表示函数的方法专题训练卷(含答案详解)
函数练习题及答案
函数练习题及答案函数练习题及答案函数作为数学中的重要概念,被广泛应用于各个领域。
在数学学习过程中,通过练习题的形式巩固和提高对函数的理解和运用能力是非常有效的方法。
本文将介绍一些常见的函数练习题及其答案,希望能对读者的数学学习有所帮助。
一、函数定义与性质题1. 已知函数f(x) = 2x + 3,求f(4)的值。
解答:将x = 4代入函数表达式中,得到f(4) = 2(4) + 3 = 11。
2. 函数f(x) = x^2 + 2x - 1的定义域是什么?解答:由于函数中存在x的平方项,所以定义域应满足x^2存在的条件,即实数集R。
3. 函数f(x) = 3x^2 - 4x + 1的图像是否对称于y轴?解答:对称于y轴的函数满足f(x) = f(-x)。
将函数中的x替换为-x,得到f(-x) = 3(-x)^2 - 4(-x) + 1 = 3x^2 + 4x + 1。
由于f(x) ≠ f(-x),所以函数的图像不对称于y轴。
二、函数图像与方程题1. 函数f(x) = x^3的图像在坐标系中的形状是什么?解答:函数f(x) = x^3是一个奇函数,其图像关于原点对称。
当x > 0时,f(x) > 0;当x < 0时,f(x) < 0。
因此,函数图像在坐标系中呈现出一种类似"S"形的形状。
2. 已知函数f(x) = x^2 - 4x + 3,求解方程f(x) = 0。
解答:将f(x)置为0,得到x^2 - 4x + 3 = 0。
通过因式分解或者求根公式,可以得到(x - 1)(x - 3) = 0,解得x = 1或x = 3。
三、函数与导数题1. 已知函数f(x) = x^3 - 2x^2 + x,求f'(x)。
解答:对函数f(x)进行求导,得到f'(x) = 3x^2 - 4x + 1。
2. 已知函数f(x) = e^x,求f''(x)。
高中数学函数的表示法课堂练习题(有答案)
高中数学函数的表示法讲堂练习题(有答案)人教 A 版必修一函数的表示法讲堂练习题(有答案)一、选择题 :1. 若正比率函数的图象经过二、四象限,则等于()A. 1 B.2 C. D.2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为t,走开家里的行程为d,下面图形中,能反应该同学的行程的是() .3.已知正方形的边长为,它的外接圆的半径为,则对于的分析式为()A. B. C. D.4.已知函数知足,且,,那么等于().A. B. C. D.二、填空题 :5.已知函数且此函数图象过点(1, 5),实数 m 的值为. 6.;若.7.已知 f(2x + 1 ) =3x- 2 且 f(a) = 4,则 a 的值为 ________.8.已知 f(x) 与 g(x) 分别由下表给出x 1 2 3 4f(x) 4 3 2 1x 1 2 3 4g(x) 3 1 4 2那么 f(g(3)) = ________.三、解答题:9.邮局寄信,不超出 20g 重时付邮资 0.5 元,超出 20g 重而不超出 40g 重付邮资 1 元 . 一封 x 克( 0 40)重的信对付邮资数 y (元) . 试写出 y 对于 x 的函数分析式,并画出函数的图象 . 10.已知函数(1)求的值 ;(2)画出函数的图象.( 1)函数的表示法答案一、选择题 :1.D2.C3.A4.B二、填空题 :5.4 .6.0,4.7.5.8.1.照本宣科是一种传统的教课方式,在我国有悠长的历史。
但随着素质教育的展开,照本宣科被作为一种僵化的、阻挡学生能力发展的教课方式,逐渐为人们所摒弃;而另一方面 ,老师们又为提升学生的语文修养呕心沥血。
其实,只需应用适当 , “死记硬背”与提升学生素质其实不矛盾。
相反 ,它正是提升学生语文水平的重要前提和基础。
要练说,得练听。
听是说的前提,听得正确,才有条件正确模拟,才能不停地掌握高一级水平的语言。
函数的表示法习题含答案
解得 或 (舍去),
或 .
(2)由题意:
【点睛】
本题考查分段函数求值以及由函数值求自变量,考查分类讨论思想以及基本求解能力.
20.(1) .(2)
【解析】
【分析】
(1) 对任意的 恒成立,等价于 对任意的 ,由此能求出实数 的最小值.
(2)推导出 ,由此能求出数 的值域.
3.配凑法:由已知条件 ,可将 改写成关于 的表达式,然后以 代替 ,便得 的解析式;
4.消去法:已知 与 之间的关系式,可根据已知条件再构造出另外一个组成方程组,通过解方程组求出
16.(1) ;(2)
【解析】
【分析】
(1)过A、D分别作 于G, 于H,由平面图形的知识可得线段长度,由面积公式分段可得函数解析式;(2)化简A、B集合,由 可得 ,得到关于a的不等式,从而求出 的取值范围。
19.已知
(1)若 ,且 ,求实数 的值;
(2)求 的值.
20.已知函数 .
(1)若 对任意的 恒成立,求实数 的最小值;
(2)若函数 ,求函数 的值域.
参考答案
1.C
【解析】
【分析】
推导出 ,由此能求出结果.
【详解】
函数 的定义域为 当 时, ;
当 时, ;当 时, ,
.
故选:C.
【点睛】
本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.
【详解】
(1)过A、D分别作 于G, 于H,
因为ABCD是等腰梯形,底角为 ,AB= cm ,
所以BG=AG=DH=HC=2cm ,
又BC=7cm,所以AD=GH=3cm,
(1)当点F在BG上,即 时, ;
高中数学:函数的表示法练习及答案
高中数学:函数的表示法练习及答案函数的表示法1.下表表示y是x的函数,则函数的值域是()A.[2,5]B.{2,3,4,5}C.(0,20]D.N2.若关于x的方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象可以是()A.选项AB.选项BC.选项CD.选项D3.甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点4.已知函数f(x)满足:f()=8x2-2x-1,则f(x)等于()A.2x4+3x2B.2x4-3x2C.4x4+x2D.4x4-x25.已知f(x+1)=2x2+1,则f(x-1)=____________.6.某企业生产某种产品时的能耗y与产品件数x之间的关系式为y=ax+.且当x=2时,y=100;当x=7时,y=35.且此产品生产件数不超过20件.(1)写出函数y关于x的解析式;(2)用列表法表示此函数,并画出图象.求函数的解析式7.已知二次函数图象的顶点坐标为(1,1),且过(2,2)点,则该二次函数的解析式为()A.y=x2-1B.y=-(x-1)2+1C.y=(x-1)2+1D.y=(x-1)2-18.如果二次函数的二次项系数为1,图象开口向上,且关于直线x=1对称,并过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-19.已知f(x-1)=x2,则f(x)的解析式为()A.f(x)=x2-2x-1B.f(x)=x2-2x+1C.f(x)=x2+2x-1D.f(x)=x2+2x+120.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)等于()A.x-1B.x+1C.2x+1D.3x+321.已知函数y=f(x)的图象关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=,则当x∈(-∞,-2)时,f(x)的解析式为()A.f(x)=-B.f(x)=-C.f(x)=D.f(x)=-22.某学校要召开学生代表大会,规定各班每10人推选一位代表,当各班人数除以10的余数大于6时再增选一位代表,那么各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[]B.y=[]C.y=[]D.y=[]23.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是________.24.已知函数f(x)=x2+(a+1)x+b满足f(3)=3,且f(x)≥x恒成立,求f(x)的解析式.25.根据下列条件,求f(x)的解析式:2f()+f(x)=x(x≠0).26.如果函数f(x)满足af(x)+f=ax,x≠0,a为常数,a≠1且a≠-1,求f(x).27.(1)已知函数f(x)=x2,g(x)为一次函数,且一次项系数大于0,若f(g(x))=4x2-20x+25,求g(x)的解析式.(2)求满足f()=-1的函数f(x).(3)已知f(x)满足3f(x)+2f(-x)=4x,求f(x)的解析式.28.求下列函数解析式.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);30.已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求解析式f(x);(2)当x∈[-1,1]时,函数y=f(x)的图象恒在函数y=2x+m的图象的上方,求实数m的取值范围.31.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1)的值;又若f(0)=a,求f(a)的值;(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.32.如图,ABCD是边长为1的正方形,M是CD的中点,点P沿着路径A→B→C→M在正方形边上运动所经过的路程为x,△APM的面积为y.(1)求y=f(x)的解析式及定义域;(2)求△APM面积的最大值及此时点P位置.33.某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖挂4节车厢,一天能来回16次,如果该车每次拖挂7节车厢,则每天能来回10次.(1)若每天来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数的解析式和定义域;(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.函数图像34.给下图的容器甲均匀地注入水时,下面图象中哪一个图象可以大致刻画容器中水的高度与时间的函数关系()A. B. C. D.35.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是()A.0B.1C.2D.336.图中的阴影部分由底为1,高为1的等腰三角形及高为2和3的两矩形所构成.设函数S=S(a)(a≥0)是图中阴影部分介于平行线y=0及y=a之间的那一部分的面积,则函数S(a)的图象大致为()A. B. C. D.37.如图,正方形ABCD的顶点A(0,),B(,0),顶点C、D位于第一象限,直线l:x=t(0≤t≤)将正方形ABCD分成两个部分,记位于直线l左侧阴影部分的面积为f(t),则函数S=f(t)的图象大致是()A. B. C. D.38.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的为()A.①②③④B.①②③C.②③D.②39.函数y=f(x)与y=g(x)的图象如图所示,则函数y=f(x)·g(x)的图象可能是()A. B. C. D.40.设f(x)=x2,在同一坐标系中画出:(1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系;(2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.41.画出y=(x+1)2与y=x2-1的大致图象,并说明这两个图象可由y=x2的图象经过怎样的变换得到.42.画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.答案1.下表表示y是x的函数,则函数的值域是()A.[2,5]B.{2,3,4,5}C.(0,20]D.N【答案】B2.若关于x的方程f(x)-2=0在(-∞,0)内有解,则y=f(x)的图象可以是()A.选项AB.选项BC.选项CD.选项D【答案】D【解析】因为关于x的方程f(x)-2=0在(-∞,0)内有解,所以函数y=f(x)与y=2的图象在(-∞,0)内有交点,观察图象可知只有D中图象满足要求.3.甲、乙两人在一次赛跑中,从同一地点出发,路程s与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点【答案】D【解析】从图中的直线看出:v甲>v乙,s甲=s乙,甲、乙同时出发,跑了相同的路程,甲比乙先到达.故选D.4.已知函数f(x)满足:f()=8x2-2x-1,则f(x)等于()A.2x4+3x2B.2x4-3x2C.4x4+x2D.4x4-x2【答案】A【解析】令t=,得x=,故有f(t)=8×-2×-1,整理得f(t)=2t4+3t2,即f(x)=2x4+3x2.故选A.5.已知f(x+1)=2x2+1,则f(x-1)=____________.【答案】2x2-8x+9【解析】设x+1=t,则x=t-1,f(t)=2(t-1)2+1=2t2-4t+3,f(x-1)=2(x-1)2-4(x-1)+3=2x2-4x+2-4x+4+3=2x2-8x+9.故答案为2x2-8x+9.6.某企业生产某种产品时的能耗y与产品件数x之间的关系式为y=ax+.且当x=2时,y=100;当x=7时,y=35.且此产品生产件数不超过20件.(1)写出函数y关于x的解析式;(2)用列表法表示此函数,并画出图象.【答案】(1)将代入y=ax+中,得⇒⇒所以所求函数解析式为y=x+(x∈N,0<x≤20).(2)当x∈{1,2,3,4,5,…,20}时,列表:依据上表,画出函数y的图象如图所示.求函数的解析式7.已知二次函数图象的顶点坐标为(1,1),且过(2,2)点,则该二次函数的解析式为()A.y=x2-1B.y=-(x-1)2+1C.y=(x-1)2+1D.y=(x-1)2-1【答案】C【解析】设二次函数为y=a(x-1)2+1,将(2,2)代入上式,得a=1.所以y=(x-1)2+1.8.如果二次函数的二次项系数为1,图象开口向上,且关于直线x=1对称,并过点(0,0),则此二次函数的解析式为()A.f(x)=x2-1B.f(x)=-(x-1)2+1C.f(x)=(x-1)2+1D.f(x)=(x-1)2-1【答案】D【解析】根据已知选项可设f(x)=(x-1)2+c.由于点(0,0)在二次函数的图象上,∴f(0)=(0-1)2+c=1+c=0,∴c=-1,∴f(x)=(x-1)2-1.9.已知f(x-1)=x2,则f(x)的解析式为()A.f(x)=x2-2x-1B.f(x)=x2-2x+1C.f(x)=x2+2x-1D.f(x)=x2+2x+1【答案】D【解析】令x-1=t,则x=t+1,∴f(t)=(t+1)2=t2+2t+1,即f(x)=x2+2x+1.20.若f(x)对于任意实数x恒有2f(x)-f(-x)=3x+1,则f(x)等于()A.x-1B.x+1C.2x+1D.3x+3【答案】B【解析】∵2f(x)-f(-x)=3x+1,①将①中x换为-x,则有2f(-x)-f(x)=-3x+1,②①×2+②得3f(x)=3x+3,∴f(x)=x+1.21.已知函数y=f(x)的图象关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=,则当x∈(-∞,-2)时,f(x)的解析式为()A.f(x)=-B.f(x)=-C.f(x)=D.f(x)=-【答案】D【解析】设x<-2,则-x-2>0,由函数y=f(x)的图象关于x=-1对称,得f(x)=f(-x-2)=,所以f(x)=-.22.某学校要召开学生代表大会,规定各班每10人推选一位代表,当各班人数除以10的余数大于6时再增选一位代表,那么各班可推选代表人数y与该班人数x之间的函数关系用取整函数y=[x]([x]表示不大于x的最大整数)可以表示为()A.y=[]B.y=[]C.y=[]D.y=[]【答案】B【解析】当x=56时,y=5,排除C,D;当x=57时,y=6,排除A.∴只有B正确.23.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是________.【答案】f(x)=3x+2【解析】令3x+2=t,则3x=t-2,故f(t)=3(t-2)+8=3t+2.24.已知函数f(x)=x2+(a+1)x+b满足f(3)=3,且f(x)≥x恒成立,求f(x)的解析式. 【答案】由f(3)=3,得b=-3a-9.由f(x)≥x恒成立可知,x2+ax+b≥0恒成立,所以a2-4b≤0,所以a2+12a+36=(a+6)2≤0,所以a=-6,b=9.所以f(x)=x2-5x+9.25.根据下列条件,求f(x)的解析式:2f()+f(x)=x(x≠0).【答案】∵f(x)+2f()=x,将原式中的x与互换,得f()+2f(x)=.于是得关于f(x)的方程组解得f(x)=-(x≠0).26.如果函数f(x)满足af(x)+f=ax,x≠0,a为常数,a≠1且a≠-1,求f(x).【答案】因为af(x)+f()=ax,将x换成得af()+f(x)=a·,由两式消去f,得(a2-1)f(x)=a2x-,由a≠1且a≠-1,得f(x)=,所以f(x)=(x∈R且x≠0).27.(1)已知函数f(x)=x2,g(x)为一次函数,且一次项系数大于0,若f(g(x))=4x2-20x+25,求g(x)的解析式.(2)求满足f()=-1的函数f(x).(3)已知f(x)满足3f(x)+2f(-x)=4x,求f(x)的解析式.【答案】(1)因为g(x)为一次函数,且一次项系数大于0,所以设g(x)=ax+b(a>0).因为f(x)=x2,f(g(x))=4x2-20x+25,所以(ax+b)2=4x2-20x+25,即a2x2+2abx+b2=4x2-20x+25(a>0),解得a=2,b=-5,所以g(x)=2x-5.(2)令t=1+(x≠0),则x=(t≠1),所以f(t)=(t-1)2-1=t2-2t(t≠1),所以f(x)=x2-2x(x≠1).(3)由题意得3f(x)+2f(-x)=4x,①用-x代替x,得3f(-x)+2f(x)=-4x,②①×3-②×2,得5f(x)=20x,所以f(x)=4x.28.求下列函数解析式.已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);【答案】设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17,∴a=2,b=7,∴f(x)=2x+7.29.已知二次函数f(x)=ax2+bx(a,b为常数,且a≠0)满足条件:f(x-1)=f(3-x),且方程f (x)=2x有两等根.(1)求f(x)的解析式;(2)求f(x)在[0,t]上的最大值.【答案】(1)∵方程f(x)=2x有两等根,即ax2+(b-2)x=0有两等根,∴Δ=(b-2)2=0,解得b=2.由f(x-1)=f(3-x),得=1,∴x=1是函数图象的对称轴,而此函数图象的对称轴是直线x=-,∴-=1,∴a=-1,故f(x)=-x2+2x.(2)∵函数f(x)=-x2+2x的图象的对称轴为x=1,x∈[0,t],∴当t≤1时,f(x)在[0,t]上是增函数,∴f(x)max=-t2+2t.当t>1时,f(x)在[0,1]上是增函数,在[1,t]上是减函数,∴f(a)max=f(1)=1.综上,f(x)max=30.已知二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求解析式f(x);(2)当x∈[-1,1]时,函数y=f(x)的图象恒在函数y=2x+m的图象的上方,求实数m的取值范围. 【答案】(1)由f(x+1)-f(x)=2x,令x=0,得f(1)=1;令x=-1,得f(-1)=3.设f(x)=ax2+bx+c,故解得故f(x)的解析式为f(x)=x2-x+1.(2)因为y=f(x)的图象恒在y=2x+m的图象上方,所以在[-1,1]上,x2-x+1>2x+m恒成立.即x2-3x+1>m在区间[-1,1]恒成立.所以令g(x)=x2-3x+1=(x-)2-,故g(x)在[-1,1]上的最小值为g(1)=-1 ,所以m<-1 .31.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1)的值;又若f(0)=a,求f(a)的值;(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.【答案】(1)∵对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,∴f(f(2)-22+2)=f(2)-22+2.又由f(2)=3,得f(3-22+2)=3-22+2,即f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)∵对任意f(f(x)-x2+x)=f(x)-x2+x,又∵有且只有一个实数x0,使得f(x0)=x0,∴对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,得f(x0)-+x0=x0.又∵f(x0)=x0,∴x0-=0,故x0=0或x0=1.若x0=0,则f(x)-x2+x=0,即f(x)=x2-x.但方程x2-x=x有两个不同的实根,与题设条件矛盾,故x0≠0.若x0=1,则f(x)-x2+x=1,即f(x)=x2-x+1.易验证该函数满足题设条件.综上可知,所求函数的解析式为f(x)=x2-x+1(x∈R).32.如图,ABCD是边长为1的正方形,M是CD的中点,点P沿着路径A→B→C→M在正方形边上运动所经过的路程为x,△APM的面积为y.(1)求y=f(x)的解析式及定义域;(2)求△APM面积的最大值及此时点P位置.【答案】(1)根据题意得f(x)=f(x)的定义域为(0,1)∪[1,2)∪[2,)=(0,).(2)易知f(x)在(0,1)上为增函数,在[1,)上为减函数,∴当x=1时,f(x)max=-=.33.某省两相近重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车,已知该车每次拖挂4节车厢,一天能来回16次,如果该车每次拖挂7节车厢,则每天能来回10次. (1)若每天来回的次数是车头每次拖挂车厢节数的一次函数,求此一次函数的解析式和定义域;(2)在(1)的条件下,每节车厢能载乘客110人.问这列火车每天来回多少次才能使运营人数最多?并求出每天最多运营人数.【答案】(1)设每天来回y次,每次拖挂x节车厢,由题意设y=kx+b(k≠0),当x=4时,y=16,当x=7时,y=10,得到16=4k+b,10=7k+b,解得k=-2,b=24,∴y=-2x+24.依题意有解得定义域为{x∈N|0≤x≤12}.(2)设每天来回y次,每次拖挂x节车厢,由题意知,每天拖挂车厢最多时,运营人数最多,设每天拖挂S节车厢,则S=xy=x(-2x+24)=-2x2+24x=-2(x-6)2+72,x∈[0,12]且x∈N.所以当x=6时,S max=72,此时y=12,则每日最多运营人数为110×72=7 920.故这列火车每天来回12次,才能使运营人数最多,每天最多运营人数为7 920.函数图像34.给下图的容器甲均匀地注入水时,下面图象中哪一个图象可以大致刻画容器中水的高度与时间的函数关系()A. B. C. D.【答案】B【解析】容器下端较窄,上端较宽,当均匀地注入水时,刚开始的一段时间高度变化较大,随着时间的推移,高度的变化速度开始减小,四个图象中只有B项符合特点.35.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是()A.0B.1C.2D.3【答案】B【解析】由题意可知在0点到3点这段时间,每小时蓄水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.36.图中的阴影部分由底为1,高为1的等腰三角形及高为2和3的两矩形所构成.设函数S=S(a)(a≥0)是图中阴影部分介于平行线y=0及y=a之间的那一部分的面积,则函数S(a)的图象大致为()A. B. C. D.【答案】C【解析】根据图象可知在[0,1]上面积增长的速度变慢,在图形上反映出切线的斜率在变小;在[1,2]上面积增长速度恒定,在[2,3]上面积增长速度恒定,而在[1,2]上面积增长速度大于在[2,3]上面积增长速度,故选C.37.如图,正方形ABCD的顶点A(0,),B(,0),顶点C、D位于第一象限,直线l:x=t(0≤t≤)将正方形ABCD分成两个部分,记位于直线l左侧阴影部分的面积为f(t),则函数S=f(t)的图象大致是()A. B. C. D.【答案】C【解析】当0≤t≤时,S(t)=×t×2t=t2;当<t≤时,S(t)=1-×(-t)×2(-t)=-(t-)2+1.故选C.38.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M到集合N的函数关系的为()A.①②③④B.①②③C.②③D.②【答案】C【解析】①的定义域不是M;④不是函数.39.函数y=f(x)与y=g(x)的图象如图所示,则函数y=f(x)·g(x)的图象可能是()A. B. C. D.【答案】A【解析】函数y=f(x)·g(x)的定义域是函数y=f(x)与y=g(x)的定义域的交集(-∞,0)∪(0,+∞),图象不经过坐标原点,故可以排除C、D,由题干中图象知函数y=f(x)是偶函数,y=g(x)是奇函数,所以y=f(x)·g(x)是奇函数,故选A.40.设f(x)=x2,在同一坐标系中画出:(1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系;(2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.【答案】解(1)如图(2)如图观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到;y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到;y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到.41.画出y=(x+1)2与y=x2-1的大致图象,并说明这两个图象可由y=x2的图象经过怎样的变换得到. 【答案】如图所示,在同一平面直角坐标系下,画出y=x2,y=(x+1)2及y=x2-1的大致图象.观察图象可知y=(x+1)2的图象可由y=x2的图象向左平移1个单位长度得到,y=x2-1的图象可由y=x2的图象向下平移1个单位长度得到.42.画出函数f(x)=-x2+2x+3的图象,并根据图象回答下列问题:(1)比较f(0)、f(1)、f(3)的大小;(2)若x1<x2<1,比较f(x1)与f(x2)的大小;(3)求函数f(x)的值域.【答案】因为函数f(x)=-x2+2x+3的定义域为R,列表:连线,描点,得函数图象如图:(1)根据图象,容易发现f(0)=3,f(1)=4,f(3)=0,所以f(3)<f(0)<f(1).(2)根据图象,容易发现当x1<x2<1时,有f(x1)<f(x2).(3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].21/ 21。
函数测试题及答案
函数测试题及答案一、选择题1. 函数y = f(x) = 3x + 2的值域是:A. (-∞, +∞)B. [2, +∞)C. [0, +∞)D. (2, +∞)2. 如果函数f(x) = x^2 + 1在x = 2处的导数为4,则在x = -2处的导数为:A. -4B. 4C. 0D. 13. 下列哪个函数不是奇函数?A. f(x) = x^3B. f(x) = sin(x)C. f(x) = cos(x)D. f(x) = x^2二、填空题4. 函数f(x) = 2x - 1的反函数是_________。
5. 如果函数f(x) = x^3 - 6x^2 + 11x - 6的极值点是x = 2,则该函数在x = 2处的值为_________。
三、简答题6. 请说明函数f(x) = x^2 - 4x + 4的单调性,并求出其最小值。
四、计算题7. 求函数f(x) = 2x^3 - 3x^2 + 1在区间[-1, 2]上的最大值和最小值。
五、证明题8. 证明函数f(x) = x^3在R上是严格递增的。
答案:一、选择题1. A2. B3. D二、填空题4. f^(-1)(x) = (x + 1) / 25. 2三、简答题6. 函数f(x) = x^2 - 4x + 4可以写成f(x) = (x - 2)^2,因此其开口向上,对称轴为x = 2。
由于二次项系数为正,函数在(-∞, 2]上单调递减,在[2, +∞)上单调递增。
最小值为f(2) = 0。
四、计算题7. 函数f(x) = 2x^3 - 3x^2 + 1的导数为f'(x) = 6x^2 - 6x。
令f'(x) = 0,得x = 0或x = 1。
计算f(-1) = -4,f(0) = 1,f(1) = -2,f(2) = 5。
因此,最大值为5,最小值为-4。
五、证明题8. 对于任意的x1 < x2,我们有:f(x2) - f(x1) = x2^3 - x1^3 = (x2 - x1)(x2^2 + x2x1 + x1^2)由于x2 - x1 > 0,且x2^2 + x2x1 + x1^2 > 0(因为x1和x2的平方都是非负的,它们的和也是非负的),所以f(x2) - f(x1) > 0,即f(x2) > f(x1)。
函数练习题(含答案解析)
函数练习题(含答案解析) 1.若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y <2. 设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<3. 函数y=1212x -+x(x <0)的反函数是( )A.y=log 211-+x x (x<-1) B.y =log 211-+x x (x>1) C.y=log 211+-x x (x<-1) D.y =log 211+-x x (x>1)4.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .15.设2lg ,(lg ),lg a e b e c === )(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >> 6. 已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2l o g 3)f +=( ) (A )124(B )112(C )18(D )387. 若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x = A .x 2logB .x21 C .x 21logD .22-x8. 函数y=1+ln(x-1)(x>1)的反函数是 (A )y=1x e+-1(x>0) (B) y=1x e-+1(x>0) (C) y=1x e+-1(x ∈R) (D )y=1x e-+1 (x ∈R)9. 设25abm ==,且112a b+=,则m =(A(B )10 (C )20 (D )100 10. 函数()412xx f x +=的图象A. 关于原点对称B. 关于直线y=x 对称C. 关于x 轴对称D. 关于y 轴对称 11. 已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞ 12. 函数y =log 2x 的图象大致是答案解析: 1. C2.解析:本题考查对数函数的增减性,由1>lge>0,知a>b,又c=21lge, 作商比较知c>b,选B 。
函数概念练习题(含解析)
2
, y
2x 1 的值域为 , 2
x3
2,
.
(4)令
x 1 t ,则 t 0 且 x t2 1, y 2
t2 1
t 2t 2 t 2 2 t
1 4
2
15 , 8
则当 t
1 4
时,
ymin
15 8
,
y
2x
x
1
的值域为
15 8
,
.
18.(1) R
(2){x∣1 x 4}
A. f (x) x0 与 g(x) 1
B. f (x) x 与 g(x) x2 x
C.
f
x
1,x 0, 1,x 0 与
g
x
x x
,x
1,x
0
0, D.
f
(x)
(x 1)2 与 g(x) x 1
6.若函数
f
2x 1 的定义域为1,1 ,则函数 y
f
x 1
的定义域为(
)
x 1
A. 1, 2
x 不是同一函数. 故选:C. 9.A 【分析】根据题意,由换元法,结合二次函数的最值,即可得到结果.
【详解】设 t 3 x ,则 t 0 ,即 x 3 t2 ,所以 y f t 2 3 t2 4t 2 t 12 8,
因为 t 0 ,所以当 t 1时,函数取得最大值为 8 . 故选:A 10.C 【分析】把自变量直接代入解析式即可求解.
x 1
故选:D
7.C
【分析】逐个求解函数的定义域判断即可
【详解】对于 A,由 x 0 ,得函数的定义域为[0, ) ,所以 A 错误,
答案第 2页,共 6页
对于 B,由 x 1 0 ,得 x 1 ,所以函数的定义域为 (,1) (1,) ,所以 B 错误,
函数的表示法习题及其答案
2.2-函数的表示法习题及其答案(共4页)-本页仅作为预览文档封面,使用时请删除本页-函数的表示法一、选择题。
1.下列四种说法正确的一个是( C ) A .)(x f 表示的是含有x 的代数式 B .函数的值域也就是其定义中的数集BC .函数是一种特殊的映射D .映射是一种特殊的函数 2.已知f 满足f (ab )=f (a )+ f (b),且f (2)=p ,q f =)3(那么)72(f 等于( B )A .q p +B .q p 23+C .q p 32+D .23q p + 3.下列各组函数中,表示同一函数的是( C )A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==4.已知函数23212---=x x x y 的定义域为( D )A .]1,(-∞B .]2,(-∞C .]1,21()21,(-⋂--∞D . ]1,21()21,(-⋃--∞5.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( A )A .1+πB .0C .πD .1-6.下列图中,画在同一坐标系中,函数bx ax y +=2与)0,0(≠≠+=b a b ax y 函数的图象只可能是( B )7.设函数x x xf =+-)11(,则)(x f 的表达式为( C ) A .x x -+11 B . 11-+x x C .x x +-11 D .12+x x8.已知二次函数)0()(2>++=a a x x x f ,若0)(<m f ,则)1(+m f 的值为( A )A .正数B .负数C .0D .符号与a 有关9.已知在x 克%a 的盐水中,加入y 克%b 的盐水,浓度变为%c ,将y 表示成x 的函数关系式( B )A .x b c a c y --=B .x c b a c y --=C .x a c b c y --=D .x ac cb y --= 10.已知)(x f 的定义域为)2,1[-,则|)(|x f 的定义域为( C )日期:_______A .)2,1[-B .]1,1[-C .)2,2(-D .)2,2[- 二、填空题。
九年级函数专题试卷及答案
九年级函数专题试卷及答案专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个是正比例函数?A. y = 2x + 3B. y = 3x 2C. y = x^2 + 1D. y = 1/x2. 如果函数y = kx + b的图像是一条经过原点的直线,那么k和b的关系是?A. k = 0, b ≠ 0B. k ≠ 0, b = 0C. k = 0, b = 0D. k ≠ 0, b ≠ 03. 下列函数中,哪个是反比例函数?A. y = 2/xB. y = x^2C. y = 3x + 1D. y = 1/x^24. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是?A. k = 0B. k > 0C. k < 0D. k ≠ 05. 下列函数中,哪个是一次函数?A. y = x^2B. y = 2/xC. y = 3x + 1D. y = 1/x^2二、判断题(每题1分,共5分)1. 正比例函数的图像是一条经过原点的直线。
()2. 反比例函数的图像是一条经过原点的直线。
()3. 一次函数的图像是一条直线。
()4. 二次函数的图像是一条抛物线。
()5. 函数y = kx + b是一次函数当且仅当b = 0。
()三、填空题(每题1分,共5分)1. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是______。
2. 如果函数y = kx + b的图像是一条经过原点的直线,那么b的值是______。
3. 反比例函数的一般形式是______。
4. 二次函数的一般形式是______。
5. 一次函数的图像是一条______。
四、简答题(每题2分,共10分)1. 请简述正比例函数的定义。
2. 请简述反比例函数的定义。
3. 请简述一次函数的定义。
4. 请简述二次函数的定义。
5. 请简述函数图像的斜率是什么。
五、应用题(每题2分,共10分)1. 如果函数y = 2x的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?2. 如果函数y = 3/x的图像是一条经过原点的直线,那么当x = 2时,y的值是多少?3. 如果函数y = kx + b的图像是一条经过原点的直线,那么当x = 1时,y的值是多少?4. 如果函数y = x^2的图像是一条抛物线,那么当x = 2时,y的值是多少?5. 如果函数y = 1/x^2的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?六、分析题(每题5分,共10分)1. 请分析一次函数和二次函数的图像有什么不同。
高中函数试题及答案解析
高中函数试题及答案解析试题一:函数的奇偶性1. 判断函数f(x) = x^2 - 2x + 3的奇偶性,并说明理由。
2. 若f(x)为奇函数,且f(1) = 5,求f(-1)的值。
试题二:函数的单调性3. 判断函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上的单调性。
4. 若函数h(x) = 2x^3 - 6x^2 + 3x + 1在区间[-1, 1]上单调递减,求h'(x)的值。
试题三:复合函数的单调性5. 若f(x) = x^2 + 1,g(x) = 2x - 3,求复合函数f(g(x)),并判断其单调性。
6. 若复合函数f(g(x))在区间[-2, 1]上单调递增,求g'(x)的值。
试题四:函数的值域7. 求函数y = 3x + 2在x∈[-1, 4]上的值域。
8. 若函数y = 1/x在x∈(0, 1]上的值域为[2, +∞),求y的最小值。
试题五:函数的极值9. 求函数k(x) = x^3 - 3x^2 + 2x在x = 1处的极值。
10. 若函数m(x) = x^4 - 4x^3 + 4x^2 + 8x + 1在x = 2处取得极小值,求m'(x)和m''(x)的值。
答案解析:1. 函数f(x) = x^2 - 2x + 3为偶函数,因为f(-x) = (-x)^2 - 2(-x) + 3 = x^2 + 2x + 3 = f(x)。
2. 由于f(x)为奇函数,所以f(-1) = -f(1) = -5。
3. 函数g(x) = -3x^2 + 6x - 2在区间(-∞, 1]上单调递增,因为g'(x) = -6x + 6,当x < 1时,g'(x) > 0。
4. 函数h(x)的导数h'(x) = 6x^2 - 12x + 3,由于h(x)在区间[-1, 1]上单调递减,所以h'(x) < 0,即6x^2 - 12x + 3 < 0。
高中数学必修一第三章函数的概念与性质考点专题训练(带答案)
高中数学必修一第三章函数的概念与性质考点专题训练单选题1、函数f(x)=log 2x −1x 的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4) 答案:B解析:判断函数的单调性,结合函数零点存在性定理,判断选项. f (1)=0−1=−1<0,f (2)=1−12=12>0,且函数f (x )=log 2x −1x 的定义域是(0,+∞),定义域内y =log 2x 是增函数,y =−1x 也是增函数,所以f (x )是增函数,且f (1)f (2)<0,所以函数f(x)=log 2x −1x 的零点所在的区间为(1,2). 故选:B小提示:方法点睛:一般函数零点所在区间的判断方法是:1.利用函数零点存在性定理判断,判断区间端点值所对应函数值的正负;2.画出函数的图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或是转化为两个函数的图象交点判断. 2、函数y =√2x +4x−1的定义域为( )A .[0,1)B .(1,+∞)C .(0,1)∪(1,+∞)D .[0,1)∪(1,+∞) 答案:D分析:由题意列不等式组求解由题意得{2x ≥0x −1≠0,解得x ≥0且x ≠1,故选:D3、现有下列函数:①y =x 3;②y =(12)x;③y =4x 2;④y =x 5+1;⑤y =(x −1)2;⑥y =x ;⑦y =a x (a >1),其中幂函数的个数为( ) A .1B .2C .3D .4 答案:B分析:根据幂函数的定义逐个辨析即可幂函数满足y=x a形式,故y=x3,y=x满足条件,共2个故选:B,则f(x)()4、设函数f(x)=x3−1x3A.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减答案:A分析:根据函数的解析式可知函数的定义域为{x|x≠0},利用定义可得出函数f(x)为奇函数,再根据函数的单调性法则,即可解出.定义域为{x|x≠0},其关于原点对称,而f(−x)=−f(x),因为函数f(x)=x3−1x3所以函数f(x)为奇函数.又因为函数y=x3在(0,+∞)上单调递增,在(−∞,0)上单调递增,=x−3在(0,+∞)上单调递减,在(−∞,0)上单调递减,而y=1x3在(0,+∞)上单调递增,在(−∞,0)上单调递增.所以函数f(x)=x3−1x3故选:A.小提示:本题主要考查利用函数的解析式研究函数的性质,属于基础题.5、下列函数为奇函数的是()A.y=x2B.y=x3C.y=|x|D.y=√x答案:B分析:根据奇偶函数的定义判断即可;解:对于A:y=f(x)=x2定义域为R,且f(−x)=(−x)2=x2=f(x),所以y=x2为偶函数,故A错误;对于B:y=g(x)=x3定义域为R,且g(−x)=(−x)3=−x3=−g(x),所以y=x3为奇函数,故B正确;对于C:y=ℎ(x)=|x|定义域为R,且ℎ(−x)=|−x|=|x|=ℎ(x),所以y=|x|为偶函数,故C错误;对于D:y=√x定义域为[0,+∞),定义域不关于原点对称,故y=√x为非奇非偶函数,故D错误;故选:B6、已知幂函数y=f(x)的图象过点P(2,4),则f(3)=()A.2B.3C.8D.9答案:D分析:先利用待定系数法求出幂函数的解析式,再求f(3)的值解:设f(x)=xα,则2α=4,得α=2,所以f(x)=x2,所以f(3)=32=9,故选:D7、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.8、已知f(x)是一次函数,且f(x−1)=3x−5,则f(x)=()A.3x−2B.2x+3C.3x+2D.2x−3答案:A分析:设一次函数y=ax+b(a≠0),代入已知式,由恒等式知识求解.设一次函数y=ax+b(a≠0),则f(x−1)=a(x−1)+b=ax−a+b,由f(x−1)=3x−5得ax−a+b=3x−5,即{a=3b−a=−5,解得{a=3b=−2,∴f(x)=3x−2.故选:A.多选题9、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y(个)与加工时间x(分)之间的函数关系,A点横坐标为12,B点坐标为(20,0),C点横坐标为128.则下面说法中正确的是()A.甲每分钟加工的零件数量是5个B.在60分钟时,甲比乙多加工了120个零件C.D点的横坐标是200D.y的最大值是216答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误;设D 的坐标为(t,0),由题得△AOB ∽△CBD ,则有1220=128−20t−20,解可得t =200,所以选项C 正确;当x =128时,y =216,所以y 的最大值是216.所以选项D 正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟, 一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A 正确,设D 的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB 和CD 的斜率相等, 则有∠ABO =∠CDB ,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB =∠CBD , 则△AOB ∽△CBD , 则有1220=128−20t−20,解可得t =200;即点D 的坐标是(200,0),所以选项C 正确; 由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误; 当x =128时,y =(128−20)×2=216,所以y 的最大值是216.所以选项D 正确. 故选:ACD10、已知函数f(x)={−x,x <0x 2,x >0,则有( )A .存在x 0>0,使得f (x 0)=−x 0B .存在x 0<0,使得f (x 0)=x 02C .函数f (−x )与f(x)的单调区间和单调性相同D .若f (x 1)=f (x 2)且x 1≠x 2,则x 1+x 2≤0 答案:BC分析:根据函数解析式,分别解AB 选项对应的方程,即可判定A 错,B 正确;求出f (−x )的解析式,判定f (−x )与f(x)的单调区间与单调性,即可得出C 正确;利用特殊值法,即可判断D 错.因为f(x)={−x,x <0x 2,x >0,当x 0>0时,f(x 0)=x 02,由f (x 0)=−x 0可得x 02=−x 0,解得x 0=0或−1,显然都不满足x 0>0,故A错;当x 0<0时,f(x 0)=−x 0,由f (x 0)=x 02可得−x 0=x 02,解得x 0=0或−1,显然x 0=−1满足x 0<0,故B 正确;当x <0时,f(x)=−x 显然单调递减,即f(x)的减区间为(−∞,0);当x >0时,f(x)=x 2显然单调递增,即f(x)的增区间为(0,+∞);又f(−x)={x,−x <0x 2,−x >0 ={x,x >0x 2,x <0 ,因此f (−x )在(−∞,0)上单调递减,在(0,+∞)上单调递增;即函数f (−x )与f(x)的单调区间和单调性相同,故C 正确;D 选项,若不妨令x 1<x 2,f (x 1)=f (x 2)=14,则x 1=−14,x 2=12,此时x 1+x 2=14>0,故D 错; 故选:BC.小提示:关键点点睛:求解本题的关键在于根据解析式判定分段函数的性质,利用分段函数的性质,结合选项即可得解.11、已知函数f (x )的定义域是(0,+∞),且f (xy )=f (x )+f (y ),当x >1时,f (x )<0,f (2)=−1,则下列说法正确的是( ) A .f (1)=0B .函数f (x )在(0,+∞)上是减函数C .f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022)=2022 D .不等式f (1x )−f (x −3)≥2的解集为[4,+∞) 答案:ABD分析:利用赋值法求得f (1)=0,判断A ;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B;利用f (xy )=f (x )+f (y ),可求得C 中式子的值,判断C ;求出f (14)=f (12)+f (12)=2,将f (1x )−f (x −3)≥2转化为f (1x )+f (1x−3)≥f (14),即可解不等式组求出其解集,判断D. 对于A ,令x =y =1 ,得f (1)=f (1)+f (1)=2f (1),所以f (1)=0,故A 正确;对于B ,令y =1x >0,得f (1)=f (x )+f (1x )=0,所以f (1x )=−f (x ), 任取x 1,x 2∈(0,+∞),且x 1<x 2,则f (x 2)−f (x 1)=f (x 2)+f (1x 1)=f (x2x 1),因为x 2x 1>1,所以f (x2x1)<0,所以f (x 2)<f (x 1),所以f (x )在(0,+∞)上是减函数,故B 正确;对于C ,f (12022)+f (12021)+⋅⋅⋅+f (13)+f (12)+f (2)+f (3)+⋅⋅⋅+f (2021)+f (2022) =f (12022×2022)+f (12021×2021)+⋅⋅⋅+f (13×3)+f (12×2)=f (1)+f (1)+⋅⋅⋅+f (1)+f (1)=0,故C 错误;对于D ,因为f (2)=−1,且f (1x )=−f (x ),所以f (12)=−f (2)=1,所以f (14)=f (12)+f (12)=2,所以f (1x )−f (x −3)≥2等价于f (1x )+f (1x−3)≥f (14), 又f (x )在(0,+∞)上是减函数,且f (xy )=f (x )+f (y ),所以{ 1x (x−3)≤141x>01x−3>0 , 解得x ≥4,故D 正确, 故选:ABD . 填空题12、为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改,设企业的污水排放量W 与时间t 的关系为W =f(t),用−f(b)−f(a)b−a的大小评价在[a,b]这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[t1,t2]这段时间内,甲企业的污水治理能力比乙企业强;②在t2时刻,甲企业的污水治理能力比乙企业强;③在t3时刻,甲、乙两企业的污水排放都已达标;④甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,在[0,t1]的污水治理能力最强.其中所有正确结论的序号是____________________.答案:①②③分析:根据定义逐一判断,即可得到结果−f(b)−f(a)b−a表示区间端点连线斜率的负数,在[t1,t2]这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[0,t1],[t1,t2],[t2,t3]这三段时间中,甲企业在[t1,t2]这段时间内,甲的斜率最小,其相反数最大,即在[t1,t2]的污水治理能力最强.④错误;在t2时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在t3时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;所以答案是:①②③小提示:本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.13、已知函数f(x)=mx2+nx+2(m,n∈R)是定义在[2m,m+3]上的偶函数,则函数g(x)=f(x)+2x在[−2,2]上的最小值为______.答案:-6分析:先利用题意能得到f(−x)=f(x)和2m+m+3=0,解得n=0和m=−1,代入f(x)中,再代入g(x),再结合二次函数的性质求最小值因为函数f(x)=mx2+nx+2(m,n∈R)是定义在[2m,m+3]上的偶函数,故{f(−x)=f(x)2m+m+3=0,即{mx2−nx+2=mx2+nx+2m=−1,则{2nx=0m=−1解得{n=0m=−1,所以g(x)=f(x)+2x=−x2+2x+2=3−(x−1)2,x∈[−2,2],所以g(−2)=−(−2)2+2×(−2)+2=−6,g(2)=−22+2×2+2=2,则g(x)min=−6,所以答案是:-614、已知y=f(x)是定义在区间(-2,2)上单调递减的函数,若f(m-1)>f(1-2m),则m的取值范围是_______.答案:(−12,23)分析:结合函数定义域和函数的单调性列不等式求解即可.由题意得:{-2<m-1<2,-2<1-2m<2,m-1<1-2m,解得−12<m<23.所以答案是:(−12,23)解答题15、已知y=f(x)是定义在R上的奇函数,当x≥0时,f(x)=−x2+2x.(1)求x<0时,函数f(x)的解析式;(2)若函数f(x)在区间[−1,a−2]上单调递增,求实数a的取值范围.(3)解不等式f(x)≥x+2.答案:(1)f(x)=x2+2x;(2)(1,3];(3)(−∞,−2]分析:(1)设x<0,计算f(−x),再根据奇函数的性质f(x)=−f(−x),即可得对应解析式;(2)作出函数f(x)的图像,利用数形结合思想,列出关于a的不等式组求解;(3)由(1)知分段函数f(x)的解析式,分类讨论解不等式再取并集即可.(1)设x<0,则−x>0,所以f(−x)=−(−x)2+2(−x)=−x2−2x又f(x)为奇函数,所以f(x)=−f(−x),所以当x<0时,f(x)=x2+2x,(2)作出函数f(x)的图像,如图所示:要使f(x)在[−1,a −2]上单调递增,结合f(x)的图象知{a −2>−1a −2≤1,所以1<a ≤3,所以a 的取值范围是(1,3].(3)由(1)知f(x)={−x 2+2x,x ≥0x 2+2x,x <0,解不等式f(x)≥x +2,等价于{x ≥0−x 2+2x ≥x +2 或{x <0x 2+2x ≥x +2 ,解得:∅或x ≤−2 综上可知,不等式的解集为(−∞,−2]小提示:易错点睛:本题考查利用函数奇偶性求解分段函数解析式、根据函数在区间内的单调性求解参数范围的问题,易错点是忽略区间两个端点之间的大小关系,造成取值范围缺少下限,属于基础题.。
2020—2021年人教版初中数学八年级下册函数的表示方法专项练习及答案(精品试题).docx
人教版八年级下册第19章一次函数函数的图象函数的表示方法专题练习题1.每支晨光自动笔的价格是2元,请你根据所给条件完成下表:x(支) 1 2 3 4 5 6 …y(元) 2 …2.汽车以每小时60千米的速度匀速行驶,行驶路程为s千米,行驶的时间为t小时,则s与t的函数解析式为___________.3.校园里栽下一棵1.8米高的小树,以后每年生长0.3米,则n年后的树高L与年数n之间的函数关系式是________________.4.如图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,…设第n(n是正整数)个图案是由y个基础图形组成,则y与n之间的关系式是( )A.y=4n B.y=3nC.y=6nD.y=3n+15.由于干旱,某水库的蓄水量随时间的增加而直线下降.若该水库的蓄水量V(万立方米)与干旱的时间t(天)的关系如图,则下列说法正确的是( )A.干旱开始后,蓄水量每天减少20万立方米B.干旱开始后,蓄水量每天增加20万立方米C.干旱开始时,蓄水量为200万立方米D.干旱第50天时,蓄水量为1200万立方米6.一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是( )7.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价是每升________元.8.如图,OA,BA分别表示甲、乙两名学生匀速跑步运动的函数图象,图中s和t 分别表示运动路程和时间.根据图象判断跑步快者比慢者每秒快____m.9.小李以每千克0.8元的价格从批发市场购进若干千克西瓜到市场去销售,在销售了一部分西瓜后,余下的每千克降价0.4元,全部售完,销售金额与所卖西瓜数量之间的关系如图,求小李一共赚了多少元钱?10.在某次实验中,测得两个变量m与v之间的4组对应数据如下表,则m与v 之间的关系最接近于下列各关系式中的( )m 1 2 3 4v 0.01 2.9 8.03 15.1A.v=2m-2 B.v=m2-1C.v=3m-3 D.v=m+111.如图①,在矩形MNPQ中,动点R从点N出发,沿N→P→Q→M方向运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函数图象如图②,则当x=9时,点R应运动到( )A.M处B.N处C.P处D.Q处12.小亮早晨从家骑车去学校,先走下坡路,然后走上坡路,去时行程情况如图.若返回时,他的下坡和上坡速度仍保持不变,那么小亮从学校按原路返回家用的时间是____分.13.下表是丽丽往姥姥家打长途电话的几次收费记录:时间(分) 1 2 3 4 5 6 7电话费(元) 0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)如果用x表示时间,y表示电话费,上表反映了哪两个变量之间的关系?哪个是自变量?哪个是函数,请用式子表示它们的关系;(2)随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?(4)你能帮丽丽预测一下,如果打10分钟的电话,需付多少元话费?14.有一天,龟、兔进行了600米赛跑,如图表示龟兔赛跑的路程s(米)与时间t(分钟)的关系(兔子睡觉前后速度保持不变),根据图象回答以下问题:(1)赛跑中,兔子共睡了多少时间?(2)赛跑开始后,乌龟在第几分钟时从睡觉的兔子旁经过?(3)兔子跑到终点时,乌龟已经到了多长时间?并求兔子赛跑的平均速度.15.小李师傅驾车到某地办事,汽车出发前油箱中有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图.(1)请问汽车行驶多少小时后加油,中途加油多少升?(2)求加油前油箱剩余油量y与行驶时间t的函数关系式;(3)已知加油前后汽车都以70千米/小时的速度匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.答案:1. 解:略2. s=60t3. L=1.8+0.3n4. D5. A6. A7. 5.098. 1.59. 解:64÷40=1.6(元/千克),(76-64)÷(1.6-0.4)=10(千克),76-(40+10)×0.8=76-40=36(元),故小李一共赚了36元钱10. B11. D12. 3413. 解:(1)电话费与时间之间的关系,时间是自变量,y是x的函数,y=0.6x (2)上升(3)3.0元(4)6.0元14. 解:(1)40分钟(2)200÷(600÷60)=20(分),即赛跑开始后,乌龟在第20分钟从睡觉的兔子旁经过(3)(600-200)÷(200÷10)=20(分),50+20-60=10(分),即乌龟已经到了10分钟;兔子赛跑的平均速度是600÷(50+20)=607(米/分)15. 解:(1)3小时,31升(2)因为汽车出发前油箱有油50升,汽车每小时用油12升,所以y=-12t+50(0≤t≤3) (3)汽车要准备油210÷70×12=36(升),因为45升>36升,所以油箱中的油够用。
函数表示方法练习题
函数表示方法练习题在数学学习过程中,函数表示方法是一个重要的概念。
通过不同的方式表示函数,可以更好地理解函数的性质和特点。
本文将通过一系列练习题来帮助读者巩固函数表示方法的理解。
1. 设函数f(x)在区间[0, 2]上连续,且f(0) = 2, f(2) = 6。
试确定f(x)的一个表示方法。
解析:根据所给条件,我们可以确定函数f(x)的两个点:(0, 2)和(2, 6)。
因为函数f(x)在[0, 2]上连续,我们可以使用线性插值的方法得到函数f(x)的表示方法。
线性插值的思想是通过已知点之间的线性关系来表示函数。
由于函数f(x)在(0, 2)和(2, 6)两点上的斜率相同,我们可以得到函数f(x)的表示方法为f(x) = 2 + (x-0) * (6-2) / (2-0) = 2 + 2x。
2. 设函数g(x)的定义域为实数集R,满足g(x + 2) = 2g(x) + 1。
试确定g(x)的一个表示方法。
解析:我们可以通过观察左边和右边的函数式来寻找函数g(x)的表示方法。
注意到g(x + 2)的形式与g(x)相似,我们可以猜测g(x) = 2g(x-2) + 1。
为了验证这个猜测,我们将它代入原函数式中:左边:g(x + 2) = 2g(x + 2 - 2) + 1 = 2g(x) + 1右边:2g(x) + 1由于左边和右边相等,我们可以得出g(x) = 2g(x-2) + 1是函数g(x)的一个表示方法。
3. 设函数h(x)在定义域[1, 3]上连续,且满足h(1) = 2, h(2) = 3, h(3) = 4。
试确定h(x)的一个表示方法。
解析:由所给条件,我们可以确定函数h(x)的三个点:(1, 2), (2, 3)和(3, 4)。
因为函数h(x)在[1, 3]上连续,我们可以使用二次插值的方法得到函数h(x)的表示方法。
二次插值的思想是通过已知点之间的二次曲线来表示函数。
我们可以构造二次多项式h(x) = ax^2 + bx + c,代入已知点进行求解:当x = 1时,2 = a + b + c (1)当x = 2时,3 = 4a + 2b + c (2)当x = 3时,4 = 9a + 3b + c (3)通过解这个线性方程组,我们可以得到a = 1, b = -3, c = 4。
2024_2025学年新教材高中数学课时检测16表示函数的方法含解析湘教版必修第一册
表示函数的方法[A 级 基础巩固]1.(多选)(2024·佛山一中高一月考)下列四个图形中可能是函数y =f (x )图象的是( )解析:选AD 在A 、D 中,对于定义域内每一个x 都有唯一的y 与之相对应,满意函数关系;在B 、C 中,存在一个x 有两个y 与x 对应,不满意函数对应的唯一性.2.假如f ⎝ ⎛⎭⎪⎫1x =x 1-x,则当x ≠0,1时,f (x )等于( )A.1xB .1x -1C.11-xD .1x-1解析:选B 令1x =t ,则x =1t ,代入f ⎝ ⎛⎭⎪⎫1x =x 1-x,则有f (t )=1t 1-1t=1t -1,∴f (x )=1x -1,故选B.3.已知函数f (x )由下表给出,则满意f (f (x ))>f (3)的x 的值为( )x 1 2 3 f (x )231A .1或3B .1或2C .2D .3 解析:选A 由表知f (3)=1,要使f (f (x ))>f (3),必有f (x )=1或f (x )=2,所以x =3或x =1.4.向高为H 的水瓶中注水,注满为止,假如注水量V 与水深h 的函数关系的图象如图所示,那么水瓶的形态可以是( )解析:选B 取h =H 2与h =H 两个位置视察注水量V ,知h =H 2时,水量已经超过V2,由此可以推断水瓶的下半部分体积大,上半部分体积小.故选B.5.德国数学家狄利克雷在1837年时提出:“假如对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数”.这个定义较清晰地说明白函数的内涵:只要有一个法则,使得取值范围中的每一个值,都有一个确定的y 与之对应,不管这个对应的法则是公式、图象、表格还是其他形式.已知函数f (x )由下表给出,则f ⎝ ⎛⎭⎪⎫10f ⎝ ⎛⎭⎪⎫12的值为( )x x ≤11<x <2 x ≥2f (x )1 23A .0 C .2D .3解析:选D ∵12∈(-∞,1],∴f ⎝ ⎛⎭⎪⎫12=1, 则10f ⎝ ⎛⎭⎪⎫12=10, ∴f ⎝ ⎛⎭⎪⎫10f ⎝ ⎛⎭⎪⎫12=f (10). 又∵10∈[2,+∞),∴f (10)=3,故选D.6.已知函数f (2x +1)=3x +2,且f (a )=4,则a =________.解析:因为f (2x +1)=32(2x +1)+12,所以f (a )=32a +12.又f (a )=4,所以32a +12=4,a =73.答案:737.若一个长方体的高为80 cm ,长比宽多10 cm ,则这个长方体的体积y (cm 3)与长方体的宽x (cm)之间的表达式是________.解析:由题意可知,长方体的长为(x +10)cm ,从而长方体的体积y =80x (x +10),x >0. 答案:y =80x (x +10),x ∈(0,+∞)8.已知函数f (x )对于一切实数x ,y 都有f (x +y )-f (y )=(x +2y +1)x 成立,且f (1)=0.(1)则f (0)的值为________;(2)求f (x )的解析式f (x )=________.解析:(1)取x =1,y =0,则有f (1+0)-f (0)=(1+0+1)×1⇒f (0)=f (1)-2=0-2=-2.(2)取y =0,则有f (x +0)-f (0)=(x +0+1)x ,整理得f (x )=x 2+x -2. 答案:(1)-2 (2)x 2+x -29.已知函数p =f (m )的图象如图所示.求: (1)函数p =f (m )的定义域; (2)函数p =f (m )的值域;(3)p 取何值时,只有唯一的m 值与之对应.解:(1)视察函数p =f (m )的图象,可以看出图象上全部点的横坐标的取值范围是-3≤m ≤0或1≤m ≤4,由图知定义域为[-3,0]∪[1,4].(2)由图知值域为[-2,2].(3)由图知:p ∈(0,2]时,只有唯一的m 值与之对应.10.已知完成某项任务的时间t 与参与完成此项任务的人数x 之间满意关系式t =ax +bx(a ∈R ,b ∈R).当x =2时,t =100,当x =4时,t =53,且参与此项任务的人数不能超过8.(1)写出t 关于x 的函数解析式; (2)用列表法表示此函数; (3)画出此函数的图象.解:(1)由题意,可得⎩⎪⎨⎪⎧4a +b4=53,2a +b 2=100,解得⎩⎪⎨⎪⎧a =1,b =196,所以t =x +196x.又x ≤8,x 为正整数,所以此函数的定义域是{x |0<x ≤8,x ∈N +}. 故此函数的解析式是t =x +196x(0<x ≤8,x ∈N +).(2)由(1)知x =1,2,3,4,5,6,7,8,t 与x 的对应关系列表如下:x 1 2 3 4 5 6 7 8 t1971002053532215116335652(3)此函数的图象如图所示:[B 级 综合运用]11.(多选)已知f (2x +1)=x 2,则下列结论正确的是( ) A .f (-3)=4 B .f (x )=x 2-2x +14C .f (x )=x 2D .f (3)=9解析:选AB f (2x +1)=x 2,令t =2x +1,则x =t -12,所以f (t )=⎝ ⎛⎭⎪⎫t -122=t 2-2t +14,则f (x )=x 2-2x +14,故B 正确,C 错误;f (-3)=(-3)2-2×(-3)+14=4,故A 正确;f (3)=32-2×3+14=1,故D 错误.故选A 、B.12.图①是某公交车线路的收支差额(票价总收入减去运营成本)与乘客量x 的函数图象.目前这条线路亏损,为了扭亏,有关部门提出了两种扭亏为赢的建议,如图②和图③,依据图象分别说明这两种建议,图②的建议是________;图③的建议是_________.解析:由图①可以看出,直线的y =kx +b 中的k 实际意义是票价,在y 轴上的截距的相反数表示运营成本,图②中,直线的k 增加,在y 轴上的截距b 不变,即表示增加票价,运营成本不变,图③中,直线的k不变,直线的截距b增加,即表示票价不变,降低运营成本.答案:增加票价,运营成本不变票价不变,降低运营成本。
函数的三种表达方法习题及答案
一.选择题【2 】1.如图反应的进程是:小刚从家去菜地浇水,又去青稞地除草,然后回家,假如菜地和青稞地的距离为akm,小刚在青稞地除草比在菜地浇水多用了bmin,则a和b的值分离是()A.1,8;B.0.5,12;C.1,12;D.0.5,8答案:D2.礼拜六,小亮从家骑自行车到同窗家去玩,然后返回,如图是他离家的旅程y千米与时光x分钟的函数图象,依据图象信息,下列说法不必定精确的是()A.小亮家到同窗家的旅程是3千米;B.小亮在同窗家勾留的时光是1小时;C.小亮去时走上坡路,回家时走下坡路;D.小亮回家时用的时光比去时用的时光少答案:C3.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100km/h,特快车的速度为150km/h,甲乙两地的距离是1000km,两车同时动身,则图中折线大致表示两车之间的距离y(km)与快车行驶时光t(h)之间的函数图象的是()答案:C4.一根弹簧原长12cm,它所挂重物资量不超过10kg,并且每挂重物1kg,就伸长1.5cm,挂重物后弹簧长度y(cm)与重物x(kg)之间的函数关系式是()A.y=1.5(x+12)(0≤x≤10);B.y=1.5x+12(0≤x≤10);C.y=1.5x+10(0≤x);D.y=1.5(x12)(0≤x≤10)答案:B5.百货大楼进了一批画布,出售时要在进价的基本上加必定的利润,其数目x(米)与售价y (元)如下表:数目x(米)1234...售价y(元)8+0.316+0.624+0.932+1.2...下列用数目x(米)表示售价y(元)的关系式中,精确的是()A.y=8x+0.3;B.y=(8+0.3)x;C.y=8+0.3x;D.y=8+0.3+x答案:B6.图中所反应的进程是:张强从家跑步去体育场,在那边锤炼了一阵后,又去早餐店吃早餐,然后漫步走回家,个中x表示时光,y表示张强离家的距离.依据图象供给的信息,以下四个说法错误的是()A.体育场离张强家2.5千米;B.张强在体育场锤炼了15分钟;C.体育场离早餐店4千米;D.张强从早餐店回家的平均速度是3千米/时答案:C7.小刚以400米/分的速度匀速骑车5分,在原地歇息了6分,然后以500米/分的速度骑回动身地.下列函数图象能表达这一进程的是()答案:C8.小亮因伤风发烧住院治疗,护士为了较直不雅地懂得小亮是日24小时的体平和时光的关系,可选择的比较好的方法是()A.列表法;B.图象法;C.解析式法;D.以上三种办法都可以答案:B9.小文,小亮从黉舍动身到青少年宫参加书法竞赛,小文步行一段时光后,小亮骑自行车沿雷同路线行进,两人平均速前行.他们的旅程差s(米)与小文动身时光t(分)之间的函数关系如图所示.下列说法:①小亮先到达青少年宫;②小亮的速度是小文速度的 2.5倍;③a=24;④b=480.个中精确的是()A.①②③;B.①②④;C.①③④;D.①②③④答案:B10.如图是甲,乙两车在某时段速度随时光变化的图象,下列结论错误的是()A.乙前4秒行驶的旅程是48米;B.在0到8秒内甲的速度每秒增长4米/秒;C.两车到第3秒时行驶的旅程相等;D.在4到8秒内甲的速度都大于乙的速度答案:C11.如图,在△ABC中,AC=BC=25,AB=30,D是AB上的一点(不与A.B重合),DE⊥BC,垂足是点E,设BD=x,四边形ACED的周长为y,则下列图象能大致反应y与x之间的函数关系的是()答案:D12.如图,正方形ABCD的边长为2,动点P从A动身,在正方形的边上沿着A⇒B⇒C的偏向活动到点C停滞.设P的活动旅程为x,则下列图象中△ADP的面积y关于x的函数关系()答案:A13.周末,小明骑自行车从家里动身到野外郊游.从家动身0.5小时后到达甲地,游玩一段时光后,按原速前去乙地,小明离家1小时20分钟后,妈妈驾车沿雷同的路线去乙地,如图是他们离家的旅程y(km)与小明离家时光x(h)的函数图象,已知妈妈驾车的速度是小明的3倍,下面说法精确的有()个.①小明骑车的速度是20km/h,在甲地游玩1小时②小明从家动身小时后被妈妈追上③妈妈追上小明时离家25千米④若妈妈比小明早10分钟到达乙地,则从家到乙地30km.A.1;B.2;C.3;D.4答案:C14.如图,匀速地向容器内灌水,最后把容器注满,在灌水的进程中,水面的高度h随时光t的变化而变化,变化纪律为一折线,下列图象精确的是()答案:C15.苹果成熟了从树上落下,下列几幅图中,大致可以反应苹果下落进程的是()答案:C二.填空题16.函数的三种表示办法分离是.和.答案:列表法,图象法,解析式法17.法较为精确地反应自变量与函数值之间的数目关系,具有一般性.答案:解析式18.法能具体反应自变量与函数值之间的对应关系,但不够周全.答案:列表19.法异常形象直不雅,且便利不雅察出函数值随自变量的变化趋向,但不够精确.答案:图象20.小李以每千克0.8元的价钱从批发市场购进若干千克西瓜到市场上去发卖,在发卖了部分西瓜之后,余下的每千克降价0.4元,全体售完.发卖金额y(元)与发卖西瓜千克数x之间的关系如图所示,那么小李赚了元钱.答案:3621.日常生涯中,白叟是一个隐约的概念,可用白叟系数表示一小我的老年化程度,白叟系数的盘算办法如下表:人的年纪x/岁x≤6060<x<80x≥80白叟系数y01按照如许的划定,白叟系数为0.6的人年纪是岁.答案:7222.小斌用40元购置5元/件的某种商品,他残剩的钱数y元,购置的商品件数为x件,y随x的变化而变化,在这个问题中,为自变量,为自变量的函数,y随x变化的函数解析式是.答案:x;y;y=405x23.在某公司德律风亭打德律风时,需付德律风费y元与通话时光xmin之间的函数关系用图象表示如图所示,小明打了2min需付费元;小李打了5min需付费元.答案:0.7;1.324.用一根16cm长的细铁丝围成一个等腰三角形,若底边边长为ycm,一腰长为xcm,则y与x 的函数解析式是,自变量的取值规模是.答案:y=162x;4<x<825.一根弹簧原长10cm,在弹性限度内最多可挂质量为5kg的物体,挂上物体后弹簧伸长的长度与所挂物体的质量成正比,,则弹簧的总长度y(cm)与所挂物体质量x(kg)之间的函数关系式是:y=10+0.5x(0≤x≤5).横线处为肯定函数解析式的一个前提,你以为该前提是什么.(只需写出一个)答案:物体质量每增长1kg,弹簧伸长0.5cm26.如图所示的折线ABC为甲地向乙地打长途德律风需付的德律风费y(元)与通话时光t (分钟)之间的函数关系,则通话8分钟敷衍德律风费元.答案:7.427.如图所示,购置一种苹果,所付款金额y(元)与购置数目x(千克)之间的函数图象由线段OA和射线AB构成,则一次购置3千克这种苹果比分三次每次购置1千克这种苹果可省元.答案:2三.解答题28..李先生周末骑自行车去郊游,如图表示的是他离家的距离y(千米)与时光t(时)之间关系的函数图象,李先生9点分开家,15点到家.依据这个图象,请答复下列问题:(1)他到离家最远的地方花了多长时光?此时离家多远?(2)他何时开端第一次歇息?歇息了多长时光?(3)他从离家最远的地方回到家用了多长时光?速度是若干?答案:(1)李先生到离家最远的地方花了3小时,此时离家30千米.(2)李先生从10点30分开端第一次歇息,歇息了30分钟(3)李先生从离家最远的地方回家用了2小时,速度是15千米/时.29.某市肆零售一种商品,其质量x(kg)与售价y(元)之间的关系如下表:x/kg12345678y/元 2.4 4.87.29.61214.416.819.2依据发卖经验可知,在此处零买这种商品的顾客所买商品均未超过8kg.(1)由上表推出售价y(元)关于质量x(kg)的函数解析式,并画出函数的图象;(2)李大婶购置这种商品5.5kg,敷衍若干元钱?答案:(1)不雅察题表可知质量每增长1kg,售价就增长 2.4元,如许变化纪律可以表示为y=2.4x(0≤x≤8)函数图象如下:(2)将x=5.5代入解析式,得y=2.4×5.5=13.2(元)李大婶购置这种商品5.5kg,敷衍13.2元钱.30..某公园集体门票的收费标准是20人以内(含20人),每人25元,超过20人,超过的每人10元(1)写出应收门票费y(元)与进园人数x(x≥20)之间的函数解析式;(2)应用(1)中的解析式盘算:某旅游团有54人去该公园不雅赏,购置门票花了若干钱?答案:(1)y=10x+300(x≥20且为整数)(2)840元.第11页,-共11页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知函数f (x )由下表给出,则f (2)=( ).
A .1
B .2
C 2.y =f (x )的图象如图,则函数的定义域是( ).
A .[-5,6)
B .[-5,0]∪[2,6]
C .[-5,0)∪[2,6)
D .[-5,0]∪[2,6)
3.一个面积为100 cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ).
A .y =50x (x >0)
B .y =100x (x >0)
C .50y x =
(x >0) D .100y x
=(x >0) 4.已知()2
x
f x x =
+,则f (f (-1))的值为( ). A .0 B .1 C .-1 D .2
5.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,下图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图象是( ).
6.已知111f x x ⎛⎫=
⎪+⎝⎭
,则f (x )=________. 7.已知函数f (x )满足f (x -1)=x 2,那么f (2)=__________.
8.某班连续进行了5次数学测试,其中智方同学的成绩如表所示,在这个函数中,定义域是__________,值域是__________.
9
资的方式是:第一个月1 000元,以后每个月比上一个月多100元.设该大学生试用期的第x个月的工资为y元,则y是x的函数,分别用列表法、图象法和解析法表示该函数关系.10.已知f(x)是二次函数,且满足f(0)=1,f(x+1)-f(x)=2x,求f(x)的解析式.
参考答案
1. 答案:C
2. 答案:D
3. 答案:C 解析:依题意有1
2
(x +3x )y =100,所以xy =50,50y x =,且x >0,故y 与x 的函数关
系式是50
y x
=
(x >0). 4. 答案:C 解析:∵()2x f x x =
+,∴f (-1)=112--+=-1. ∴f (f (-1))=f (-1)=1
12
--+=-1. 5. 答案:D
解析:(1)开始乘车速度较快,后来步行,速度较慢;(2)开始某人离乙地最远,以后越来越近,最后到达乙地,符合(1)的只有C ,D ,符合(2)的只有B ,D .
6. 答案:
1
x x + 解析:令
1t x =,则1x t =,将1x t
=代入111f x x
⎛⎫
= ⎪+⎝⎭,得()11
1
1t
f t t t
=
=
++.∴()1x f x x =+.
7. 答案:9
解析:令x -1=2,则x =3,而32=9,所以f (2)=9. 8. 答案:{1, 2,3,4,5} {90,92,93,94,95} 9. 解:(1)该函数关系用列表法表示为:
(2)
(3)该函数关系用解析法表示为:y=100x+900,x∈{1,2,3,…,6}.10.解:设f(x)=ax2+bx+c(a≠0),
∵f(0)=1,∴c=1.
又∵f(x+1)-f(x)=2x,
∴a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x,
即2ax+(a+b)=2x.
∴
22
a
a b
=
⎧
⎨
+=
⎩
,
,
解得a=1,b=-1.
∴f(x)=x2-x+1.。