2020河北省初三中考(联考)模拟数学试卷
2020年河北省中考模拟考试(一)数学试题及参考答案与解析(word版)
2020年河北省初中毕业生升学文化课模拟考试(一)数学试卷本试卷分卷I和卷II两部分;卷I为选择题,卷1I为非选择题.本试卷满分120分,考试时间为120分钟.卷I(选择题,共42分)注意事项:1.答卷I前.考生务必将自己的姓名、准考证号、科目填涂在答题卡上.考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑答在试卷上无效.一、选择题(本大题共16个小题,共42分,1~I 0小题各3分;11~16小题各2分.在每小题给出的四个选项中只有项是符合题目要求的)1.下列各数中,比-2大2的数是()A.0 B.-4 C.2 D.42.把一个三角板按下图所示位置放置,∠1=40°,∠2=()A.40°B.45°C.50°D.60°3.下图中几何体的主视图是()A.B.C.D.4.下列对代数式1ab-的描述,正确的是()A.a与b的相反数的差B.a与b的差的倒数C.a与b的倒数的差D.a的相反数与b的差的倒数5.如图,直线a∥b∥c,45AB BC=,若DF=9,则EF的长度为()A .9B .5C .4D .3 6.下列变形正确的是( ) A .-2(a+2)=a -2 B .()121212a a --=-+ C .-a+1=-(a -1) D .1-a=-(a+1) 7.关于x 的一元二次方程2104ax x -+=有两个不相等的实数根,则a 的取值范围是( ) A .a >0 B .a >-1 C .a <1 D .a <1且a ≠08.在新型冠状病毒防控期间,小静坚持每天测量自己的体温,并把5次的体温(单位:℃)分别写在5张完全相同的卡片上:,把这5张卡片背面朝上洗匀后,从中随机抽取一张卡片,已知P (一次抽到36)=25,这5张卡片上数据的方差为( ) A .35.9 B .0.22 C .0.044 D .09.如图,五边形ABCDE 中,AE ∥BC ,BE 交于点O ,四边形OCDE 是平行四边形,若△ABE 的面积是5,四边形OCDE 的面积是6,则△AOE 的面积是( )A .2B .2.5C .3D .410.如图,点A (0,4),B (3,4),以原点O 为位似中心,把线段AB 缩短为原来的一半,得到线段CD ,其中点C 与点A 对应,点D 与点B 对应,则点D 的横坐标...为( )A .2B .2或-2C .32 D .32或32- 11.如图,在△ABC 中,AB <BC ,在BC 上取一点P ,使得PC=BC -PA .根据圆规作图的痕迹,可以用直尺成功找到点P 的是( )A.B.C.D.12.如图,四边形ABCD中,AD∥BC,AD=12BC,CD=BC,点E,F分别是BD,CD的中点,连接AE,EF,AF,若BC=2,AF=85,则BD=()A.35B.95C.125D.313.关于x方程2311x mx-=-的解是正数,m的值可能是()A.23B.12C.0 D.-114.如图,在6×6的正方形网格中,经过格点A,B,C,⊙O点P是ACB上任意一点,连接AP,BP,则tan∠APB的值为()A .12B C D 15.点(a ,b )是反比例函数2y x=-的图象上一点,若a <2,则b 的值不可能...是( ) A .-2 B .13- C .2 D .316.如图,在等边△ABC 中,AB=D 在△ABC 内或其边上,AD=2,以AD 为边向右作等边△ADE ,连接CD ,CE ,设CE 的最小值为m ;当ED 的延长线经过点B 时,∠DEC=n °,则m ,n 的值分别为( )A B C .2,55 D .2,60卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.二、填空题(本大题共3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分) 17.若单项式212xyx 与n x y -是同类项,则n 的值为 . 18.定义新运算:对于任意实数a ,b ,都有a ⊕b=a (b+1)-b ,等式右边是通常的加法、减法及乘法运算,比如:3⊕2=3(2+1)-2=9-2=7. (1)2⊕(-3)= ;(2)若(-2)⊕x 的值等于-5,则x= .19.如图,ABCD 中,AB=7,BC=5,CH ⊥AB 于点H ,CH=4,点P 从点D 出发,以每秒1个单位长度的速度沿DC —CH 向点H 运动,到点H 停止,设点P 的运动时间为t .(1)AH= ;(2)若△PBC 是等腰三角形,则t 的值为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)如图,在一条不完整的数轴上,从左到右的点A,B,C把数轴分成①②③④四部分,点A,B,C对应的数分别为a,b,c,已知bc<0.(1)请说明原点在第几部分;(2)若AC=5,BC=3,b=-1,求a;(3)若点B到表示1的点的距离与点C到表示1的点的距离相等,且a-b-c=-3,求-a+3b-(b -2c)的值.21.(本小题满分9分)发现:小明经过计算总结出两位数乘11的速算方法:头尾一拉,中间相加,满十进一.例1.计算:32×11=352.方法:32头尾拉开,中间相加,即3+2=5,计算结果为352.例2.计算:57×11=627.方法:57头尾拉开,中间相加,即5+7=12,满十进一,计算结果为627.尝试:(1)43×11=;(2)69×11=;(3)98×(-11)=.探究:一个两位数,十位上的数字是m,个位上的数字为n,这个两位数乘11.(1)若m+n<10,计算结果的百位、十位、个位上的数字分别是什么?请通过计算加以验证.(2)若m+n≥10,直接写出....计算结果中十位上的数字.22.(本小题满分9分)自2020年初的新型冠状病毒疫情爆发以来,疫悄时时刻刻都在牵动全国人民的心.小明在做好自我防控的同时,也从数据分析的角度去看待疫情动态,他从2月10日起,连续7天记录了全国每天新增确诊病例人数,并绘制了如图所示的折线统计图.(注:本题所考查的人数均保留整数)(1)①小明关注这7天每天新增确诊病例人数的最高值、最低值和中位数,井计算了平均数.其中中位数是人,平均数是人;②上述哪个统计量能反映这7天新增确诊病例人数的一般水平?(2)小明又接着记录了连续5天的全国新增确诊病例人数,如下表:①请在图中补画出这5天每天新增确诊病例人数的折线统计图;②求2月10日至2月21日每天新增确诊病例人数的中位数.(3)请你分别通过对上述两个中位数的比较和全部折线图来说明每天新增确诊病例人数的升降趋势.23.(本小题满分9分)如图,Rt△ABC中,∠C=90°,AC=BC=4,P是BC上一点(不与B,C重合),连接AP,将AP绕点A逆时针旋转90°得到AQ,连接BQ,分别交AC,AP于点D,E,作QF⊥AC于点F.(1)求证:QF=AC;(2)若P是BC的中点,求tan∠ADQ的值;(3)若△AEQ的内心在QF上,直接写出....BP的长.24.(本小题满分10分)学校计划拿出一笔钱给一些班级配置篮球和排球.若给每班1个篮球和2个排球,花完这笔钱刚好配置30个班;若给每班2个篮球和1个排球,花完这笔钱刚好配置20个班.设每个篮球a元,每个排球b元.(1)用含b的代数式表示a;(2)现在给每班x个篮球和y个排球,花完这笔钱刚好配置10个班.①求y与x的函数解析式;②怎样的配置方案,可以使每班配置的排球最少?25.(本小题满分10分)如图,正方形ABCD中,AB=3,P使BC边上一点(不包括B,C),连接AP,点E,B关于直线AP对称,连接DE并延长交AP的延长线于点F,以点B为圆心,BF长为半径作圆,与BE交于点G.(1)当∠PAB=26°时,∠AED=°;(2)求证:直线DF时⊙B的切线;(3)当时,求GF的长;(4)若DE=4,直接写出....EF的长.26.(本小题满分12分)如图,抛物线y=ax2+bx+3经过点A(-3,0),B(1,0),顶点为点M,与y轴交于点C,点P是抛物线上一点,PH⊥y轴于点H,射线PH交抛物线的对称轴于点D.(1)求抛物线的解析式及顶点M的坐标;(2)若点P在第四象限,OH=5,求PD的长;(3)m>0,点E(m,y1),F(-1-m,y2)均在抛物线上,比较y1,y2的大小,并说明理由;(4)若点P在第二象限,连接PA,PC,AC,直接写出....△PAC面积的最大值.。
2020届初三中考数学一诊联考试卷含答案解析 (河北)
2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.如图所示的是由若干个同样大小的正方体搭成的几何体的俯视图,小正方形中的数字表示该位置正方体的个数,则这个几何体的左视图是()A.B.C.D.2.如图,在四边形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=2,BC=8,点P从点B出发沿折线BA﹣AD﹣DC匀速运动,同时,点Q从点B出发沿折线BC﹣CD匀速运动,点P与点Q的速度相同,当二者相遇时,运动停止,设点P 运动的路程为x,△BPQ的面积为y,则y关于x的函数图象大致是()A.B.C.D.3.有一首《对子歌》中写到“天对地,雨对风,大陆对长空”,现有四张书签,除正面写上“天”“地”“雨”“风”四个字外其他均无区别.从这四张书签中随机抽取两张,则抽到的书签正好配成“对子”的概率是()A.12B.13C.14D.164.如图,O半径为4,AB是O的直径,C是O上的一点,D是AB延长线上一点,DC是O的切线,30CAB∠=,则CD长()A.8B.C.4D.5.如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,P A⊥PB,且P A、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3B.4C.6D.86.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分7.抛物线y=x2﹣mx﹣m2+1的图象过原点,则m为()A.0B.1C.﹣1D.±18.如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M 作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=12BD;③BN+DQ=NQ;④AB BNBM为定值.其中一定成立的是A.①②③B.①②④C.②③④D.①②③④9.一个滑轮起重装置如图所示,滑轮的半径是15cm,当重物上升15cn时,滑轮的一条半径OA绕轴心O按顺时针方向旋转的角度约为()(π取3.14,结果精确到1º)A.115ºB.60ºC.57ºD.29º10.某天的同一时刻,甲同学测得1m的测竿在地面上的影长为0.6m,乙同学测得国旗旗杆在地面上的影长为9.6m。
河北省2020年中考模拟试卷数学模拟答案
河北省2020年中考模拟试卷数学试卷参考答案1-5 ACDBB 6-10 DACDB 11-16 CACDDB 17.3 18.2 1920.(1)-3;(2)x=32. 21.解:(1)总人数为17÷0.17=100人,则a=30100=0.3,b=100×0.45=45人; (2)扇形统计图中B 组对应扇形的圆心角为360°×0.3=108°;(3)将同一班级的甲、乙学生记为A ,B ,另外两学生记为C ,D ,列树形图略, ∵共有12种等可能的情况,甲、乙两名同学都被选中的情况有2种,∴甲、乙两名同学都被选中的概率为212=16. 22.解:(1)错误之处:当2为腰,5为底时,等腰三角形的三条边为2,2,5. 错误原因:此时不能构成三角形;(2)①当m=2时,x 2-2x+1-14=0,解得x 1=12,x 2=23,当12为腰时,12+12<32, ∴不能构成三角形;当32为腰时,等腰三角形的三边为32,32,12, 此时周长为32+32+21=72.当m=2时,△ABC 的周长为72. ②当△ABC 为等边三角形时,则方程有两个相等的实数根,即(-m )2-4(m 2-14)=0,m 2-2m+1=0,解得m 1=m 2=1, 即当△ABC 为等边三角形时,m 的值为1.23.证明:(1)∵AD=2AB ,点E 为AD 中点,∠ABD=90°,∴AE=ED=BE=AB , ∵BC 是由AB 绕点B 旋转得到的,∴BC=AB=ED ,∵BC ∥AD ,∴四边形BCDE 是平行四边形,∵BE=ED ,∴四边形BCDE 是菱形;解:(2)∵AD=2AB ,∠ABD=90°,∴cos ∠BAD=AB:AD=12,∴∠BAD=60°, ∵BC ∥AD ,∴∠ABC=120°,∴点A 的运动路径长为1801π120⨯⨯=32π. (3)∵BA=BC=1,∠ABC=120°,∴∠BAC=30°,∠CAD=60°-30°=30°, ∵四边形BCDE 是菱形,∴CD=CB=AB=1,DB 平分∠ADC ,∴∠ACD=90°,在Rt △ACD 中,∵CD=1,∠ADC=60°,∴.24.解:(1)∵P (x ,0)与原点的距离为y 1, ∴当x ≥0时,y 1=OP=x , 当x <0时,y 2=OP=-x , ∴y 1关于x 的函数解析式为y=x (x ≥0)或y=-x (x <0),图1 图3 图4 图5MM 即为y=|x |,函数图象如图所示:(2)∵A 的横坐标为2,∴把x=2代入y=x ,可得y=2,此时A 为(2,2), k=2×2=4,当k=4时,如图可得,y 1>y 2时,x <0或x >2.25.解:(1)连接BE ,如图1所示:∵四边形ABCD 是正方形,∴∠BCA=∠BAC=45°, ∵AB 是⊙O 的直径,∴∠AEB=90°,∴△ABE 是等腰直角三角形,∴;(3分)(2)①连接OA 、OF ,如图3所示:则OA=OF=2,∵α=30°,∴∠OAF=90°−30°=60°, ∴△OAF 是等边三角形,∴AF=OA=2;②∵α=60°,∠DAM=30°,∴∠NAM=90°,即AM ⊥AN ,∴AM 过点O , 设AM 交⊙O 于G ,连接FG ,过点O 作OH ⊥DM 于H ,如图4所示:∴∠AFG=90°,∠OHM=90°,∵AG=4,∴AF=AG·cos ∠DM 与⊙O 相离,理由如下:在Rt △ADM 中,AM=AD÷cos30°=4=338,∴-2, 在Rt △OHM 中,OH=OM·sin ∠OMH=(3-2)×sin60°=4∵OH−OA=42=2,∴OH >OA ,∴DM 与⊙O 相离;③当α=90°时,DM 与⊙O 相切。
2020年河北省中考数学模拟试题及参考答案(word版)
2020年河北省中考数学模拟试题及参考答案(满分120分,考试时间120分钟)卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在数轴上,若点B 表示一个负数,则原点可以是( )A .点EB .点DC .点CD .点A2.要将等式112x -=进行一次变形,得到x=-2,下列做法正确的是( ) A .等式两边同时加32x B .等式两边同时乘以2C .等式两边同时除以-2D .等式两边同时乘以-23.如图,在△ABC 中,∠ACB=90°,D 是AB 的中点,则下列结论不一定正确的是( )A .CD=BDB .∠A=∠DCAC .BD=ACD .∠B+∠ACD=90° 4.下列计算,正确的是( ) A .()32628aa -= B .7a -4a=3 C .633x x x ÷= D .211224-⨯=5.下列由一个正方形和两个相同的等腰直角三角形组成的图形中,为中心对称图形的是( )A .B .C .D .6.世界上最薄的纳米材料其理论厚度是{0.00...034a m 个,该数据用科学记数法表示为63.1410m -⨯,则a 的值为( )A .4B .5C .6D .77.对于n (n >3)个数据,平均数为50,则去掉最小数据10和最大数据90后得到一组新数据的平均数( )A .大于50B .小于50C .等于50D .无法确定 8.已知实数m ,n 互为倒数,且|m|=1,则m 2-2mn+n 2的值为( ) A .1 B .2 C .0 D .-29.如图是某河坝横断面示意图,AC为迎水坡,AB为背水坡,过点A作水平面的垂线AD,BD=2CD,设斜坡AX的坡度为i AC,坡角为∠ACD,斜坡AB的坡度为i AB,坡角为∠ABD,则下列结论正确的是()A.i AC=2i AB B.∠ACD=2∠ABD C.2i AC=i AB D.2∠ACD=∠ABD10.如图,已知点D、E分别在∠CAB的边AB、AC上,若PD=6,由作图痕迹可得,PE的最小值是()A.2 B.3 C.6 D.1211.已知b=a+c(a,b,c均为常数,且c≠0),则一元二次方程cx2-bx+a=0根的情况是()A.有两个不相等的实数根B.有两个实数根C.有两个相等的实数根D.无实数根12.若2111xx x+--的值小于-6,则x的取值范围为()A.x>-7 B.x<-7 C.x>5 D.x>-513.如图,在2×2的正方形网格中,每个小正方形的边长均为1,四边形ABCD的周长记为c,若a-1<c<a(a为正整数),则a的值为()A.4 B.5 C.6 D.714.如图为由若干个大小相同的正方体组成的几何体的左视图和俯视图,则它的主视图不可能是()15.如图,已知点O是△ABC的外心,连接AO并延长交BC于点D,若∠B=40°,∠C=68°,则∠ADC的度数为()A .52°B .58°C .60°D .62°16.对于题目:在平面直角坐标系中,直线445y x =-+分别与x 轴、y 轴交于A 、B 两点,过点A 且平行y 轴的直线与过点B 且平行x 轴的直线相交于点C ,若抛物线y=ax 2-2ax -3a (a ≠0)与线段BC 有唯一公共点,求a 的取值范围.甲的计算结果是13a ≥;乙的计算结果是43a -<,则( ) A .甲的结果正确 B .乙的结果正确C .甲与乙的结果合在一起正确D .甲与乙的结果合在一起也不正确卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分)17= .18.观察下列一组数据,其中绝对值依次增大2,且每两个正数之间有两个负数:1,-3,-5,7,-9,-11,13,-15,…;则第10个数是 ;第3n 个数是 (n 为正整数). 19.如图,过正六边形ABCDEF 的顶点D 作一条直线l ⊥AD 于点D ,分别延长AB 、AF 交直线l 于点M 、N ,则∠AMN= ;若正六边形ABCDEF 的面积为6,则△AMN 的面积为 .三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)在实数范围内,对于任意实数m 、n (m ≠0)规定一种新运算:3n m n m mn ⊗=+-,例如:232332312⊗=+⨯-=.(1)计算:()()21-⊗-; (2)若127x ⊗=-,求x 的值;(3)若()2y -⊗的最小值为a ,求a 的值. 21.(本小题满分9分)在证明定理“三角形的中位线平行于第三边,且等于第三边的一半”时,小明给出如下部分证明过程.已知:在△ABC中,D、E分别是边AB、AC的中点.求证:.证明:如图,延长DE到点F,使EF=DE,连接CF,……(1)补全求证;(2)请根据添加的辅助线,写出完整的证明过程;(3)若CE=3,DF=8,求边AB的取值范围.22.(本小题满分9分)在抗击新型冠状病毒肺炎战役中,某市党员积极响应国家号召参加志愿者活动,为人民服务,现随机抽查部分党员一个月来参加志愿者活动的次数,并绘制成如下尚不完整的条形统计图(图1)和扇形统计图(图2).(1)“4次”所在扇形的圆心角度数是,请补全条形统计图;(2)若从抽查的党员中随机选择一位接受媒体的采访,求该党员一个月来参加志愿者活动次数不少于3次的概率;(3)设随机抽查的党员一个月来参加志愿者活动次数的中位数为a,若去掉一部分党员参加志愿者活动的次数后,得到一组新数据的众数为b,当b>a时,求最少去掉了几名党员参加志愿者活动的次数.23.(本小题满分9分)如图,在矩形ABCD中,点E是边BC上一点(不与点B、C重合),点F是BC延长线上一点,且CF=BE,连接AE、DF.(1)求证:△ABE≌△DCF;(2)连接AC,其中AC=43,BC=6.①当四边形AEFD是菱形时,求线段AE与线段DF之间的距离;②若点I是△DCF的内心,连接CI、FI,直接写出∠CIF的取值范围.24.(本小题满分10分)在平面直角坐标系中,我们定义:横坐标与纵坐标均为整数的点为整点.如图,已知双曲线k yx =(x>0)经过点A(2,2),记双曲线与两坐标轴之间的部分为G(不含双曲线与坐标轴).(1)求k的值;(2)求G内整点的个数;(3)设点B(m,n)(m>3)在直线y=2x-4上,过点B分别作平行于x轴、y轴的直线,交双曲线kyx=(x>0)于点C、D,记线段BC、BD、双曲线所围成的区域为W,若W内部(不包括边界)不超过8个整点,求m的取值范围.25.(本小题满分10分)如图1,在正方形ABCD中,AB=10,点O、E在边CD上,且CE=2,DO=3,以点O为圆心,OE为半径在其左侧作半圆O,分别交AD于点G,交CD的延长线于点F.(1)AG=;(2)如图2,将半圆O绕点E逆时针旋转α(0°<α<180°),点O的对应点为O′,点F的对应点为F′;设M为半圆O′上一点.①当点F′落在AD边上时,求点M与线段BC之间的最短距离;②当半圆O′,交BC于P、R两点时,若»PR的长为53π,求此时半圆O′与正方形ABCD重叠部分的面积;③当半圆O′与正方形ABCD的边相切时,设切点为N,直接写出tan∠END的值.26.(本小题满分12分)某公司为了宣传一种新产品,在某地先后举行40场产品促销会,已知该产品每台成本为10万元,设第x场产品的销售量为y(台),在销售过程中获得以下信息:信息1:已知第一场销售产品49台,然后每增加一场,产品就少卖出1台;信息2:产品的每场销售单价p(万元)由基本价和浮动价两部分组成,其中基本价保持不变,第1场——第20场浮动价与销售场次x成正比,第21场——第41场浮动价与销售场次x成反比,经过统计,得到如下数据:(1)求y与x之间满足的函数关系式;(2)当产品销售单价为13万元时,求销售场次是第几场?(3)在这40场产品促销会中,哪一场获得的利润最大,最大利润是多少?参考答案与解析卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. D 【分析与解答】在数轴上,正数在原点的右侧,负数在原点的左侧,点B 表示一个负数,∴原点在点B 的右侧,只有点A 符合.2. D 【分析与解答】将等式-12x =1两边同除以系数-12,即同乘以系数的倒数-2,可得到x =-2.3. C 【分析与解答】∵△ABC 是直角三角形,D 是AB 的中点,∴AD =CD =BD ,A 选项正确;∵AD =CD ,∴∠A =∠DCA ,B 选项正确;∵∠ACB =90°,∴∠A +∠B =90°.又∵∠A =∠ACD ,∴∠ACD +∠B =90°,D 选项正确;BD 与AC 的关系无法确定,C 选项错误.4. C 【分析与解答】逐项分析如下:5. C 【分析与解答】把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,只有C 选项符合.A 、D 为轴对称图形,B 既不是轴对称图形,也不是中心对称图形.6. B 【分析与解答】科学记数法表示为a ×10n ,其中1≤|a |<10,n 为整数,对于绝对值大于0且小于1的数,n 是负整数,n 的绝对值等于原数左起第一个非零数前所有零的个数(包含小数点前的零),∴|-6|=a +1,∴a =5.7. C 【分析与解答】由题意得,n 个数据的总和为50n ,去掉最小数据10和最大数据90后的新数据总和为50n -100,且这组新数据的个数为n -2,则新数据的平均数为50n -100n -2=50.8. C 【分析与解答】∵|m |=1,且m ,n 互为倒数,∴m -n =0,∴m 2-2mn +n 2=(m -n )2=0.【一题多解】∵m 、n 互为倒数,且|m |=1,∴m 2=n 2=1,mn =1.∴m 2-2mn +n 2=1-2+1=0.9. A 【分析与解答】∵AD ⊥BC ,∴i AC =AD CD ,i AB =AD BD ,∵BD =2CD ,∴i AB =AD 2CD =12·ADCD=12i AC,∴i AC =2i AB . 10. C 【分析与解答】当PE 与AC 垂直时,PE 有最小值,由作图痕迹可知P A 平分∠CAB ,PD ⊥AB 于点D ,由角平分线的性质定理可得PE 的最小值等于PD ,∵PD =6,∴PE 的最小值为6.11. B 【分析与解答】∵Δ=b 2-4ac =(a +c )2-4ac =(a -c )2≥0,∴方程有两个实数根. 12. C 【分析与解答】原式=x 21-x -11-x =x 2-11-x =(x +1)(x -1)1-x =-x -1,由题意得,-x -1<-6,解得x >5.13. C 【分析与解答】由勾股定理得,AB =BC =CD =DA =2,∴c =42=32,∵25<32<36,∴5<c <6,∵a -1<c <a ,∴a =6.14. B 【分析与解答】由左视图和俯视图可得几何体如解图所示,对应的主视图可以是A 、C 、D ,∴主视图不可能是选项B .第14题解图15. D 【分析与解答】如解图①,连接OB 、OC ,∵点O 是△ABC 的外心,∴OA =OB =OC ,∴∠OAB =∠OBA ,∠OBC =∠OCB ,∠OAC =∠OCA ,∵∠BAC +∠ABC +∠ACB =180°,∴∠OAB +∠OCA +∠OCB =90°,∵∠ACB =68°, ∴∠OAB =22°.∵∠ABC =40°, ∴∠ADC =∠ABC +∠OAB =62°.【一题多解】如解图②,作△ABC 的外接圆⊙O ,延长AD 交⊙O 于点E ,连接BE ,∵AE 为⊙O 的直径,∴∠ABE =90°,∵∠ABC =40°,∴∠CBE =50°,∵∠BCA =68°,∴∠BEA =∠BCA =68°,∴∠ADC =∠BDE =180°-∠CBE -∠BEA =180°-50°-68°=62°.第15题解图① 第15题解图②16. D 【分析与解答】∵抛物线y =ax 2-2ax -3a =a (x 2-2x -3)=a (x -3)(x +1),∴抛物线与x 轴恒交于(-1,0),(3,0)两点,对称轴恒为直线x =1,∵直线y =-45x +4与x 轴、y 轴交于点A 、B .∴点A (5,0),点B (0,4).点C (5,4),①a >0时,如解图①,当抛物线经过点C 时,将x =5代入抛物线得y =12a ,∴12a ≥4,∴a ≥13;②a <0时,分两种情况.情况一:如解图②,当抛物线经过点B 时,将x =0代入抛物线得y =-3a ,∵抛物线与线段BC 有唯一公共点,∴-3a >4,∴a <-43;情况二:当抛物线的顶点在线段BC 上时,则顶点为(1,4),如解图③,将点(1,4)代入抛物线得4=a -2a -3a ,解得a =-1.综上可得,a 的取值范围为a <-43或a =-1或a ≥13.图① 图② 图③第16题解图卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分)17. 6 【分析与解答】原式=23×3=6.18. 19,-6n +1 【分析与解答】观察数据1,-3,-5,7,-9,-11,13,-15,…;发现第n (n 为正整数)个数的绝对值是2n -1,若n 被3除余1则为正号,否则为负号,∵10÷3=3……1,2×10-1=19,∴第10个数为19,∵3n ÷3=n ,2×3n -1=6n -1,∴第3n 个数为-6n +1.19. 30°;16 【分析与解答】∵正六边形的每一个内角为120°,∴∠BAD =∠F AD =60°,∵l ⊥AD ,∴∠AMN =30°.如解图,取正六边形的中心为O ,连接CO ,易得△COD 是等边三角形,S 正六边形ABCDEF =6S △COD =6×34CD 2=332CD 2=6,∴CD 2=433,∵AD =2CD ,∴MN =2DM =2tan 60°×AD =43CD ,∴S △AMN =12AD ×MN =12×2CD ×43CD =43CD 2=16.第19题解图三、解答题(本大题共7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20. 解:(1)(-2)⊗(-1)=(-2)-1+(-2)×(-1)-3(1分) =-32;(3分)(2) 由题意得,x ⊗1=x +x -3=-27,(4分) 解得x =-12;(6分)(3)(-y )⊗2=y 2-2y -3=(y -1)2-4.∵(y -1)2-4的最小值为-4,(7分) ∴a 的值为-4.(8分)21. 解:(1)DE ∥BC ,且DE =12BC ;(2分)(2)∵点E 是AC 的中点,∴AE =CE ,又∵EF =ED ,∠AED =∠CEF ,∴△ADE ≌△CFE .(3分)∴AD =CF ,∠A =∠ECF ,∴AD ∥CF ,∴AB ∥CF ,∵点D 是AB 的中点,∴AD =BD ,∴BD =CF ,∴四边形BDFC 是平行四边形,∴DE ∥BC ,DF =BC .(5分) ∵DE =FE ,∴DE =12BC .(6分)(3)∵DF =8,∴BC =8,∵CE =3,∴AC =6.(7分) ∴BC -AC <AB <BC +AC ,即2<AB <14.(9分) 22. 解:(1)72°,(1分)补全条形统计图如解图所示;(2分)第22题解图【解法提示】由题意可得,“4次”所在扇形的圆心角度数为360°×20%=72°,此次随机抽查党员的人数为10÷20%=50(人),∴“3次”的人数为50-4-14-10-8=14(人).(2)∵随机抽查的党员人数为10÷20%=50(人),其中参加志愿者活动次数不少于3次的有14+10+8=32(人),(4分)∴P (该党员一个月来参加志愿者活动次数不少于3次)=3250=1625;(5分)(3)将参加次数按由小到大进行排列,可得中位数为第25、26个数的平均数,由题意得a =3+32=3,(6分)∵去掉一部分党员参加志愿者活动的次数后,得到一组新数据的众数为b ,且b >a , ∴b =4或5.当b =4时,最少需去掉10名党员参加志愿者活动的次数,即去掉5个参加志愿者活动次数为2次的和5个参加志愿者活动次数为3次的;当b =5时,最少需去掉17名党员参加志愿者活动的次数,即去掉7个参加活动为2次的,7个参加活动为3次的,3个参加活动为4次的,∵10<17,∴b =4.(7分)这时最少去掉了10名党员这一个月来参加志愿者活动的次数,即去掉5个参加志愿者活动次数为2次的和5个参加志愿者活动次数为3次的.(9分)23. (1)证明:∵四边形ABCD 是矩形, ∴AB =DC ,∠B =∠BCD =90°, ∴∠B =∠DCF =90°,(2分)∵BE =CF ,∴△ABE ≌△DCF ;(3分)(2)解:①∵四边形AEFD 是菱形, ∴AE =EF =DF =AD ,设平行线AE 与DF 之间的距离为x ,有AE ·x =EF ·CD , ∴x =CD .(4分) ∵AC =43,BC =6,∴AB =AC 2-BC 2=23,(5分) ∴x =CD =AB =23.∴线段AE 与线段DF 之间的距离为23;(6分) ②90°<∠CIF <120°.(9分) 【解法提示】∵tan ∠BAC =BC AB =623=3,∴∠BAC =60°. ∵点E 是边BC 上一点(不与点B 、C 重合),∴0°<∠BAE <60°. ∵点I 是△CDF 的内心,第23题解图∴∠ICF =12∠DCF ,∠IFC =12∠DFC ,∴∠CIF =180°-∠ICF -∠IFC =180°-12∠DCF -12∠DFC=180°-12(180°-∠CDF )=90°+12∠CDF .∵△ABE ≌△DCF ,∴∠CDF =∠BAE , ∴∠CIF =90°+12∠BAE ,∴90°<∠CIF <120°.24. 解:(1)∵y =k x 经过点A (2,2),∴2=k2,∴k =4;(2分)(2)对于双曲线y =4x ,当x =1时,y =4,∴在直线x =1上,当0<y <4时,有整点(1,1),(1,2),(1,3),(3分) 当x =2时,y =2,∴在直线x =2上,当0<y <2时,有整点(2,1);(4分) 当x =3时,y =43,∴在直线x =3上,当0<y <43时,有整点(3,1);(5分)当x =4时,y =1,∴在直线x =4上,当0<y <1时,没有整点.∴G 内整点的个数为5个;(6分)(3)如解图,当m =4时,点B (4,4),点C (1,4),此时在区域W 内(不包含边界)有(2,3)、(3,2)、(3,3)共3个整点.线段BD 上有4个整点,线段BC 上有4个整点.∵点(4,4)重合,点(4,1)、(1,4)在边界上,∴当m >4时,区域W 内至少有3+4+4-3=8个整点.当m =4.5时,B ′(4.5,5),C ′(45,5),线段B ′C ′上有4个整点,此时区域W 内整点个数为8个.当m >4.5时,区域W 内部整点个数增加.∴若W 内部(不包括边界)不超过8个整点,3<m ≤4.5.(10分)第24题解图25. 解:(1)6;(2分)【解法提示】如解图①,连接GO ,由题意可得,DC =AD =AB =10,∵CE =2,OD =3,∴OE =OG =5,∴GD =OG 2-DO 2=4,∴AG =AD -GD =6.第25题解图①(2)①如解图②,过点O ′作O ′H ⊥BC 于点H ,交半圆O ′于点M ,反向延长HO ′交AD 于点Q ,则∠QHC =90°,根据三点共线及垂线段最短可得此时点M 到BC 的距离最短,(3分) ∵∠C =∠D =∠QHC =90°, ∴四边形QHCD 是矩形, ∴HQ =CD =10,HQ ∥CD .∵点O ′是EF ′的中点,∴点Q 是DF ′的中点, ∵DE =8,∴O ′Q =12DE =4,∴O ′H =6,∵CE =2,DO =3,∴OE =10-2-3=5,即半圆O 的半径为5,∴MH =1,即点M 到BC 的最短距离为1;(5分)第25题解图②由①可知半圆O 的半径为5,如解图③,设∠PO ′R 的度数为β,由题意得,PR ︵的长为=β180π×5=53π,(6分) ∴∠PO ′R =60°,∴∠F ′O ′P +∠EO ′R =120°, ∴S 扇形F ′O ′P +S 扇形EO ′R =120360π×52=253π.(7分) ∵O ′R = PO ′,∴△O ′RP 是等边三角形,∴S △O ′RP =2534, ∴此时半圆O ′与正方形ABCD 重叠部分的面积为2534+253π;(8分)【一题多解】如解图③,设∠PO ′R 的度数为β,由题意得,PR ︵的长为β180π×5=53π,(6分)∴∠PO ′R =60°,∴S 扇形PO ′R =60360π×52=256π.(7分) ∵O ′R = PO ′,∴△O ′RP 是等边三角形,∴S △O ′RP =2534, ∵半圆O ′的面积为180360π×52=252π,∴此时半圆O ′与正方形ABCD 重叠部分的面积为S 半圆O ′-S 扇形PO ′R +S △O ′RP =252π-256π+2534=2534+253π;(8分) ③89或45.(10分) 【解法提示】①如解图④,当半圆O ′与BC 相切于点N 时,连接O ′N ,过点E 作ET ⊥O ′N 于点T ,连接EN ,则TN =EC =2,∵O ′N =O ′E =5,∴O ′T =3,∴ET =4,∴CN =4,∴EN =25,DN =229, 过点E 作EK ⊥DN 于点K , ∵EK ·DN =CN ·DE ,∴EK =162929. ∵tan ∠NDC =CN DC =25=EK DK ,∴DK =402929,∴NK =182929,∴tan ∠END =EK NK =89;图④ 图⑤第25题解图②如解图⑤,(ⅰ)若半圆O ′与AB 相切于点N , ∵EN ⊥AB ,∴四边形ANED 是矩形, 连接DN ,tan ∠END =45;(ⅱ)若半圆O ′与CD 相切于点N ,此时点N 与点E 重合.∠END 不存在. 综上所述,tan ∠END 的值为89或45.26. 解:(1)y 与x 的函数关系式为y =50-x ;(2分)(2)设基本价为b ,第1场—第20场,设p 与x 的函数关系式为p =ax +b ;依题意得⎩⎪⎨⎪⎧10.6=3a +b ,12=10a +b ,解得⎩⎪⎨⎪⎧a =15,b =10,∴p =15x +10(1≤x ≤20).(3分)第21场—第40场,设p 与x 的函数关系式为p =mx+b ,当x =25时,有14.2=m 25+10,解得m =105,∴p =105x +10(21≤x ≤40).(4分)当1≤x ≤20时,令p =15x +10=13,解得x =15.(5分)当21≤x ≤40时,p =105x+10=13,解得x =35.(6分)∴当产品销售单价为13万元时,销售场次是第15场和第35场;(7分) (3)设每场获得的利润为w (万元),当1≤x ≤20时,w =(50-x )(15x +10-10)=-15x 2+10x =-15(x -25)2+125;∵w 随x 的增大而增大,∴当x =20时,w 最大,最大利润为120万元;(10分) 当21≤x ≤40时,w =(50-x )(105x +10-10)=5250x -105,∵w 随x 的增大而减小,∴当x =21时,w 最大,最大利润为145万元,(11分) ∵120<145,∴在这40场产品促销会中,第21场获得的利润最大,最大利润为145万元.(12分)。
河北省2020年中考数学模拟试卷及答案
中考冲刺数学试卷一、选择题(共12小题,每小题3分,共36分)1.下列各数中,最大的是( ) A .-3 B .0 C .1 D .2 2.式子1-x 在实数范围内有意义,则x 的取值范围是( )A .x <1B .x ≥1C .x ≤-1D .x <-1 3.不等式组⎩⎨⎧≤-≥+0102x x 的解集是( )A .-2≤x ≤1 B .-2<x <1C .x ≤-1D .x ≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是( )A .摸出的三个球中至少有一个球是黑球.B .摸出的三个球中至少有一个球是白球.C .摸出的三个球中至少有两个球是黑球.D .摸出的三个球中至少有两个球是白球.5.若1x ,2x 是一元二次方程0322=--x x 的两个根,则21x x 的值是( ) A .-2 B .-3 C .2 D .36.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18° B .24° C .30° D .36° 7.如图,是由4个相同小正方体组合而成的几何体,它的主视图是( )第6题图D CBAA .B . C. D .8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有( )A .21个交点B .18个交点C .15个交点D .10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计。
图(1)与图(2)是整理数据后绘制的两幅不完整的统计图。
以下结论不正..确.的是( )第9题图(2)第9题图(1)30%其它10%科普常识漫画小说3060书籍人数A .由这两个统计图可知喜欢“科普常识”的学生有90人.B .若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360个.C .由这两个统计图不能确定喜欢“小说”的人数.D .在扇形统计图中,“漫画”所在扇形的圆心角为72°. 10.如图,⊙A 与⊙B 外切于点D ,PC ,PD ,PE 分别是圆的切线,C ,D ,E 是切点, 若∠CED =x °,∠ECD =y °,⊙B 的半径为R ,则⋂DE 的长度是( ) A .()9090Rx -π B .()9090Ry -π C .()180180R x -πD .()180180R y -π第II 卷(非选择题 共84分)二、填空题(共4小题,每小题3分,共12分) 11.计算︒45cos = .12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是 .13.太阳的半径约为696 000千米,用科学记数法表示数696 000为 .EPA BCD第10题图14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前然后甲车继续前行,乙车向原地返回.设千米,y 关于x /秒.15.如图,已知四边形ABCD 是平行四边形,BC =2AB ,A ,B 两点的坐标分别是(-1,0),(0,2),C ,D 两点在反比例函数)0(<=x xk y 的图象上,则k 的值等于 .16.如图,E ,F 是正方形ABCD 的边AD 上两个动点,满足AE =DF .连接CF 交BD 于G ,连接BE 交AG 于点H .若正方形的边长为2,则线段DH 长度的最小值是 .第16题图HGF E DCBA三、解答题(共9小题,共72分) 17.(本题满分6分)解方程:xx 332=-.18.(本题满分6分)直线b x y +=2经过点(3,5),求关于x 的不等式b x +2≥0的解集.19.(本题满分6分)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .第19题图A BCD EF求证:∠A =∠D .20.(本题满分7分)有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能结果; (2)求一次打开锁的概率.21.(本题满分7Rt △ABC 的三个顶点分别是A (-3,2C (0,2). (1)将△ABC 以点C 为旋转中心旋转转后对应的△11B A C ;平移△ABC ,若A 的坐标为(0,4),画出平移后对应的△(2)若将△11B A C 请直接写出旋转中心的坐标; (3)在x 轴上有一点P ,使得PA+PB 的值最小,请直 接写出点P 的坐标.第21题图22.(本题满分8分)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中点,连接PA ,PB ,PC . (1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.23.(本题满分10分)科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度x /℃ …… -4-224 4.5……植物每天高度增长量y /mm……414949412519.75 …… 由这些数据,科学家推测出植物每天高度增长量y 是温度x 的函数,且这种函数是反比例函数、一次函数和二次函数中的一种. (1)请你选择一种适当的函数,求出它的函数关系式,并简要说明OP第22题图①CBA第22题图②OPCBA不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度的增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm ,那么实验室的温度x 应该在哪个范围内选择?请直接写出结果.24.(本题满分12分)如图,点P 是直线l :22--=x y 上的点,过点P 的另一条直线m 交抛物线2x y =于A 、B 两点.(1)若直线m 的解析式为2321+-=x y ,求A 、B 两点的坐标;(2)①若点P 的坐标为(-2,t ),当PA =AB 时,请直接写出点A 的坐标;②试证明:对于直线l 上任意给定的一点P ,在抛物线上都能找到点A ,使得PA =AB 成立.(3)设直线l 交y 轴于点C ,若△AOB 的外心在边AB 上,且∠BPC=∠OCP ,求点P 的坐标.x y第25(1)题图O lmP BA x ylO 第25(2)题图xy Clm PAOB 第25(3)题图一、选择题二、填空题 11.22 12.28 13.51096.6⨯ 14.20 15.-12 16.15-三、解答题17.(本题满分6分)解:方程两边同乘以()3-x x ,得()332-=x x 解得9=x .经检验, 9=x 是原方程的解. 18.(本题满分6分)解:∵直线b x y +=2经过点(3,5)∴b +⨯=325.∴1-=b .即不等式为12-x ≥0,解得x ≥21.19.(本题满分6分)证明:∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE . 在△ABF 和△DCE 中,⎪⎩⎪⎨⎧=∠=∠=CE BF C B DC AB∴△ABF ≌△DCE , ∴∠A =∠D . 20.(本题满分7分)解:(1)设两把不同的锁分别为A 、B ,能把两锁打开的钥匙分别为a 、b ,其余两把钥匙分别为m 、n ,根据题意,可以画出如下树形图:由上图可知,上述试验共有8种等可能结果.(列表法参照给分)(2)由(1)可知,任意取出一把钥匙去开任意一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等.∴P (一次打开锁)=4182=.21.(本题满分7分)(1)画出△A 1B 1C 如图所示: (2)旋转中心坐标(23,1-);ab m nn m b A B a第21题图(3)点P 的坐标(-2,0).22.(本题满分8分)(1)证明:∵弧BC =弧BC ,∴∠BAC =∠BPC =60°.又∵AB =AC ,∴△ABC 为等边三角形∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°, 又∠APC =∠ABC =60°,∴AC =3AP .(2)解:连接AO 并延长交PC 于F ,过点E 作EG ⊥AC 于G ,连接OC .∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF . ∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524.设FC =24a ,则OC =OA =25a , ∴OF =7a ,AF =32a .在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACAEEG =, ∴aaEG a EG 402432=-,∴EG =12a .∴tan ∠PAB =tan ∠PCB=212412==aa CFEF .23.(本题满分10分)第22(2)题图解:(1)选择二次函数,设c bx ax y ++=2,得⎪⎩⎪⎨⎧=++=+-=4124492449c b a c b a c ,解得⎪⎩⎪⎨⎧=-=-=4921c b a∴y 关于x 的函数关系式是4922+--=x x y . 不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以y 不是x 的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以y 不是x 的一次函数.(2)由(1),得4922+--=x x y ,∴()5012++-=x y , ∵01<-=a ,∴当1-=x 时,y 有最大值为50. 即当温度为-1℃时,这种植物每天高度增长量最大. (3)46<<-x .24.(本题满分12分)解:(1)依题意,得⎪⎩⎪⎨⎧=+-=.,23212x y x y 解得⎪⎪⎩⎪⎪⎨⎧=-=492311y x ,⎩⎨⎧==1122y x∴A (23-,49),B (1,1).(2)①A 1(-1,1),A 2(-3,9).②过点P 、B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为G 、H.设P (a ,22--a ),A (m ,2m ),∵PA =PB ,∴△PAG≌△BAH ,∴AG =AH ,PG =BH ,∴B (a m -2,2222++a m ),将点B 坐标代入抛物线2x y =,得0224222=--+-a a am m , ∵△=()()081816168228162222>++=++=---a a a a a a ∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P ,抛物线上总能找到两个满足条件的点A .(3)设直线m :()0≠+=k b kx y 交y 轴于D ,设A (m ,2m ),B (n ,2n ).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H . ∵△AOB 的外心在AB 上,∴∠AOB =90°, 由△AGO ∽△OHB ,得BHOH OGAG =,∴1-=mn .联立⎩⎨⎧=+=2xy b kx y 得02=--b kx x ,依题意,得m 、n 是方程02=--b kx x 的两根,∴b mn -=,∴1-=b ,即D (0,1). ∵∠BPC =∠OCP ,∴DP =DC =3.P设P (a ,22--a ),过点P 作PQ ⊥y 轴于Q ,在Rt △PDQ 中,222PD DQ PQ =+,∴()2223122=---+a a .∴01=a (舍去),5122-=a ,∴P (512-,514).∵PN 平分∠MNQ ,∴PT =NT ,∴()t t t -=+-22212,。
2020年河北省邯郸市九年级模拟联考数学试题
解:∵ ,
又 ,
∵ ,
∴ ,
∴ .
故选:A.
【点睛】
本题考查了幂的乘方逆运算,以及同底数幂乘法,解题的关键是熟练掌握运算法则进行解题.
9.B
【解析】
【分析】
根据方差的定义,方差越小数据越稳定,即可得出答案.
【详解】
解:甲每月平均销售量Байду номын сангаас: (百台),
乙每月平均销售量是: (百台),
则甲的方差是:
∴AF=AD,BE=BD,
设AF=AD=x,OD=OE=OF=r,
则BE=BD=10 ,
∴ ,
解得: ,
∴ ;
故选:B.
【点睛】
本题考查了正方形的判定和性质,角平分线的性质,全等三角形的判定和性质,解题的关键是正确得到线段之间的关系,从而组成方程组,求出答案.
15.D
【解析】
【分析】
根据题意,可以写出各段对应的函数解析式,从而可以解答本题.
C. D.
3.若 表示正整数,且 ,则 的值是( )
A.3B.4C.15D.16
4.图是由8个大小相等的正方形组成的中心对称图形,则此图的对称中心是( )
A. 点B. 点C. 点D. 点
5.新冠病毒的直径约为 ,若 用科学记数法记作 ,则 的值为( )
A.5B.6C.7D.8
6.如图,已知点 从点 出发,沿射线 方向运动,运动到点 后停止,则在这个过程中,从 观测点 的俯角将( )
(2)若因疫情需要,需增加一名医护人员,若增加后年龄的中位数小于原来年龄的中位数,则增加医护人员的最大年龄是多少?
(3)若需要从男性队员中选两名参加重症病人抢救,求所选两名队员的年龄恰好相等的概率.
河北省2020年中考模拟数学试卷含有答案
1
河北省2020年中考模拟试卷
数学试卷
本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题。
题号 一 二 20 21 22 23 24 25 26 得分
注意事项:1.答卷前将密封线左侧的项目填写清楚。
2.答案须用蓝色、黑色钢笔或圆珠笔书写。
卷I (选择题,共42分)
一、选择题(本大题共16个小题,1~10题,每小题3分;11~16小题,每小题2分, 共42分,在每小题给出的四个选项中,只有一项符合题目要求的) 1.在-3,0,1,-2四个数中,最小的数为( ) A .-3
B .0
C .1
D .-2 2.695.2亿用科学记数法表示为( ) A .6.952×106
B .6.952×108
C .6.952×1010
D .695.2×108
3.下列手机屏幕解锁图案中,不是轴对称图形的是( )
4.下面运算结果为a 6的是( ) A .a 3+a 3 B .a 8÷a 2 C .a 2·a 3 D .(-a 2)3
5.如图是五个棱长为“1”的立方块组成的一个几何体,不是三视图之一的是( )
6.在△ABC 中,AB <BC ,用尺规作图在BC 上取一点P ,使PA+PC=BC ,则下列作法 正确的是( )
7.设○□△分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示, 总 分
核分人
P P A P
B C A
B C B C A A . B . C . D .
B C A
P A . B . C . D .
A .
B .
C .
D .。
2020年河北省中考数学模拟试卷(二)(附解析)
2020年河北省中考数学模拟试卷(二)一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列运算结果为正数的是( ) A .(﹣3)2B .﹣3÷2C .0×(﹣2017)D .2﹣32.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是( ) A .7.6×108克B .7.6×10﹣7克 C .7.6×10﹣8克 D .7.6×10﹣9克3.如图,能用∠AOB ,∠O ,∠1三种方法表示同一个角的图形是( )A .B .C .D .4.计算:95÷15×(−115)得( )A .−95 B .−1125 C .−15D .11255.下列图形中,不是中心对称图形的是( )A .B .C .D .6.对于√5−2,下列说法中正确的是( )A.它是一个无理数B.它比0小C.它不能用数轴上的点表示出来D.它的相反数为√5+27.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个8.如图所示的几何体,它的左视图是()A.B.C.D.9.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB =4,S菱形ABCD=24,则OH的长为()A.3B.4C.5D.610.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB 的大小为()A.69°B.111°C.159°D.141°11.一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为4√2和10√2,则这个正方形的对角线长为()A.12B.√6C.2√6D.6√212.下列各式,其中不正确的个数有()①(6﹣2×3)0=1;②10﹣3=0.01;③|π﹣3.14|=3.14﹣π;④0.000001=10﹣5A.1个B.2个C.3个D.4个13.化简2ba2−b2+1a+b,其结果为()A.1a−b B.1a+bC.1a2−b2D.aa2−b214.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是()甲组12户家庭用水量统计表用水量(吨)4569户数4521A.甲组比乙组大B.甲、乙两组相同C.乙组比甲组大D.无法判断15.已知抛物线y=x2+2x﹣m﹣2与x轴没有交点,则函数y=mx的大致图象是()A.B.C.D.16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC 边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离不可能是()A.0.5B.0.6C.0.7D.0.8二.填空题(本大题有3个小题,共11分,17小题3分:18~19小题每题4分,把答案写在题中横线上)17.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H 四点不共线.当AC=6,BD=8时,四边形EFGH的周长是.18.如图,已知线段AB=2,作BD⊥AB,使BD=12AB;连接AD,以D为圆心,BD长为半径画弧交AD于点E,以A为圆心,AE长为半径画弧交AB于点C,则AC长为.19.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x 的方程ax2﹣bx﹣c=0的解为.三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)阅读下面材料:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是,数轴上表示﹣2和3的两点之间的距离是;(2)数轴上表示x和﹣1的两点之间的距离表示为;(3)若x表示一个有理数,则|x﹣2|+|x+3|有最小值吗?若有,请求出最小值;若没有,请说明理由.21.(9分)某班50名学生参加“迎国庆,手工编织‘中国结’”活动,要求每人编织4~7枚,活动结束后随机抽查了20名学生每人的编织量,并将各类的人数绘制成扇形统计图(如图①)和条形统计图(如图②),注:A代表4枚;B代表5枚;C代表6枚;D代表7枚.经确认扇形图是正确的,而条形统计图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误:;(2)写出这20名学生每人编织‘中国结’数量的众数、中位数、平均数;(3)求这50名学生中编织‘中国结’个数不少于6的人数;(4)若从这50名学生中随机选取一名,求其编织‘中国结’个数为C的概率.22.(9分)阅读:已知a、b、c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:因为a2c2﹣b2c2=a4﹣b4,①所以c2(a2﹣b2)=(a2﹣b2)(a2+b2).②所以c2=a2+b2.③所以△ABC是直角三角形.④请据上述解题回答下列问题:(1)上述解题过程,从第步(该步的序号)开始出现错误,错的原因为;(2)请你将正确的解答过程写下来.23.(9分)如图,AB=16,点O为AB的中点,点C在线段OB上(不与点O,B重合),将OC绕̂相切于点P、Q,且点P、Q在点O顺时针旋转270°后得到大扇形COD,AP、BQ分别与优弧CDAB的异侧.(1)求证:AP=BQ;̂的长.(结果保留π)(2)当BQ=4√3时,求弧CQ24.(10分)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为y=−12x+3,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y 轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.25.(10分)如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x (0<x<3).(1)填空:PC=,FC=;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.26.(12分)春节临近,由于我市城区执行严禁燃放烟花炮竹令,某商店发现了商机经销一种安全、无污染的电子鞭炮已知这种电子鞭炮的成本价每盒80元,市场调查发现春节期间,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x的函数关系式;(2)该种电子鞭炮的销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)若该商店销售这种电子鞭炮要想每天获得销售利润2400元,应如何定价?答案解析一.选择题(共16小题)1.下列运算结果为正数的是()A.(﹣3)2B.﹣3÷2C.0×(﹣2017)D.2﹣3解:A、原式=9,符合题意;B、原式=﹣1.5,不符合题意;C、原式=0,不符合题意,D、原式=﹣1,不符合题意,故选:A.2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克解:0.00 000 0076克=7.6×10﹣8克,故选:C.3.如图,能用∠AOB,∠O,∠1三种方法表示同一个角的图形是()A.B.C.D.解:A 、以O 为顶点的角不止一个,不能用∠O 表示,故A 选项错误; B 、以O 为顶点的角不止一个,不能用∠O 表示,故B 选项错误; C 、以O 为顶点的角不止一个,不能用∠O 表示,故C 选项错误; D 、能用∠1,∠AOB ,∠O 三种方法表示同一个角,故D 选项正确. 故选:D .4.计算:95÷15×(−115)得( )A .−95B .−1125C .−15D .1125解:原式=−95×115×115, =−1125. 故选:B .5.下列图形中,不是中心对称图形的是( )A .B .C .D .解:A 、是中心对称图形,故本选项错误; B 、不是中心对称图形,故本选项正确; C 、是中心对称图形,故本选项错误; D 、是中心对称图形,故本选项错误; 故选:B .6.对于√5−2,下列说法中正确的是( )A.它是一个无理数B.它比0小C.它不能用数轴上的点表示出来D.它的相反数为√5+2解:A、√5−2是一个无理数,故符合题意;B、√5−2比0大,故不符合题意;C、√5−2能用数轴上的点表示出来,故不符合题意;D、√5−2它的相反数为−√5+2,故不符合题意.故选:A.7.下列结论中,错误的有:()①所有的菱形都相似;②放大镜下的图形与原图形不一定相似;③等边三角形都相似;④有一个角为110度的两个等腰三角形相似;⑤所有的矩形不一定相似.A.1个B.2个C.3个D.4个解:①:菱形的两组对角不一定分别对应相等,故所有的菱形不一定都相似;即:选项①错误.②:放大镜下的图形与原图形只是大小不相等,但形状相同,所以它们一定相似;即:选项②错误.③:等边三角形的三个内角相等,三条边都相等,故所有的等边三角形都相似;即:选项③正确④:有一个角为110度的两个等腰三角形一定相似.因为它们的顶角均为110°,两锐角均为35°,根据“两内角对应相等的两个三角形相似”即可判定.故:选项④正确.⑤:只有长与宽对应成比例的两个矩形相似,故选项⑤正确故选:B.8.如图所示的几何体,它的左视图是()A.B.C.D.解:如图所示的几何体的左视图为:.故选:D.9.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB =4,S菱形ABCD=24,则OH的长为()A.3B.4C.5D.6解:∵ABCD是菱形,∴BO=DO=4,AO=CO,S菱形ABCD=AC×BD2=24,∴AC=6,∵AH⊥BC,AO=CO=3,∴OH=12AC=3.故选:A.10.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,则∠AOB 的大小为()A.69°B.111°C.159°D.141°解:如图,由题意,得∠1=54°,∠2=15°.由余角的性质,得∠3=90°﹣∠1=90°﹣54°=36°.由角的和差,得∠AOB=∠3+∠4+∠2=36°+90°+15°=141°,故选:D.11.一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为4√2和10√2,则这个正方形的对角线长为()A.12B.√6C.2√6D.6√2解:①当4√2是腰和10√2时,两边的和小于第三边,不能构成三角形,应舍去.②当4√2是底边和10√2是腰时,等腰三角形的周长是24√2,因而可得正方形的边长是6√2,故这个正方形的对角线长是6√2•cos45°=12;故选:A.12.下列各式,其中不正确的个数有()①(6﹣2×3)0=1;②10﹣3=0.01;③|π﹣3.14|=3.14﹣π;④0.000001=10﹣5A.1个B.2个C.3个D.4个解:①(6﹣2×3)0,无意义,故此选项符合题意;②10﹣3=0.001,故原题错误,符合题意;③|π﹣3.14|=π﹣3.14,错误,符合题意;④0.000001=10﹣6,错误,符合题意;故不正确的有4个.故选:D.13.化简2ba 2−b 2+1a+b,其结果为( )A .1a−bB .1a+bC .1a −bD .aa −b解:原式=2b(a+b)(a−b)+a−b(a+b)(a−b) =2b+a−b(a+b)(a−b)=1a−b . 故选:A .14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( ) 甲组12户家庭用水量统计表 用水量(吨)4 5 6 9 户数4521A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断解:由统计表知甲组的中位数为5+52=5(吨),乙组的4吨和6吨的有12×90360=3(户),7吨的有12×60360=2户, 则5吨的有12﹣(3+3+2)=4户,∴乙组的中位数为5+52=5(吨),则甲组和乙组的中位数相等, 故选:B .15.已知抛物线y =x 2+2x ﹣m ﹣2与x 轴没有交点,则函数y =mx的大致图象是( ) A . B .C .D .解:∵抛物线y =x 2+2x ﹣m ﹣2与x 轴没有交点, ∴方程x 2+2x ﹣m ﹣2=0没有实数根, ∴△=4﹣4×1×(﹣m ﹣2)=4m +12<0, ∴m <﹣3,∴函数y =mx的图象在二、四象限. 故选:C .16.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC 边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,M间的距离不可能是()A.0.5B.0.6C.0.7D.0.8解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2−√2小于等于1,故选:A.二.填空题(共3小题)17.如图,在四边形ABDC中,E、F、G、H分别为AB、BC、CD、DA的中点,并且E、F、G、H 四点不共线.当AC=6,BD=8时,四边形EFGH的周长是14.解:∵F,G分别为BC,CD的中点,∴FG=12BD=4,FG∥BD,∵E,H分别为AB,DA的中点,∴EH=12BD=4,EH∥BD,∴FG∥EH,FG=EH,∴四边形EFGH为平行四边形,∴EF=GH=12AC=3,∴四边形EFGH的周长=3+3+4+4=14,故答案为:1418.如图,已知线段AB=2,作BD⊥AB,使BD=12AB;连接AD,以D为圆心,BD长为半径画弧交AD于点E,以A为圆心,AE长为半径画弧交AB于点C,则AC长为√5−1.解::∵AB=2,则BD=DE=12×2=1,由勾股定理得,AD =√AB 2+BD 2=√5, 则AC =AE =√5−1,∴AC =√5−12AB =√5−1,故答案为:√5−1.19.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣2,4),B (1,1),则关于x 的方程ax 2﹣bx ﹣c =0的解为 x 1=﹣2,x 2=1 .解:∵抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (﹣2,4),B (1,1), ∴方程组{y =ax 2y =bx +c 的解为{x 1=−2y 1=4,{x 2=1y 2=1,即关于x 的方程ax 2﹣bx ﹣c =0的解为x 1=﹣2,x 2=1. 故答案为x 1=﹣2,x 2=1. 三.解答题(共7小题)20.阅读下面材料:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =|a ﹣b |.回答下列问题:(1)数轴上表示﹣3和1两点之间的距离是 4 ,数轴上表示﹣2和3的两点之间的距离是 5 ; (2)数轴上表示x 和﹣1的两点之间的距离表示为 |x +1| ;(3)若x 表示一个有理数,则|x ﹣2|+|x +3|有最小值吗?若有,请求出最小值;若没有,请说明理由.解:(1)|1﹣(﹣3)|=4;|3﹣(﹣2)|=5;故答案为:4;5;(2)|x﹣(﹣1)|=|x+1|或|(﹣1)﹣x|=|x+1|,故答案为:|x+1|;(3)有最小值,当x<﹣3时,|x﹣2|+|x+3|=2﹣x﹣x﹣3=﹣2x﹣1,当﹣3≤x≤2时,|x﹣2|+|x+3|=2﹣x+x+3=5,当x>2时,|x﹣2|+|x+3|=x﹣2+x+3=2x+1,在数轴上|x﹣2|+|x+3|的几何意义是:表示有理数x的点到﹣3及到2的距离之和,所以当﹣3≤x≤2时,它的最小值为5.21.某班50名学生参加“迎国庆,手工编织‘中国结’”活动,要求每人编织4~7枚,活动结束后随机抽查了20名学生每人的编织量,并将各类的人数绘制成扇形统计图(如图①)和条形统计图(如图②),注:A代表4枚;B代表5枚;C代表6枚;D代表7枚.经确认扇形图是正确的,而条形统计图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误:D类型人数错误;(2)写出这20名学生每人编织‘中国结’数量的众数5、中位数5、平均数 5.3;(3)求这50名学生中编织‘中国结’个数不少于6的人数;(4)若从这50名学生中随机选取一名,求其编织‘中国结’个数为C的概率.解:(1)类型D的人数为20×10%=2(人),故答案为:D类型人数错误;(2)这20名学生每人编织‘中国结’数量的众数是5枚,中位数是第10和第11个数据的平均数,为5+52=5枚,平均数为4×4+5×8+6×6+7×220=5.3,故答案为:5,5,5.3;(3)(10%+30%)×50=20(人),答:这50名学生中编织‘中国结’个数不少于6的人数为20人;(4)由扇形统计图可知,50人中编织‘中国结’个数为C的占30%,∴编织‘中国结’个数为C的概率为0.3.22.阅读:已知a、b、c为△ABC的三边长,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:因为a2c2﹣b2c2=a4﹣b4,①所以c2(a2﹣b2)=(a2﹣b2)(a2+b2).②所以c2=a2+b2.③所以△ABC是直角三角形.④请据上述解题回答下列问题:(1)上述解题过程,从第③步(该步的序号)开始出现错误,错的原因为忽略了a2﹣b2=0的可能;(2)请你将正确的解答过程写下来.解:(1)上述解题过程,从第③步开始出现错误,错的原因为:忽略了a2﹣b2=0的可能;(2)正确的写法为:c2(a2﹣b2)=(a2+b2)(a2﹣b2),移项得:c2(a2﹣b2)﹣(a2+b2)(a2﹣b2)=0,因式分解得:(a2﹣b2)[c2﹣(a2+b2)]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是直角三角形或等腰三角形或等腰直角三角形.故答案为:③,忽略了a2﹣b2=0的可能.23.如图,AB=16,点O为AB的中点,点C在线段OB上(不与点O,B重合),将OC绕点O顺̂相切于点P、Q,且点P、Q在AB的时针旋转270°后得到大扇形COD,AP、BQ分别与优弧CD异侧.(1)求证:AP=BQ;̂的长.(结果保留π)(2)当BQ=4√3时,求弧CQ(1)证明:连接OQ ,OP .∵BQ 与AP 分别与CD 相切,∴OP ⊥AP ,OQ ⊥BQ ,即∠BQO =∠OP A =90°, ∵OA =OB ,OP =OQ , ∴Rt △BQO ≌Rt △APO , ∴AP =BQ .(2)∵BQ =4√3时,OB =12AB =8,∠Q =90°, ∴sin ∠BOQ =√32,∠BOQ =60°, ∴OQ =4∴弧CQ 的长为60π⋅4180=43π.24.如图,在平面直角坐标系中,直线l 1的解析式为y =x ,直线l 2的解析式为y =−12x +3,与x 轴、y 轴分别交于点A 、点B ,直线l 1与l 2交于点C .(1)求点A、点B、点C的坐标,并求出△COB的面积;(2)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,请求出点P的坐标;(3)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M在点N的下方,y 轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.解:(1)直线l2的解析式为y=−12x+3,与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为(6,0)、(0,3),联立式y=x,y=−12x+3并解得:x=2,故点C(2,2);△COB的面积=12×OB×x C=12×3×2=3;(2)设点P(m,−12m+3),S△COP=S△COB,则BC=PC,则(m﹣2)2+(−12m+3﹣2)2=22+12=5,解得:m=4或0(舍去0),故点P(4,1);(3)设点M、N、Q的坐标分别为(m,m)、(m,3−12m)、(0,n),①当∠MQN=90°时,∵∠GNQ+∠GQN=90°,∠GQN+∠HQM=90°,∴∠MQH=∠GNQ,∠NGQ=∠QHM=90°,QM=QN,∴△NGQ≌△QHM(AAS),∴GN=QH,GQ=HM,即:m=3−12m﹣n,n﹣m=m,解得:m=67,n=127;②当∠QNM=90°时,则MN=QN,即:3−12m﹣m=m,解得:m=65,n=y N=3−12×65=125;③当∠NMQ=90°时,同理可得:n=6 5;综上,点Q的坐标为(0,127)或(0,125)或(0,65).25.如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).(1)填空:PC=3﹣x,FC=x;(用含x的代数式表示)(2)求△PEF面积的最小值;(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.解:(1)∵四边形ABCD是矩形∴AD∥BC,DC=AB=3,AO=CO∴∠DAC=∠ACB,且AO=CO,∠AOE=∠COF∴△AEO≌△CFO(ASA)∴AE=CF∵AE=x,且DP=AE∴DP=x,CF=x,DE=4﹣x,∴PC=CD﹣DP=3﹣x故答案为:3﹣x,x(2)∵S△EFP=S梯形EDCF﹣S△DEP﹣S△CFP,∴S△EFP=(x+4−x)×32−12×x×(4−x)−12×x×(3﹣x)=x2−72x+6=(x−74)2+4716∴当x=74时,△PEF面积的最小值为4716(3)不成立理由如下:若PE⊥PF,则∠EPD+∠FPC=90°又∵∠EPD+∠DEP=90°∴∠DEP=∠FPC,且CF=DP=AE,∠EDP=∠PCF=90°∴△DPE≌△CFP(AAS)∴DE=CP∴3﹣x=4﹣x则方程无解,∴不存在x的值使PE⊥PF,即PE⊥PF不成立.26.春节临近,由于我市城区执行严禁燃放烟花炮竹令,某商店发现了商机经销一种安全、无污染的电子鞭炮已知这种电子鞭炮的成本价每盒80元,市场调查发现春节期间,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x的函数关系式;(2)该种电子鞭炮的销售单价定为多少元时,每天销售利润最大?最大利润是多少元?(3)若该商店销售这种电子鞭炮要想每天获得销售利润2400元,应如何定价?解:(1)由题意得:w=(x﹣80)•y=(x﹣80)(﹣2x+320)=﹣2x2+480x﹣25600∴w与x的函数关系式为:w=﹣2x2+480x﹣25600;(2)w=﹣2x2+480x﹣25600=﹣2(x﹣120)2+3200∵﹣2<0,80≤x≤160∴当x=120时,w有最大值,w的最大值为3200元.(3)当w=2400时,﹣2(x﹣120)2+3200=2400解得:x1=100,x2=140∴要想每天获得销售利润2400元,应定价为100元或140元每盒.。
2020年河北省石家庄十八县市、区中考模拟大联考数学试题一含答案
初三演练(五),数学试卷参考答案,第1页,共3页2020年初三模拟演练(五)【2020年石家庄十八县(市、区)部分重点中学初三模拟大联考(一)】数学试卷参考答案卷Ⅰ(选择题共42分)一、选择题(本大题共16个小题,1~10题每小题3分,11~16题每小题2分,共42分,每小题给出的四个选项中只要一项符合题目要求。
)题号123456789答案C B BD A C A C C题号10111213141516答案B C A B A B C 卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共11分,17小题3分;18~19小题有2个空,每空2分,把答案写在题中横线上)17.718.160°19.24°10三、解答题(本大题共7个小题,共67分,解答应写出文字说明,证明过程或演算步骤)20.(8分)解:(1)4○×)3(-7)1(83342=-+=-+⨯=.···················································2分(2)-x ○×4>2,2342+-x ,解得31-<x .···································5分(3)()○×)6(-=0,设()为y ,y ○×)6(-=0,0362=-+y ,解得y =1,∴()为1.········································8分21.(9分)解:(1)1)7()9(+-⨯-=63+1=64,∵864=,所以是8的平方.··············3分(2)(n +2)·n +1=n 2+2n +1=(n +1)2.结果是整数(n +1)的平方·······6分(3)设较小偶数为x ,则较大偶数为x +4,x (x +4)+m =x 2+4x +m .当m =4时,原式=x 2+4x +4=(x +2)2,∴m =4.·····················9分22.(9分)解:(1)4036°完整统计图见解图1.·······································3分(2)2800404⨯=280人,所以等级达到优秀的人数大约280人.······5分(3)∴P (一男一女)21126==.············································7分(4)D ··············································································9分解图1女23女13女12女1女2女3女1女2女3男开始初三演练(五),数学试卷参考答案,第2页,共3页23.(9分)解:(1)∵OP 为∠AOB 的平分线,∴∠AOC =∠BOC .在△AOC 与△BOC 中,∵⎪⎩⎪⎨⎧=∠=∠=OC OC BOC AOC BO AO ,∴△AOC ≌△BOC (SAS ).·····································································3分(2)∵由(1)已证△AOC ≌△BOC ,∴︒=︒=∠=∠=∠352702121AOB .(如解图2)又∵点C 是△AOB 的外心,∴CA =CO =CB ,∴∠A =∠1=35°,∠B =∠2=35°.∵∠ACP 是△AOC 的外角,∴∠ACP =∠1+∠A =70°,同理∠BCP =∠2+∠B =70°.∴∠ACB =ACP +∠BCP =70°+70°=140°.··············································7分(3)0°<∠OAC <55°或90°<∠OAC <145°.····················································9分24.(10分)解:(1)设甲的速度为a m/min ,乙的速度为b m/min ,根据题意,得⎩⎨⎧=-=-,5.720015.7,75.375.32001b a b a 解得.80,240==b a 故甲的速度是240m/min ,乙的速度是80m/min.······································6分(2)甲、乙两人之间的距离225901080)80()2401200(222+-=+-=x x x x ,∵22590102+-x x 最小值490104)90(2251042=⨯--⨯⨯.∴当)min (2910290=⨯--=x 时,甲、乙两人之间的距离最短.·························10分25.(11分)解:发现:AB =6,AC =8.··································································2分思考:①如解图3所示,连接PF ,∵AB ⊥AC ,∴∠BAC =90°.在Rt △BAC 中,∵tan ∠ABC =34,设AC =4a ,AB =3a,∵222BC AB AC =+,∴(4a )2+(3a )2=102,解a =2.∴AC =4×2=8;AB =3×2=6.设AP =x ,则DP =10-x ,PF =x ,∵⊙P 与边CD 相切于点F ,∴PF ⊥CD .∵四边形ABCD 是平行四边形,∴AB ∥CD .∵AB ⊥AC ,∴AC ⊥CD ,∴AC ∥PF ,∴△DPF ∽△DAC ,∴AD PD AC PF =,∴10108x x -=,940=x ,∴AP 940=.·······6分②∵tan ∠ACB =︒≈==374386AC AB ,∵AD ∥BC ,∴∠DAC =∠ACB ≈37°∵△DPF ∽△DAC ,∴∠DPF =∠DAC =37°,∴∠APF =180°-∠DPF =180°-37°=143°.∴劣弧︒︒=360143·2r AF π812863601439402ππ=︒︒⨯⨯=.····································9分⌒解图3解图4解图5解图2初三演练(五),数学试卷参考答案,第3页,共3页探究:当⊙P 与BC 相切时,设切点为G ,如解图4,S □ABCD ,5241028621=⨯=⨯⨯⨯=PG PG ,①当⊙P 与边AD 、CD 分别有两个公共点时,,524940<AP 即此时⊙P 与平行四边形ADCD 的边有公共点的个数为4.②⊙P 过点A 、C 、D 三点,如解图5,⊙P 与平行四边形ABCD 的边的公共点的个数为4,此时AP =5.综上所述,AP 的值的取值范围是524940<<AP 或AP =5.故答案为524940<<AP 或AP =5.··························································11分26.(11分)解(1)∵二次函数),0(12为实数a a ax y ≠+=的图像过点A (-2,2),∴2=4a +1,解得:41=a ,∴二次函数表达式为1412+=x y .·······································3分(2)∵一次函数y =kx +b (k ≠0,k ,b 为实数)的图像l 经过点(0,2),∴2=k ×0+b ,∴b =2.··········································································5分(3)证明,过点M 作ME ⊥y 轴于点E ,如解图6所示,设点M 的坐标为),141,(2+x x 则1412+=x MC ,∴ME =∣x ∣,141214122-=-+=x x EB ,∴141)141(222222+=-+=+=x x x EB ME MB .∴MB =MC.···················9分(4)相切.·····································································································11分(理由如下:过点N 作ND ⊥x 轴于D ,取MN 的中点为P ,过点P 作PF ⊥x 轴于点F ,过点N 作NH ⊥MC 于点H ,交PF 于点Q ,如解图7所示,由(3)知NB =ND .∴MN =NB +MB =ND +MC ,∵点P 为MN 的中点,PQ ∥MH ,∴PQ =21MH ,∵ND ∥HC ,NH ∥DC ,且四个角均为直角,∴四边形NDCH 为矩形,∴QF =ND ,∴PF =PQ +QF =21MH +ND =21(ND +MH +HC )=21(ND +MC )=21MN ,∴以MN 为直径的圆与x 轴相切.)解图6解图7。
2020年河北省中考数学模拟试卷(四)(附解析)
2020年河北省中考数学模拟试卷(四)一.选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.22.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学记数法表示为()A.0.395×1011元B.3.95×1010元C..95×109元D.39.5×109元3.如图,带有弧线的角是用一副三角板拼成的,这个角的度数为()A.60°B.15°C.45°D.105°4.如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种5.正十边形的外角和的度数为()A.1440°B.720°C.360°D.180°6.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,若该几何体所用小立方块的个数为n,则n的所有可能值有()A.8种B.7种C.6种D.5种7.下列各式的计算中,正确的是()A.﹣3﹣2=﹣9B.(﹣3)5÷(﹣3)6=1 3C.(﹣a2)3=a6D.(m2+1)0=18.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元9.已知a,b为两个连续整数,且a<√13<b,则a+b的值为()A.9B.8C.7D.610.反比例函数y=6x(x<0)图象在()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,是两个圆形转盘,同时旋转两个转盘,两个转盘的指针都落在“1“区域的概率是()A .12B .14C .16D .18 12.如图在一块长为12m ,宽为6m 的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m )则空白部分表示的草地面积是( )A .70B .60C .48D .1813.用尺规在一个平行四边形内作菱形ABCD ,下列作法中不能得到菱形的是( )A .(A )B .(B )C .(C )D .(D )14.某景点普通门票每人50元,20人以上(含20人)的团体票六折优惠.现有一批游客不足20人,但买20人的团体票所花的钱,比各自买普通门票平均每人会便宜至少10元,这批游客至少有( )A .14B .15C .16D .1715.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角△ABC 的直角顶点C 在l 1上,另两个顶点A 、B 分别在l 2、l 3上,则tan α的值是( )A .13B .617C .√55D .√101016.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为4,则a 的值为( )A .﹣2B .4C .4或3D .﹣2或3二.填空题(本大题有3个小题,共11分,17小题3分:18~19小题每题4分,把答案写在题中横线上)17.若a +7的算术平方根是3,2b +2的立方根是﹣2,则b a = .18.若a ,b 互为相反数,则a 2b +ab 2= .19.如图,⊙O 的直径为16,AB 、CD 是互相垂直的两条直径,点P 是弧AD 上任意一点,经过P 作PM ⊥AB 于M ,PN ⊥CD 于N ,点Q 是MN 的中点,当点P 沿着弧AD 从点A 移动到终点D 时,点Q 走过的路径长为 .三.解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.(8分)已知关于x 、y 的多项式3x 2+my ﹣8与多项式﹣nx 2+2y +7的差与x 、y 的值无关,求4m +5n 的值.21.(9分)某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为;(2)补全频数分布直方图;(3)在这次抽样调查中,众数是天,中位数是天;(4)请你估计该市初二学生每学期参加综合实践活动的平均天数约是多少?(结果保留整数)22.(9分)将正整数按图1方式排列,再按如图方式任意框选的3个数字,仔细观察,回答以下问题:(1)填空:在第6,7,8三行按图1方式框选3个数,如果第6行框选的数是18,则第7行,第8行的框选的数分别是,;(2)填空:在第m,m+1,m+2三行按图1方式框选3个数,如果第m行框选的数是k,则第m+1行,第m+2行的框选的数分别是,(用含k,m的代数式表示);(3)如图2,在第n,n+1,n+2三行按图1方式框选3个数,如果第n行,第n+1行,第n+2行的框选的数分别是a,b,c,试猜想a,b,c之间的数量关系,并说明理由.23.(9分)如图,在△ABC中,∠BAC=90°,点F在BC边上,过A,B,F三点的⊙O交AC于另一点D,作直径AE,连结EF并延长交AC于点G,连结BE,BD,四边形BDGE是平行四边形.(1)求证:AB=BF.(2)当F为BC的中点,且AC=3时,求⊙O的直径长.24.(10分)通过初中阶段的学习,二元一次方程从函数的视角去分析就可以形成函数图象.如图,在平面直角坐标系中的图象来自于生活中的问题,其中一个图象的表达式为y =ax(a>0),并且结合y=ax给出了如下情境:①出发后,甲车以每小时60公里的速度行驶;②打电话每分钟支付0.12元;③….请根据这两个图象提供的信息及上述情景之一或自主选择新的情景完成下面的问题:(1)写出一个符合题意的二元一次方程与方程y=ax组成二元一次方程组;(2)在(1)的条件下完成情境创设(不需要解方程组)25.(10分)问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=√5,直接写出A、M两点之间的距离.26.(12分)如图,直线y=−12x−3与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.参考答案一.选择题(共16小题)1.计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.2解:(﹣3)×5=﹣15;故选:A.2.2017年12月11日,深圳证券交易所成功招标发行深圳轨道交通专项债劵,用来建设地铁14号线,该项目估算资金总额约为39500000000元,将39500000000元用科学记数法表示为()A.0.395×1011元B.3.95×1010元C..95×109元D.39.5×109元解:39500000000=3.95×1010故选:B.3.如图,带有弧线的角是用一副三角板拼成的,这个角的度数为()A.60°B.15°C.45°D.105°解:这个角的度数=60°﹣45°=15°,故选:B.4.如图,在3×3的正方形网格中有两个小正方形被涂黑,再将图中其余小正方形任意一个涂黑,使得整个图形(包括网格)构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种解:如图所示:所标数字之处都可以构成轴对称图形.故选:C.5.正十边形的外角和的度数为()A.1440°B.720°C.360°D.180°解:正十边形的外角和的度数为360°.故选:C.6.一个几何体由若干大小相同的小立方块搭成,如图分别是从它的正面、上面看到的形状图,若该几何体所用小立方块的个数为n,则n的所有可能值有()A.8种B.7种C.6种D.5种解:由题意,解:由主视图和左视图可确定所需正方体个数最少和最多时俯视图为:则组成这个几何体的小正方体最少有9个最多有13个,∴该几何体所用小立方块的个数为n,则n的所有可能值有5种,故选:D.7.下列各式的计算中,正确的是()A.﹣3﹣2=﹣9B.(﹣3)5÷(﹣3)6=1 3C.(﹣a2)3=a6D.(m2+1)0=1解:A、﹣3﹣2=−19,故原题计算错误;B、(﹣3)5÷(﹣3)6=−13,故原题计算错误;C、(﹣a2)3=﹣a6,故原题计算错误;D、(m2+1)0=1,故原题计算正确;故选:D.8.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为()A.20元B.42元C.44元D.46元解:设该店第一次购进计算器的单价为x元,则第二次购进计算器的单价为(x﹣1)元,根据题意得:3×880x=2580x−1,去分母得:2640(x﹣1)=2580x,解得:x=44,经检验x=44是分式方程的解,且符合题意,则此店第一次购进计算器的单价为44元,故选:C.9.已知a,b为两个连续整数,且a<√13<b,则a+b的值为()A.9B.8C.7D.6解:∵9<13<16,∴3<√13<4,即a=3,b=4,则a+b=7,故选:C.10.反比例函数y=6x(x<0)图象在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵x<0,xy=6,∴y<0,∴反比例函数y=6x(x<0)图象在第三象限.故选:C.11.如图,是两个圆形转盘,同时旋转两个转盘,两个转盘的指针都落在“1“区域的概率是()A .12B .14C .16D .18解:两个转盘指针都落在1的概率分别为12和14,所以两个转盘的指针都落在“1“区域的概率是12×14=18,故选:D .12.如图在一块长为12m ,宽为6m 的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m )则空白部分表示的草地面积是( )A .70B .60C .48D .18解:草地面积=矩形面积﹣小路面积 =12×6﹣2×6 =60(m 2). 故选:B .13.用尺规在一个平行四边形内作菱形ABCD ,下列作法中不能得到菱形的是( )A .(A )B .(B )C .(C )D .(D )解:(A )根据线段的垂直平分线的性质可知AB =AD , 一组邻边相等的平行四边形是菱形;符合题意; (B )根据四条边相等的四边形是菱形,符合题意;(C )根据两组对角分别相等的四边形是平行四边形,不符合题意; (D )根据一组邻边相等的平行四边形是菱形,符合题意. 故选:C .14.某景点普通门票每人50元,20人以上(含20人)的团体票六折优惠.现有一批游客不足20人,但买20人的团体票所花的钱,比各自买普通门票平均每人会便宜至少10元,这批游客至少有( ) A .14B .15C .16D .17解:设这批游客x 人.由题意:20×50×0.6≤(50﹣10)x , ∴x ≥15, ∴x 最小=15, 故选:B .15.如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角△ABC 的直角顶点C 在l 1上,另两个顶点A 、B 分别在l 2、l 3上,则tan α的值是( )A .13B .617C .√55D .√1010解:如图,过点A 作AD ⊥l 1于D ,过点B 作BE ⊥l 1于E ,设l 1,l 2,l 3间的距离为1, ∵∠CAD +∠ACD =90°, ∠BCE +∠ACD =90°, ∴∠CAD =∠BCE ,在等腰直角△ABC 中,AC =BC , 在△ACD 和△CBE 中, {∠CAD =∠BCE∠ADC =∠BEC =90°AC =BC, ∴△ACD ≌△CBE (AAS ), ∴CD =BE =1, ∴DE =3,∴tan ∠α=13. 故选:A .16.当a ≤x ≤a +1时,函数y =x 2﹣2x +1的最小值为4,则a 的值为( ) A .﹣2B .4C .4或3D .﹣2或3解:当y =4时,有x 2﹣2x +1=4, 解得:x 1=﹣1,x 2=3.∵当a ≤x ≤a +1时,函数有最小值4,∴a=3或a+1=﹣1,∴a=3或a=﹣2,故选:D.二.填空题(共3小题)17.若a+7的算术平方根是3,2b+2的立方根是﹣2,则b a=25.解:由题意知a+7=9,2b+2=﹣8,解得:a=2,b=﹣5,∴b a=(﹣5)2=25,故答案为:25.18.若a,b互为相反数,则a2b+ab2=0.解:根据题意,得:a+b=0,∴原式=ab(a+b)=ab×0=0,故答案为:0.19.如图,⊙O的直径为16,AB、CD是互相垂直的两条直径,点P是弧AD上任意一点,经过P作PM⊥AB于M,PN⊥CD于N,点Q是MN的中点,当点P沿着弧AD从点A 移动到终点D时,点Q走过的路径长为2π.解:如图所示:∵PM⊥AB于M,PN⊥CD于N,∴四边形ONPM是矩形,又∵点Q为MN的中点,∴点Q为OP的中点,则OQ=4,点Q走过的路径长=90π×4180=2π.故答案为:2π.三.解答题(共7小题)20.已知关于x、y的多项式3x2+my﹣8与多项式﹣nx2+2y+7的差与x、y的值无关,求4m+5n 的值.解:(3x2+my﹣8)﹣(﹣nx2+2y+7)=3x2+my﹣8+nx2﹣2y﹣7=(3+n)x2+(m﹣2)y﹣15,由题意得:m=2,n=﹣3,则4m+5n=4×2+5×(﹣3)=﹣7.21.某市教育局为了了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)扇形统计图中a的值为20%;(2)补全频数分布直方图;(3)在这次抽样调查中,众数是4天,中位数是4天;(4)请你估计该市初二学生每学期参加综合实践活动的平均天数约是多少?(结果保留整数)解:(1)a%=100%﹣(15%+20%+30%+10%+5%)=20%,故答案为:20%;(2)∵被调查的总人数为30÷15%=200人,∴3天的人数为200×20%=40人、5天的人数为200×20%=40人、7天的人数为200×5%=10人,补全图形如下:(3)众数是4天、中位数为4+42=4天,故答案为:4、4;(4)估计该市初二学生每学期参加综合实践活动的平均天数约是2×15%+3×20%+4×30%+5×20%+6×10%+7×5%=4.05≈4(天).22.将正整数按图1方式排列,再按如图方式任意框选的3个数字,仔细观察,回答以下问题:(1)填空:在第6,7,8三行按图1方式框选3个数,如果第6行框选的数是18,则第7行,第8行的框选的数分别是25,33;(2)填空:在第m,m+1,m+2三行按图1方式框选3个数,如果第m行框选的数是k,则第m+1行,第m+2行的框选的数分别是k+m+1,k+m+2(用含k,m的代数式表示);(3)如图2,在第n,n+1,n+2三行按图1方式框选3个数,如果第n行,第n+1行,第n+2行的框选的数分别是a,b,c,试猜想a,b,c之间的数量关系,并说明理由.解:(1)通过观察可得,第一个数+行号+1就是第二个数,即第7行的数就是18+7=25,第8行的数是25+8=33.故答案是:25,33(2)同(1),∵第m行选的数是k,∴第m+1行的数就是k+m+1,第m+2行的数就是k+m+1+(m+2)=k+2m+3.故答案是:k+m+1,k+2m+3.(3)a+c﹣2b=1(a+c=2b+1等等)理由:∵b=a+n+1c=b+n+2=a+2n+3由上两式可得a+c﹣2b=1.23.如图,在△ABC中,∠BAC=90°,点F在BC边上,过A,B,F三点的⊙O交AC于另一点D,作直径AE,连结EF并延长交AC于点G,连结BE,BD,四边形BDGE是平行四边形.(1)求证:AB=BF.(2)当F为BC的中点,且AC=3时,求⊙O的直径长.解:(1)连接AF,∵AE是⊙O的直径,∴AF⊥EG,∵四边形BDGE是平行四边形,∴BD∥EG,∴BD⊥AF,∵∠BAC=90°,∴BD是⊙O的直径,∴BD垂直平分AF,∴AB=BF;(2)∵当F为BC的中点,∴BF=12BC,∵AB=BF,∴AB=12BC,∵∠BAC=90°,∴∠C=30°,∴∠ABC=60°,AB=√33AC=√3,∵AB=BF,∴∠ABD=30°,∴BD=2,∴⊙O的直径长为2.24.通过初中阶段的学习,二元一次方程从函数的视角去分析就可以形成函数图象.如图,在平面直角坐标系中的图象来自于生活中的问题,其中一个图象的表达式为y=ax(a>0),并且结合y=ax给出了如下情境:①出发后,甲车以每小时60公里的速度行驶;②打电话每分钟支付0.12元;③….请根据这两个图象提供的信息及上述情景之一或自主选择新的情景完成下面的问题:(1)写出一个符合题意的二元一次方程与方程y=ax组成二元一次方程组;(2)在(1)的条件下完成情境创设(不需要解方程组)解:(1)下面是两种移动电话计费方式表,设每月的通话时间x分钟,电话计费y元,方式一:月租费:50元/月本地通话费:0.2元/分则y=0.2x+50,方式二:月租费:0本地通话费:0.6元/分则y=0.6x(2)根据(1)的收费情况,你认为如何选择会更加合算些?当0.2x+50=0.6x时,x=125分钟,当0.2x+50>0.6x时,x<125分钟,当0.2x+50<0.6x时,x>125分钟,故每月的通话时间等于125分钟时,两种收费都行;每月的通话时间小于125分钟时,第二种收费合算;每月的通话时间大于125分钟时,第一种收费合算.25.问题原型:如图①,在锐角△ABC中,∠ABC=45°,AD⊥BC于点D,在AD上取点E,使DE=CD,连结BE.求证:BE=AC.问题拓展:如图②,在问题原型的条件下,F为BC的中点,连结EF并延长至点M,使FM=EF,连结CM.(1)判断线段AC与CM的大小关系,并说明理由.(2)若AC=√5,直接写出A、M两点之间的距离.解:问题原型:∵AD⊥BC,∴∠ADB=∠ADC=90°,∵∠ABC=45°,∴∠BAD=45°,∴∠ABC=∠BAD,∴AD=BD,在△BDE和△ADC中,∵{BD=AD∠EDB=∠CDA DE=DC,∴△BDE≌△ADC(SAS),∴BE=AC,问题拓展:(1)AC=CM,理由:∵点F是BC中点,∴BF=CF,在△BEF和△CMF中,∵{BF=CF∠BFE=∠CFM EF=MF,∴△BEF≌△CMF(SAS),∴BE=CM,由(1)知,BE=AC,∴AC=CM;(2)如图②,连接AM,由(1)知,△BDE≌△ADC,∴∠BED=∠ACD,由(2)知,△BEF≌△CMF,∴∠EBF=∠BCM,∴∠ACM=∠ACD+∠BCM=∠BED+∠EBF=90°,∵AC=CM,∴AM=√2AC=√10.26.如图,直线y=−12x−3与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.(1)求抛物线的解析式;(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.解:(1)在y=−12x﹣3中,当y=0时,x=﹣6,即点A的坐标为:(﹣6,0),将A(﹣6,0),B(2,0)代入y=ax2+bx﹣3得:{36a −6b −3=04a +2b −3=0, 解得:{a =14b =1, ∴抛物线的解析式为:y =14x 2+x ﹣3;(2)设点D 的坐标为:(m ,14m 2+m ﹣3),设DE 交AC 于F ,则点F 的坐标为:(m ,−12m ﹣3),∴DF =−12m ﹣3﹣(14m 2+m ﹣3)=−14m 2−32m , ∴S △ADC =S △ADF +S △DFC=12DF •AE +12•DF •OE=12DF •OA =12×(−14m 2−32m )×6=−34m 2−92m=−34(m +3)2+274,∵a =−34<0,∴抛物线开口向下,∴当m =﹣3时,S △ADC 存在最大值274, 又∵当m =﹣3时,14m 2+m ﹣3=−154, ∴存在点D (﹣3,−154),使得△ADC 的面积最大,最大值为274;(3)①当点D与点C关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD=∠ABC.②作点D(﹣4,﹣3)关于x轴的对称点D′(﹣4,3),直线AD′的解析式为y=32x+9,由{y=32x+9y=14x2+x−3,解得{x=−6y=0或{x=8y=21,此时直线AD′与抛物线交于D(8,21),满足条件,综上所述,满足条件的点D坐标为(﹣4,﹣3)或(8,21)。
2020年河北省中考数学模拟试卷及答案
2020年河北省中考数学模拟试卷学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共14小题,共42分)1.把一张形状是多边形的纸片剪去其中某一个角,剩下的部分是一个四边形,则这张纸片原来的形状不可能是()A. 三角形B. 四边形C. 五边形D. 六边形2.如果零上2℃记作+2℃,那么零下3℃记作()A. 3B. -3C. -3℃D. +3℃3.汶川地震后,抢险队派一架直升飞机去A、B两个村庄抢险,飞机在距地面450米上空的P点,测得A村的俯角为30°,B村的俯角为60°(如图)则A,B两个村庄间的距离是()米.A. 300B. 900C. 300D. 3004.7x+1是不小于-3的负数,表示为()A. -3≤7x+1≤0B. -3<7x+1<0C. -3≤7x+1<0D. -3<7x+1≤05.如图,在菱形ABCD中,AB=2,∠ABC=120°,则对角线BD等于()A. 2B. 4C. 6D. 86.要使(y2-ky-2y)(-y)的展开式中不含y2项,则k的值为()A. -2B. 0C. 2D. 37.如图所示,点E在BC的延长线上,下列条件中,①∠2=∠5;②∠3=∠4;③∠ACE+∠E=180°;④∠B=∠3,能判断AC∥DE的有()A. ①②B. ②④C. ①③D. ③④8.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A. 3.2×107B. 3.2×108C. 3.2×10-7D. 3.2×10-89.如图,△ABM与△CDM是两个全等的等边三角形,MA⊥MD.有下列四个结论:(1)∠MBC=25°;(2)∠ADC+∠ABC=180°;(3)直线MB垂直平分线段CD;(4)四边形ABCD是轴对称图形.其中正确结论的个数为()A. 1个B. 2个C. 3个D. 410.钝角三角形的外心在__________.A. 三角形的内部B. 三角形的外部C. 三角形的钝角所对的边上D. 以上都有可能11.在扇形统计图中,各扇形面积之比为5:4:3:2:1,其中最大扇形的圆心角为()A. 150°B. 120°C. 100°D. 90°12.点A(-1,1)是反比例函数y=的图象上一点,则m的值为()A. 0B. -2C. -1D. 113.计算-的结果是()A. B. C. D.14.如图,已知矩形ABCD的对角线AC,BD交于点O,则下列结论不一定成立的是()A. ∠ABC=90°B. AC=BDC. AB=BCD. ∠DBC=∠CAD二、填空题(本大题共3小题,共10分)15.计算(-2)0+= ______ ;计算:20112-2010×2012= ______ .16.已知a=1,,,则代数式的值为______ .17.若直角三角形的斜边长为25 cm,一条直角边的长为20 cm,则它的面积为____ cm2,斜边上的高为____ cm.三、计算题(本大题共1小题,共8分)18.计算:(1)-13-(1+0.5)×(-4)(2)-36×()四、解答题(本大题共6小题,共60分)19.已知n为正整数,且(x n)2 =9,求-3(x2)2n的值.20.某校九年级两个班,各选派10名学生参加学校举行的“诗词大赛”预赛.参赛选手的成绩如下(单位:分)九(1)班:88,91,92,93,93,93,94,98,99,100九(2)班:89,93,93,93,95,96,96,96,98,99.(1)九(2)班的平均分是______分;九(1)班的众数是______分;(2)若从两个班成绩最高的5位同学中选2人参加市级比赛,则这两个人来自不同班级的概率是多少?21.在⊙O中,点C是上的一个动点(不与点A,B重合),∠ACB=120°,点I是△ABC的内心,CI的延长线交⊙O于点D,连结AD,BD.(1)求证:AD=BD;(2)猜想线段AB与DI的数量关系,并说明理由.(3)在⊙O的半径为2,点E,F是的三等分点,当点C从点E运动到点F时,求点I随之运动形成的路径长.22.一名司机驾驶汽车从甲地去乙地,以80 km/h的平均速度用了6 h到达乙地.(1)当他按原路返回时,求汽车平均速度υ(km/h)与时间t(h)之间的函数表达式;(2)如果该司机返回时用了4.8 h,求汽车返回时的平均速度.23.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sin A=,求BH的长.24.已知:抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴,M为它的顶点(1)求抛物线的函数关系式;(2)求△MCB的面积;(3)设点P是直线l上的一个动点,当PA+PC最小时,求点P的坐标.2020年河北省中考数学模拟试卷参考答案1. D2. C3. D4. C5. A6. A7. C8. C9. C10. B11. B12. C13. C14. C15. 10;116.17. 150;1218. 解:(1)-13-(1+0.5)×(-4)=-1-=-1+=-;(2)-36×()=(-18)+20+(-30)+21=-7.19. 解:∵(x n)2 =9,∴x2n=9,∴原式=(x2n)3-3(x2n)2=×93-3×92=-162.20. 94.8;9321. (1)证明:∵点I是△ABC的内心,∴CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=×120°=60°,∴∠ABD=∠ACD=60°,∠BAD=∠BCD=60°,∴△ADB为等边三角形,∴AD=BD;(2)解:AB=DI.理由如下:连接AI,∵点I是△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,∵∠DAI=∠DAB+∠BAI=60°+∠BAI,∠DIA=∠ICA+∠CAI=60°+∠CAI,∴∠DAI=∠DIA,∴DA=DI,∵△ADB为等边三角形,∴AB=AD,∴AB=DI;(3)由(2)得AD=DI=DB,∴点I在以D点为圆心,DA为半径,圆心角为60°的弧上,连接DE、DF交此弧于点I′、I″,如图,∴当点C从点E运动到点F时,点I随之运动形成的路径长为弧I′I″的长,∵点E,F是的三等分点∴∠ADE=∠EDF+∠FDB=20°,连接OA,作OH⊥AD于H,则AH=DH,∵△ADB为等边三角形,∴∠OAH=30°,∴OH=OA=1,AH=OH=,∴AD=2,∴弧I′I″的长度==π,即点I随之运动形成的路径长为π.22. 解:(1)由已知得:vt=80×6,;(2)当t=4.8时,(千米/小时).答:返回时的速度100千米/小时.23. (1)证明:如图1中,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)证明:连接AC,如图2所示:∵OF⊥BC,∴=,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴=,∴CE2=EH•EA;(3)解:连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE=,∴AB=5,BE=AB•sin∠BAE=5×=3,∴EA==4,∵=,∴BE=CE=3,∵CE2=EH•EA,∴EH=,∴在Rt△BEH中,BH===.24. 解:(1)∵抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,∴,∴,∴抛物线的函数关系式为y=-x2+2x+3;(2)如图1,由(1)知,抛物线的函数关系式为y=-x2+2x+3;∴抛物线的对称轴为x=1,M(1,4),∵B(3,0)、C(0,3),∴直线BC解析式为y=-x+3,当x=1时,y=2,∴N(1,2).∴MN=2,OB=3,∴S△MCB=S△MNC+S△MNB=MN×OB=×2×3=3;(3)如图2,∵直线l是抛物线的对称轴,且A,B是抛物线与x轴的交点,∴点A,B关于直线l对称,∴PA+PC最小时,点P就是直线BC与直线l的交点,由(2)知,抛物线与直线BC的交点坐标为(1,2),∴点P(1,2).。
2020届初三中考数学一诊联考试卷含参考答案 (河北)
2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.某学习小组的6名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、80分、74分,则下列结论正确的是()A.中位数是90分B.众数是94分C.平均分是91分D.方差是202.丹东地区人口约为245万,245万用科学记数法表示正确的是()A.245×104B.2.45×106C.24.5×105D.2.45×1073.下列事件属于必然事件的是()A.乘车到十字路口,遇到红灯B.在装有4个红球,6个篮球的暗箱里,一次摸3个球,摸到篮球C .某学校有学生367人,至少有两人的生日相同D .明年沙糖桔的价格在每公斤6元以上4.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,则下面所列方程中正确的是( )A .1200012000100 1.2x x=+ B .12000120001001.2x x =+ C .1200012000100 1.2x x =- D .12000120001001.2x x =- 5.如图是一个螺母零件的立体图形,它的左视图是( )A .B .C .D .6.下列各式的计算,正确的是( )A .(﹣1)0=﹣1B .x 3•(x ﹣1)2=x 2C .1﹣2=1D .2a 3b 6÷(﹣ab )3=﹣2b 27.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(3,﹣4),顶点C 在x 轴的正半轴上,函数y=k x(k <0)的图象经过点B ,则k 的值为( )A.﹣12 B.﹣32 C.32 D.﹣368.蜡是非晶体,在加热过程中先要变软,然后逐渐变稀,然后全部变为液态,整个过程温度不断上升,没有一定的熔化温度,如图所示,四个图象中表示蜡溶化的是( )A.B.C.D.9.如图所示的图形都由同样大小的小圆圈按一定规律所组成的,若按此规律排列下去,则第7个图形中小圆圈的个数为( )A.46B.52C.56D.6010.亮亮准备用自己节省的零花钱买一台英语复读机,他现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.设x个月后他至少有300元,则可以用于计算所需要的月数x的不等式是()A.30x﹣45≥300 B.30x+45≥300 C.30x﹣45≤300 D.30x+45≤300二、填空题(共4题,每题4分,共16分)11.如图,在等边△ABC中,AB=10,D是 BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE 的长度为_____.12.如图,四边形ABCD为矩形,以A为圆心,AD为半径的弧交AB的延长线于点E,连接BD,若AD=2AB=4,则图中阴影部分的面积为______.13.如图,在Rt△ABC中,∠C=90°,AC=5,以AB为一边向三角形外作正方形ABEF,正方形的中心为O,OC ,则BC边的长为_.14.袋子中有10个除颜色外完全相同的小球在看不到球的条件下,随机地从袋中摸出一个球,记录颜色后放回,将球摇匀重复上述过程1500次后,共到红球300次,由此可以估计袋子中的红球个数是_____.三、解答题(共6题,总分54分)15.为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计(要求每名学生选出并且只能选出一个自己最喜爱的节目).并将调查结果绘制成如下统计图表:学生最喜欢的节目人数统计表根据以上提供的信息,解答下列问题(1)x=,a=,b=;(2)补全条形统计图;(3)若该校共有学生800名,根据抽样调查结果,估计该校喜爱《中国诗词大会》节目的学生有多少名?(4)李玲和王亮经过选拔代表班级参加校内即将举办的“中国诗词大会”,预赛分为A、B、C三组进行,由抽签确定分组.李玲和王亮恰好分在一组的概率是多少?(要求用画树状图或列表法)16.全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m=,n=;(2)统计图中,A类所对应的扇形圆心角的度数为;(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?17.如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作。
2020年河北省中考数学模拟试卷(1)
根据上面的规定,请解决下面问题:
( 1)计算: log 31=
,log1025+log 104=
(请直接写出结果) ;
( 2)已知 x=log 32,请你用含 x 的代数式来表示 y,其中 y= log 372(请写出必要的过程) .
22.( 8 分)“推进全科阅读,培育时代新人” .某学校为了更好地开展学生读书活动,随机
被抽到学生的读书时间不少于 9 小时的概率是多少?
23.( 10 分)如图,△ ABC 是 ⊙O 的内接三角形, AC= BC, D 为 ????上? 一点,延长 DA 至点 E,使 CE= CD. ( 1)求证: AE= BD; ( 2)若 AC⊥ BC,求证: AD+BD= √2CD .
1 24.( 10 分)如图, 已知 A(﹣ 4, ),B(﹣ 1,m)是一次函数
3.( 3 分)直角三角形两直角边长为 5 和 12,则此直角三角形斜边上的中线的长是(
)
A .5
B.6
??2
4.( 3 分)计算
- a+1 的正确结果是(
??-1
2??-1 A.
??-1
2??-1 B .- ??-1
5.( 3 分)如图所示几何体的左视图正确的是(
C. 6.5
)
1 C.
??-1 )
( 1)[ √2] =
;
( 2)若 [3 + √??]= 6 ,则 x 的取值范围是
.
三.解答题(共 7 小题,满分 66 分)
20.( 8 分)计算:
(
1)(3a﹣
b)
2
+(
a﹣
2b)(
a+2b)
( 2)6x2y(﹣ 2xy+y3)÷ xy2
2020年河北省中考数学模拟试卷2含解析
2020年河北省中考数学模拟试卷2一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.2.(5分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1B.﹣2C.0.813D.8.133.(5分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.4.(5分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(5分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°6.(5分)如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1mL=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下7.(5分)“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x人,则所列方程为()A.B.C.D.8.(5分)小华班上比赛投篮,每人投6球,如图是班上所有学生投进球数的饼图.根据图,下列关于班上所有学生投进球数的统计量,何者正确?()A.中位数为3B.中位数为2.5C.众数为5D.众数为29.(5分)在化简分式+的过程中,开始出现错误的步骤是()A.﹣B.C.D.10.(5分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11.(5分)如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A.B.C.D.12.(5分)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°13.(5分)如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为何?()A.5B.6C.D.14.(5分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.15.(5分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.616.(5分)小明同学在寻找上面图中小圆圈个数的规律时,利用了下面图中“分块计数法”根据小明的方法,猜想并判断下列说法不正确的是()A.第5个图形有61个小圆圈B.第6个图形有91个小圆圈C.某个图小圆圈的个数可以为271D.某个图小圆圈的个数可以为621二、填空题(每题5分,满分20分,将答案填在答题纸上)17.(5分)比较大小:32.18.(5分)分解因式:ab2﹣4ab+4a=.19.(10分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为km.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤. 20.(8分)已知关于x的方程x2﹣2ax+a=0有两个相等的实数根,请先化简代数式(﹣)÷,并求出该代数式的值.21.(8分)阅读与证明:请阅读以下材料,并完成相应的任务.任务:请根据以上材料,证明以下结论:传说古希腊毕达哥拉斯(Pythagonas,约公元570年﹣约公元前500年)学派的数学家经常在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,比如,他们研究过1、3、6,10…由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n个三角形数可以用(n≥1)表示.任务:请根据以上材料,证明以下结论:(1)任意一个三角形数乘8再加1是一个完全平方数;(2)连续两个三角形数的和是一个完全平方数.22.(9分)如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2,交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.23.(9分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴的正半轴上,OA=6,点B在直线y=上,直线l:y=kx+与折线AB﹣BC有公共点.(1)点B的坐标是;(2)若直线l经过点B,求直线l的解析式:(3)对于一次函数y=kx+(k≠0),当y随x的增大而减小时,直接写出k的取值范围.24.(10分)某体育用品老板到厂家选购A、B两种品牌的护膝,若购进A品牌的护膝5套,B品牌的护膝6套,需要950元;若购进A品牌的护膝3套,B品牌的护膝2套,需要450元.(1)A、B两种品牌的护膝每套进价分别为多少元?(2)若销售1套A品牌的护膝可获利30元,销售1套B品牌的护膝可获利20元,根据市场需求,体育用品老板决定,购进B品牌护膝的数量比购进A品牌护膝数量的2倍还多4套,且B品牌护膝最多可购进44套,这些护膝全部售出后,使总的获利不少于1200元,问有几种进货方案?25.(11分)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.26.(11分)如图,在△ABC中,AB=5,AC=9,S△ABC=,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC 上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tan A的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)下列四个图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,是轴对称图形,故此选项错误;B、不是中心对称图形,是轴对称图形,故此选项错误;C、是中心对称图形,不是轴对称图形,故此选项正确;D、不是中心对称图形,是轴对称图形,故此选项错误;故选:C.2.(5分)把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为()A.1B.﹣2C.0.813D.8.13【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:把0.0813写成a×10n(1≤a<10,n为整数)的形式,则a为8.13,故选:D.3.(5分)用量角器测得∠MON的度数,下列操作正确的是()A.B.C.D.【分析】根据量角器的使用方法进行选择即可.【解答】解:量角器的圆心一定要与O重合,故选:C.4.(5分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【分析】根据完全平方公式进行计算,判断即可.【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.5.(5分)如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,那么∠ACD的度数为()A.40°B.35°C.50°D.45°【分析】根据角平分线定义求出∠BAC,根据平行线性质得出∠ACD+∠BAC=180°,代入求出即可.【解答】解:∵AD平分∠BAC,∠BAD=70°,∴∠BAC=2∠BAD=140°,∵AB∥CD,∴∠ACD=180°﹣∠BAC=40°,故选:A.6.(5分)如图所示是测量一物体体积的过程:步骤一,将180ml的水装进一个容量为300ml的杯子中.步骤二,将三个相同的玻璃球放入水中,结果水没有满.步骤三,同样的玻璃球再加一个放入水中,结果水满溢出.根据以上过程,推测一颗玻璃球的体积在下列哪一范围内(1mL=1cm3)()A.10cm3以上,20cm3以下B.20cm3以上,30cm3以下C.30cm3以上,40cm3以下D.40cm3以上,50cm3以下【分析】先求出剩余容量,然后分别除以3和4,就可知道球的体积范围.【解答】解:300﹣180=120,120÷3=40,120÷4=30故选:C.7.(5分)“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设原来参加游览的同学共x人,则所列方程为()A.B.C.D.【分析】设原来参加游览的同学共x人,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,可列方程.【解答】解:设原来参加游览的同学共x人,由题意得﹣=3.故选:D.8.(5分)小华班上比赛投篮,每人投6球,如图是班上所有学生投进球数的饼图.根据图,下列关于班上所有学生投进球数的统计量,何者正确?()A.中位数为3B.中位数为2.5C.众数为5D.众数为2【分析】根据中位数和众数的定义,结合扇形统计图,选出正确选项即可.【解答】解:由图可知:班内同学投进2球的人数最多,故众数为2;因为不知道每部分的具体人数,所以无法判断中位数.故选:D.9.(5分)在化简分式+的过程中,开始出现错误的步骤是()A.﹣B.C.D.【分析】将四选项与正确的解题步骤比较,即可知错误的步骤.【解答】解:∵正确的解题步骤是:原式=﹣,∴开始出现错误的步骤是选项B.故选:B.10.(5分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个【分析】直接利用幂的乘方运算法则以及相反数的定义以及绝对值的性质、倒数的定义分别分析得出答案.【解答】解:(1)﹣3的绝对值是3,正确,故原题解答错误;(2)(a2)3=a6,错误,故原题解答错误;(3)a的相反数是:﹣a,错误,故原题解答正确;(4)的倒数是,错误,故原题解答错误;(5)cos45°=,错误,故原题解答正确;故选:A.11.(5分)如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC的长度为()A.B.C.D.【分析】根据同角的余角相等得∠CAD=∠BCD,由os∠BCD=,即可求出BC的长度.【解答】解:∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos∠BCD=,∴BC==,故选:B.12.(5分)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°【分析】根据题意可知DE是AC的垂直平分线,由此即可一一判断.【解答】解:∵∠ACB=90°,∠B=34°,∴∠A=56°,∵DE是AC的垂直平分线,∴DA=DC,∴∠DCA=∠A=56°,∴∠BCD=90°﹣56°=34°,∴∠BDC=180°﹣34°﹣34°=112°,故选:B.13.(5分)如图,圆O与正方形ABCD的两边AB、AD相切,且DE与圆O相切于E点.若圆O的半径为5,且AB=11,则DE的长度为何?()A.5B.6C.D.【分析】求出正方形ANOM,求出AM长和AD长,根据DE=DM求出即可.【解答】解:连接OM、ON,∵四边形ABCD是正方形,∴AD=AB=11,∠A=90°,∵圆O与正方形ABCD的两边AB、AD相切,∴∠OMA=∠ONA=90°=∠A,∵OM=ON,∴四边形ANOM是正方形,∴AM=OM=5,∵AD和DE与圆O相切,圆O的半径为5,∴AM=5,DM=DE,∴DE=11﹣5=6,故选:B.14.(5分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.【分析】根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.【解答】解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.15.(5分)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.6【分析】观察图形可知,小正方形的面积=大正方形的面积﹣4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【解答】解:如图所示:∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选:C.16.(5分)小明同学在寻找上面图中小圆圈个数的规律时,利用了下面图中“分块计数法”根据小明的方法,猜想并判断下列说法不正确的是()A.第5个图形有61个小圆圈B.第6个图形有91个小圆圈C.某个图小圆圈的个数可以为271D.某个图小圆圈的个数可以为621【分析】设第n个图形中小圆圈的个数为a n个(n为正整数),根据给定几个图形中小圆圈数量的变化可找出变化规律“a n=3n2﹣3n+1(n为正整数)”,分别代入n=5,n=6,a n=271,a n=621求出a n(或n)即可得出结论.【解答】解:设第n个图形中小圆圈的个数为a n个(n为正整数).观察图形,可知:a1=1,a2=7=2×3+1,a3=19=3×6+1,a4=37=4×9+1,…,∴a n=n•3(n﹣1)+1=3n2﹣3n+1(n为正整数).当n=5时,a5=3×52﹣3×5+1=61;当n=6时,a6=3×62﹣3×6+1=91;当3n2﹣3n+1=271时,解得:n1=﹣9(舍去),n2=10;当3n2﹣3n+1=621时,解得:n1=(舍去),n2=.故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)17.(5分)比较大小:3>2.【分析】首先把两个数平方法,由于两数均为正数,所以该数的平方越大数越大.【解答】解:32=9,,∵9>8,∴3>2,故答案为:>.18.(5分)分解因式:ab2﹣4ab+4a=a(b﹣2)2.【分析】先提取公因式a,再根据完全平方公式进行二次分解.完全平方公式:a2﹣2ab+b2=(a﹣b)2.【解答】解:ab2﹣4ab+4a=a(b2﹣4b+4)﹣﹣(提取公因式)=a(b﹣2)2.﹣﹣(完全平方公式)故答案为:a(b﹣2)2.19.(10分)勘测队按实际需要构建了平面直角坐标系,并标示了A,B,C三地的坐标,数据如图(单位:km).笔直铁路经过A,B两地.(1)A,B间的距离为20km;(2)计划修一条从C到铁路AB的最短公路l,并在l上建一个维修站D,使D到A,C 的距离相等,则C,D间的距离为13km.【分析】(1)由垂线段最短以及根据两点的纵坐标相同即可求出AB的长度;(2)根据A、B、C三点的坐标可求出CE与AE的长度,设CD=x,根据勾股定理即可求出x的值.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)=20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤. 20.(8分)已知关于x的方程x2﹣2ax+a=0有两个相等的实数根,请先化简代数式(﹣)÷,并求出该代数式的值.【分析】关于x的方程x2﹣2ax+a=0有两个相等的实数根,则△1=0,可得4a(a﹣1)=0,然后根据分式有意义的条件和分式的化简求值方法进行解答即可.【解答】解:∵关于x的方程x2﹣2ax+a=0有两个相等的实数根,∴(﹣2a)2﹣4a=0,即4a2﹣4a=0,4a(a﹣1)=0,∴a=0或a=1∵a﹣1≠0,∴取a=0.∴原式==﹣1.21.(8分)阅读与证明:请阅读以下材料,并完成相应的任务.任务:请根据以上材料,证明以下结论:传说古希腊毕达哥拉斯(Pythagonas,约公元570年﹣约公元前500年)学派的数学家经常在沙滩上研究数学问题.他们在沙滩上画点或用小石子来表示数,比如,他们研究过1、3、6,10…由于这些数可以用图中所示的三角形点阵表示,他们就将其称为三角形数,第n个三角形数可以用(n≥1)表示.任务:请根据以上材料,证明以下结论:(1)任意一个三角形数乘8再加1是一个完全平方数;(2)连续两个三角形数的和是一个完全平方数.【分析】(1)第n个三角形数乘8再加1,再利用完全平方公式整理得出答案即可;(2)分别用n表示出第n、n+1个三角形数,进一步相加整理得出答案即可.【解答】证明:(1)∵×8+1=4n2+4n+1=(2n+1)2,∴任意一个三角形数乘8再加1是一个完全平方数;(2)∵第n个三角形数为,第n+1个三角形数为,∴这两个三角形数的和为:+==(n+1)2,即连续两个三角形数的和是一个完全平方数.22.(9分)如图,直线l1的解析表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2,交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.【分析】(1)已知l1的解析式,令y=0求出x的值即可;(2)设l2的解析式为y=kx+b,由图联立方程组求出k,b的值;(3)联立方程组,求出交点C的坐标,继而可求出S△ADC.【解答】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=.23.(9分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴的正半轴上,OA=6,点B在直线y=上,直线l:y=kx+与折线AB﹣BC有公共点.(1)点B的坐标是(8,6);(2)若直线l经过点B,求直线l的解析式:(3)对于一次函数y=kx+(k≠0),当y随x的增大而减小时,直接写出k的取值范围.【分析】(1)OA=6,即BC=6,代入y=x,即可得出点B的坐标(2)将点B的坐标代入直线l中求出k即可得出解析式(3)一次函数y=kx+(k≠0),必经过(0,),要使y随x的增大而减小,即y值为0≤y≤,分别代入即可求出k的值.【解答】解:∵OA=6,矩形OABC中,BC=OA∴BC=6∵点B在直线y=上,∴6=x,解得x=8故点B的坐标为(8,6)故答案为(8,6)(2)将点B(8,6)代入y=kx+得6=8k+,解得k=∴直线l的解析式:y=x+(3)∵一次函数y=kx+(k≠0),必经过(0,),要使y随x的增大而减小∴y值为0≤y≤,∴代入y=kx+(k≠0),解得24.(10分)某体育用品老板到厂家选购A、B两种品牌的护膝,若购进A品牌的护膝5套,B品牌的护膝6套,需要950元;若购进A品牌的护膝3套,B品牌的护膝2套,需要450元.(1)A、B两种品牌的护膝每套进价分别为多少元?(2)若销售1套A品牌的护膝可获利30元,销售1套B品牌的护膝可获利20元,根据市场需求,体育用品老板决定,购进B品牌护膝的数量比购进A品牌护膝数量的2倍还多4套,且B品牌护膝最多可购进44套,这些护膝全部售出后,使总的获利不少于1200元,问有几种进货方案?【分析】(1)设A品牌的护膝每套进价为x元,B品牌的护膝每套进价为y元,根据“若购进A品牌的护膝5套,B品牌的护膝6套,需要950元;若购进A品牌的护膝3套,B 品牌的护膝2套,需要450元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进A品牌的护膝m套,则购进B品牌的护膝(2m+4)套,根据“B品牌护膝最多可购进44套,且这些护膝全部售出后总的获利不少于1200元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数,即可得出进货方案的个数.【解答】解:(1)设A品牌的护膝每套进价为x元,B品牌的护膝每套进价为y元,依题意,得:,解得:.答:A品牌的护膝每套进价为100元,B品牌的护膝每套进价为75元.(2)设购进A品牌的护膝m套,则购进B品牌的护膝(2m+4)套,依题意,得:,解得:16≤m≤20,∵m为正整数,∴m=16,17,18,19,20.答:共有5种进货方案.25.(11分)如图,已知点O(0,0),A(﹣5,0),B(2,1),抛物线l:y=﹣(x﹣h)2+1(h为常数)与y轴的交点为C.(1)l经过点B,求它的解析式,并写出此时l的对称轴及顶点坐标;(2)设点C的纵坐标为y c,求y c的最大值,此时l上有两点(x1,y1),(x2,y2),其中x1>x2≥0,比较y1与y2的大小;(3)当线段OA被l只分为两部分,且这两部分的比是1:4时,求h的值.【分析】(1)把点B的坐标代入函数解析式,列出关于h的方程,借助于方程可以求得h的值;利用抛物线函数解析式得到该图象的对称轴和顶点坐标;(2)把点C的坐标代入函数解析式得到:y C=﹣h2+1,则由二次函数的最值的求法易得y c的最大值,并可以求得此时抛物线的解析式,根据抛物线的增减性来求y1与y2的大小;(3)根据已知条件“O(0,0),A(﹣5,0),线段OA被l只分为两部分,且这两部分的比是1:4”可以推知把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).由二次函数图象上点的坐标特征可以求得h的值.【解答】解:(1)把点B的坐标B(2,1)代入y=﹣(x﹣h)2+1,得1=﹣(2﹣h)2+1.解得h=2.则该函数解析式为y=﹣(x﹣2)2+1(或y=﹣x2+4x﹣3).故抛物线l的对称轴为x=2,顶点坐标是(2,1);(2)点C的横坐标为0,则y C=﹣h2+1.当h=0时,y C=有最大值1,此时,抛物线l为:y=﹣x2+1,对称轴为y轴,开口方向向下,所以,当x≥0时,y随x的增大而减小,所以,x1>x2≥0,y1<y2;(3)∵线段OA被l只分为两部分,且这两部分的比是1:4,且O(0,0),A(﹣5,0),∴把线段OA被l只分为两部分的点的坐标分别是(﹣1,0),(﹣4,0).把x=﹣1,y=0代入y=﹣(x﹣h)2+1,得0=﹣(﹣1﹣h)2+1,解得h1=0,h2=﹣2.但是当h=﹣2时,线段OA被抛物线l分为三部分,不合题意,舍去.同样,把x=﹣4,y=0代入y=﹣(x﹣h)2+1,得h=﹣5或h=﹣3(舍去).综上所述,h的值是0或﹣5.26.(11分)如图,在△ABC中,AB=5,AC=9,S△ABC=,动点P从A点出发,沿射线AB方向以每秒5个单位的速度运动,动点Q从C点出发,以相同的速度在线段AC 上由C向A运动,当Q点运动到A点时,P、Q两点同时停止运动,以PQ为边作正方形PQEF(P、Q、E、F按逆时针排序),以CQ为边在AC上方作正方形QCGH.(1)求tan A的值;(2)设点P运动时间为t,正方形PQEF的面积为S,请探究S是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由;(3)当t为何值时,正方形PQEF的某个顶点(Q点除外)落在正方形QCGH的边上,请直接写出t的值.【分析】(1)如图1,过点B作BM⊥AC于点M,利用面积法求得BM的长度,利用勾股定理得到AM的长度,最后由锐角三角函数的定义进行解答;(2)如图2,过点P作PN⊥AC于点N.利用(1)中的结论和勾股定理得到PN2+NQ2=PQ2,所以由正方形的面积公式得到S关于t的二次函数,利用二次函数的顶点坐标公式和二次函数图象的性质来求其最值;(3)需要分类讨论:当点E在边HG上、点F在边HG上、点P边QH(或点E在QC 上)、点F边C上时相对应的t的值.【解答】解:(1)如图1,过点B作BM⊥AC于点M,∵AC=9,S△ABC=,∴AC•BM=,即×9•BM=,解得BM=3.由勾股定理,得AM===4,则tan A==;(2)存在.如图2,过点P作PN⊥AC于点N.依题意得AP=CQ=5t.∵tan A=,∴AN=4t,PN=3t.∴QN=AC﹣AN﹣CQ=9﹣9t.根据勾股定理得到:PN2+NQ2=PQ2,S正方形PQEF=PQ2=(3t)2+(9﹣9t)2=90t2﹣162t+81(0<t<).∵﹣==在t的取值范围之内,∴S最小值===;(3)①如图3,当点E在边HG上时,t1=;②如图4,当点F在边HG上时,t2=;③如图5,当点P边QH(或点E在QC上)时,t3=1④如图6,当点F边CG上时,t4=.。
2020河北省中考数学模拟试题(含答案)
2020河北省中考数学模拟试卷时间:120 分钟 满分:120 分一、选择题(本大题共有 16 个小题,共 42 分,1~10 小题各 3 分,11~16 小题各 2 分)1.下列英文字母中,是中心对称图形的是( ) A.B.C..D.2.下列实数中的无理数是( )A .31-B .ΠC .0.57D .7223.成人每天维生素 D 的摄入量约为 0.0000046克.数据“0.0000046”用科学记数法表示为( )A .46×10-7B .4.6×10-7C .4.6×10-6D .0.46×10-5 4.下列运算正确的是( )A .-3-2=-5B . 4=±2C . 3-6=-3D .1553x x x =•5.由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )A .B .C .D .6.计算1212+++a a a 的结果是( ) A .1 B .2a +2 C .2 D .14+a a7.如图,小明从 A 处沿北偏东 40°方向行走至点 B 处,又从点 B 处沿南偏东 70°方向行走至点 C 处,则∠ABC 等于( )A .100°B .110°C .120°D .130° 8.解不等式组⎪⎩⎪⎨⎧->+≥-②①3213243x x x 时,不等式①②的解集在同一条数轴上表示正确的是( ) A . B .C .D .9.如图,双曲线x6的一个分支为( )A .①B .②C .③D .④10.如图,一块直角三角板的 30°角的顶点 P 落在⊙O 上,两边分别交⊙O 于 A 、B 两点,若⊙O 的直径为 8,则弦 AB 长为( )A .8B .4C .22D .3211.下列说法正确的是( )A .检测某批次灯泡的使用寿命,适宜用全面调查B .“367人中有 2人同月同日生”为必然事件C .可能性是 0.1%的事件在一次试验中一定不会发生D .数据 3,5,4,1,-2的中位数是 412.如图,在△ABC 中,AB =AC ,以点 C 为圆心,CB 长为半径画弧,交 AB 于点 B 和点 D ,再分别以点B ,D 为圆心,大于21BD 长为半径画弧,两弧相交于点 M ,作射线 CM 交 AB 于点 E .若 AE =2,BE =1,则 EC 的长度是( )A .5B .3C .3D .213.甲、乙二人做某种机械零件,已知每小时甲比乙少做 8个,甲做 120个所用的时间与乙做 150个所用的时间相等,设甲每小时做 x 个零件,下列方程正确的是( ) A .8150120-=x x B .xx 1508120=+ C .xx 1508120=- D .8150120+=x x 14.如图,点 P 是正六边形 ABCDEF 内部一个动点, AB =1cm ,则点 P 到这个正六边形六条边的距离之和为( )cm .A .6B .3C .33D . 3615.图 1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm).将它们拼成如图2的新几何体,则该新几何体的体积为( )A .40πcm 3B .60πcm 3C .70πcm 3D .80πcm 316.从地面竖直向上抛出一小球,小球的高度 h(单位:m)与小球运动时间 t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是 40m ; ②小球运动的时间为 6 s ; ③小球抛出 3秒时,速度为 0;④当 t =1.5s 时,小球的高度 h =30m . 其中正确的是( ) A .①④B .①②C .②③④D .②④二、填空题(本题共 10 分)17.(1)若a -b =3,a +b =-2,则= a 2-b 2= .(2)如图,矩形 ABCD 的顶点 A ,B 在数轴上,CD =6,点 A 对应的数为-1,则点 B 所对应的数为 .17(2) 17(3)(3)如图,已知点 A 坐标为( 3,1),B 为 x 轴正半轴上一动点,则∠AOB 度数为 ,在点 B 运动的过程中 AB +21OB 的最小值为 ____________. 三、解答题18.(本小题满分 8分)解密数学魔术:魔术师请观众心想一个数,然后将这个数按以下步骤操作:魔术师能立刻说出观众想的那个数.(1)如果小玲想的数是-3,请你通过计算帮助她告诉魔术师的结果;(2)如果小明想了一个数计算后,告诉魔术师结果为 85,那么魔术师立刻说出小明想的那个数是;(3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数.若设观众心想的数为 a,请你按照魔术师要求的运算过程列代数式并化简,再用一句话说出这个魔术的奥妙.四、解答题19.(本小题满分 9 分)定义新运算:对于任意实数,a、b,都有 a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2(2-5)+1=2×(-3)+1=-6+1=-5(1)求x⊕(-4)= 6,求x的值;(2)若 3⊕a的值小于 10,请判断方程:22x-b x-a=0的根的情况.20.(本小题满分 9 分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为每次连续接球 10个,每垫球到位 1个记 1分.运动员丙测试成绩统计表(1)成绩表中的 a=,b=;(2)若在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?请用你所学过的统计量加以分析说明(参考数据:三人成绩的方差分别为 S甲2=0.81、S乙2=0.4、S丙2=0.8)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球从乙手中传出,球传一次甲得到球的概率是.21.(本小题满分 9分)如图,在△ABC中,AD是 BC边上的中线,点 E是 AD的中点,过点 A作AF∥BC交 BE的延长线于 F,BF交 AC于 G,连接 CF.(1)求证:△AEF ≌△DEB;(2)若∠BAC=90°,①试判断四边形 ADCF的形状,并证明你的结论;②若 AB=8,BD=5,直接写出线段 AG的长.七、解答题22.(本题 10分)有甲乙两个玩具小汽车在笔直的 240米跑道 MN上进行折返跑游戏,甲从点 M出发,匀速在 M、N之间折返跑,同时乙从点 N出发,以大于甲的速度匀速在 N、M之间折返跑.在折返点的时间忽略不计.(1)若甲的速度为v,乙的速度为 3v,第一次迎面相遇的时间为t,则t与v的关系式;(注释:当两车相向而行时相遇是迎面相遇,当两车在 N点相遇时也视为迎面相遇)(2)如图 1,①若甲乙两车在距 M 点 20米处第一次迎面相遇,则他们在距 M点米第二次迎面相遇;②若甲乙两车在距 M 点 50米处第一次迎面相遇,则他们在距 M点米第二次迎面相遇;(3)设甲乙两车在距 M 点x米处第一次迎面相遇,在距 M点y米处第二次迎面相遇.某同学发现了 y 与 x 的函数关系,并画出了部分函数图象(线段 OA ,不包括点 O ,如图 2所示).①则 a = ,并在图 2中补全 y 与 x 的函数图象(在图中注明关键点的数据); ②分别求出各部分图象对应的函数表达式;八、解答题23.(本小题满分 10分)如图,抛物线 L :()22++--=t t x y ,直线 l :t x 2=:与抛物线、x 轴分别相交于Q 、P . (1)t =1时,Q 点的坐标为 ; (2)当 P 、Q 两点重合时,求 t 的值; (3)当 Q 点达到最高时,求抛物线解析式;(4)在抛物线 L 与 x 轴所围成的封闭图形的边界上,我们把横坐标是整数的点称为“可点”,直接写出2≤t时“可点”的个数为___________.1≤九、解答题24.(本小题满分 13分)如图,在∠DAM内部做 Rt△ABC,AB平分∠DAM,∠ACB=90°,AB=10,AC=8,点 N为 BC的中点;动点 E由 A出发,沿 AB运动,速度为每秒 5个单位,动点 F由 A出发,沿 AM运动,速度为每秒 8个单位,当点 E到达点 B时,两点同时停止运动;过 A、E、F作⊙O;(1)判断△AEF的形状为___________,并判断 AD与⊙O的位置关系为___________;(2)求 t为何值时,EN与⊙O相切?求出此时⊙O的半径,并比较半径与劣弧长度的大小;(3)直接写出△AEF的内心运动的路径长为___________;(注:当 A、E、F重合时,内心就是 A点)(4)直接写出线段 EN与⊙O有两个公共点时,t的取值范围为___________.(参考数据:25774cos ,252474sin ,72474tan ,4337tan ,5337sin ≈︒≈︒≈︒=︒=︒)24题图 备用题1 备用图2参考答案一、选择题1-5 DBCAA 6-10 CBCDB 11-16 BADCB C二、填空题17.(1)-6 (2)5 (3)30°, 3三、解答题18.【解答】解:(1)(-3×3-6)÷3+7=2(2)设这个数为 x ,(3x -6)÷3+7=85;解得:x =80;(3)设观众想的数为 a . .因此,魔术师只要将最终结果减去 5,就能得到观众想的数了.19. 解:(1)x ⊕(-4)+1=6x [x -(-4)]+1=65,1054212-===-+x x x x(2)3⊕a <10,3(3-a)+1<1010-3a <10a >0,()08822>+=+-b a b ,所以该方程有两个不相等的实数根20.解:(1)a =7,b =7(2) 乙 (3)21 21.证明:(1)∵AF ∥BC ,∴∠AFE =∠DBE ,在△AEF 和△DEB 中,∴△AEF ≌△DEB(AAS);分(2)解:四边形 ADCF 是菱形, 理由如下:∵△AEF ≌△DEB , ∴AF =BD ,∵BD =DC ,∴AF =DC = 21BC ,又 AF ∥BC , ∴四边形 ADCF 是平行四边形,∵∠BAC =90°,AD 是 BC 边上的中线, ∴AD =DC ,∴四边形 ADCF 是菱形;(3)∵AF ∥BC∴△AFG ∽△CBG∴GC AG BC AF = ∴ 21=GC AG ∴GC =2AG =2 22. (1)vt 60= (2) ①60②150(3) ①80当800≤<x 时,x y 3= 当12080≤<x ,x y 3480-= 23.24.。
【2020年】河北省中考数学模拟试卷含答案
河北省2020年中考数学试卷含答案卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500L 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A .B .C. D .8.已知:如图4,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3==s s.则麦苗又高又整齐的是()乙丙A.甲 B.乙 C.丙 D.丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A .北偏东30︒B .北偏东80︒ C.北偏西30︒ D .北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC V 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:123-=- .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用k(k为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A在数轴上对应的数为26,以原点O为圆心,OA为半径作优弧»AB,使点B在O右下方,且4tan3AOB∠=.在优弧»AB上任取一点P,且能过P作直线//l OB交数轴于点Q,设Q在数轴上对应的数为x,连接OP.(1)若优弧»AB上一段»AP的长为13π,求AOP∠的度数及x的值;(2)求x的最小值,并指出此时直线与»AB所在圆的位置关系;(3)若线段PQ的长为12.5,直接..写出这时x的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
2020届河北省中考数学模拟试卷(有答案)(word版)(已纠错)
河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA 的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2020年河北省中考数学模拟试卷
2020年河北中考模拟试题满分:120分 时间:120分钟卷Ⅰ(选择题,共42分)一、选择题(本大题共16个小题,1-10小题,每小题3分;11-16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、下列各数中,绝对值最大的数是( ) A .﹣3 B .﹣2 C .0 D .12、环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为( )A 、-52.510⨯ B 、52.510⨯ C 、-62.510⨯ D 、62.510⨯3、设n 为正整数,且n <<n +1,则n 的值为( )A 、5B 、6C 、7D 、84、如图,将△ABC 三个角分别沿DE 、HG 、EF 翻折,三个顶点均落在点O 处,则∠1+∠2的度数为( ) A 、120° B 、135° C 、150° D 、180°5、将()211a --分解因式,结果正确的是( )A 、()1a a -B 、()2a a -C 、()()21a a --D 、()()21a a -+6、化简:211x xx x+=--( ) A 、1x + B 、1x - C 、x - D 、x 7、已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m ﹣n 的值是( )A 、1B 、2C 、3D 、48、甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图所示,则符合这一结果的实验可能是( )A、掷一枚正六面体的骰子,出现1点的概率B、抛一枚硬币,出现正面的概率C、任意写一个整数,它能2被整除的概率D、从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率9、如图,已知AB=AC,∠A=36°,AB的中垂线MD交AC于点D、交AB于点M.下列结论:①BD是∠ABC的平分线;②△BCD是等腰三角形;③△ABC∽△BCD;④△AMD≌△BCD.正确的有()个.A、4B、3C、2D、110、如图,将一张直角三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断何者正确?()A、甲>乙,乙>丙B、甲>乙,乙<丙C、甲<乙,乙>丙D、甲<乙,乙<丙11、定义新运算:()()1a a ba b aa b bb-≤⎧⎪*=⎨->≠⎪⎩且,则函数3*y x=的图象大致是()A .B.C.D.A 、当x=3时,EC <EMB 、当y=9时,EC >EMC 、当x 增大时,EC CF ⋅的值增大D 、当y 增大时,BE DF ⋅的值不变13、如图是正方体盒子的表面展开图,则下列说法中错误的是( )A 、当折叠成正方体纸盒时,点F 与点E ,C 重合B 、过点A 、B 、C 、D 、E 、F 、G 七个点中的n 个点作圆,则n 的最大值为4C 、以点A 、B 、C 、D 、E 、F 、G 中的四个点为顶点的四边形中平行四边形有2个 D 、设图中每个小正方形的边长为1,则能覆盖这个图形的最小的圆的直径为3214、已知过点(2,﹣3)的直线()0y ax b a =+≠不经过第一象限,设2s a b =+,则s 的取值范围是( ) A 、352s -≤≤-B 、362s -<≤-C 、362s -≤≤-D 、372s -<≤- 15、如图为某物体的三视图,友情提醒:在三视图中,AB =BC =CD =DA =EI =IG =NZ =MZ =KY =YL ,θ=60°,FE =GH =KN =LM =YZ .现搬运工人小明要搬运此物块边长为a cm 物块ABCD 在地面上由起始位置沿直线l 不滑行地翻滚,翻滚一周后,原来与地面接触的面ABCD 又落回到地面,则此时点B 起始位置翻滚一周后所经过的长度是( )231+aπ16、点P 从点O 出发,按逆时针方向沿周长为l 的图形运动一周,O ,P 两点间的距离y 与点P 走过的路程x 的函数关系如图,那么点P 所走的图形是( )卷Ⅱ(非选择题,共78分)二、填空题(本大题共3个小题,每小题3分,共9分. 把答案写在题中横线上)17、计算:122⨯= ; 18、如图,在△ABC 中,按以下步骤作图: ①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于M ,N 两点; ②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为 .19、如图矩形ABCD 中,AD =5,AB =7,点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D ′落在∠ABC 的角平分线上时,DE 的长为 .三、 解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20、(本小题满分6分)若220a a +=,则()20141a +的值为 ;21、(本小题满分7分)已知21x y =⎧⎨=⎩是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,求方程1242m x x x n -=--的解. xyOl OPPOPOOPABCDl222、(本小题满分10分)油井A 位于油库P 南偏东75°方向,主输油管道AP =12km ,一新建油井B 位于点P 的北偏东75°方向,且位于点A 的北偏西15°方向. (1)求∠PBA = °; (2)求A ,B 间的距离;(3)要在AP 上选择一个支管道连接点C ,使从点B 到点C 处的支输油管道最短,求这时BC 的长.(结果保留根号)75°75°15°CBAP 东北23.(本小题满分11分)某体院要了解篮球专业学生投篮的命中率,对学生进行定点投篮测试,规定每人投篮20次,测试结束后随机抽查了一部分学生投中的次数,并分为五类, Ⅰ:投中11次; Ⅱ投中12次; Ⅲ:投中13次; Ⅳ:投中14次; Ⅴ:投中15次.根据调查结果绘制了下面尚不完整的统计图1、图2:回答下列问题:(1)本次抽查了 名学生,图2中的m = . (2)补全条形统计图,并指出中位数在哪一类;(3)求最高的命中率及命中最高的人数所占的百分比;(4) 若体院规定篮球专业学生定点投篮命中率不低于65%记作合格,估计该院篮球专业210名学生中约有多少人不合格.24、(本小题满分11分)如图,在直角坐标系中,点A的坐标是(0,3),点C是x轴上的一个动点,点C在x 轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形AOB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC ≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.25、(本小题满分12分)图1和图2,半圆O的直径AB=2,点P(不与点A,B重合)为半圆上一点,将图形沿BP折叠,分别得到点A,O的对称点'A、'O,设∠ABP=α.(1)当α=15°时,过点'A作'A C∥AB,如图1,判断'A C与半圆O的位置关系,并说明理由;O落在PB上;(2)如图2,当α= °时,B'A与半圆O相切.当α= °时,点'O与半圆O只要有一个公共点B时,求α的取值范围.(3)当线段B'26、(本小题满分12分)某地区适宜种植A品种苹果.(1) 图1是甲地果树科研人员对每亩种植55棵的实验田内A品种苹果树的地块进行抽样后所作的单株盛产期的产量统计图.请你根据这个统计图,直接写出A品种苹果盛产期的单株产量的中位数、众数,求出它的平均单株产量;(2) 甲地的果树科研人员经综合实验研究还发现:在每亩55棵苹果树的情况下,随着每亩种植苹果树数量的增加,单株的平均产量开始减产,每亩增加的苹果棵树x (株)与平均每棵梨树的产量m (千克)之间的关系如下表所示:增加的棵树x(棵)…10 15 20 …每棵梨树的产量m(千克) …130 120 110 …①上表数据中m是x的一次函数,请你直接写出来:;②在①的条件下,求A品牌的苹果的亩产量y (千克)与x的函数关系式;③在①的条件下,求每亩种植A品牌苹果树多少棵时,它的平均亩产量最多?最多是多少千克?。