AP PBCD PC=,即12=PC =故答案为:(2)①PF PE的值不变,理由为:证明:过F 作FG AD ⊥,垂足为G ,则四边形ABFG 是矩形,∴90A PGF ∠=∠=︒,2GF AB ==, ∴90AEP APE ∠+∠=︒,又∵90EPF ∠=︒, ∴90APE GPF ∠+∠=︒,∴AEP GPF ∠=∠,∴APE GFP ∽△△,∴2PF GFPE AP==,∴Rt EPF △中,tan 2PFPEF PE∠==,∴PF PE的值不变. ②线段EF.A P DEB F CGA P DE BF C A P D ()()B E C F10. 已知:ABC △中,2ACB ABC ∠=∠,AD 为BAC ∠的平分线,E 为线段AC 上一点,过E作AD 的垂线交直线AB 于F . (1)当E 点与C 点重合时(如图4-1),求证:BF DE =;(2)连接BE 交AD 于点N ,M 是BF 的中点,连接DM (如图4-2),若DM BF ⊥,4DC =,:3:2ABD ACD S S =△△,求DN 的长.图4-1 图4-2(1)连接DF ,设AD 与EF 交于点K ,∵AD 是BAC ∠的平分线,∴BAD CAD ∠=∠, ∵EF AD ⊥,∴90AKF AKE ∠=∠=︒,∴AFK AEK ∠=∠,∴AF AE =,∴AFD AED ≌△△, ∴DF DE =,AFD AED ∠=∠,又∵2ACB ABC ∠=∠,∴FBD FDB ∠=∠,∴BF DF =,∴DE BF =; (2)过A 作AP ⊥BC 于点P ,过D 作DQ ⊥AC 于点Q .连接DF ,∵:3:2ABD ACD S S =△△,即132122BD APDC AP ⋅=⋅, ∴32BD DC =,∵4DC =,∴6BD =, AF()BD CE BD CFAMEN图1 图2 A F ()B D C E B D C F A M E N K Q P∵AD 是BAC ∠的平分线,DM AB ⊥,DQ AC ⊥,∴DM DQ =,∴132122AB DMAC DQ ⋅=⋅,∴32AB AC =由(1)可得:AQ AM =,DC BM =,∴AB AC DC =+, ∴32AC DC AC +=,∴8AC =,12AB =,设PC x =,则10BP x =-,又勾股定理得:22222AB BP AC PC AP -=-=, 即22122(10)82x x --=-,解得:1x =,∴3DP =, 又22222AD DP AC PC AP -=-=, ∴272AD =,AD =EF AD ⊥, ∴90AKF AKE ∠=∠=︒. ∵DA 平分BAC ∠, ∴FAD EAD ∠=∠,∴AFE AEF ∠=∠,∴AF AE =, ∴AFD AED ≌△△,∴AFD AED ∠=∠,DF DE =, 又∵DB DF =, ∴6DB DE ==,∴BFD DEC DBF ∠=∠=∠,∴180180C DEC C DBF ︒-∠-∠=︒-∠-∠, ∴2EDC BAC DAE ∠=∠=∠, 又∵2EDC NED ∠=∠, ∴DAE NED ∠=∠, ∵ADE EDN ∠=∠, ∴DAE DEN ∽△△, ∴DA DE DE DN=, ∴2DE DN DA =⋅,即36DN =⋅,∴DN =。

2023年浙江省嘉兴(舟山)市中考数学真题(解析版)

2023年浙江省嘉兴(舟山)市中考数学真题(解析版)

数学卷I(选择题)一、选择题(本题有10小题,每小题3分,共30分,请选出各题中唯一的正确选项,不选、多选,错选,均不得分)1. �8的立方根是()A. ±2B. 2C. �2D. 不存在【答案】C【解析】【分析】根据立方根的定义进行解答.【详解】∵��2�3=�8�∴�8的立方根是﹣2�故选C�【点睛】本题主要考查了立方根,解决本题的关键是数积立方根的定义.2. 如图的几何体由3个同样大小的正方体搭成,它的俯视图是()A. B. C. D.【答案】C【解析】【分析】找到从上面所看到的图形即可.【详解】解:从上面看从下往上数,左边有1个正方形,右边有1个正方形,�俯视图是:.故选:C.【点睛】本题考查了简单组合体的三视图,解题的关键是掌握三视图.3. 在下面的调查中,最适合用全面调查的是()A. 了解一批节能灯管的使用寿命B. 了解某校803班学生的视力情况C. 了解某省初中生每周上网时长情况D. 了解京杭大运河中鱼的种类【答案】B 【解析】【分析】根据全面调查与抽样调查的特点对四个选项进行判断.【详解】A 、了解一批节能灯管的使用寿命,具有破坏性,适合采用抽样调查,不符合题意; B 、了解某校803班学生的视力情况,适合采用普查,符合题意; C 、了解某省初中生每周上网时长情况,适合采用抽样调查,不合题意; D 、了解京杭大运河中鱼的种类,适合采用抽样调查,不合题意. 故选:B .【点睛】本题考查了全面调查与抽样调查:如何选择调查方法要根据具体情况而定.一般来讲:通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其二,调查过程带有破坏性.如:调查一批灯泡的使用寿命就只能采取抽样调查,而不能将整批灯泡全部用于实验.其三,有些被调查的对象无法进行普查.4. 美术老师写的下列四个字中,为轴对称图形的是( )A. B. C. D.【答案】D 【解析】【分析】根据轴对称图形的定义进行判断即可.【详解】A 、B 、C 选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠后,直线两旁的部分能够互相重合,所以不是轴对称图形;D 选项的图形能找到这样的一条直线,使图形沿一条直线折叠后,直线两旁的部分能够互相重合,所以是轴对称图形; 故选:D .【点睛】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 5. 如图,在直角坐标系中,ABC 的三个顶点分别为()()()1,2,2,1,3,2A B C ,现以原点O 为位似中心,在第一象限内作与ABC 的位似比为2的位似图形A B C ′′′ ,则顶点C ′的坐标是( )A. ()2,4B. ()4,2C. ()6,4D. ()5,4【答案】C 【解析】【分析】直接根据位似图形的性质即可得.【详解】解:�ABC 的位似比为2的位似图形是A B C ′′′ ,且()3,2C ,()23,22C ′∴××,即()6,4C ′,故选:C .【点睛】本题考查了坐标与位似图形,熟练掌握位似图形的性质是解题关键. 6. 下面四个数中,比1小的正无理数是( )A.B. C.13D.π3【答案】A 【解析】【分析】根据正数0>>负数,即可进行解答. 【详解】解:�469<< �23<<�1133π<<<�比1. 故选:A .【点睛】本题主要考查了比较实数是大小,无理数的估算,解题的关键是掌握正数0>>负数. 7. 如图,已知矩形纸片ABCD ,其中34AB BC ==,,现将纸片进行如下操作: 第一步,如图①将纸片对折,使AB 与DC 重合,折痕为EF ,展开后如图②; 第二步,再将图②中的纸片沿对角线BD 折叠,展开后如图③;第三步,将图③中的纸片沿过点E 的直线折叠,使点C 落在对角线BD 上的点H 处,如图④.则DH 的长为( )A.32B.85C.53D.95【答案】D 【解析】【分析】根据折叠的性质得出EB EH EC ==,CH BD ⊥,等面积法求得CH ,根据tan BC CH BDC CD HD∠==,即可求解.【详解】解:如图所示,连接CH ,�折叠,�EB EH EC ==∴,,B C H 在以E 为圆心,BC 为直径的圆上, ∴90BHC ∠=°, �CH BD ⊥∵矩形ABCD ,其中34AB BC ==,, ∴4,3BC CD ==∴5BD ,∴125BC CD CHBD ×==, ∵tan BC CHBDC CD HD ∠== ∴95HD =,故选:D .【点睛】本题考查了矩形与折叠问题,直径所对的圆周角是直角,勾股定理,正切的定义,熟练掌握以上知识是解题的关键.8. 已知点()()()1232,,1,,1,A y B y C y −−均在反比例函数3y x=的图象上,则123,,y y y ,的大小关系是( ) A. 123y y y << B. 213y y y <<C. 312y y y <<D. 321y y y <<【答案】B 【解析】【分析】根据反比例函数的图象与性质解答即可. 【详解】解:�30k =>,�图象在一三象限,且在每个象限内y 随x 的增大而减小, �2101−<−<<, �2130y y y <<<. 故选:B .【点睛】本题考查了反比例函数的图象与性质,反比例函数ky x=(k 是常数,0k ≠)的图象是双曲线,当0k >,反比例函数图象的两个分支在第一、三象限,在每一象限内,y 随x 的增大而减小;当 0k <,反比例函数图象的两个分支在第二、四象限,在每一象限内,y 随x 的增大而增大.9. 如图,点P 是ABC 的重心,点D 是边AC 的中点,PE AC ∥交BC 于点E ,DF BC ∥交EP 于点F ,若四边形CDFE 的面积为6,则ABC 的面积为( )A. 12B. 14C. 18D. 24【答案】C 【解析】【分析】连接BD ,由点P 是ABC 的重心,点D 是边AC 的中点,可得点B P D 、、在一条直线上,且:2:1BP PD =,12BCD ABC S S =,通过BEP BCD ∽可得49BEP BCD S S = ,从而得到59BCD CEPD S S =四边形,通过BEP DFP ∽,可得11414499DFP BEP BCD BCD S S S S ==×= ,再根据四边形CDFE 的面积为6,可得出BCD S △,进而可得出ABC 的面积. 【详解】解:如图所示,连接BD ,,点P 是ABC 的重心,点D 是边AC 的中点,∴点B P D 、、在一条直线上,且:2:1BP PD =,12BCD ABC S S =, PE AC ∥,BEP BCD ∴ ∽,:2:1BP PD =,:2:3BP BD ∴=,:4:9BEP BCD S S ∴= ,49BEP BCD S S ∴= ,59BCD BEP BCD CEPD S S S S ∴=−=四边形, DF BC ∥,BEP DFP ∴ ∽,:2:1BP PD =,:4BEP DFP S S ∴= ,11414499DFP BEP BCD BCD S S S S ∴==×= ,5166999DFP BCD BCD BCD CDFE CEPD S S S S S S =+=+== 四边形四边形,9BCD S ∴= ,18∴= ABC S ,故选:C .【点睛】本题主要考查了三角形的重心的性质,相似三角形的判定与性质,根据三角形的中线求面积,熟练掌握三角形的重心的性质,相似三角形的判定与性质,添加适当的辅助线,是解题的关键.10. 下图是底部放有一个实心铁球长方体水槽轴截面示意图,现向水槽匀速注水,下列图象中能大致反映水槽中水的深度(y )与注水时间(x )关系的是( )A. B. C. D.【答案】D 【解析】【分析】根据蓄水池的横断面示意图,可知水的深度增长的速度由慢到快,然后再由快到慢,最后不变,进而求解即可.【详解】解:由蓄水池的横断面示意图可得,水的深度增长的速度由慢到快,然后再由快到慢,最后不变, 故选:D .【点睛】主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.卷Ⅱ(非选择题)二、填空题(本题有6小题,每小题4分,共24分)11. 2023−=___________. 【答案】2023 【解析】【分析】负数的绝对值是它的相反数,由此可解.【详解】解:2023−的相反数是2023,故20232023−=,的故答案为:2023.【点睛】本题考查求一个数的绝对值,解题的关键是掌握负数的绝对值是它的相反数.12. 一个多项式,把它因式分解后有一个因式为(1)x +,请你写出一个符合条件的多项式:___________. 【答案】21x −(答案不唯一) 【解析】【分析】根据平方差公式或完全平方公式等知识解答即可. 【详解】解:�()()2111x x x −+−,因式分解后有一个因式为(1)x +,∴这个多项式可以是21x −(答案不唯一); 故答案为:21x −(答案不唯一). 【点睛】本题考查了多项式的因式分解,熟练掌握分解因式的方法是解此题的关键.13. 现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是___________.【答案】13【解析】【分析】根据概率公式即可求解.【详解】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是13故答案为:13. 【点睛】本题考查了概率公式求概率,熟练掌握概率公式是解题的关键.14. 如图,点A 是O 外一点,AB ,AC 分别与O 相切于点B ,C ,点D 在 BDC上,已知50A ∠=°,则D ∠的度数是___________.【答案】65°##65度 【解析】【分析】连接,CO BO ,根据切线的性质得出90ACO ABO ∠=∠=°,根据四边形内角和得出130COB ∠=°,根据圆周角定理即可求解.【详解】解:如图,CO BO ,�AB ,AC 分别与O 相切于点B ,C , ∴90ACO ABO ∠=∠=°, �50A ∠=°,∴360909050130COB ∠=°−°−°−°=°,� BCBC =, �1652D BOC ∠=∠=°, 故答案为:65°.【点睛】本题考查了切线的性质,圆周角定理,求得130COB ∠=°是解题的关键.15. 我国古代数学名著《张丘建算经》中有这样一题:一只公鸡值5钱,一只母鸡值3钱,3只小鸡值1钱,现花100钱买了100只鸡.若公鸡有8只,设母鸡有x 只,小鸡有y 只,可列方程组为___________.【答案】158310038100x y x y×++=++=【解析】【分析】根据“现花100钱买了100只鸡”,列出方程组即可.【详解】解:依题意得:158310038100x y x y×++=++= , 故答案为:158310038100x y x y×++=++=. 【点睛】本题主要考查了二元一次方程组的应用.明确题意,准确列出方程组是解题的关键.16. 一副三角板ABC 和DEF 中,90304512C D B E BC EF ∠=∠=°∠=°∠=°==,,,.将它们叠合在一起,边BC 与EF 重合,CD 与AB 相交于点G (如图1),此时线段CG 的长是___________,现将DEF 绕点()C F 按顺时针方向旋转(如图2),边EF 与AB 相交于点H ,连结DH ,在旋转0°到60°的过程中,线段DH 扫过的面积是___________.【答案】�. −�. 1218π− 【解析】【分析】如图1,过点G 作GH BC ⊥于H ,根据含30°直角三角形的性质和等腰直角三角形的性质得出BH =,GH CH =,然后由12BC =可求出GH 的长,进而可得线段CG 的长;如图2,将DEF 绕点C 顺时针旋转60°得到11D E F ,1FE 与AB 交于1G ,连接1D D ,1AD ,22D E F 是DEF旋转0°到60°的过程中任意位置,作1DN CD ⊥于N ,过点B 作1BM D D ⊥交1D D 的延长线于M ,首先证明1CDD 是等边三角形,点1D 在直线AB 上,然后可得线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积,求出DN 和BM ,然后根据线段DH 扫过的面积111121D DB CD D D DB D D D CD D S S S S S =+=−+ 弓形扇形列式计算即可.【详解】解:如图1,过点G 作GH BC ⊥于H ,∵3045ABC DEF DFE ∠=°∠=∠=°,,90GHB GHC ∠=∠=°,∴BH =,GH CH =,∵12BC BH CH GH =+=+=,∴6GH =−,∴()6CG ==−=−如图2,将DEF 绕点C 顺时针旋转60°得到11D E F ,1FE 与AB 交于1G ,连接1D D ,由旋转的性质得:1160E CB DCD ∠=∠=°,1CD CD =,∴1CDD 是等边三角形,∵30ABC ∠=°,∴190CG B ∠=°, ∴112CG BC =,∵1CE BC =, ∴1112CG CE =,即AB 垂直平分1CE ,∵11CD E 是等腰直角三角形,∴点1D 在直线AB 上,连接1AD ,22D E F 是DEF 旋转0°到60°的过程中任意位置,则线段DH 扫过的面积是弓形12D D D 的面积加上1D DB 的面积,∵12BC EF ∠==,∴DC DB BC ===,∴11D C D D==作1DN CD ⊥于N ,则1ND NC ==∴DN =,过点B 作1BM D D ⊥交1D D 的延长线于M ,则90M ∠=°,∵160D DC ∠=°,90CDB ∠=°,∴118030BDM D DC CDB∠=°−∠−∠=°,∴12BM BD ==, ∴线段DH 扫过的面积112D DB D D D S S + 弓形, 111CD D D DB CD D S S S =−+ 扇形,1122××,1218π=−,故答案为:−,1218π−+.【点睛】本题主要考查了旋转的性质,含30°直角三角形的性质,二次根式的运算,解直角三角形,等边三角形的判定和性质,勾股定理,扇形的面积计算等知识,作出图形,证明点1D 在直线AB 上是本题的突破点,灵活运用各知识点是解题的关键.三、解答题(本题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17. (1)解不等式:231x x −>+.(2)已知235a ab +=,求2()(2)2a b a b b ++−的值.【答案】(1) 4x >;(2)5 【解析】【分析】(1)不等式移项合并,把x 系数化为1求解即可;(2)先将2()(2)2a b a b b ++−展开化简,然后将235a ab +=整体代入求解即可.【详解】(1)解:移项,得213x x −>+,解得,4x >;(2)解:�235a ab +=,原式222222a ab ab b b =+++−,23a ab =+,5=.【点睛】此题考查了解一元一次不等式,整式的混合运算以及代数求值,解题的关键是熟练掌握以上运算法则.18. 小丁和小迪分别解方程3122x x x x−−=−−过程如下: 小丁:解:去分母,得(3)2x x x −−=− 去括号,得32x x x −+=−合并同类项,得32x =−解得5x =�原方程的解是5x = 小迪: 解:去分母,得(3)1x x +−=去括号得31x x +−= 合并同类项得231x −= 解得2x = 经检验,2x =是方程的增根,原方程无解你认为小丁和小迪的解法是否正确?若正确,请在框内打“√”;若错误,请在框内打“×”,并写出你的解答过程.【答案】见解析【解析】【分析】根据解分式方程的步骤判断小丁和小迪的解法是否正确,再正确解方程即可.【详解】小丁和小迪的解法错误;解:去分母,得(3)2x x x +−=−,去括号,得232x x −=−,解得,1x =,经检验:1x =是方程的解.【点睛】本题考查分式方程的解法,熟练掌握解分式方程的步骤是解题的关键.19. 如图,在菱形ABCD 中,AE BC ⊥于点E ,AF CD ⊥于点F ,连接EF(1)求证:AE AF =;(2)若=60B ∠°,求AEF ∠的度数.【答案】(1)证明见解析(2)60°【解析】【分析】(1)根据菱形的性质的三角形全等即可证明AE AF =.(2)根据菱形的性质和已知条件可推出BAD ∠度数,再根据第一问的三角形全等和直角三角形的性质可求出BAE ∠和DAF ∠度数,从而求出EAF ∠度数,证明了等边三角形AEF ,即可求出AEF ∠的度数. 【小问1详解】证明: 菱形ABCD ,,AB AD B D ∴=∠=∠,又,AE BC AF CD ⊥⊥,90AEB AFD ∴∠=∠=°.在AEB △和AFD △中,AEB AFD B D AB AD ∠=∠ ∠=∠ =, (AAS)ABE ADF ∴≌ .AE AF ∴=.【小问2详解】解: 菱形ABCD ,180B BAD∴∠+∠=°, =60B ∠° ,120BAD ∴∠=°.又90,60AEB B ∠=°∠=° ,30BAE =∴∠°.由(1)知ABE ADF ≌,30BAE DAF ∴∠=∠=°.120303060EAF ∴∠=°−°−°=°.= AE AF ,AEF ∴ 等边三角形.60AEF ∴∠=°.【点睛】本题考查了三角形全等、菱形的性质、等边三角形的性质,解题的关键在于熟练掌握全等的方法和菱形的性质.20. 观察下面的等式:222222223181,5382,7583,9784,−=×−=×−=×−=×(1)写出221917−的结果.(2)按上面的规律归纳出一个一般的结论(用含n 的等式表示,n 为正整数)(3)请运用有关知识,推理说明这个结论是正确的.【答案】(1)89×(2)22(21)21)(8n n n −−+=(3)见解析【解析】【分析】(1)根据题干的规律求解即可;(2)根据题干的规律求解即可;(3)将22(21)21()n n −+−因式分解,展开化简求解即可.【小问1详解】22911897−=×;【小问2详解】22(21)21)(8n n n −−+=;【小问3详解】22−+−n n()(21)21=++−+−+n n n n(2121)(2121)n=×42=.8n【点睛】此题考查数字的变化规律,因式分解,整式乘法的混合运算,解题关键是通过观察,分析、归纳发现其中的变化规律.21. 小明的爸爸准备购买一辆新能源汽车.在爸爸的预算范围内,小明收集了A,B,C三款汽车在2022年9月至2023年3月期间的国内销售量和网友对车辆的外观造型、舒适程度、操控性能、售后服务等四项评分数据,统计如下:(1)数据分析:�求B款新能源汽车在2022年9月至2023年3月期间月销售量的中位数;�若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A款新能原汽车四项评分数据的平均数.(2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)�3015辆,�68.3分(2)选B款,理由见解析【解析】【分析】(1)�根据中位数的概念求解即可;�根据加权平均数的计算方法求解即可;(2)根据加权平均数的意义求解即可.【小问1详解】�由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; �172270367364268.32332x ×+×+×+×=+++分. �A 款新能原汽车四项评分数据的平均数为68.3分;【小问2详解】给出1:2:1:2的权重时,A ,B ,C 三款新能源汽车评分的加权平均数分别为67.8分、69.7分、65.7分,结合2023年3月的销售量,�可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.22. 图1是某住宅单元楼的人脸识别系统(整个头部需在摄像头视角围内才能被识别),其示意图如图2,摄像头A 的仰角、俯角均为15°,摄像头高度160cm OA =,识别的最远水平距离150cm OB =.(1)身高208cm 的小杜,头部高度为26cm ,他站在离摄像头水平距离130cm 的点C 处,请问小杜最少需要下蹲多少厘米才能被识别.(2)身高120cm 的小若,头部高度为15cm ,踮起脚尖可以增高3cm ,但仍无法被识别.社区及时将摄像头的仰角、俯角都调整为20°(如图3),此时小若能被识别吗?请计算说明.(精确到01cm .,参考数据sin150,26,cos150.97,tan150.27,sin 200.34,cos 200.94,tan 200.36°≈°≈°≈°≈°≈°≈)【答案】(1)12.9cm(2)能,见解析【解析】【分析】(1)根据正切值求出EF 长度,再利用三角形全等可求出35.1(cm)EFDF ==,最后利用矩形的性质求出CE 的长度,从而求出蹲下的高度.(2)根据正切值求出MP 长度,再利用三角形全等可求出54.0(cm)MPPN ==,最后利用矩形性质求出BP 的长度,即可求出BN 长度,与踮起脚尖后的高度进行比较,即可求出答案.【小问1详解】解:过点C 作OB 的垂线分别交仰角、俯角线于点E ,D ,交水平线于点F ,如图所示,在Rt AEF 中,tan EAF EFAF ∠=.tan151300.2735.1(cm)EF AF ∴=⋅°=×=.,,90AF AF EAF DAF AFE AFD =∠=∠∠=∠=° ,ADF AEF ∴△≌△.35.1(cm)EF DF ∴==.16035.1195.1(cm)CE CF EF ∴=+=+=,235.1270.2(cm)26(cm)ED EF ==×=>, ∴小杜下蹲的最小距离208195.112.9(cm)=−=.【小问2详解】解:能,理由如下:过点B 作OB 垂线分别交仰角、俯角线于点M ,N ,交水平线于点P ,如图所示,的的在Rt APM △中,tan MPMAP AP∠=. tan 201500.3654.0(cm)MP AP =⋅×=°∴=,,,90AP AP MAP NAP APM APN =∠=∠∠=∠=° ,AMP ANP ∴△≌△.54.0(cm)PN MP ∴==,16054.0106.0(cm)BN BP PN ∴=−=−=.小若垫起脚尖后头顶的高度为1203123(cm)+=. ∴小若头顶超出点N 的高度123106.017.0(cm)15(cm)−=>.∴小若垫起脚尖后能被识别.【点睛】本题考查的是解直角三角形的实际应用,涉及到的知识点有锐角三角函数中的正切值、矩形的性质、三角形的全等,解题的关键在于是否能根据生活实际题结合数学相关知识.解题的重点在于熟练掌握相关概念、性质和全等方法.23. 在二次函数223(0)y x tx t =−+>中,(1)若它的图象过点(2,1),则t 的值为多少?(2)当03x ≤≤时,y 的最小值为2−,求出t 的值:(3)如果(2,),(4,),(,)A m a B b C m a −都在这个二次函数的图象上,且3a b <<,求m 的取值范围.【答案】(1)32t =(2)t =(3)34m <<或6m >【解析】【分析】(1)将坐标代入解析式,求解待定参数值;(2)确定抛物线的对称轴,对待定参数分类讨论,若03t <≤,当x t =时,函数值最小,求得t =,若3t >,当3x =时,函数值最小,解得73t =(不合题意,舍去); (3)由(2,),(,)A m a C m a −关于对称轴对称得1m t −=,且A 在对称轴左侧,C 在对称轴右侧;确定抛物线与y 轴交点(0,3),此交点关于对称轴的对称点为(23)2,m −;由3,3a b <<且0422t m >∴<−解得3m >;分类讨论:当A ,B 都在对称轴左边时,42m <−,解得6m >,当A ,B 分别在对称轴两侧时,4(1)1(2)m m m −−>−−−,解得4,34m m <∴<<.【小问1详解】将(2,1)代入223y x tx =−+中,得1443t =−+,解得,32t =;【小问2详解】抛物线对称轴为x t =.若03t <≤,当x t =时,函数值最小,22232t t ∴−+=−,解得t =0t > ,t ∴若3t >,当3x =时,函数值最小,2963t ∴−=−+,解得73t =(不合题意,舍去)综上所述t =.【小问3详解】(2,),(,)A m a C m a − 关于对称轴对称2,12m mt m t −+∴=−=,且A 在对称轴左侧,C 在对称轴右侧抛物线与y 轴交点为(0,3),抛物线对称轴为直线x t =,∴此交点关于对称轴的对称点为(23)2,m −3,3a b << 且0t >422m ∴<−,解得3m >.当A ,B 都在对称轴左边时,a b <42m ∴<−,解得6m >,6m ∴>当A ,B 分别在对称轴两侧时a b B <∴ 到对称轴的距离大于A 到对称轴的距离4(1)1(2)m m m ∴−−>−−−,解得4m <34m ∴<<综上所述34m <<或6m >.【点睛】本题考查二次函数图象的性质、极值问题;存在待定参数的情况下,对可能情况作完备的分类讨论是解题的关键.24. 已知,AB 是半径为1的O 的弦,O 的另一条弦CD 满足CD AB =,且CD AB ⊥于点H (其中点H 在圆内,且AH BH CH DH >>,).(1)在图1中用尺规作出弦CD 与点H (不写作法,保留作图痕迹). (2)连结AD ,猜想,当弦AB 的长度发生变化时,线段AD 的长度是否变化?若发生变化,说明理由:若不变,求出AD 的长度;(3)如图2,延长AH 至点F ,使得HF AH =,连结CF ,HCF ∠的平分线CP 交AD 的延长线于点P ,点M 为AP 的中点,连结HM ,若12PD AD =.求证:MH CP ⊥. 【答案】(1)作图见解析(2)线段AD(3)证明见解析【解析】【分析】(1)以A B ,为圆心,大于12AB 长为半径画弧,交点为G ,连接OG ,与O 交点为E F ,,与AB 交点为M ,则OG AB ⊥,分别以E F ,为圆心,大于12EF 长为半径画弧,交点为N ,连接ON ,则ON AB ,以O 为圆心,OM 长为半径画弧与ON 交点为P ,则OP OM =,以P 为圆心,OP 长为半径,交直线ON 于Q ,以O Q ,为圆心,大于12OQ 长为半径画弧,交点为R ,连接PR ,则PR AB ⊥,PR 与O 交点为C D ,,与AB 交点为H ,即CD 、点H 即为所求;(2)如图2,连结AD ,连接DO 并延长交O 于E ,连结AE ,AC ,过O 作OF AB ⊥于F ,ON CD ⊥于N ,证明四边形OFHN 是正方形,则可证ACH 是等腰直角三角形,则45C ∠=°,由 AD AD =,可知45E C ∠=∠=°,由DE 是O 的直径,可得90EAD ∠=°,则ADE V 是等腰直角三角形,sin AD DE E =⋅∠=;(3)如图3,延长CD 、FP ,交点为G ,由题意知MH 是APF 的中位线,则MH PF ∥,12MH PF =,由12PD AD =,可得12MD PD =,证明MDH PDG ∽,则12MH MD GP PD ==,即2GP MH PF ==,如图3,作CFG △的外接圆,延长CP 交外接圆于点N ,连结GN 、FN ,由CP 是HCF ∠的平分线,可得GCP FCP ∠=∠,则GN NF =,证明()SSS GPN FPN ≌,则90GPN FPN ∠=∠=°,即PF CP ⊥,由MH PF ∥,可得MH CP ⊥,进而结论得证.【小问1详解】解:如图1,CD 、点H 即为所求;【小问2详解】:当弦AB 的长度发生变化时,线段AD 的长度不变;如图2,连结AD ,连接DO 并延长交O 于E ,连结AE ,AC ,过O 作OF AB ⊥于F ,ON CD ⊥于N ,则四边形OFHN 是矩形,∵AB CD =,AB CD ⊥,∴OF ON =,∴四边形OFHN 是正方形,∴FH NH =,∴AF FH CN NH +=+,即AH CH =,∴ACH 是等腰直角三角形,∴45C ∠=°,∵ AD AD =,∴45E C ∠=∠=°,∵DE 是O 的直径,∴90EAD ∠=°,∴45ADE ∠=°,∴ADE V 是等腰直角三角形,∴AE AD =,∴sin AD DE E =⋅∠=,∴线段AD;小问3详解】证明:如图3,延长CD 、FP ,交点为G ,∵HF AH =,∴点H 为AF 的中点,又∵点M 为AP 的中点,∴MH 是APF 的中位线,∴MH PF ∥,12MH PF =, 又∵12PD AD =,PM AM =, ∴12MD PD =,∵MH GP ∥,∴MHD PGD ∠=∠,又∵MDH PDG ∠=∠,【∴MDH PDG ∽, ∴12MHMD GP PD ==,即2GP MH PF ==, 如图3,作CFG △外接圆,延长CP 交外接圆于点N ,连结GN 、FN ,∵CP 是HCF ∠的平分线,∴GCP FCP ∠=∠,∴GN NF =,∵GP PF =,GN NF =,PN PN =,∴()SSS GPN FPN ≌,∴90GPN FPN ∠=∠=°,∴PF CP ⊥,∵MH PF ∥,∴MH CP ⊥.【点睛】本题考查了作垂线,同弧或等弧所对的圆周角相等,正弦,正方形的判定与性质,等腰三角形的判定与性质,中位线,直径所对的圆周角为直角,全等三角形的判定与性质,相似三角形的判定与性质,角平分线等知识.解题的关键在于对知识的熟练掌握与灵活运用.的。

精品解析:2023年山东省枣庄市中考数学真题(解析版)

精品解析:2023年山东省枣庄市中考数学真题(解析版)

2023年枣庄市初中学业水平考试数学注意事项:1.本试题分第I卷和第II卷两部分,第I卷为选择题,30分;第II卷为非选择题,90分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第I卷和第II卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号,考试结束,将试卷和答题卡一并交回.第I卷(选择题共30分)一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是正确的.1. 下列各数中比1大的数是()A. 2B. 0C. -1D. -3【答案】A【解析】【详解】试题分析:根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.考点:有理数的大小比较.2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,下图是某个部件“卯”的实物图,它的主视图是()A. B. C. D.【答案】C【解析】【分析】根据主视图是从前向后观察到的图形,进行判断即可.【详解】解:由题意,得:“卯”的主视图为:【点睛】本题考查三视图,熟练掌握三视图的画法,是解题的关键.3. 随着全球新一轮科技革命和产业变革的蓬勃发展,新能源汽车已经成为全球汽车产业转型发展的主要方向,根据中国乘用车协会的统计数据,2023年第一季度,中国新能源汽车销量为159万辆,同比增长26.2%,其中159万用科学记数法表示为( )A. 61.5910×B. 515910×.C. 415910×D. 215910×. 【答案】A【解析】【分析】根据科学记数法的表示方法进行表示即可.【详解】解:159万61590000 1.5910=×;故选A . 【点睛】本题考查科学记数法,熟练掌握科学记数法的表示方法:()11100≤×<n a a ,n 为整数,是解题的关键.4. 我国元朝朱世杰所著的《算学启蒙》一书是中国较早的数学著作之一,书中记载一道问题:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天可以追上慢马?若设快马x 天可以追上慢马,则下列方程正确的是( )A. 24015015012x x +=×B. 24015024012x x −=×C. 24015024012x x +=×D. 24015015012x x −=× 【答案】D【解析】【分析】设快马x 天可以追上慢马,根据路程=速度×时间,即可得出关于x 的一元一次方程,此题得解.【详解】解:设快马x 天可以追上慢马,依题意,得: 240x -150x =150×12.故选:D .【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5. 下列运算结果正确的是( )A. 4482x x x +=B. ()32626x x −=−C. 633x x x ÷=D. 236x x x ⋅=【答案】C【分析】根据积的乘方,同底数幂的乘法,除法法则,合并同类项法则,逐一进行计算即可得出结论.详解】解:A 、4442x x x +=,选项计算错误,不符合题意;B 、()32628x x −=−,选项计算错误,不符合题意;C 、633x x x ÷=,选项计算正确,符合题意;D 、235x x x ⋅=,选项计算错误,不符合题意;故选C .【点睛】本题考查积的乘方,同底数幂的乘法,除法,合并同类项.熟练掌握相关运算法则,是解题的关键.6. 4月23日是世界读书日,学校举行“快乐阅读,健康成长”读书活动.小明随机调查了本校七年级30名同学近4个月内每人阅读课外书的数量,数据如下表所示: 人数 6 7 10 7课外书数量(本) 6 7 912 则阅读课外书数量的中位数和众数分别是( )A. 8,9B. 10,9C. 7,12D. 9,9 【答案】D【解析】【分析】利用中位数,众数定义即可解决问题.中位数:把一组数据按从小到大的顺序排列,在中间的一个数字(或者两个数字的平均值)叫做这组数据的中位数.众数:在一组数据中出现次数最多的数.【详解】解:中位数为第15个和第16个的平均数为:9992+=,众数为9. 故选:D .【点睛】本题考查了中位数和众数,解题的关键是掌握平均数、中位数和众数的概念.7. 如图,在O 中,弦AB CD ,相交于点P ,若4880A APD ∠=°∠=°,,则B ∠的度数为( )【的A. 32°B. 42°C. 48°D. 52°【答案】A【解析】 【分析】根据圆周角定理,可以得到D ∠的度数,再根据三角形外角的性质,可以求出B ∠的度数.【详解】解:48A D A ∠=∠∠=° ,,48D ∴∠=°,80APD APD B D ∠=°∠=∠+∠ ,,804832B APD D ∴∠=∠−∠=°−°=°,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出D ∠的度数.8. 如图,一束太阳光线平行照射在放置于地面的正六边形上,若144∠=°,则2∠的度数为( )A. 14°B. 16°C. 24°D. 26°【答案】B【解析】 【分析】如图,求出正六边形的一个内角和一个外角的度数,得到460,25120∠=°∠+∠=°,平行线的性质,得到3144∠=∠=°,三角形的外角的性质,得到534104∠=∠+∠=°,进而求出2∠的度数.【详解】解:如图:∵正六边形的一个外角的度数为:360606°=°, ∴正六边形的一个内角的度数为:18060120°−°=°,即:460,25120∠=°∠+∠=°, ∵一束太阳光线平行照射在放置于地面的正六边形上,144∠=°,∴3144∠=∠=°,∴2120516∠=°−∠=°;故选B .【点睛】本题考查正多边形的内角和、外角和的综合应用,平行线的性质.熟练掌握多边形的外角和是360°,是解题的关键.9. 如图,在ABC 中,9030ABC C ∠=°∠=°,,以点A 为圆心,以AB 的长为半径作弧交AC 于点D ,连接BD ,再分别以点B ,D 为圆心,大于12BD 的长为半径作弧,两弧交于点P ,作射线AP 交BC 于点E ,连接DE ,则下列结论中不正确的是( )A. BE DE =B. AE CE =C. 2CE BE =D. EDC ABC S S =△△【答案】D【解析】 【分析】利用等腰三角形的性质和线段垂直平分线的性质可以判断①的正确;利用等边三角形的性质结合①的结论和等腰三角形的三线合一的性质可以判断②正确;利用直有三角形中30度角所对的直角边等于斜边的一半判断③的正确;利用相似三角形的面积比等于相似比的平方即可判断④的错误.【详解】解:由题意得:AB AD =,AP 为BAC ∠的平分线,90ABC ∠=° ,30C ∠=°, 60BAC ∴∠=°,ABD ∴ 为等边三角形,AP ∴为BD 的垂直平分线,BE DE ∴=,故A 的结论正确;ABD 为等边三角形,60ABD ∴∠=°,60ADB ∠=°,30DBE ∴∠=°,BE DE = ,90ADE ADB EDB ∴∠=∠+∠=°,DE AC ∴⊥.90ABC ∠=° ,30C ∠=°, 2AC AB ∴=,AB AD = ,AD CD ∴=, DE ∴垂直平分线段AC ,AE CE ∴=,故B 的结论正确;Rt CDE 中,30C ∠=°,2CE DE ∴=,BE DE = ,2CE BE ∴=,故C 的结论正确.90EDC ABC ∠=∠=° ,C C ∠=∠, CDE CBA ∴ ∽, ∴2()CDE CBA S DE S AB∆∆=, = AD AB ,∴tan tan 30DE DE DAE AB AD ==∠=°= ∴21()3CDE CBA S DE S AB∆∆==, 故D 的结论错误;故选:D .【点睛】本题主要考查了含30°角的直角三角形的性质,角平分线,线段垂直平分线的判定与性质,相似三角形的判定与性质,等边三角形的判定与性质,等腰三角形的性质,熟练掌握含30°角的直角三角形的性质和相似三角形的判定与性质是解题的关键.10. 二次函数2(0)y ax bx c a ++≠的图象如图所示,对称轴是直线1x =,下列结论:①0abc <;②方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;③若()1230,,,2y y是抛物线上的两点,那么12y y <;④1120a c +>;⑤对于任意实数m ,都有()m am b a b +≥+,其中正确结论的个数是( )A. 5B. 4C. 3D. 2【答案】C【解析】 【分析】根据抛物线的开口方向,对称轴,与y 轴的交点位置,判断①;对称性判断②;增减性,判断③;对称轴和特殊点判断④;最值判断⑤.【详解】解:∵抛物线开口向上,对称轴直线12b x a=−=,与y 轴交于负半轴, ∴0,20,0a b a c >=−<<, ∴0abc >;故①错误; 由图可知,抛物线与x 轴的一个交点的横坐标的取值范围为:10x −<<,∵抛物线关于直线1x =对称,∴抛物线与x 轴的一个交点的横坐标的取值范围为:23x <<,∴方程20ax bx c ++=(0a ≠)必有一个根大于2且小于3;故②正确;∵0a >,∴抛物线上的点离对称轴的距离越远,函数值越大,∵()1230,,,2y y 是抛物线上的两点,且30112−>−, ∴12y y >;故③错误;∵0,2a b a >=− ∴()112522252a c a a b c a a b c +=+−+=+−+,由图象知:=1x −,0y a b c =−+>,∴()112520a c a a b c ++−+>;故④正确;为∵0a >,对称轴为直线1x =,∴当1x =时,函数值最小为:a b c ++,∴对于任意实数m ,都有2am bm c a b c ++≥++,即:2am bm a b +≥+,∴()m am b a b +≥+;故⑤正确;综上:正确的有3个;故选C .【点睛】本题考查二次函数的图象和性质,正确的识图,熟练掌握二次函数的性质,是解题的关键.第II 卷(非选择题 共90分)二、填空题,大题共6小题,每小题填对得3分,共18分,只填写最后结果.11. 计算)10112− += _________. 【答案】3【解析】【分析】根据零指数幂和负整数指数幂的计算法则求解即可.【详解】解:)10112− −+ 12=+3=故答案为:3.【点睛】本题主要考查了零指数幂和负整数指数幂,正确计算是解题的关键,注意非零底数的零指数幂的结果为1.12. 若3x =是关x 的方程26ax bx −=的解,则202362a b −+的值为___________. 【答案】2019【解析】【分析】将3x =代入方程,得到32a b −=,利用整体思想代入求值即可.【详解】解:∵3x =是关x 的方程26ax bx −=的解,∴2336a b ⋅−=,即:32a b −=, ∴202362a b −+()202323a b =−−202322=−×20234−2019=;故答案为:2019.【点睛】本题考查方程的解,代数式求值.熟练掌握方程的解是使等式成立的未知数的值,是解题的关键.13. 银杏是著名的活化石植物,其叶有细长的叶柄,呈扇形.如图是一片银杏叶标本,叶片上两点B ,C 的坐标分别为(3,2),(4,3)−,将银杏叶绕原点顺时针旋转90°后,叶柄上点A 对应点的坐标为___________.【答案】()3,1−【解析】【分析】根据点的坐标,确定坐标系的位置,再根据旋转的性质,进行求解即可.【详解】解:∵B ,C 的坐标分别为(3,2),(4,3)−,∴坐标系的位置如图所示:∴点A 的坐标为:()1,3−−,连接OA ,将OA 绕点O 顺时针旋转90°后,如图,叶柄上点A 对应点的坐标为()3,1−;故答案为:()3,1−【点睛】本题考查坐标与旋转.解题的关键是确定原点的位置,熟练掌握旋转的性质.14. 如图所示,桔棒是一种原始的汲水工具,它是在一根竖立的架子上加上一根细长的杠杆,末端悬挂一重物,前端悬挂水桶.当人把水桶放入水中打满水以后,由于杠杆末端的重力作用,便能轻易把水提升至所需处,若已知:杠杆6AB =米,:2:1AO OB =,支架3OM EF OM ⊥=,米,AB 可以绕着点O 自由旋转,当点A 旋转到如图所示位置时45AOM ∠=°,此时点B 到水平地面EF 的距离为___________米.(结果保留根号)【答案】(3+##)3+ 【解析】 【分析】过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,易得四边形MDCN 为矩形,分别解Rt ,Rt ACB △,求出,,ON BC CD 的长,利用BDBC CD =+进行求解即可.【详解】解:过点B 作BD EF ⊥于点D ,过点A 作AC BD ⊥交BD 于点C ,交OM 于点N ,∵OM EF ⊥,∴OM BC ∥,∴AN OM ⊥,∴四边形MDCN 为矩形,∴MN CD =,∵6AB =,:2:1AO OB =,∴243AO AB ==, 在Rt ANO 中,4AO =,45AOM ∠=°,∴cos 454ON OA =⋅°==∴3CD MN OM ON ==−=− 在Rt ACB △中,6AB =,45AOM ∠=°,∴cos 456BC AB ⋅°;∴33BD BC CD =+=+−=;故答案为:3+.【点睛】本题考查解直角三角形的实际应用,矩形的性质与判定.解题的关键是添加辅助线,构造直角三角形.15. 如图,在正方形ABCD 中,对角线AC 与BD 相交于点O ,E 为BC 上一点,7CE =,F 为DE 的中点,若CEF △的周长为32,则OF 的长为___________.【答案】172【解析】【分析】利用斜边上的中线等于斜边的一半和CEF △的周长,求出,CF EF 的长,进而求出DE 的长,勾股定理求出CD 的长,进而求出BE 的长,利用三角形的中位线定理,即可得解. 【详解】解:7,CE CEF = 的周长为32,32725CF EF ∴+=−=.F 为DE 的中点,DF EF ∴=.90BCD ∠=° ,12CF DE ∴=,112.52EF CF DE ∴===, 225DE EF ∴,24CD ∴=.四边形ABCD 是正方形,24BC CD ∴==,O 为BD 的中点,OF ∴是BDE 的中位线,1117()(247)222OF BC CE ∴=−=−=. 故答案为:172. 【点睛】本题考查正方形的性质,斜边上的中线,三角形的中位线定理.熟练掌握斜边上的中线等于斜边的一半,是解题的关键. 16. 如图,在反比例函数8(0)y x x=>的图象上有1232024,,,P P P P 等点,它们的横坐标依次为1,2,3,…,2024,分别过这些点作x 轴与y 轴的垂线,图中所构成的阴影部分的面积从左到右依次为1232023,,,,S S S S ,则1232023S S S +++= ___________.【答案】2023253【解析】【分析】求出1234,,,P P P P …的纵坐标,从而可计算出1234,,,S S S S …的高,进而求出1234,,,S S S S …,从而得出123n S S S S +++…+的值.【详解】当1x =时,1P 的纵坐标为8, 当2x =时,2P 的纵坐标为4, 当3x =时,3P 的纵坐标为83, 当4x =时,4P 的纵坐标为2, 当5x =时,5P 的纵坐标为85, …则11(84)84S =×−=−; 2881(4)433S =×−=−;3881(2)233S =×−=−;481(2)2558S =×−=−; …881n S n n =−+; 1238888888844228335111n nS S S S n n n n +++…+=−+−+−+−++−=−=+++ ,∴12320232532023S S S S +++…+=. 故答案为:2023253. 【点睛】本题考查了反比例函数与几何的综合应用,解题的关键是求出881nS n n =−+. 三、解答题:本大题共8小题,共72分,解答时,要写出必要的文字说明,证明过程或演算步骤.17. 先化简,再求值:222211a a a a a −÷ −−,其中a 的值从不等式组1a −<<的整数.【答案】21a a a−−,12 【解析】【分析】先根据分式的混合运算法则,进行化简,再选择一个合适的整数,代入求值即可.【详解】解:原式222223111a a a a a a a=−÷ −−−− ()2222111a a a a a a ⋅−−−− 21a aa =−−; ∵220,10a a ≠−≠, ∴0,1a a ≠≠±,23=<<=,∴1a −<<的整数解有:0,1,2, ∵0,1a a ≠≠±, ∴2a =,原式2122221−−=. 【点睛】本题考查分式的化简求值,求不等式组的整数解.熟练掌握相关运算法则,正确的进行计算,是解题的关键.18. (1)观察分析:在一次数学综合实践活动中,老师向同学们展示了图①,图②,图③三幅图形,请你结合自己所学的知识,观察图中阴影部分构成的图案,写出三个图案都具有的两个共同特征:___________,___________.(2)动手操作:请在图④中设计一个新的图案,使其满足你在(1)中发现的共同特征.【答案】(1)观察发现四个图形都是轴对称图形,且面积相等;(2)见解析 【解析】【分析】(1)应从对称方面,阴影部分的面积等方面入手思考; (2)应画出既是轴对称图形,且面积为4的图形.【详解】解:(1)观察发现四个图形都是轴对称图形,且面积相等; 故答案为:观察发现四个图形都是轴对称图形,且面积相等; (2)如图:【点睛】此题主要考查了利用轴对称图形设计图案,关键是掌握利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.19. 对于任意实数a ,b ,定义一种新运算:()26(2)a b a b a b a b a b −≥= +−<※,例如:31312=−=※,545463=+−=※.根据上面的材料,请完成下列问题:(1)43=※___________,(1)(3)−−=※___________; (2)若(32)(1)5x x +−=※,求x 的值. 【答案】(1)1;2; (2)1x =, 【解析】【分析】(1)原式利用题中的新定义计算即可求出值;(2)已知等式利用已知的新定义进行分类讨论并列出方程,再计算求出x 的值即可. 【小问1详解】4× <32,434361∴=+−=※, ()132−−× >(1)(3)1(3)2∴−−=−−−=※;故答案为:1;2; 【小问2详解】若322(1)x x +≥−时,即4x ≥−时,则(32)(1)5x x +−−=,解得:1x =,若322(1)x x +−<时,即4x −<时,则(32)(1)65x x ++−−=,解得:52x =,不合题意,舍去, 1x ∴=, 【点睛】此题考查了实数的新定义运算及解一元一次方程,弄清题中的新定义是解本题的关键. 20. 《义务教育课程方案》和《义务教育劳动课程标准(2022年版)》正式发布,劳动课正式成为中小学的一门独立课程,日常生活劳动设定四个任务群:A 清洁与卫生,B 整理与收纳,C 家用器具使用与维护,D 烹饪与营养.学校为了较好地开设课程,对学生最喜欢的任务群进行了调查,并将调查结果绘制成以下两幅不完整的统计图.请根据统计图解答下列问题:(1)本次调查中,一共调查了___________名学生,其中选择“C 家用器具使用与维护”的女生有___________名,“D 烹饪与营养”的男生有___________名. (2)补全上面的条形统计图和扇形统计图;(3)学校想从选择“C ”的学生中随机选取两名学生作为“家居博览会”的志愿者,请用画树状图或列表法求出所选的学生恰好是一名男生和一名女生的概率. 【答案】(1)20,2,1 (2)图见解析 (3)35【解析】【分析】(1)利用A 组人数除以所占的百分比求出总数,总数乘以C 组的百分比,求出C 组人数,进而求出C 组女生人数,总数乘以D 组的百分比,求出D 组的人数,进而求出D 组男生人数; (2)根据(1)中所求数据,补全图形即可; (3)利用列表法求出概率即可. 【小问1详解】解:()1215%20+÷=(人), ∴一共调查了20人;∴C 组人数为:2025%5×=(人),∴C 组女生有:532−=(人); 由扇形统计图可知:D 组的百分比为115%25%50%10%−−−=, ∴D 组人数为:2010%2×=(人), ∴D 组男生有:211−=(人); 故答案为:20,2,1 【小问2详解】 补全图形如下:【小问3详解】用,,A B C 表示3名男生,用,D E 表示两名女生,列表如下:共有20种等可能的结果,其中所选的学生恰好是一名男生和一名女生的结果有12种,∴123205P ==. 【点睛】本题考查扇形图与条形图的综合应用,以及利用列表法求概率.从统计图中有效的获取信息,利用频数除以百分比求出总数,熟练掌握列表法求概率,是解题的关键.21. 如图,一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n −两点.(1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象; (2)观察图象,直接写出不等式4kx b x+<的解集; (3)设直线AB 与x 轴交于点C ,若(0,)P a 为y 轴上的一动点,连接,AP CP ,当APC △的面积为52时,求点P 的坐标.【答案】(1)112y x =−,图见解析 (2)<2x −或04x << (3)30,2P或70,2P −【解析】【分析】(1)先根据反比例函数的解析式,求出,A B 的坐标,待定系数法,求出一次函数的解析式即可,连接AB ,画出一次函数的图象即可; (2)图象法求出不等式的解集即可;(3)分点P 在y 轴的正半轴和负半轴,两种情况进行讨论求解. 【小问1详解】解:∵一次函数(0)y kx b k =+≠的图象与反比例函数4y x=的图象交于(,1),(2,)A m B n −两点, ∴24m n =−=, ∴4,2m n ==−, ∴(4,1),(2,2)A B −−,∴4122k b k b += −+=− ,解得:121k b==− ,∴112y x =−, 图象如图所示:【小问2详解】解:由图象可知:不等式4kx b x+<的解集为<2x −或04x <<; 【小问3详解】解:当点P 在y 轴正半轴上时:设直线AB 与y 轴交于点D ,∵112y x =−, 当0x =时,1y =−,当0y =时,2x =,∴()()2,0,0,1C D −,∴1PD a =+,∴()()1151412222APC APD PCD S S S a a =−=×+×−×+×= , 解得:32a =; ∴30,2P;当点P 在y 轴负半轴上时:1PD a =−−,∴115112222APC APD PCD S S S a =−=×−−×−−×=解得:72a =−或32a =(不合题意,舍去); ∴70,2P−. 综上:30,2P或70,2P −. 【点睛】本题考查一次函数与反比例函数综合应用.正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.22. 如图,AB 为O 的直径,点C 是 AD 的中点,过点C 做射线BD 的垂线,垂足为E .的(1)求证:CE 是O 切线;(2)若34BE AB ==,,求BC 的长; (3)在(2)的条件下,求阴影部分的面积(用含有π的式子表示). 【答案】(1)见解析;(2)BC =;(3)23π 【解析】【分析】(1)连接OC ,证明OC BE ∥,即可得到结论;(2)连接AC ,证明ACB CEB ∽,从而可得AB BC BC BE=,再代入求值即可; (2)连接OD CD ,,证明CD AB ∥,从而可得COD CBD S S = ,,求出扇形COD 的面积即可得到阴影部分的面积.【小问1详解】证明:连接OC ,∵点C 是 AD 的中点,, ∴ AC DC=, ∴ABC EBC ∠=∠,∵OC OB =,∴ABC OCB ∠=∠,∴EBC OCB ∠=∠,∴OC BE ∥,∵BE CE ⊥,∴半径OC CE ⊥,∴CE 是O 切线;【小问2详解】连接AC ,∵AB 是O 的直径,∴90ACB ∠=°,∴90ACB CEB ∠=∠=°,∵ABC EBC ∠=∠,∴ACB CEB ∽, ∴AB BCBC BE =, ∴43BCBC =,∴BC =;【小问3详解】连接OD CD ,,∵4AB =,∴2OC OB ==,∵在Rt BCE △中,3BC BE =,∴cos BE CBE BC ∠=, ∴30CBE ∠=°,∴60COD ∠=°,∴60AOC ∠=°,∵OC OD =,∴COD △是等边三角形,∴60CDO ∠=°, ∴CDO AOC ∠=∠,∴CD AB ∥,∴COD CBD S S = ,∴COD S S =阴扇形260223603ππ×=, 【点睛】本题主要考查了相似三角形的性质及判定、切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.23. 如图,抛物线2y x bx =−++经过(1,0),(0,3)A C −两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由. 【答案】(1)223y x x =−++(2(3)存在,()1,3Q 或()1,1Q 或()1,5Q【解析】【分析】(1)待定系数法求出函数解析式即可;(2)作点D 关于x 轴的对称点D ',连接D M ′,D M ′与x 轴的交点即为点H ,进而得到MH DH +的最小值为D M ′的长,利用两点间距离公式进行求解即可;(3)分DM ,DP ,MP 分别为对角线,三种情况进行讨论求解即可.【小问1详解】解:∵抛物线2y x bx c =−++经过(1,0),(0,3)A C −两点,∴103b c c −−+= = ,解得:23b c = = , ∴223y x x =−++; 【小问2详解】∵()222314y x x x =−++=−−+,∴()1,4M , 设直线)0:(A y k M x m k =+≠,则:04k m k m −+= +=,解得:22k m = = , ∴22:A y M x =+, 当0x =时,2y =,∴()0,2D ;作点D 关于x 轴的对称点D ',连接D M ′,则:()0,2D ′−,MH DH MH D H D M ′′+=+≥,∴当,,M H D ′三点共线时,MH DH +有最小值为D M ′长,的∵()0,2D ′−,()1,4M ,∴D M ′,即:MH DH +;【小问3详解】解:存在;∵()222314y x x x =−++=−−+,∴对称轴为直线1x =,设(),P p t ,()1,Q n ,当以D ,M ,P ,Q 为顶点的四边形是平行四边形时: ①DM 为对角线时:1042p t n +=+ +=+,∴06p t n = +=, 当0p =时,3t =, ∴3n =,∴()1,3Q ;②当DP 为对角线时:01124p t n +=+ +=+ ,∴224p t n = +=+, 当2p =时,222233t =−+×+=,∴1n =,∴()1,1Q ;③当MP 为对角线时:10142p t n +=+ +=+ ,∴02p n t = −= ,当0p =时,3t =,∴3n =,∴()1,5Q ;综上:当以D ,M ,P ,Q 为顶点的四边形是平行四边形时,()1,3Q 或()1,1Q 或()1,5Q .【点睛】本题考查二次函数的综合应用,是中考常见的压轴题.正确的求出函数解析式,熟练掌握二次函数的性质,利用数形结合和分类讨论的思想进行求解,是解题的关键.24. 问题情境:如图1,在ABC 中,1730AB AC BC ===,,AD 是BC 边上的中线.如图2,将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合,折痕分别交,,AB AC BC 于点E ,G ,F ,H .猜想证明:(1)如图2,试判断四边形AEDG 的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN 折叠,使得顶点B 与点H 重合,折痕分别交,AB BC 于点M ,N ,BM 的对应线段交DG 于点K ,求四边形MKGA 的面积.【答案】(1)四边形AEDG(2)30【解析】【分析】(1)利用等腰三角形的性质和折叠的性质,得到AE DE DG AG ===,即可得出结论. (2)先证明四边形AMKG 为平行四边形,过点H 作HE CG ⊥于点E ,等积法得到CG HE ⋅的积,推出四边形MKGA 的面积CG HE ⋅,即可得解.【小问1详解】解:四边形AEDG 是菱形,理由如下:∵在ABC 中,AB AC =,AD 是BC 边上的中线, ∴1,2AD BC BD CD BC ⊥==, ∵将ABC 的两个顶点B ,C 分别沿,EF GH 折叠后均与点D 重合, ∴11,,,,,22EF BC GH BC BE DE CG CD BF FD BD CH DH CD ⊥⊥======, ∴EF AD ∥,∴1BFBE FD AE==, ∴12BE AE AB ==, 同法可得:12CGAG AC ==, ∴,AE DEAG DG ==, ∵AB AC =,∴AE DE DG AG ===,∴四边形AEDG 是菱形;【小问2详解】解:∵折叠,∴,GDC C MHB B ∠=∠∠=∠, ∵AB AC =,∴B C ∠=∠,∴,GDC B MHB C ∠=∠∠=∠, ∴,MH AC DG AB ∥∥,∴四边形AMKG 为平行四边形,∵1730ABAC BC ===,, 由(1)知:1151522BDCD BC DH CH =====,,11722DG AG AB ===,∴4GH =,过点H 作HE CG ⊥于点E ,∵1122CHG S CH HG CG HE =⋅=⋅ , ∴154302CG HE ⋅×, ∵四边形MKGA 的面积AG HE ⋅,AG CG =,∴四边形MKGA 的面积30CG HE =⋅=.【点睛】本题考查等腰三角形的性质,折叠的性质,平行线分线段对应成比例,菱形的判定,平行四边形的判定和性质.熟练掌握相关知识点,并灵活运用,是解题的关键.。

2023年陕西省中考数学真题

2023年陕西省中考数学真题

2023年陕西省初中学业水平考试时间:120分钟满分:120分第一部分(选择题共24分)一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1. 计算:3-5=()A. 2B. -2C. 8D. -82. 下列图形中,既是轴对称图形,又是中心对称图形的是()3. 如图,l∥AB,∠A=2∠B.若∠1=108°,则∠2的度数为()第3题图A. 36°B. 46°C. 72°D. 82°4. 计算:6xy3·(-1,2x3y2)=()A. 3x4y5B. -3x4y5C. 3x3y6D. -3x3y65. 在同一平面直角坐标系中,函数y=ax和y=x+a(a为常数,a<0)的图象可能是()6. 如图,DE是△ABC的中位线,点F在DB上,DF=2BF,连接EF并延长,与CB的延长线相交于点M.若BC=6,则线段CM的长为()第6题图A. 13,2B. 7C. 15,2D. 87. 陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图,A B是⊙O的一部分,D是A B的中点,连接OD,与弦AB交于点C,连接OA,O B.已知AB=24 cm,碗深CD=8 cm,则⊙O的半径OA为()第7题图A. 13 cmB. 16 cmC. 17 cmD. 26 cm8. 在平面直角坐标系中,二次函数y=x2+mx+m2-m(m为常数)的图象经过点(0,6),其对称轴在y轴左侧,则该二次函数有()A. 最大值5B. 最大值15,4C. 最小值5D. 最小值15,4第二部分(非选择题共96分)二、填空题(共5小题,每小题3分,计15分)9. 如图,在数轴上,点A表示3,点B与点A位于原点的两侧,且与原点的距离相等,则点B表示的数是________.第9题图10. 如图,正八边形的边长为2,对角线AB,CD相交于点E,则线段BE的长为________.第10题图11. 点E是菱形ABCD的对称中心,∠B=56°,连接AE,则∠BAE的度数为________.12. 如图,在矩形OABC和正方形CDEF中,点A在y轴正半轴上,点C,F均在x轴正半轴上,点D在边BC上,BC=2CD,AB=3.若点B,E在同一个反比例函数的图象上,则这个反比例函数的表达式是________.第12题图13. 如图,在矩形ABCD中,AB=3,BC=4.点E在边AD上,且ED=3,M,N分别是边AB,BC上的动点,且BM=BN,P是线段CE上的动点,连接PM,PN.若PM+PN=4,则线段PC的长为________.第13题图三、解答题(共13小题,计81分.解答应写出过程)14. (本题满分5分)解不等式:3x-5,2>2x.15. (本题满分5分)计算:5×(-10)-(1,7)-1+|-23|.16. (本题满分5分)化简:(3a,a2-1-1,a-1)÷2a-1,a+1.17. (本题满分5分)如图,已知锐角△ABC,∠B=48°.请用尺规作图法,在△ABC内部求作一点P,使PB=PC,且∠PBC=24°.(保留作图痕迹,不写作法)第17题图18. (本题满分5分)如图,在△ABC中,∠B=50°,∠C=20°.过点A作AE⊥BC,垂足为E,延长EA至点D,使AD=AC,在边AC上截取AF=AB,连接DF.求证:DF=CB.第18题图19. (本题满分5分)一个不透明的袋子中装有四个小球,这四个小球上各标有一个数字,分别是1,1,2,3.这些小球除标有的数字外都相同.(1)从袋中随机摸出一个小球,则摸出的这个小球上标有的数字是1的概率为________;(2)先从袋中随机摸出一个小球,记下小球上标有的数字后,放回,摇匀,再从袋中随机摸出一个小球,记下小球上标有的数字.请利用画树状图或列表的方法,求摸出的这两个小球上标有的数字之积是偶数的概率.20. (本题满分5分)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.21. (本题满分6分)一天晚上,小明和爸爸带着测角仪和皮尺去公园测量一景观灯(灯杆底部不可到达)的高A B.如图所示,当小明爸爸站在点D处时,他在该景观灯照射下的影子长为DF,测得DF=2.4 m;当小明站在爸爸影子的顶端F处时,测得点A的仰角α为26.6°.已知爸爸的身高CD=1.8 m,小明眼睛到地面的距离EF=1.6 m,点F,D,B在同一条直线上,EF⊥FB,CD⊥FB,AB⊥F B.求该景观灯的高A B.(参考数据:sin 26.6°≈0.45,cos 26.6°≈0.89,tan 26.6°≈0.50)第21题图22. (本题满分7分)经验表明,树在一定的成长阶段,其胸径(树的主干在地面以上1.3 m处的直径)越大,树就越高.通过对某种树进行测量研究,发现这种树的树高y(m)是其胸径x(m)的一次函数.已知这种树的胸径为0.2 m时,树高为20 m;这种树的胸径为0.28 m时,树高为22 m.(1)求y与x之间的函数表达式;(2)当这种树的胸径为0.3 m时,其树高是多少?23. (本题满分7分)某校数学兴趣小组的同学们从“校园农场”中随机抽取了20棵西红柿植株,并统计了每棵植株上小西红柿的个数.其数据如下:2836373942454647485054545454556062626364通过对以上数据的分析整理,绘制了如下统计图表:第23题图根据以上信息,解答下列问题:(1)补全频数分布直方图;这20个数据的众数是________;(2)求这20个数据的平均数;(3)“校园农场”中共有300棵这种西红柿植株,请估计这300棵西红柿植株上小西红柿的总个数.24. (本题满分8分)如图,△ABC内接于⊙O,∠BAC=45°,过点B作BC的垂线,交⊙O于点D,并与CA的延长线交于点E,作BF⊥AC,垂足为M,交⊙O于点F.(1)求证:BD=BC;(2)若⊙O的半径r=3,BE=6,求线段BF的长.第24题图25. (新考法二次函数抛物线型问题) (本题满分8分)某校想将新建图书楼的正门设计为一个抛物线型拱门,并要求所设计的拱门的跨度与拱高之积为48 m2,还要兼顾美观、大方、和谐、通畅等因素.设计部门按要求给出了两个设计方案.现把这两个方案中的拱门图形放入平面直角坐标系中,如图所示:第25题图方案一,抛物线型拱门的跨度ON=12 m,拱高PE=4 m.其中,点N在x轴上,PE⊥ON,OE=EN.方案二,抛物线型拱门的跨度ON′=8 m,拱高P′E′=6 m.其中,点N′在x轴上,P′E′⊥ON′,OE′=E′N′.要在拱门中设置高为3 m的矩形框架,其面积越大越好(框架的粗细忽略不计).方案一中,矩形框架ABCD 的面积记为S1,点A,D在抛物线上,边BC在ON上;方案二中,矩形框架A′B′C′D′的面积记为S2,点A′,D′在抛物线上,边B′C′在ON′上.现知,小华已正确求出方案二中,当A′B′=3 m时,S2=122 m2.请你根据以上提供的相关信息,解答下列问题:(1)求方案一中抛物线的函数表达式;(2)在方案一中,当AB=3 m时,求矩形框架ABCD的面积S1,并比较S1,S2的大小.26. (新考法综合与实践——几何综合应用型) (本题满分10分)(1)如图①,在△OAB中,OA=OB,∠AOB=120°,AB=24.若⊙O的半径为4,点P在⊙O上,点M在AB 上,连接PM,求线段PM的最小值.(2)如图②所示,五边形ABCDE是某市工业新区的外环路,新区管委会在点B处,点E处是该市的一个交通枢纽.已知:∠A=∠ABC=∠AED=90°,AB=AE=10 000 m,BC=DE=6 000 m.根据新区的自然环境及实际需求,现要在矩形AFDE区域内(含边界)修一个半径为30 m的圆型环道⊙O;过圆心O,作OM⊥AB,垂足为M,与⊙O交于点N,连接BN,点P在⊙O上,连接EP.其中,线段BN,EP及MN是要修的三条道路.要在所修道路BN,EP之和最短的情况下,使所修道路MN最短,试求此时环道⊙O的圆心O到AB 的距离OM的长.第26题图2023年陕西省初中学业水平考试解析快速对答案详解详析一、选择题1. B2. C3. A4. B5. D6. C 【解析】∵DE 是△ABC 的中位线, ∴DE =12 BC =3,DE ∥BC ,∴△DEF ∽△BMF ,∴MB ED =BFDF =12 ,∴MB =12 ED =32 ,∴CM =MB +BC =152. 7. A 【解析】∵D 是A B 的中点,OD 是⊙O 的半径,∴OD 垂直平分AB ,∴AC =12 AB =12,设OA =r ,则OC =(r -8),在Rt △AOC 中,由勾股定理得r 2=122+(r -8)2,解得r =13,即半径OA 的长为13 cm. 8. D 【解析】∵二次函数的图象过点(0,6),∴m 2-m =6,解得m 1=3,m 2=-2,∵二次函数的对称轴在y 轴左侧,∴-m 2 <0,即m >0,∴m =3,∴二次函数的表达式为y =x 2+3x +6=(x +32 )2+154 ≥154 ,∴该二次函数有最小值154 .二、填空题 9. - 310. 2+ 2 【解析】如解图,由正八边形的性质可得,CF ∥AB ,且正八边形的每个外角为45°,∴∠CAB =45°,同理可得∠ACD =45°,∴AB ⊥CD ,过点F 作FG ⊥AB 于点G ,则四边形CFGE 为矩形,FG =GB =AE =22AC = 2 ,EG =CF =2,∴BE =EG +BG =2+ 2 .第10题解图11. 62° 【解析】如解图,连接CE ,BD ,∵点E 是菱形ABCD 的对称中心,∴A ,E ,C 三点共线,AE 平分∠BAD ,∵AD ∥BC ,∠ABC =56°,∴∠BAD =180°-∠ABC =124°,∴∠BAE =62°.第11题解图(命题立意)本题考查菱形对角线平分一组对角的性质,试题简单,具有一定基础性,注重对学生基础知识的掌握、动手实践能力的考查.12. y =18x 【解析】设BD =CD =x ,∵四边形CDEF 为正方形,∴CF =EF =CD =x ,∠DEF =90°,由矩形OABC 可得,∠ABC =90°,∴B (3,2x ),E (3+x ,x ),∵点B ,E 在同一个反比例函数的图象上,∴3×2x =(3+x )x ,解得x 1=0(舍去),x 2=3,∴S 矩形OABC =18,即k =18,∴这个反比例函数的表达式是y =18x .13. 2 2 【解析】由矩形ABCD 可得,∠B =∠D =∠BCD =90°,AB =DC =3,∵ED =3=CD ,∴△CDE 为等腰直角三角形,∴∠ECD =45°,∴CE 平分∠BCD .如解图①,作点N 关于CE 的对称点N 1,则点N 1落在射线CD 上,则PM +PN =PM +PN 1,连接MN 1,交CE 于点P 1,过点P 1作BC 的平行线,分别交AB ,CD 于点M 1,N 2,则PM +PN 1≥MN 1≥M 1N 2=BC =4,∴当M ,P ,N 1三点共线,且MN 1∥BC 时,PM +PN =4.如解图②,过点P 1作P 1N 3⊥BC 于点N 3,则四边形M 1P 1N 3B 为矩形,∵BM 1=BN 3,∴四边形M 1P 1N 3B 为正方形,∴P 1M 1=P 1N 3=P 1N 2,∴P 1N 3=12M 1N 2=2,∴P 1C =2 2 .第13题解图三、解答题14. 解:3x -5>4x ,(2分) 3x -4x >5,(3分) -x >5,(4分) x <-5.(5分)15. 解:原式=-5 2 -7+|-8|(3分) =-5 2 -7+8(4分) =-5 2 +1.(5分)16. 解:原式=[3a(a +1)(a -1) -a +1(a +1)(a -1) ]·a +12a -1 (2分)=3a -(a +1)(a +1)(a -1) ·a +12a -1 (3分)=2a -1a -1 ·12a -1 (4分) =1a -1.(5分) 17. 解:如解图,点P 即为所求.(5分)第17题解图18. 证明:∵在△ABC 中,∠B =50°,∠C =20°, ∴∠CAB =180°-∠B -∠C =110°, ∵AE ⊥BC , ∴∠AEC =90°,∴∠DAF =∠AEC +∠C =110°, ∴∠DAF =∠CAB ,(3分) 又∵AD =AC ,AF =AB , ∴△DAF ≌△CAB ,(4分) ∴DF =C B.(5分) 19. 解:(1)12 ;(2分)(2)列表如下:(4分)由上表可知,共有16种等可能的结果,其中摸出的这两个小球上标有的数字之积是偶数的结果有7种, ∴P (摸出的这两个小球上标有的数字之积是偶数)=716 .(5分)20. 解:设该文具店中这种大笔记本的单价是x 元, 根据题意,得4x +6(x -3)=62,(3分) 解得x =8,答:该文具店中这种大笔记本的单价为8元.(5分) 21. 解:如解图,∵CD ⊥FB ,AB ⊥FB , ∴CD ∥AB , ∴CD AB =FD FB, ∴FB =FD ·AB CD =2.41.8 AB =43AB ,(2分)过点E 作EH ⊥AB ,垂足为H ,则四边形EFBH 为矩形, ∴EH =FB ,HB =EF =1.6,AH =AB -HB =AB -1.6, 在Rt △AEH 中,第21题解图EH =AHtan 26.6° ≈AB -1.60.5 =2(AB -1.6),(4分)∴43AB =2(AB -1.6),∴AB =4.8,答:该景观灯的高AB 约为4.8 m .(6分)22. 解:(1)设y 与x 之间的函数表达式为y =kx +b (k ≠0),根据题意,得⎩⎪⎨⎪⎧0.2k +b =200.28k +b =22 ,解得⎩⎪⎨⎪⎧k =25b =15 ,(3分)∴y =25x +15;(4分)(2)当x =0.3时,y =25×0.3+15=22.5,∴当这种树的胸径为0.3 m 时,其树高为22.5 m .(7分) 23. 解:(1)补全频数分布直方图如解图所示;54;(2分)第23题解图(2)x =120 ×(28+154+452+366)=50,∴这20个数据的平均数是50;(5分) (3)所求总个数:50×300=15 000,∴估计这300棵西红柿植株上小西红柿的总个数是15 000个.(7分) 24. (1)证明:如解图,连接DC ,则∠BDC =∠BAC =45°,(1分) ∵BD ⊥BC ,∴∠BCD =90°-∠BDC =45°, ∴∠BCD =∠BDC ,∴BD =BC ;(3分) (2)解:如解图,∵∠DBC =90°, ∴CD 为⊙O 的直径,∴CD =2r =6,∴BC =CD ·sin ∠BDC =6×sin 45°=3 2 ,(4分) ∴EC =BE 2+BC 2 =62+(32)2 =3 6 , ∵∠BMC =∠EBC =90°,∠B CM =∠ECB ,∴△B CM ∽△ECB ,∴BC EC =BM EB =CMCB,∴BM =BC ·EB EC =32×636 =2 3 ,CM =BC 2EC =(32)236 = 6 .(6分)连接CF ,则∠F =∠BAC =45°,∴∠MCF =45°, ∴MF =MC = 6 ,(7分)∴BF =BM +MF =2 3 + 6 .(8分)第24题解图(命题立意)本题将直径、弦、圆周角等圆中的基本要素有机融合.通过圆的半径、弦的量化,比较综合地考查学生运用圆周角的性质、三角形相似、勾股定理、三角函数等进行分析、推理、运算的能力.同时,考查学生几何直观、空间观念的发展水平,体现了核心性和综合性.25. 解:(1)由题意知,方案一中抛物线的顶点P (6,4),设y =a (x -6)2+4(a ≠0),(2分) 依题意,将N (12,0)代入,得a =-19 ,∴y =-19 (x -6)2+4;(4分)(2)令y =3,则-19 (x -6)2+4=3,解得x 1=3,x 2=9.∴BC =6,(6分) ∴S 1=AB ·BC =3×6=18.(7分)∵S 2=12 2 ,而18>12 2 ,∴S 1>S 2.(8分)26. 解:(1)如解图①,连接OP ,OM ,过点O 作OM ′⊥AB ,垂足为M ′,则OP +PM ≥OM . ∵⊙O 的半径为4, ∴PM ≥OM -4≥OM ′-4.(2分)∵OA =OB ,∠AOB =120°,∴∠A =30°, ∴OM ′=AM ′·tan 30°=12×tan 30°=4 3 , ∴PM ≥OM ′-4=4 3 -4,∴线段PM 的最小值为4 3 -4;(4分)第26题解图①(2)如解图②,分别在BC ,AE 上作BB ′=AA ′=r =30 m . 连接A ′B ′,B ′O ,OP ,OE ,B ′E , ∵OM ⊥AB ,BB ′⊥AB ,ON =BB ′, ∴四边形BB ′ON 是平行四边形, ∴BN =B ′O ,(5分)∵B ′O +OP +PE ≥B ′O +OE ≥B ′E , ∴BN +PE ≥B ′E -r ,∴当点O 在B ′E 上时,BN +PE 取得最小值,(6分) 作⊙O ′,使圆心O ′在B ′E 上,半径r =30 m , 作O ′M ′⊥AB ,垂足为M ′,并与A ′B ′交于点H , 易证,△B ′O ′H ∽△B ′EA ′, ∴O ′H EA ′ =B ′HB ′A ′,(7分) ∵⊙O ′在矩形AFDE 区域内(含边界),∴当⊙O ′与FD 相切时,B ′H 最短,即B ′H =10 000-6 000+30=4 030, 此时,O ′H 也最短,∵M ′N ′=O ′H ,∴M ′N ′也最短, ∴O ′H =EA ′·B ′H B ′A ′ =(10 000-30)×4 03010 000 =4017.91,(9分)∴O ′M ′=O ′H +30=4 047.91,∴此时环道⊙O 的圆心O 到AB 的距离OM 的长为4 047.91 m .(10分)第26题解图②。

2014-2023北京中考真题数学汇编:几何综合

2014-2023北京中考真题数学汇编:几何综合

2014-2023北京中考真题数学汇编几何综合 一、解答题1.(2023·北京·统考中考真题)在ABC 中、()045B C αα∠=∠=°<<°,AM BC ⊥于点M ,D 是线段MC 上的动点(不与点M ,C 重合),将线段DM 绕点D 顺时针旋转2α得到线段DE .(1)如图1,当点E 在线段AC 上时,求证:D 是MC 的中点;(2)如图2,若在线段BM 上存在点F (不与点B ,M 重合)满足DF DC =,连接AE ,EF ,直接写出AEF ∠的大小,并证明.2.(2022·北京·统考中考真题)在ABC 中,90ACB ∠= ,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.3.(2021·北京·统考中考真题)如图,在ABC 中,,,AB AC BAC M α=∠=为BC 的中点,点D 在MC 上,以点A 为中心,将线段AD 顺时针旋转α得到线段AE ,连接,BE DE .(1)比较BAE ∠与CAD ∠的大小;用等式表示线段,,BE BM MD 之间的数量关系,并证明; (2)过点M 作AB 的垂线,交DE 于点N ,用等式表示线段NE 与ND 的数量关系,并证明. 4.(2020·北京·统考中考真题)在ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF ⊥DE ,交直线BC 于点F ,连接EF .7.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.8.(2016·北京·中考真题)在等边△ABC中,(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有P A=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明P A=PM,只需证△APM是等边三角形;想法2:在BA上取一点N,使得BN=BP,要证明P A=PM,只需证△ANP≌△PCM;想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证P A=PM,只需证P A=CK,PM=CK.请你参考上面的想法,帮助小茹证明P A=PM(一种方法即可).9.(2015·北京·统考中考真题)在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)参考答案1.(1)见解析(2)90AEF ∠=°,证明见解析 【分析】(1)由旋转的性质得DM DE =,2MDE α∠=,利用三角形外角的性质求出C DEC α∠=∠=,可得DE DC =,等量代换得到DM DC =即可;(2)延长FE 到H 使FE EH =,连接CH ,AH ,可得DE 是FCH V 的中位线,然后求出B ACH ∠∠=,设DMDE m ==,CD n =,求出2BF m CH ==,证明()SAS ABF ACH ≅ ,得到AF AH =,再根据等腰三角形三线合一证明AE FH ⊥即可.【详解】(1)证明:由旋转的性质得:DM DE =,2MDE α∠=, ∵C α∠=, ∴D DEC M E C α∠−∠∠==, ∴C DEC ∠=∠, ∴DE DC =,∴DM DC =,即D 是MC 的中点;(2)90AEF ∠=°; 证明:如图2,延长FE 到H 使FE EH =,连接CH ,AH ,∵DF DC =,∴DE 是FCH V 的中位线,∴DE CH ∥,2CH DE =,由旋转的性质得:DM DE =,2MDE α∠=, ∴2FCH α∠=, ∵B C α∠=∠=, ∴ACH α∠=,ABC 是等腰三角形, ∴B ACH ∠∠=,AB AC =,设DMDE m ==,CD n =,则2CH m =,CM m n =+, ∴DFCD n ==, ∴FM DF DM n m =−=−, ∵AM BC ⊥,∴BM CM m n ==+,∴()2BF BM FM m n n m m =−=+−−=,∴CH BF =,在ABF △和ACH 中,AB AC B ACH BF CH = ∠=∠ =,∴()SAS ABF ACH ≅ ,∴AF AH=,∵FE EH =,∴AE FH ⊥,即90AEF ∠=°.【点睛】本题考查了等腰三角形的判定和性质,旋转的性质,三角形外角的性质,三角形中位线定理以及全等三角形的判定和性质等知识,作出合适的辅助线,构造出全等三角形是解题的关键.2.(1)见解析(2)CD CH =;证明见解析【分析】(1)先利用已知条件证明()SAS FCE BCD ≅ ,得出CFE CBD ??,推出EF BD ∥,再由AF EF ⊥即可证明BD AF ⊥;(2)延长BC 到点M ,使CM =CB ,连接EM ,AM ,先证()SAS MEC BDC ≅ ,推出ME BD =,通过等量代换得到222AM AE ME =+,利用平行线的性质得出90BHE AEM ???,利用直角三角形斜边中线等于斜边一半即可得到CD CH =.【详解】(1)证明:在FCE △和BCD △中,CE CD FCE BCD CF CB = ∠=∠ =, ∴ ()SAS FCE BCD ≅ ,∴ CFE CBD ??,∴ EF BD ∥,∵AF EF ⊥,∴BD AF ⊥.(2)解:补全后的图形如图所示,CD CH =,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,∵90ACB ∠= ,CM =CB ,【点睛】本题考查了中位线定理、矩形的判定与性质、三角形全等的判定定理与性质、垂直平分线的判定与性质、勾股定理等知识点,较难的是题(2),通过作辅助线,构造全等三角形和直角三角形是解题关键.5.(1)如图所示见解析;(2)见解析;(3)OP=2.证明见解析.【分析】(1)根据题意画出图形即可.(2)由旋转可得∠MPN=150°,故∠OPN=150°-∠OPM;由∠AOB=30°和三角形内角和180°可得∠OMP=180°-30°-∠OPM=150°-∠OPM,得证.(3)根据题意画出图形,以ON=QP为已知条件反推OP的长度.由(2)的结论∠OMP=∠OPN联想到其补角相等,又因为旋转有PM=PN,已具备一边一角相等,过点N作NC⊥OB于点C,过点P作PD⊥OA于点D,即可构造出△PDM≌△NCP,进而得PD=NC,DM=CP.此时加上ON=QP,则易证得△OCN ≌△QDP,所以OC=QD.再设DM=CP=x,所以OC=OP+PC=2+x,MH=MD+DH=x+1,由于点M、Q关于点H对称,得出DQ=DH+HQ=1+x+1=2+x,得出OC=DQ,再利用SAS得出△OCN≌△QDP即可【详解】解:(1)如图1所示为所求.(2)设∠OPM=α,∵线段PM绕点P顺时针旋转150°得到线段PN∴∠MPN=150°,PM=PN∴∠OPN=∠MPN-∠OPM=150°-α∵∠AOB=30°∴∠OMP=180°-∠AOB-∠OPM=180°-30°-α=150°-α∴∠OMP=∠OPN8.(1)80°;(2)①补图见解析;②证明见解析【分析】(1)根据等腰三角形的性质得到∠APQ考点:全等三角形的判定;解直角三角形;正方形的性质;四点共圆。

2023年中考数学总复习:代数几何综合问题

2023年中考数学总复习:代数几何综合问题

2023年中考数学总复习:代数几何综合问题【中考展望】代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键.题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题.题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径.解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口.【方法点拨】方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明.函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等.函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型.几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力.1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现.2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等.3.几何论证题主要考查学生综合应用所学几何知识的能力.4.解几何综合题应注意以下几点:(1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系;(2)注意推理和计算相结合,力求解题过程的规范化;(3)注意掌握常规的证题思路,常规的辅助线作法;(4)注意灵活地运用数学的思想和方法.【典型例题】类型一、方程与几何综合的问题1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.第1页共23页。

初三证明几何练习题和答案

初三证明几何练习题和答案

初三证明几何练习题和答案在初三的数学学习中,证明几何是一个重要的内容。

通过证明几何的练习,不仅可以提高学生的逻辑思维和推理能力,还能加深对几何概念的理解。

本文将提供一些初三常见的证明几何练习题和答案,以供学生参考。

1. 设AO和BO是直线段垂直平分线,点C在直线AB上。

证明:∠ACO = ∠BCO。

解答:首先,根据直线段垂直平分线的定义,AO和BO互相垂直且平分直线段AB。

设∠ACO的度数为x,∠BCO的度数为y。

则根据垂直平分线的性质可知∠COA = ∠COB = 90°。

再根据直线上的角平分线性质可知∠COA = ∠AOC = x/2,∠COB= ∠BOC = y/2。

又由于∠COA = 90°,则x/2 + y/2 = 90°,即x + y = 180°。

因此,根据等量关系可得∠ACO = ∠BCO,证明完成。

2. 在△ABC中,垂直平分线BD交边AC于点E,证明:AE = EC。

解答:根据垂直平分线的定义,BD是边AC的垂直平分线,即BD垂直于AC且平分边AC。

设AE的长度为x,EC的长度为y。

根据垂直平分线的性质可知∠BDE = ∠BDE = 90°,∠BED =∠CED。

由于△BDE和△BEC中∠BDE = ∠BEC = 90°,则两个三角形中的另外两个角也相等,即∠BDE = ∠BEC。

又由于∠BDE = ∠BEC,三角形内角和为180°,则∠BED + ∠BDE + ∠BEC = 180°。

代入角度的数值可得∠BED + 90° + ∠BED = 180°,即∠BED = 45°。

进一步,根据角平分线的性质可知∠AEB = ∠BEC,即∠AEB = 45°。

因为∠AEB为三角形△AEB的内角,所以△AEB的另外两个角之和也为180°。

因此,180° = 45° + x + 45°,化简得180° = x + 90°,即x = 90°,即AE的长度为90°。

2023北京中考数学几何题

2023北京中考数学几何题

2023北京中考数学几何题
2023年北京中考数学几何题指的是在2023年北京市教育局组织的初中毕业考试中的数学科目中的几何部分试题。

这些试题主要考察学生对几何基础知识的掌握程度,包括图形的性质、判定、证明等,以及运用这些知识解决实际问题的能力。

以下是2023年北京中考数学几何题的示例:
1.填空题:已知一个直角三角形的两条直角边长分别为3和4,则斜边长为
____.
2.选择题:在等腰三角形ABC中,AB=AC,∠B=70°,则∠A的度数为( )
A.70°
B.50°
C.70°或50°
D. 70°或40°
3.解答题:已知△ABC中,∠A=50°,∠B-∠C=20°,则∠B= ___.
4.解答题:小颖要制作一个三角形木架,现有两根长度分别为8cm和5cm的
木棒,如果要求第三根木棒的长度范围,小颖应该取多少?
总体来说,2023年北京中考数学几何题是对学生几何知识和能力的全面检测,要求学生掌握基础几何知识,并能够运用这些知识解决实际问题。

2023年九年级数学中考综合培优测试卷:圆相关的证明题

2023年九年级数学中考综合培优测试卷:圆相关的证明题

2023年九年级数学中考综合培优测试卷:圆相关的证明题1.如图,内接于半圆O ,为直径,的平分线交于点F ,交半圆ABC AB ABC ∠AC O 于点D ,于点E ,且交于点P ,连接.DE AB ⊥AC AD求证:(1);CAD ABD ∠=∠(2)点P 是线段的中点.AF 2.如图,已知是的直径,点是上一点,连接,,,半AB O C O BC AC 60A ∠=︒径,垂足为点.OD BC ⊥E(1)求的度数;BOD ∠(2)若,求的长.8AB = BD 3.如图,是的直径,弦平分,交的延长线于点E .AB O AD BAC ∠DE AC ⊥AC(1)求证:是的切线;DE O (2)若,的半径为6,求图中阴影部分的面积(结果保留).AD BC =O π4.如图,是的外接圆,点E 是和角平分线的交点,的延O ABC BAC ∠ABC ∠AE 长线交于点F ,交于点D ,连接.BC O BD(1)求证:;DB DE =(2)若,求的长.34AE DF ==,DB 5.点在以为直径的上,分别以,为边作平行四边形.D AB O AB AD ABCD(1)如图(1),若,求证:与相切;45C ∠=︒CD O (2)如图(2),与交于点,若,求的值.CD O E 3cos 5A =DE CE 6.如图,在中,点是边上的一点,与、分别相切于点ABC O AB O AC BC A 、E ,与相交于点,作,点恰好为上一点.AB O D ACEF F O(1)连接,求证:是等边三角形;AE ACE △(2)若AC =7.如图,是⊙O 的直径,点C 、D 均在⊙O 上,且平分,过点C 作AB AC DAB ∠⊙O 的切线交的延长线于点P ,连接.AB BD(1)求证:;BD CP ∥(2)若,,求的长.3sin 5P =2BP =BD 8.如图,中,,点D 为斜边的中点,以为直径作,Rt ABC △90BAC ∠=︒BC AD O 分别与,边交于点E ,F ,连接,过点F 作,垂足为G .AB AC DE FG BC ⊥(1)求证:是的切线;FG O (2)已知的半径为,若,求的长.O 523AE =CF 9.如图,在中,弦与直径交于点,弦的延长线与过点A 的的切O CD AB F DC O 线交于点.连接,,,且.E AD AC BC AC CF =(1)求证:;AD AE =(2)若,求的长.AC =1tan 2B =AE 10.如图,为的切线,A 为切点,过点A 作,垂足为点C ,交于PA O AB OP ⊥O 点B ,延长与的延长线交于点D .BO PA(1)求证:是的切线;PB O (2)若,,求的长.3OB =5OD =DP 11.如图,为的直径,是弦,且于点E ,连接.AB O CD AB CD ⊥AC OC BC ,,(1)若,求的度数;25ACO ∠=︒BCD ∠(2)若,求的半径.4cm 16cm EB CD ==,O12.如图,为的直径,四边形是矩形,连接,延长交于AB O OBCD AD AD O E ,连接.CE(1)若,,求的长;30A ∠=︒2AB = BE (2)求证:为的切线.CE O 13.如图,是的外接圆,为直径,点D 为上一点,连接,过点O ABC AB O DB C 作交的延长线于点E ,交的延长线于点F .已知.CE DB ⊥DB AB 2ABD BAC ∠=∠(1)求证:为的切线;CF O(2)若,,求阴影部分的面积.CF =1sin 2AFC ∠=14.如图,是的直径,点在上,是的切线,,的AB O C O CD O BD CD ⊥DB 延长线与交于点.O E(1)求证:;2ABE A ∠=∠(2)若,,求的长.1tan 2A =4BD =BE 15.如图,四边形内接于,是的直径,,垂足为E ,ABCD O BD O AE CD ⊥平分.DA BDE ∠(1)求证:是的切线;AE O (2)若,,求和弧的长.1sin 2DBC ∠=1cm DE =BD CD 16.如图,在中,,,点为边上一点,且,ABC 90ACB ∠=︒4AC =D AC 3BD CD =以为直径作交的中点于,过点作于点.BD O AB E E EF AC ⊥F(1)求证:为的切线.EF O (2)求的长.BC 17.如图,在中,,以为直径的半圆分别交,于点,ABC AB AC =AB O BC AC D ,连结,,.E EB OD DE(1)求证:.OD EB ⊥(2)若,,求的长.DE =10AB =AE 18.如图,点O 在的平分线上,与相交于点C .与的延长线相交MPN ∠O PO PO 于点D ,与相切于点A .PM(1)求证:直线是的切线;PN O (2)若,求的半径;4,2PA PC ==O (3)点G 是劣弧上一点,过点G 作的切线分别交于点E ,F ,若AC O ,PM PN 的周长是半径的3倍,求的值.PEF O tan EPF ∠。

2023北京中考数学几何题

2023北京中考数学几何题

2023北京中考数学几何题摘要:一、引言1.介绍2023 北京中考数学几何题2.强调几何题在中考中的重要性二、题目解析1.第一题:考查几何基础知识a.题目概述b.解题思路与方法c.答案与解析2.第二题:考查几何定理运用a.题目概述b.解题思路与方法c.答案与解析3.第三题:考查几何综合能力a.题目概述b.解题思路与方法c.答案与解析三、备考建议1.扎实掌握几何基础知识2.熟练运用几何定理3.提高几何综合解题能力4.定期进行模拟练习正文:随着2023 北京中考的临近,数学几何题的备考成为了考生们关注的焦点。

几何题在中考数学中占据较大比重,要求考生具备扎实的几何基础知识、熟练运用几何定理以及较高的几何综合解题能力。

本文将对2023 北京中考数学几何题进行详细解析,并提供一些备考建议。

一、题目解析1.第一题:考查几何基础知识本题主要考查考生对几何基础知识的理解和掌握。

题目概述:给定一个直角三角形,求斜边上的高。

解题思路与方法:根据直角三角形的性质,利用勾股定理求出斜边和直角边的长度,然后根据三角形的面积公式求出斜边上的高。

答案与解析:根据计算结果,得出斜边上的高为x。

2.第二题:考查几何定理运用本题主要考查考生对几何定理的运用能力。

题目概述:给定一个圆,已知圆心到某一点的距离为r,求该点到圆周的距离。

解题思路与方法:根据圆的性质,利用垂径定理求出该点到圆周的距离。

答案与解析:根据计算结果,得出该点到圆周的距离为r。

3.第三题:考查几何综合能力本题主要考查考生的几何综合解题能力。

题目概述:给定一个长方形,已知长方形的长和宽,求长方形的对角线长度。

解题思路与方法:根据长方形的性质,利用勾股定理求出对角线的长度。

答案与解析:根据计算结果,得出长方形的对角线长度为x。

二、备考建议1.扎实掌握几何基础知识几何基础知识是解决几何问题的关键,要求考生熟练掌握各类几何图形的性质、定理和公式。

2.熟练运用几何定理在解决几何问题时,熟练运用相关几何定理可以帮助考生迅速找到解题思路。

2023年中考必刷题:几何证明及计算

2023年中考必刷题:几何证明及计算

六、几何证明及计算1.(2022.抚顺、辽阳)在平面直角坐标系中,线段AB的端点A(3,2),B(5,2),将线段AB平移得到线段CD,点A的对应点C的坐标是(-1,2),则点B的对应点D的坐标是_______。

2.(2022.沈阳)在平面直角坐标系中点A(2,3)关于y轴对称点的坐标是()A.(-2,-3)B.(-2,3).C.(2,-3)D.(-3,-2)3.(2022.大连)如图,在平面直角坐标系中,点A的坐标是(1,2),将线段OA向右平移4个单位长度,得到线段BC,点A的对应点C 的坐标是_______.4.(2022.沈阳)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB=2√5cm,AC=4cm,则BD的长为________cm.5.(2022.鞍山)如图,菱形ABCD的边长为2,∠ABC=60°,对角线AC与BD交于点O,E为OB中点,F为AD中点,连接EF,则EF的长为_______.6.(2022.丹东)如图,在四边形ABCD中,AB∥CD,AB=CD,对角线AC与BD交于点O,点E是AD的中点,连接OE,△ABD的周长为12cm,则下列结论错误的是()A.OE∥ABB.四边形ABCD是中心对称图形C.△EOD的周长等于3cmD.若∠ABC=90°,则四边形ABCD是轴对称图形7.(2022.甘肃)大自然中有许多小动物都是“小数学家”,如图1,蜜蜂的蜂巢结构非常精巧、实用而且节省材料,多名学者通过观测研究发现:蜂巢巢房的横截面大都是正六边形。

如图2,一个巢房的横截面为正六边形ABCDEF,若对角线AD的长约为8mm,则正六边形ABCDEF的边长为()A.2mmB.2√2mmC.2√3mmD. 4mm8.(2022.沈阳)如图,在Rt△ABC中,∠A=30°,点D、E分别是直角边AC、BC的中点,连接DE,则∠CED度数是()A.70°B.60°C.30°D.20°9.(2022.鞍山)如图,直线a∥b,等边三角形ABC的顶点C在直线b 上,∠2=40°,则∠1的度数为()A.80°B.70°C.60°D.50°10.(2022.锦州)如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.36°C.40°D.50°11.(2022.营口)如图,直线DE∥FG,Rt△ABC顶点B,C分别在DE,FG上,若∠BCF=25°,则∠ABE的大小为A.55°B.25°C.65°D.75°12.(2022.鞍山)如图,AB∥CD,AD,BC相交于点E,若AE:DE=1:2,AB=2.5,则CD的长为_______.13.(2022.鞍山)如图,在△ABC中,AB=AC,∠BAC=24,延长BC到点D,使CD=AC,连接AD,则∠D的度数()A.39°B.40°C.49°D.51°14.(2022.铁岭)如图,直线m∥n,AC⊥BC于点C,∠1=30°,则∠2的度数为()A.140°B.130°C.120°D.110°15.(2022.锦州)如图,平行线AB,CD被直线EF所载,FG平分∠EFD=70°,则∠EGF的度数是()A.35°B.55°C.70°D.110°16.(2022.铁岭)如图,OG平分∠MON,点A,B是射线OM,ON 上的点,连接AB.按以下步骤作图:①以点B为圆心,任意长为半径作弧,交AB于点C,交BN于点D; ②分别以点C和点D为圆心,大CD长为半径作弧,两弧相交于点E;③作射线BE,交OG于点P,于12若∠ABN=140°,∠MON=50°,则∠OPB的度数为()A.35°B.45°C.55°D.65°17.(2022.营口)如图,在△ABC中,AB=AC,∠A=36°,由图中的尺规作图得到的射线与AC交于点D,则以下推断错误的是A.BD=BCB.AD=BDC.∠ADB=108°D.CD=12AD18.(2022.锦州)如图,在矩形ABCD中,AB=6,BC=8,分别以点A和C为圆心,以大于12AC的长为半径作弧,两弧相交于点M和N,作直线MN分别交AD,BC于点E,F,则AE的长为()A.74B.94C.154D.25419.(2022.丹东)如图,在Rt△ABC中,∠B=90°,AB=4,BC=8,分别以A,C为圆心,以大于12AC的长为半径作弧,两弧相交于点P和点Q,直线PQ与AC交于点D,则AD的长为______.20.(2022.营口)如图,在矩形ABCD中,点M在AB边上,把△BCM 沿直线CM折叠,使点B落在AD边上的点E处,连接EC,过点B作BF⊥EC,垂足为F,若CD=1,CF=2,则线段AE的长为A.√5−2B.√3−1C.13 D.1221.(2022.营口)如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED是菱形,这个条件可以是______(写出上一个即可)22.(2022.营口)如图,在正六边形ABCDEF中,连接AC,CF. 则∠ACF=___度。

2023年河南省中考数学真题(解析版)

2023年河南省中考数学真题(解析版)

2023年河南省普通高中招生考试试卷数学一、选择题1. 下列各数中,最小的数是( ) A. -l B. 0C. 1D.【答案】A 【解析】【分析】根据实数的大小比较法则,比较即可解答.【详解】解:∵101−<<<, ∴最小的数是-1. 故选:A【点睛】本题考查实数的大小比较,负数都小于0,正数都大于0,正数大于一切负数,两个负数,其绝对值大的反而小.2. 北宋时期的汝官窑天蓝釉刻花鹅颈瓶是河南博物院九大镇院之宝之一,具有极高的历史价值、文化价值.如图所示,关于它的三视图,下列说法正确的是( )A. 主视图与左视图相同B. 主视图与俯视图相同C. 左视图与俯视图相同D. 三种视图都相同【答案】A 【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】解:这个花鹅颈瓶的主视图与左视图相同,俯视图与主视图和左视图不相同. 故选:A .【点睛】此题主要考查了简单几何体的三视图,掌握三视图的概念是解题关键.3. 2022年河南省出版的4.59亿册图书,为贯彻落实党的二十大关于深化全民阅读活动的重要精神,建设学习型社会提供了丰富的图书资源.数据“4.59亿”用科学记数法表示为( ) A. 74.5910×B. 845.910×C. 84.5910×D. 90.45910×【答案】C 【解析】【分析】将一个数表示为10n a ×的形式,其中110a ≤<,n 为整数,这种记数方法叫做科学记数法,据此即可得出答案.【详解】解:4.59亿8459000000 4.9510=×. 故选:C .【点睛】本题主要考查了用科学记数法表示较大的数,掌握形式为10n a ×,其中110a ≤<,确定a 与n 的值是解题的关键.4. 如图,直线AB ,CD 相交于点O ,若180∠=°,230∠=°,则AOE ∠的度数为( )A. 30°B.50°C. 60°D. 80°【答案】B 【解析】【分析】根据对顶角相等可得180AOD ∠=∠=°,再根据角的和差关系可得答案. 【详解】解:∵180∠=°, ∴180AOD ∠=∠=°, ∵230∠=°,∴2803050AOE AOD ∠=∠−∠=°−°=°, 故选:B【点睛】本题主要考查了对顶角的性质,解题的关键是掌握对顶角相等. 5. 化简11a a a−+的结果是( ) A. 0 B. 1C. aD. 2a −【答案】B 【解析】【分析】根据同母的分式加法法则进行计算即可. 【详解】解:11111a a aa a a a−−++===, 故选:B .【点睛】本题考查同分母的分式加法,熟练掌握运算法则是解决问题的关键. 6. 如图,点A ,B ,C 在O e 上,若55C ∠=°,则AOB ∠的度数为( )A. 95°B. 100°C. 105°D. 110°【答案】D 【解析】【分析】直接根据圆周角定理即可得. 【详解】解:∵55C ∠=°,∴由圆周角定理得:2110AOB C ==°∠∠, 故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键. 7. 关于x 一元二次方程280x mx +−=的根的情况是( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 只有一个实数根 D. 没有实数根【答案】A 【解析】【分析】对于20(0)ax bx c a ++=≠,当0∆>, 方程有两个不相等的实根,当Δ0=, 方程有两个相等的实根,Δ0<, 方程没有实根,根据原理作答即可. 【详解】解:∵280x mx +−=,∴()2248320m m ∆=−×−=+>, 所以原方程有两个不相等的实数根,的【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题关键. 8. 为落实教育部办公厅、中共中央宣传部办公厅关于《第41批向全国中小学生推荐优秀影片片目》的通知精神,某校七、八年级分别从如图所示的三部影片中随机选择一部组织本年级学生观看,则这两个年级选择的影片相同的概率为( )A.12B.13C.16D.19【答案】B 【解析】【分析】先画树状图,再根据概率公式计算即可.【详解】设三部影片依次为A 、B 、C ,根据题意,画树状图如下:故相同的概率为3193=. 故选B .【点睛】本题考查了画树状图法计算概率,熟练掌握画树状图法是解题的关键.9. 二次函数2y ax bx =+的图象如图所示,则一次函数y x b =+的图象一定不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【解析】【分析】根据二次函数图象的开口方向、对称轴判断出a 、b 的正负情况,再由一次函数的性质解答. 【详解】解:由图象开口向下可知a<0,由对称轴bx 02a=−>,得0b >. ∴一次函数y x b =+的图象经过第一、二、三象限,不经过第四象限. 故选:D .【点睛】本题考查二次函数图象和一次函数图象的性质,解答本题的关键是求出a 、b 的正负情况,要掌握它们的性质才能灵活解题,此题难度不大.10. 如图1,点P 从等边三角形ABC 的顶点A 出发,沿直线运动到三角形内部一点,再从该点沿直线运动到顶点B .设点P 运动的路程为x ,PBy PC=,图2是点P 运动时y 随x 变化的关系图象,则等边三角形ABC 的边长为( )A. 6B. 3C. D.【答案】A 【解析】【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为,可知AO OB ==,过点O 作OD AB ⊥,解直角三角形可得cos303ADAO =⋅°=,进而可求得等边三角形ABC 的边长. 【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PBPC=,∴PB PC =,AO = 又∵ABC V 为等边三角形, ∴60BAC ∠=°,AB AC =, ∴()SSS APB APC △≌△, ∴BAO CAO ∠=∠, ∴30BAO CAO ∠=∠=°,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==, ∴30BAO ABO ∠=∠=°, 过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅°=, ∴6AB AD BD =+=, 即:等边三角形ABC 的边长为6, 故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件.二、填空题11. 某校计划给每个年级配发n 套劳动工具,则3个年级共需配发______套劳动工具. 【答案】3n 【解析】【分析】根据总共配发的数量=年级数量×每个年级配发的套数,列代数式. 【详解】解:由题意得:3个年级共需配发得套劳动工具总数为:3n 套,故答案为:3n .【点睛】本题考查了列代数式,解答本题的关键是读懂题意,找出合适的等量关系,列代数式. 12. 方程组35,37x y x y +=+=的解为______.【答案】12x y = =【解析】【分析】利用加减消元法求解即可.【详解】解:3537x y x y +=+=①② 由3×−①②得,88x =,解得1x =, 把1x =代入①中得315y ×+=,解得2y =, 故原方程组的解是12x y = = ,故答案为:12x y == . 【点睛】本题主要考查了二元一次方程组解法,解二元一次方程组的常用解法:代入消元法和加减消元法,观察题目选择合适的方法是解题关键.13. 某林木良种繁育试验基地为全面掌握“无絮杨”品种苗的生长规律,定期对培育的1000棵该品种苗进行抽测.如图是某次随机抽测该品种苗的高度x (cm )的统计图,则此时该基地高度不低于300cm 的“无絮杨”品种苗约有______棵.【答案】280 【解析】【分析】利用1000棵乘以样本中不低于300cm 的百分比即可求解.【详解】解:该基地高度不低于300cm 的“无絮杨”品种苗所占百分比为10%18%28%+=,的则不低于300cm “无絮杨”品种苗约为:100028%280×=棵, 故答案:280.【点睛】本题考查用样本估计总体,明确题意,结合扇形统计图中百分比是解决问题的关键. 14. 如图,PA 与O e 相切于点A ,PO 交O e 于点B ,点C 在PA 上,且CB CA =.若5OA =,12PA =,则CA 的长为______.【答案】103【解析】【分析】连接OC ,证明OAC OBC V V ≌,设CB CA x ==,则12PC PA CA x =−=−,再证明PAO PBC V V ∽,列出比例式计算即可.【详解】如图,连接OC , ∵PA 与O e 相切于点A , ∴90OAC ∠=°;∵OA OB CA CB OC OC == =, ∴OAC OBC V V ≌, ∴90OAC OBC ∠=∠=°, ∴90PAO PBC ∠=∠=°, ∵P P ∠=∠,的为∴PAO PBC V V ∽, ∴PO AOPC BC=, ∵5OA =,12PA =,∴13PO ==,设CB CA x ==,则12PC PA CA x =−=−,∴13512x x=−,解得103x =, 故CA 的长为103,故答案为:103.【点睛】本题考查了切线的性质,三角形全等的判定和性质,勾股定理,三角形相似的判断和性质,熟练掌握性质是解题的关键.15. 矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21+ 【解析】【分析】分两种情况:当90MND ∠=°时和当90NMD ∠=°时,分别进行讨论求解即可. 【详解】解:当90MND ∠=°时,∵四边形ABCD 矩形, ∴90A ∠=°,则∥MN AB , 由平行线分线段成比例可得:AN BMND MD=, 又∵M 为对角线BD 的中点, ∴BM MD =,∴1AN BMND MD==, 即:1NDAN ==, ∴2AD AN ND =+=, 当90NMD ∠=°时,∵M 为对角线BD 的中点,90NMD ∠=° ∴MN 为BD 的垂直平分线, ∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=°,则BN ==∴BN ND ==∴1AD AN ND =+,综上,AD 的长为21+,故答案为:21.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键.三、解答题16. (1)计算:135−−−+; (2)化简:()()224x y x x y −−−. 【答案】(1)15;24y 【解析】【分析】(1)先求绝对值和算术平方根,再进行加减计算即可; (2)先利用完全平方公式去括号,再合并同类项即可.【详解】(1)解:原式1=335−+15=; (2)解:原式222444x xy y x xy =−+−+24y =.【点睛】本题考查实数的混合运算、多项式乘多项式的混合运算,熟练掌握完全平方公式是解题的关键. 17. 蓬勃发展的快递业,为全国各地的新鲜水果及时走进千家万户提供了极大便利.不同的快递公司在配送、服务、收费和投递范围等方面各具优势.樱桃种植户小丽经过初步了解,打算从甲、乙两家快递公司中选择一家合作,为此,小丽收集了10家樱桃种植户对两家公司的相关评价,并整理、描述、分析如下:a .配送速度得分(满分10分): 甲:6 6 7 7 7 8 9 9 9 10 乙:6 7 7 8 8 8 8 9 9 10b .服务质量得分统计图(满分10分):c .配送速度和服务质量得分统计表:项目 统计量 快递公司配送速度得分服务质量得分平均数中位数平均数方差甲 7.8 m 72s 甲乙 8 8 72s 乙根据以上信息,回答下列问题:(1)表格中的m =______;2s 甲______2s 乙(填“>”“=”或“<”). (2)综合上表中的统计量,你认为小丽应选择哪家公司?请说明理由.(3)为了从甲、乙两家公司中选出更合适的公司,你认为还应收集什么信息(列出一条即可)? 【答案】(1)7.5;< (2)甲公司,理由见解析(3)还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可) 【解析】【分析】(1)根据中位数和方差的概念求解即可; (2)通过比较平均数,中位数和方差求解即可; (3)根据题意求解即可. 【小问1详解】由题意可得,787.52m +==, ()()()()22222137748726757110s =××−+×−+×−+−=甲()()()()()()()222222221478721072679725777 4.210s =×−+−+×−+×−+−+×−+−=乙,∴22s s <甲乙, 故答案为:7.5;<; 【小问2详解】∵配送速度得分甲和乙的得分相差不大,服务质量得分甲和乙的平均数相同,但是甲的方差明显小于乙的方差, ∴甲更稳定, ∴小丽应选择甲公司; 【小问3详解】还应收集甲、乙两家公司的收费情况.(答案不唯一,言之有理即可)【点睛】本题考查中位数、平均数、方差的定义,掌握中位数、平均数、方差的定义是解题的关键. 18. 如图,ABC V 中,点D 在边AC 上,且AD AB =.(1)请用无刻度的直尺和圆规作出A ∠的平分线(保留作图痕迹,不写作法). (2)若(1)中所作的角平分线与边BC 交于点E ,连接DE .求证:DE BE =.【答案】(1)见解析 (2)见解析 【解析】【分析】(1)利用角平分线的作图步骤作图即可; (2)证明()SAS BAE DAE △≌△,即可得到结论. 【小问1详解】解:如图所示,即为所求,【小问2详解】证明:∵AE 平分BAC ∠, ∴BAE DAE ∠=∠, ∵AB AD =,AE AE =, ∴()SAS BAE DAE △≌△, ∴DE BE =.【点睛】此题考查了角平分线的作图、全等三角形的判定和性质等知识,熟练掌握角平分线的作图和全等三角形的判定是解题的关键.19. 小军借助反比例函数图象设计“鱼形”图案,如图,在平面直角坐标系中,以反比例函数ky x=图象上的点)A和点B 为顶点,分别作菱形AOCD 和菱形OBEF ,点D ,E 在x 轴上,以点O 为圆心,OA长为半径作»AC ,连接BF .(1)求k 的值;(2)求扇形AOC 的半径及圆心角的度数;(3)请直接写出图中阴影部分面积之和.【答案】(1(2)半径为2,圆心角为60°(3)23π 【解析】【分析】(1)将)A代入ky x=中即可求解; (2)利用勾股定理求解边长,再利用三角函数求出AOD ∠的度数,最后结合菱形的性质求解;(3)先计算出AOCD S =菱形,再计算出扇形的面积,根据菱形的性质及结合k 的几何意义可求出FBO S =V ,从而问题即可解答.【小问1详解】解:将)A代入ky x=中,得1=,解得:k = 【小问2详解】解:Q 过点A 作OD 的垂线,垂足为G ,如下图:)AQ,1,AG OG ∴==,2OA ∴=,∴半径为2;12AG OA =Q ,∴1sin 2AG AOG OG ∠==, 30AOG ∴∠=°,由菱形的性质知:30AOG COG ∠=∠=°,60AOC ∴∠=°,∴扇形AOC 的圆心角的度数:60°;【小问3详解】解:2OD OG ==Q ,1AOCD S AG OD ∴=×=×菱形,221122663AOC S r πππ=×=××=Q 扇形, 如下图:由菱形OBEF 知,FHO BHO S S =V V ,2BHO k S ==V Q ,2FBO S ∴V , 2233FBO AOCD AOC S S S S ππ∴=+−+−=V 阴影部分面积菱形扇形.【点睛】本题考查了反比例函数及k 的几何意义,菱形的性质、勾股定理、圆心角,解题的关键是掌握k 的几何意义.20. 综合实践活动中,某小组用木板自制了一个测高仪测量树高,测高仪ABCD 为正方形,30cm AB =,顶点A 处挂了一个铅锤M .如图是测量树高的示意图,测高仪上的点D ,A 与树顶E 在一条直线上,铅垂线AM 交BC 于点H .经测量,点A 距地面1.8m ,到树EG 的距离11m AF =,20cm BH =.求树EG 的高度(结果精确到0.1m ).【答案】树EG 的高度为9.1m 【解析】【分析】由题意可知,90BAE MAF BAD ∠=∠=∠=°, 1.8m FG =,易知EAF BAH ∠=∠,可得2tan tan 3EF EAF BAH AF ∠==∠=,进而求得22m 3EF =,利用EG EF FG =+即可求解.【详解】解:由题意可知,90BAE MAF BAD ∠=∠=∠=°, 1.8m FG =, 则90EAF BAF BAF BAH ∠+∠=∠+∠=°, ∴EAF BAH ∠=∠,∵30cm AB =,20cm BH =, 则2tan 3BH BAH AB ∠==, ∴2tan tan 3EF EAF BAH AF ∠==∠=, ∵11m AF =,则2113EF =, ∴22m 3EF =, ∴221.89.1m 3EG EF FG =+=+≈, 答:树EG 的高度为9.1m .【点睛】本题考查解直角三角形的应用,得到EAF BAH ∠=∠是解决问题的关键. 21. 某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种. 活动一:所购商品按原价打八折;活动二:所购商品按原价每满..300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由.(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价.(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a 元,请直接写出a 的取值范围.【答案】(1)活动一更合算(2)400元 (3)当300400a ≤<或600800a ≤<时,活动二更合算 【解析】分析】(1)分别计算出两个活动需要付款价格,进行比较即可;(2)设这种健身器材的原价是x 元,根据“选择活动一和选择活动二的付款金额相等”列方程求解即可; (3)由题意得活动一所需付款为0.8a 元,活动二当0300a <<时,所需付款为a 元,当300600a ≤<时,所需付款为()80a −元,当600900a ≤<时,所需付款为()160a −元,然后根据题意列出不等式即可求解. 【小问1详解】解:购买一件原价为450元的健身器材时,活动一需付款:4500.8360×=元,活动二需付款:45080370−=元, ∴活动一更合算; 【小问2详解】设这种健身器材的原价是x 元, 则0.880x x =−, 解得400x =,答:这种健身器材的原价是400元, 【小问3详解】这种健身器材的原价为a 元, 则活动一所需付款为:0.8a 元,活动二当0300a <<时,所需付款为:a 元, 当300600a ≤<时,所需付款为:()80a −元, 当600900a ≤<时,所需付款为:()160a −元,①当0300a <<时,0.8a a >,此时无论a 为何值,都是活动一更合算,不符合题意, ②当300600a ≤<时,800.8a a −<,解得300400a ≤<, 即:当300400a ≤<时,活动二更合算,③当600900a ≤<时,1600.8a a −<,解得600800a ≤<, 即:当600800a ≤<时,活动二更合算,综上:当300400a ≤<或600800a ≤<时,活动二更合算.【点睛】此题考查了一元一次方程及一元一次不等式的应用,解答本题的关键是仔细审题,注意分类讨论的应用.【22. 小林同学不仅是一名羽毛球运动爱好者,还喜欢运用数学知识对羽毛球比赛进行技术分析,下面是他对击球线路的分析.如图,在平面直角坐标系中,点A ,C 在x 轴上,球网AB 与y 轴的水平距离3m OA =,2m CA =,击球点P 在y 轴上.若选择扣球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足一次函数关系0.4 2.8y x =−+;若选择吊球,羽毛球的飞行高度()m y 与水平距离()m x 近似满足二次函数关系()21 3.2y a x −+.(1)求点P 的坐标和a 的值.(2)小林分析发现,上面两种击球方式均能使球过网.要使球的落地点到C 点的距离更近,请通过计算判断应选择哪种击球方式.【答案】(1)()0,2.8P ,0.4a =−, (2)选择吊球,使球的落地点到C 点的距离更近 【解析】【分析】(1)在一次函数上0.4 2.8y x =−+,令0x =,可求得()0,2.8P ,再代入()21 3.2y a x −+即可求得a 的值;(2)由题意可知5m OC =,令0y =,分别求得0.4 2.80x −+=,()20.41 3.20x −−+=,即可求得落地点到O 点的距离,即可判断谁更近. 【小问1详解】解:在一次函数0.4 2.8y x =−+, 令0x =时, 2.8y =, ∴()0,2.8P ,将()0,2.8P 代入()21 3.2y a x −+中,可得: 3.2 2.8a +=,解得:0.4a =−; 【小问2详解】∵3m OA =,2m CA =, ∴5m OC =,选择扣球,则令0y =,即:0.4 2.80x −+=,解得:7x =, 即:落地点距离点O 距离为7m , ∴落地点到C 点的距离为752m −=,选择吊球,则令0y =,即:()20.41 3.20x −−+=,解得:1x ±+(负值舍去),即:落地点距离点O 距离为()1m ,∴落地点到C 点的距离为()(514m −−=−,∵42−<,∴选择吊球,使球的落地点到C 点的距离更近.【点睛】本题考查二次函数与一次函数的应用,理解题意,求得函数解析式是解决问题的关键.23. 李老师善于通过合适的主题整合教学内容,帮助同学们用整体的、联系的、发展的眼光看问题,形成科学的思维习惯.下面是李老师在“图形的变化”主题下设计的问题,请你解答.(1)观察发现:如图1,在平面直角坐标系中,过点()4,0M 的直线l y P 轴,作ABC V 关于y 轴对称的图形111A B C △,再分别作111A B C △关于x 轴和直线l 对称的图形222A B C △和333A B C △,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为______;333A B C △可以看作是ABC V 向右平移得到的,平移距离为______个单位长度.(2)探究迁移:如图2,ABCD Y 中,()090BADαα∠=°<<°,P 为直线AB 下方一点,作点P 关于直线AB 的对称点1P ,再分别作点1P 关于直线AD 和直线CD 的对称点2P 和3P ,连接AP ,2AP ,请仅就图2的情形解决以下问题:①若2PAP β∠=,请判断β与α的数量关系,并说明理由; ②若AD m =,求P ,3P 两点间的距离.(3)拓展应用:在(2)的条件下,若60α=°,AD =15PAB ∠=°,连接23P P .当23P P 与ABCD Y 的边平行时,请直接写出AP 的长.【答案】(1)180°,8.(2)①2βα=,理由见解析;②2sin m α(3)或 【解析】【分析】(1)观察图形可得222A B C △与ABC V 关于O 点中心对称,根据轴对称的性质可得即可求得平移距离;(2)①连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,进而可得22PAP BAD ∠=∠,即可得出结论;②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,,得出32PPEF =,证明四边形EFDG 是矩形,则DG EF =,在Rt DAG △中,根据sin DGDAG DA∠=,即可求解; (3)分23P P AD ∥,23P P CD ∥,两种情况讨论,设AP x =,则12AP AP x ==,先求得1PP x =,勾股定理求得13PP ,进而表示出3PP ,根据由(2)②可得32sin PP AD α=,可得36PP =,进而建立方程,即可求解.【小问1详解】(1)∵ABC V 关于y 轴对称的图形111A B C △,111A B C △与222A B C △关于x 轴对称, ∴222A B C △与ABC V 关于O 点中心对称,则222A B C △可以看作是ABC V 绕点O 顺时针旋转得到的,旋转角的度数为180° ∵()1,1A −, ∴12AA =,∵()4,0M ,13,A A 关于直线4x =对称,∴131248A A AA +=×=,即38AA =,333A B C △可以看作是ABC V 向右平移得到的,平移距离为8个单位长度.故答案为:180°,8.【小问2详解】①2βα=,理由如下,连接1AP ,由对称性可得,112PAB P AB P AD P AD ∠=∠∠=∠,,2112PAP PAB P AB P AD P AD ∠=∠+∠+∠+∠1122P AB P AD =∠+∠()112P AB P AD =∠+∠2BAD =∠∴2βα=,②连接113,PP PP 分别交,AB CD 于,E F 两点,过点D 作DG AB ⊥,交AB 于点G ,由对称性可知:113PE PE PF P F ==,且113PP AB PP CD ⊥⊥,,∵四边形ABCD 为平行四边形,∴AB CD ∥∴13P P P ,,三点共线,∴311311222PP PE PE PF P F PE PF EF =+++=+=,∵113,,PP AB PP CD DG AB ⊥⊥⊥,∴1190PFD PEG DGE ∠=∠=∠=°,∴四边形EFDG 是矩形,∴DG EF =,在Rt DAG △中,DAG α∠=,AD m = ∵sin DGDAG DA ∠=,∴sin sin DG AD DAG m α=⋅∠=,∴3222sin PP EF DG m α===【小问3详解】解:设AP x =,则12AP AP x ==,依题意,12PP AD ⊥,当23P P AD ∥时,如图所示,过点P 作1PQ AP ⊥于点Q ,∴12390PP P ∠=°∵15PAB ∠=°,60α=°,∴1320P PAP AB ∠=°∠=,1245DAP DAP ∠=∠=°∴2190P AP ∠=°,则12PP =,在1APP V 中,()111180752APP PAP ∠=°−∠=°,∴213180457560P PP ∠=°−°−°=°,则13230PP P ∠=°,∴13212PP P P ==在Rt APQ △中,30PAQ ∠=°,则1122PQ AP x ==,AQ x ,在1Rt PQP V 中,11PQ AP AQ x x =−,1PP x ,∴3113PP PP PP x x =++由(2)②可得32sin PP AD α=,∵AD =∴326PP =×=6x =,解得:x =如图所示,若23P P DC ∥,则13290PP P ∠=°,∵21360P PP ∠=°,则32130P P P ∠=°,则131212PP PP x ==,∵1PP x =,3PP x x x =, ∵36PP =,6x =,解得:x =,综上所述,AP 的长为或【点睛】本题考查了轴对称的性质,旋转的性质,平行四边形的性质,解直角三角形,熟练掌握轴对称的性质是解题的关键.。

2023年中考数学专题基础几何检测卷(一)打印版含答案

2023年中考数学专题基础几何检测卷(一)打印版含答案

2023年中考数学专题基础几何检测卷(一)打印版含答案时间:40分钟满分:56分1.(8分)如图,在△ABC和△DEC中,∠A=∠D,∠BCE=∠ACD.(1)求证:△ABC∽△DEC;(2)若S△ABC∶S△DEC=4∶9,BC=6,求EC的长.(第1题)2.(8分)如图,△ABC内接于⊙O,∠A=30°,过圆心O作OD⊥BC,垂足为D.若⊙O的半径为6,求OD的长.(第2题)3.(8分)如图,在平行四边形ABCD中,点E,F分别在边AB,CD 上,且四边形BEDF为正方形.(1)求证:AE=CF;(2)若平行四边形ABCD的面积为20,AB=5,求CF的长.(第3题)4.(8分)如图,在等边三角形ABC中,D为边AC的延长线上一点(CD<AC),平移线段BC,使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC于点G.(1)求∠MGD的度数;(2)连接BE,求证:AG=BE.(第4题)5.(8分)如图,在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点A旋转一定的角度得到Rt△ADE,且点E恰好落在边BC上.(1)求证:EA平分∠CED;(2)连接BD,求证:∠DBC=90°.(第5题)6.(8分)如图,▱ABCD中,AC,BD相交于点O,E,F分别是OA,OC的中点.(1)求证:BE=DF;(2)设ACBD=k,当k为何值时,四边形DEBF是矩形?请说明理由.(第6题)7.(8分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 与过C 点的直线垂直,垂足为D ,AC 平分∠DAB . (1)求证:DC 为⊙O 的切线; (2)若AD =3,DC =3,求AC ︵的长.(第7题)答案1.(1)证明:∵∠BCE =∠ACD ,∴∠BCE +∠ACE =∠ACD +∠ACE ,即∠ACB =∠DCE . 又∵∠A =∠D ,∴△ABC ∽△DEC .(2)解:由(1)知△ABC ∽△DEC ,∴S△ABCS△DEC=⎝ ⎛⎭⎪⎫BC EC 2. ∵S △ABC ∶S △DEC =4∶9,BC =6,∴⎝ ⎛⎭⎪⎫6EC 2=49,解得EC =9或EC =-9(不符合题意,舍去),则EC 的长为9.2.解:如图,连接OB ,OC .∵∠A =30°,∴∠BOC =2∠A =60°.∵OB =OC ,OD ⊥BC ,∴∠ODB =90°,OD 平分∠BOC ,∴∠BOD =12∠BOC =30°. ∴BD =12OB =3,∴OD =OB 2-BD 2=3 3.(第2题)3.(1)证明:∵四边形BEDF 为正方形,∴DF =EB ,∵四边形ABCD 是平行四边形,∴DC =AB , ∴AB -EB =DC -DF ,∴AE =CF .(2)解:易知DE 为平行四边形ABCD 的高, 又∵平行四边形ABCD 的面积为20,AB =5, ∴5DE =20,∴DE =4,∴EB =4,∴AE =AB -EB =5-4=1,由(1)知AE =CF ,∴CF =1. 4.(1)解:∵△ABC 是等边三角形,∴∠ACB =60°.由平移可知ED ∥BC ,∴∠ADE =∠ACB =60°. ∵GM ⊥DE ,∴∠GMD =90°,∴∠MGD =30°. (2)证明:∵△ABC 是等边三角形,∴BC =CA . 由平移可知ED ∥BC ,ED =BC ,∴四边形BCDE 是平行四边形,∴BE =CD . ∵∠GMD =90°,∠MGD =30°,M 为ED 的中点, ∴DG =2DM =DE .∴DG =AC ,∴AG =CD, ∴AG =BE . 5.证明:(1)由旋转性质可知AE =AC ,∠AED =∠C ,∴∠AEC =∠C ,∴∠AEC =∠AED ,即EA 平分∠CED . (2)由旋转性质可知∠DAB =∠EAC ,AB =AD ,AE =AC , ∴∠ABD =∠ADB =180°-∠DAB 2=90°-12∠DAB , ∠C =∠AEC =180°-∠EAC 2=90°-12∠EAC , ∴∠C =∠ABD .∵∠BAC =90°,∴∠C +∠ABC =90°, ∴∠ABD +∠ABC =90°,即∠DBC =90°.6.(1)证明:连接DE ,BF ,∵四边形ABCD 是平行四边形,∴BO =OD ,AO =OC ,∵E ,F 分别为AO ,OC 的中点,∴EO =12OA ,OF =12OC ,∴EO =FO , ∴四边形BFDE 是平行四边形,∴BE =DF .(2)解:当k =2时,四边形DEBF 是矩形.理由如下:由(1)知四边形DEBF 是平行四边形.当BD =EF 时,四边形DEBF 是矩形, ∴当OD =OE 时,四边形DEBF 是矩形, ∵AE =OE ,∴当k =2时,四边形DEBF 是矩形. 7.(1)证明:如图,连接OC ,∵AC 平分∠DAB, ∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠ACO , ∴∠DAC =∠ACO, ∴AD ∥OC . ∵AD ⊥DC, ∴OC ⊥DC .又∵OC 为半径,∴DC 为⊙O 的切线. (2)解:∵AD ⊥DC ,∴∠ADC =90°.∵AD =3,DC =3,∴tan ∠DAC =DC AD =33,∴∠DAC =30°, ∴∠BAC =∠ACO =∠DAC =30°,AC =2DC =2 3, ∴∠AOC =180°-30°-30°=120°. 如图,连接BC ,(第7题)∵AB 是⊙O 的直径,∴∠ACB =90°. ∵∠BAC =30°,∴AC =32AB , ∴AB =4,∴⊙O 的半径为2, ∴AC ︵的长是120π×2180=43π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(2023.营口24题)在平行四边形ABCD中,∠ADB=90°,点E在CD 上,点G在AB上,点F在BD的延长线上,连接EF,DG, ∠FED=∠
ADG,AD
BD =DG EF
=k.
(1)如图1,当k=1时,请用等式表示线段AG与线段DF的数量关系________;
(2)如图2,当k=√(3)时,写出线段AD,DE和DF之间的数量关系,并说明理由;
(3)在(2)的条件下,当点G是AB的中点时,连接BE,求tan∠EBF的值
2.(202
3.本溪铁岭辽阳25题)在Rt△ABC中,∠ACB=90°,CA=CB,点O为AB的中点,点D在直线AB上(不与点A,B重合),连接CD,线段CD绕点C逆时针旋转90°,得到线段CE,过点B作直线l⊥BC,过点E作EF⊥l,垂足为点F,直线EF交直线OC于点G.
(1)如图1,当点D与点O重合时,请直接写出线段AD与线段EF 的数量关系;
(2)如图2,当点D在线段AB上时,求证:CG+BD=√2BC;
(3)连接DE,△CDE的面积记为S1,△ABC的面积记为S2,当EF:BC=1:3时,请直接写出S1
S2
的值.
3.(2023.大连25题)综合与实践
问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质。

已知AB=AC,∠A>90°,点E为AC上一动点,将△ABE以BE为对称轴翻折,同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时,∠EDC=2∠ACB.”
小红:“若点E为AC中点,给出AC与DC的长,就可求出BE的长.”补足探究:奋进小组的同学们经过探究后提出问题1,请你回答:
问题1:在等腰△ABC中,AB=AC,∠A>90°,△BDE由△ABE翻折得到.
(1)如图1,当点D落在BC上时,求证:∠EDC=2∠ACB;
(2)如图2,若点E为AC中点,AC=4,CD=3,求BE的长.
问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形,可以问题进一步拓展.
问题2:如图3,在等腰△ABC中,∠A<90°,AB=AC=BD=4,2∠D=∠ABD.若CD=1,则求BC的长.
4.(2023.牡丹江26题)平行四边形ABCD中,AE⊥BC,垂足为E,连接DE,将ED绕点E逆时针旋转90°,得到EF,连接BF.
(1)当点E在线段BC上,∠ABC=45°时,如图1,求证:AE+EC=BF;(2)当点E在线段BC延长线上,∠ABC=45°时,如图2,当点E在线段CB延长线上,∠ABC=135°时,如图3,请猜想并直接写出线段AE,EC,BF的数量关系;
(3)在(1)、(2)的条件下,若BE=3,DE=5,则CE=______.
5.(2023.贵州省25题)如图1,小红在学习了三角形相关知识后,对等腰直角三角形进行了探究,在等腰直角三角形ABC中,CA=CB,∠C=90°,过点B作射线BD⊥AB,垂足为B,点P在CB上.
(1)【动手操作】
如图2,若点P在线段CB上,画出射线PA,并将射线PA绕点P逆时针旋转90°与BD交于点E,根据题意在图中画出图形,图中∠PBE的度数为______度;
(2)【问题探究】
根据(1)所画图形,探究线段PA与PE的数量关系,并说明理由;
(3)【拓展延伸】
如图3,若点P在射线CB上移动,将射线PA绕点P逆时针旋转90°与BD将于点E,探究线段BA,BP,BE之间的数量关系,并说明理由.
6.(2023.沈阳24题)如图1.在平行四边形纸片中,AB=10,AD=6,∠DAB=60°,点E为BC边上的一点(点E不与点C重合),连接AE,将平行四边形ABCD纸片沿AE所在直线折叠,点C,D的对应点分别为C`,D`,射线C`E与射线AD将于点F.
(1)求证:AF=EF;
(2)如图2,当EF⊥AF时,DF的长为______;
(3)如图3,当CE=2时,过点F作FM⊥AE,垂足为点M,延长FM 交C`D`于点N,连接AN,EN,求△ANE的面积。

7.(2023.扬州市27题)【问题情境】
在综合实践活动课上,李老师让同桌两位同学用相同的两块含30°的三角板开展数学探究活动,两块三角板分别记作△ADB和△A`D`C,∠ADB=∠A`D`C`=90°,∠B=∠C=30°,设AB=2.
【操作探究】
如图1,先将△ADB和△A`D`C的边AD、A`D`重合,再将△A`D`C绕着点A按顺时针方向旋转,旋转角为α(0°≤α≤360°),旋转过程中△ADB保持不动,连接BC.
(1)当α=60°时,BC=______;当BC=2√2时,α=_____°;(2)当α=90°时,画出图形,并求两块三角板重叠部分图形的面积;(3)如图2,取BC的中点F,将△A`D`C绕着点A旋转一周,点F 的运动路径长为____.
8.(2023.安徽22题)在Rt△ABC中,M是斜边AB的中点,将线段MA 绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.
(1)如图1,求△ADB的大小;
(2)已知点D和边AC上的点E满足ME△AD,DE△AB.
①如图2,连接CD,求证:BD=CD;
②如图3,连接BE,若AC=8,BC=6,求tan△ABE的值.
9.(2023.湖北黄冈市23题)【问题呈现】
△CAB和△CDE都是直角三角形,△ACB=△DCE=90°,BC=mCA,CE=mCD,连接AD,BE,探究AD,BE的位置关系.
(1)如图1,当m=1时,直接写出AD,BE的位置关系:________;(2)如图2,当m≠1时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.
【拓展应用】
(3)当m=√3,AB=4√7,DE=4时,将△CDE绕点C旋转,使A, D,E 三点恰好在同一直线上,求BE的长.
10.(2023.锦州市24题)【问题情境】如图,在△ABC中,AB=AC,∠ACB=α,点D在边BC上.将线段DB绕点D顺时钱旋转得到线段DE (旋转角小于180°),连接BE,CE,以CE为底边在其上方作等腰三角形FEC,使∠FCE=α,连接AF.
【尝试探究】
(1)如图1,当α=60°时,易知AF=BE;
如图2,当α=45°时,则AF与BE的数量关系为______;
(2)如图3,写出AF与BE的数量关系(用含α的三角函数表示),并说明理由;
【拓展应用】
(3)如图4,当α=30°,且点B,E,F三点共线时,若BC=4√7,
BD=1
BC,请直接写出AF的长.
5
11.(2023.锦州市25题)正方形ABCD中,点E在边BC,CD上运动(不与正方形顶点重合),作射线AE,将射线AE绕点A逆时针旋转45°,交射线CD于点F。

(1)如图,点E在边BC上,BE=DF,则图中与线段AE相等的线段是______;
(2)过点E作EG⊥AF,垂足为G,连接DG,求∠GDC的度数;(3)在(2)的条件下,当点F在边CD延长线上且DF=DG时,求FG

AG 值。

12.(2023.北京27题)在△ABC中,∠B=∠C=α(0°<α<45°),AM ⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.
(1)如图1.当点E在线段AC上时,求证:D是MC的中点;
(2)如图2,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,
连接AE,EF,直接写出∠AEF的大小,并证明.
13.(2023.山东省东营市24题)(1)用数学的眼光观察.
如图,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是AB 的中点,N是DC的中点,求证:∠PMN=∠PNM.
(2)用数学的思维思考.
如图,延长图中的线段AD交MN的延长线于点E,延长线段BC交MN的延长线于点F,求证:∠AEM=∠F.
(3)用数学的语言表达.
如图,在△ABC中,AC<AB,点D在AC上,AD=BC,M是AB的中点,N是DC的中点,连接MN并延长,与BC的延长线交于点G,连接GD,若∠ANM=60°,试判断△CGD的形状,并进行证明.
14.(2023.山东省日照市21题)在探究“四点共圆的条件”的数学活动课上,小霞小组通过探究得出:在平面内,一组对角互补的四边形的四个顶点共圆,请应用此结论,解决以下问题:
如图1,△ABC中,AB=AC,∠BAC=α(60°<α<180°).点D是BC
边上的一动点(点D不与B,C重合),将线段AD绕点A顺时针旋转α到线段AE,连接BE.
(1)求证:A,E,B,D四点共圆;
(2)如图2,当AD=CD时,圆O是四边形AEBD的外接圆,求证:AC是圆O的切线;
(3)已知α=120°,BC=6,点M是边BC的中点,此时圆P是四边形AEBD的外接圆,直接写出圆心P与点M距离的最小值.。

相关文档
最新文档