简易逻辑高考题

合集下载

新高考数学题型归纳,第一章 集合与简易逻辑

新高考数学题型归纳,第一章  集合与简易逻辑

第一章集合与简易逻辑第一节集合题型1、元素与集合的关系元素与集合的关系:属于和不属于。

常用数集的表示:C —复数集;R —实数集;Q —有理数集;Z —整数集;N —自然数集;N+或N*—正整数集。

1、【多选】下列关系中正确的是()A.{}102,∉-B.(){}2|42x y x =∈,C.R ∈πD.Φ∈02、【2022·全国乙卷】设集合{}54321,,,,=U ,集合M 满足{}31,=M C U ,则()A.M ∈2B.M ∈3C.M ∉4D.M∉53、【2018·北京】已知集合(){}241|≤-+≥-=ay x y ax y x y x A ,>,,,则()A .()A R a ∈∈∀12,,B .()AR a ∉∈∀12,,C .当且仅当0<a 时,()A ∉12,D .当且仅当23≤a 时,()A ∉12,4、若集合{}2024||≤∈=x N x x P ,45=a ,则()A.P a ∈B.{}P a ∈C.{}Pa ⊆D.Pa ∉题型2、集合相等集合元素的特征:确定性、互异性、无序性。

集合相等,集合中元素完全相同,集合中元素之和相等,集合中元素之积相等。

1、若},,0{},,1{2b a a ab a +=,求20242024b a+的值.【答案:1】2、已知集合,,且B A },,0{B },,,{A ==-=y x y x xy x 求实数x 与y 的值.【答案:x=y=-1】3、设R b a ∈,,集合b}ab {0a}b a {1,,,,=+,则=-a b ()【答案:C 】A.1B.-1C.2D.-24、【2014·福建】若}2,1,0{},,{=c b a ,且下列三个关系:①2≠a ;②2=b ;③0≠c 有且只有一个正确,求c b a ++10100的值.5、集合},2,0{a A =,},1{2a B =.若}16,4,210{,,=B A 则a 的值为()【答案:D 】A .0B .1C .2D .4题型3、集合之间的基本关系集合与集合之间的关系:①包含关系,②相等关系,③真子集关系。

2021年高考数学经典例题 专题一:集合与简易逻辑【含解析】

2021年高考数学经典例题 专题一:集合与简易逻辑【含解析】

专题一 集合与简易逻辑一、单选题1.设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()UAB =( )A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---【答案】C 【解析】首先进行补集运算,然后进行交集运算即可求得集合的运算结果. 【详解】由题意结合补集的定义可知:{}U2,1,1B =--,则(){}U1,1AB =-.故选:C.2.设a ∈R ,则“1a >”是“2a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】首先求解二次不等式,然后结合不等式的解集即可确定充分性和必要性是否成立即可. 【详解】求解二次不等式2a a >可得:1a >或0a <, 据此可知:1a >是2a a >的充分不必要条件. 故选:A.3.设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B =( ) A .{x |2<x ≤3} B .{x |2≤x ≤3} C .{x |1≤x <4} D .{x |1<x <4} 【答案】C 【解析】根据集合并集概念求解. 【详解】[1,3](2,4)[1,4)A B ==故选:C4.已知,R αβ∈,则“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的( ). A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】根据充分条件,必要条件的定义,以及诱导公式分类讨论即可判断. 【详解】(1)当存在k Z ∈使得(1)k k απβ=+-时, 若k 为偶数,则()sin sin sin k απββ=+=;若k 为奇数,则()()()sin sin sin 1sin sin k k απβππβπββ=-=-+-=-=⎡⎤⎣⎦;(2)当sin sin αβ=时,2m αβπ=+或2m αβππ+=+,m Z ∈,即()()12kk k m απβ=+-=或()()121kk k m απβ=+-=+,亦即存在k Z ∈使得(1)k k απβ=+-.所以,“存在k Z ∈使得(1)k k απβ=+-”是“sin sin αβ=”的充要条件. 故选:C.5.已知集合P ={|14}<<x x ,{|23}Q x x =<<,则P Q =( ) A .{|12}x x <≤ B .{|23}x x << C .{|34}x x ≤< D .{|14}<<x x【答案】B 【解析】根据集合交集定义求解. 【详解】(1,4)(2,3)(2,3)P Q ==故选:B6.已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,l 在同一平面”是“m ,n ,l 两两相交”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B 【解析】将两个条件相互推导,根据能否推导的结果判断充分必要条件. 【详解】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件. 故选:B7.设点A ,B ,C 不共线,则“AB 与AC 的夹角为锐角”是“AB AC BC +>”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】∵A 、B 、C 三点不共线,∴|AB +AC |>|BC |⇔|AB +AC |>|AB -AC |⇔|AB +AC |2>|AB -AC |2AB ⇔•AC >0AB ⇔与AC的夹角为锐角.故“AB 与AC 的夹角为锐角”是“|AB +AC |>|BC |”的充分必要条件,故选C.8.已知集合{}{}2|320,,|05,A x x x x R B x x x N =-+=∈=<<∈,则满足条件A C B ⊆⊆的集合C 的个数为( ) A .1 B .2C .3D .4【答案】D 【解析】求解一元二次方程,得{}()(){}2|320,|120,A x x x x x x x x =-+=∈=--=∈R R {}1,2=,易知{}{}|05,1,2,3,4B x x x =<<∈=N .因为A C B ⊆⊆,所以根据子集的定义, 集合C 必须含有元素1,2,且可能含有元素3,4, 原题即求集合{}3,4的子集个数,即有224=个,故选D.9.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A .2B .3C .4D .6【答案】C 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.10.设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C 【解析】b =0 时,f(x)=cosx +bsinx =cosx , f(x)为偶函数; f(x)为偶函数时,f(−x)=f(x)对任意的x 恒成立, f(−x)=cos(−x)+bsin(−x)=cosx −bsinxcosx +bsinx =cosx −bsinx ,得bsinx =0对任意的x 恒成立,从而b =0.从而“b =0”是“f(x)为偶函数”的充分必要条件,故选C.11.已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D 【解析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<, 所以{}|14A x x =-<<, 又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.12.设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =( ) A .–4 B .–2C .2D .4【答案】B 【解析】由题意首先求得集合A ,B ,然后结合交集的结果得到关于a 的方程,求解方程即可确定实数a 的值. 【详解】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤, 求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭. 由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-. 故选:B.13.已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =( ) A .∅ B .{–3,–2,2,3) C .{–2,0,2} D .{–2,2}【答案】D 【解析】解绝对值不等式化简集合,A B 的表示,再根据集合交集的定义进行求解即可. 【详解】因为{}{}3,2,1,0,1,2A x x x Z =<∈=--,{}{1,1B x x x Z x x =>∈=>或}1,x x Z <-∈,所以{}2,2AB =-.故选:D.14.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()UA B ⋃=( )A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A 【解析】首先进行并集运算,然后计算补集即可. 【详解】由题意可得:{}1,0,1,2A B ⋃=-,则(){}U2,3A B =-.故选:A.15.设m R ∈,则“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】根据条件先求m 的取值范围,再比较集合的包含关系,判断充分必要条件. 【详解】圆()()22:123C x y m -+-=-,圆心()1,2,半径3r m =-若直线l 与圆C 有公共点, 则圆心()1,2到直线的距离332m d m -=≤-13m ≤<,{}12m m ≤≤ {}13m m ≤<,所以“12m ≤≤”是“直线:0l x y m +-=和圆22:2420C x y x y m +--++=有公共点”的充分不必要条件.故选:A16.设x ∈R ,则“2560x x -+<”是“|2|1x -<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】分别解出两个不等式的解集,比较集合的关系,从而得到两命题的逻辑关系. 【详解】2560x x -+<23x ⇒<<;|2|1x -<13x ⇒<<;易知集合()2,3是()1,3的真子集,故是充分不必要条件. 故选:A. 17.已知集合{}0,1,2,4A =,{}2,nB x x n A ==∈,则AB =( )A .{}0,1,2B .{}0,1,4C .{}0,2,4D .{}1,2,4【答案】D 【解析】由题知{}1,2,4,16B =,再根据集合交集运算求解即可. 【详解】 因为{}0,1,2,4A =,{}1,2,4,16B =,所以{}1,2,4AB =,故选:D.18. “21a =”是“直线1x ay +=与1ax y +=平行”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】首先根基两直线平行求出a 的值,再根据小范围推大范围选出答案.【详解】因为直线1x ay +=与1ax y +=平行, 所以0a ≠ 且两直线的斜率相等即1a a-=解得1a =±; 而当1a =时直线1x ay +=为1x y +=,同时1ax y +=为1x y +=,两直线重合不满足题意;当1a =-时,1x y -=与1x y -+=平行,满足题意;故1a =-,根据小范围推大范围可得:21a =是1a =-的必要不充分条件. 故选:B19.已知命题:p “,a b 是两条不同的直线,α是一个平面,若,b a b α⊥⊥,则//a α”,命题:q “函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,为R 上的增函数”,下列说法正确的是A .“p q ⌝∧”为真命题B .“p q ∧⌝”为真命题C .“p q ∧” 为真命题D .“p q ⌝∧⌝” 为真命题【答案】D 【解析】依题意得p 是假命题;因为312<又()312f f ⎛⎫> ⎪⎝⎭,得q 是假命题,则可判断正确结果. 【详解】若,b a b α⊥⊥,则//a α或a α⊂,所以命题p 是假命题;函数1,1()23,1x e x f x x x -⎧≤=⎨->⎩,当1x =时()011f e ==,当32x =时3323022f ⎛⎫=⨯-= ⎪⎝⎭,因为312<又()312f f ⎛⎫> ⎪⎝⎭,所以()f x 在R 上不是增函数,故q 是假命题; 所以p ⌝与q ⌝是真命题,故“p q ⌝∧⌝” 为真命题 故选:D .20.记不等式组620x y x y +⎧⎨-≥⎩表示的平面区域为D ,命题:(,),29p x y D x y ∃∈+;命题:(,),212q x y D x y ∀∈+.给出了四个命题:①p q ∨;②p q ⌝∨;③p q ∧⌝;④p q ⌝∧⌝,这四个命题中,所有真命题的编号是( ) A .①③ B .①②C .②③D .③④【答案】A 【解析】如图,平面区域D 为阴影部分,由2,6y x x y =⎧⎨+=⎩得2,4x y =⎧⎨=⎩即A (2,4),直线29x y +=与直线212x y +=均过区域D , 则p 真q 假,有p ⌝假q ⌝真,所以①③真②④假.故选A .21.已知集合{}1235711A =,,,,,,{}315|B x x =<<,则A ∩B 中元素的个数为( ) A .2 B .3 C .4 D .5【答案】B 【解析】采用列举法列举出A B 中元素的即可.【详解】由题意,{5,7,11}A B ⋂=,故A B 中元素的个数为3.故选:B22.已知M 、N 为R 的子集,若RM N =∅,{}1,2,3N =,则满足题意的M 的个数为( )A .3B .4C .7D .8【答案】D【解析】根据交集、补集的运算的意义,利用韦恩图可得出M ,N 关系,根据子集求解. 【详解】因为M 、N 为R 的子集,且RM N =∅,画出韦恩图如图,可知,M N ⊆, 因为{}1,2,3N =, 故N 的子集有32=8个. 故选:D23. “0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .即不充分也不必要条件【答案】A 【解析】根据直线与圆相交的判定,充分条件,必要条件即可求解 【详解】当0a =时,直线为0x y -=,过圆心(0,0),故直线与圆224x y +=相交,当直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交时,圆心到直线的距离222(1)(1)d a a =<++-,化简得220a +>,显然恒成立,不能推出0a =,所以“0a =”是直线(1)(1)20()a x a y a a R ++-+=∈与圆224x y +=相交的充分不必要条件, 故选:A24.设集合()222021,2020A x y x y ⎧⎫=+=⎨⎬⎩⎭,(){},2x B x y y ==,则集合A B 中元素的个数为( ) A .0 B .1 C .2 D .3【答案】C【解析】 分别作出2220212020x y +=,2x y =图象,判断交点个数即可.【详解】依题意:集合A B 中元素的个数即2220212020x y +=,2x y =图象交点个数如图所以一共有两个交点,所以集合A B 中元素的个数为2故选:C25.已知集合{}13A x x =≤<,{}B y y m =≤,且A B =∅,则实数m 应满足()A .1m <B .1mC .3m ≥D .3m >【答案】A【解析】根据集合交集定义即可求解.【详解】 解:∵集合{}13A x x =≤<,{}B y y m =≤,A B =∅∴1m <,故选:A .26.命题000:,20p x R x lnx ∃∈+<的否定为( )A .000,20x R x lnx ∃∉+≥B .000,20x R x lnx ∃∈+>C .,20x R x lnx ∀∈+>D .,20x R x lnx ∀∈+≥【答案】D【解析】 根据特称命题的否定是全称命题,直接写出即可.【详解】根据特称命题的否定是全称命题,所以命题p 的否定为,20x R x lnx ∀∈+≥.故选:D.27.已知集合{}220A x x x =-->,则A =R ( ) A .{}12x x -<<B .{}12x x -≤≤C .}{}{|12x x x x <-⋃D .}{}{|1|2x x x x ≤-⋃≥ 【答案】B【解析】分析:首先利用一元二次不等式的解法,求出220x x -->的解集,从而求得集合A ,之后根据集合补集中元素的特征,求得结果.详解:解不等式220x x -->得12x x -或,所以{}|12A x x x =<->或,所以可以求得{}|12R C A x x =-≤≤,故选B.28.已知两条直线,a b 和平面α,若b α⊂,则//a b 是//a α的( )A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分又不必要条件 【答案】D【解析】当b α⊂时,若//a b 时,a 与α的关系可能是//a α,也可能是a α⊂,即//a α不一定成立,故////a b a α⇒为假命题;若//a α时,a 与b 的关系可能是//a b ,也可能是a 与b 异面,即//a b 不一定成立,故////a a b α⇒也为假命题;故//a b 是//a α的既不充分又不必要条件故选:D29.设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有两个元素,且S ,T 满足:①对于任意x ,y ∈S ,若x ≠y ,都有xy ∈T②对于任意x ,y ∈T ,若x <y ,则y x ∈S ; 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素【答案】A【解析】分别给出具体的集合S 和集合T ,利用排除法排除错误选项,然后证明剩余选项的正确性即可.【详解】首先利用排除法:若取{}1,2,4S =,则{}2,4,8T =,此时{}1,2,4,8ST =,包含4个元素,排除选项 C ; 若取{}2,4,8S =,则{}8,16,32T =,此时{}2,4,8,16,32S T =,包含5个元素,排除选项D ;若取{}2,4,8,16S =,则{}8,16,32,64,128T =,此时{}2,4,8,16,32,64,128ST =,包含7个元素,排除选项B ;下面来说明选项A 的正确性:设集合{}1234,,,S p p p p =,且1234p p p p <<<,*1234,,,p p p p N ∈,则1224p p p p <,且1224,p p p p T ∈,则41p S p ∈, 同理42p S p ∈,43p S p ∈,32p S p ∈,31p S p ∈,21p S p ∈,若11p =,则22p ≥,则332p p p <,故322p p p =即232p p =, 又444231p p p p p >>>,故442232p p p p p ==,所以342p p =, 故{}232221,,,S p p p =,此时522,p T p T ∈∈,故42p S ∈,矛盾,舍. 若12p ≥,则32311p p p p p <<,故322111,p p p p p p ==即323121,p p p p ==, 又44441231p p p p p p p >>>>,故441331p p p p p ==,所以441p p =, 故{}2341111,,,S p p p p =,此时{}3456711111,,,,p p p p p T ⊆. 若q T ∈, 则31q S p ∈,故131,1,2,3,4i q p i p ==,故31,1,2,3,4i q p i +==, 即{}3456711111,,,,q p p p p p ∈,故{}3456711111,,,,p p p p p T =,此时{}234456*********,,,,,,,S T p p p p p p p p ⋃=即S T 中有7个元素.故A 正确.故选:A .【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.二、填空题30.已知集合{}1,2A =,{}2,3B a a =+,若A B={1}⋂则实数a 的值为________ 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.点睛:(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误.(3)防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.31.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内,同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m ⊥平面α,则m 垂直于平面α内所有直线,直线l ⊂平面α,∴直线m ⊥直线l ,命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.32.设A 是非空数集,若对任意,x y A ∈,都有,x y A xy A +∈∈,则称A 具有性质P .给出以下命题: ①若A 具有性质P ,则A 可以是有限集;②若12,A A 具有性质P ,且12A A ⋂≠∅,则12A A ⋂具有性质P ;③若12,A A 具有性质P ,则12A A ⋃具有性质P ;④若A 具有性质P ,且A ≠R ,则A R 不具有性质P .其中所有真命题的序号是___________.【答案】①②【解析】举特例判断①;利用性质P 的定义证明②即可;举反例说明③错误;利用反证法,结合举反例判断④.【详解】对于①,取集合{}0,1A =具有性质P ,故A 可以是有限集,故①正确;对于②,取12,x y A A ∈⋂,则1x A ∈,2x A ∈,1y A ∈,2y A ∈,又12,A A 具有性质P ,11,x y A xy A ∴+∈∈,22,x y A xy A +∈∈,1212,x y xy A A A A ∴+∈∈⋂⋂,所以12A A ⋂具有性质P ,故②正确;对于③,取{}1|2,A x x k k Z ==∈,{}2|3,A x x k k Z ==∈,12A∈,23A ∈,但1223A A +∉⋃,故③错误;对于④,假设A R 具有性质P ,即对任意,x y A ∈R ,都有,x y A xy A +∈∈R R ,即对任意,x y A ∉,都有,x y A xy A +∉∉,举反例{}|2,A x x k k Z ==∈,取1A ∉,3A ∉,但134A +=∈,故假设不成立,故④错误;故答案为:①②【点睛】关键点点睛:本题考查集合新定义,解题的关键是对集合新定义的理解,及举反例,特例证明,考查学生的逻辑推理与特殊一般思想,属于基础题.。

高考常考小题一:集合、复数与简易逻辑(教师答案版)

高考常考小题一:集合、复数与简易逻辑(教师答案版)

□高考常考小题一:集合、复数与简易逻辑※常考题型讲练题型一集合的基本关系与运算【例2】1.已知集合A={1,3,m},B={1,m},A∪B=A,则m=()A.0或 3 B.0或3C.1或 3 D.1或3答案 B2.设集合A={x|21-x>1,x∈R},B={x|y=1-x2},则(∁R A)∩B 等于()A.{x|-1≤x≤1} B.{x|-1<x<1}C.{-1,1} D.{1}答案 C3.已知集合A={x|y=lg(x-x2)},B={x|x2-cx<0,c>0},若A⊆B,则实数c的取值范围是()A.(0,1] B.[1,+∞)C.(0,1) D.(1,+∞)答案 B变式训练1:1.设全集I=R,A={y|y=log2x,x>2},B={x|y=x-1},则()A.A⊆B B.A∪B=AC.A∩B=∅D.A∩(∁I B)≠∅答案 A2.已知全集A={x∈N|x2+2x-3≤0},B={y|y⊆A},则集合B 中元素的个数为()A.2 B.3C.4 D.5答案 C3.设集合U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤1}答案:B 题型二复数的概念及运算【例2】1.已知复数a+3i1-2i是纯虚数,则实数a=()A.-2 B.4C.-6 D.6答案:D解析:a+3i1-2i=a-6+(2a+3)i5,∴a=6时,复数a+3i1-2i为纯虚数.2.已知i为虚数单位,复数z=2+i1-2i,则|z|+1z=()A.i B.1-iC.1+i D.-i答案 B解析:由已知得z=2+i1-2i=-2i2+i1-2i=i(1-2i)1-2i=i,|z|+1z=|i|+1i=1-i.3.已知i为虚数单位,复数z满足z i=(3-i1+i)2,则复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案 C解析:z i=(3-i1+i)2=(3-i)2(1+i)2=8-6i2i,∴z=8-6i2i2=8-6i-2=-4+3i,∴z=-4-3i,故选C.4.已知i为虚数单位,若z+z=2,(z-z)i=2,则z=() A.1+i B.-1-iC.-1+i D.1-i答案:D解析:设z=a+b i(a,b∈R),则z=a-b i,又z+z=2,即(a+b i)+(a-b i)=2,所以2a=2,解得a=1.又(z-z)i=2,即[(a+b i)-(a-b i)]·i=2,则b i2=1,解得b=-1.则z=1-i.变式训练2:1.复数z=i2+i3+i41-i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限答案: D解析:i2+i3+i41-i=(-1)+(-i)+11-i=-i1-i=-i(1+i)(1-i)(1+i)=1-i2=12-12i.2.已知i 为虚数单位,若(2+i)z =3-i ,则z ·z 的值为( ) A .1 B .2 C . 2 D .4 答案 B解析: 设z =a +b i(a ,b ∈R ),代入(2+i)z =3-i ,得(2a -b )+(2b +a )i =3-i ,从而可得a =1,b =-1,那么z ·z =(1-i)(1+i)=2.3.若复数z 满足z -|z |=-1+3i ,则z -=________. 答案 4-3i解析:由条件可设z =a +3i ,则|z |=a 2+9,∴a -a 2+9=-1,∴a =4,∴z =4+3i ,∴z -=4-3i .题型三 命题与充分必要条件判断【例3】1.下列选项中,说法正确的是( )A .命题“∃x ∈R ,x 2-x ≤0”的否定是“∃x ∈R ,x 2-x >0”B .命题“p ∨q 为真”是命题“p ∧q 为真”的充分不必要条件C .命题“若am 2≤bm 2,则a ≤b ”是假命题D .命题“在△ABC 中,若sin A <12,则A <π6”的逆否命题为真答案:C2.已知a ,b 为非零向量,则“函数f (x )=(a x +b )2为偶函数”是“a ⊥b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:C3.已知命题p : ∀n ∈N *,f (n )∈N *且f (n )≤n ,则¬p 是( )A .∀n ∈N *,f (n )∉N *且f (n )>n B .∀n ∈N *,f (n )∉N *或f (n )>n C .∃n 0∈N *,f (n 0)∉N *且f (n 0)>n 0 D .∃n 0∈N *,f (n 0)∉N *或f (n 0)>n 0 答案:D4.已知p :(a -1)2≤1,q :∀x ∈R ,ax 2-ax +1≥0,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由(a -1)2≤1解得0≤a ≤2,∴p :0≤a ≤2. 当a =0时,ax 2-ax +1≥0对∀x ∈R 恒成立;当a ≠0时,由⎩⎨⎧a >0Δ=a 2-4a ≤0得0<a ≤4,∴q :0≤a ≤4.∴p 是q 成立的充分不必要条件.变式训练3:1.已知命题p :∃x ∈R ,x -2>lg x ,命题q :∀x ∈R ,x 2>0,则( )A .p ∨q 是假命题B .p ∧q 是真命题C .p ∧(¬q )是真命题D .p ∨(¬q )是假命题 答案 C2.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案:B3.设a ,b 都是不等于1的正数,则“3a >3b >3”是“log a 3<log b 3”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 答案 B4.设命题p :∃n ∈N ,n 2>2n ,则¬p 为( )A .∀n ∈N ,n 2>2nB .∃n ∈N ,n 2≤2nC .∀n ∈N ,n 2≤2nD .∃n ∈N ,n 2=2n 答案 C5.已知条件p :x 2+2x -3>0;条件q :x >a ,且¬q 的一个充分不必要条件是¬p ,则a 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-1,+∞) D .(-∞,-3]题型四 简易逻辑综合应用问题【例4】1.已知命题p :“∀x ∈[0,1],a ≥e x ”,命题q :“∃x ∈R ,x 2+4x +a =0”,若命题“p ∧q ”是真命题,则实数a 的取值范围是( ) A .[e ,4] B .[1,4] C .(4,+∞) D .(-∞,1]解析 若命题p :“∀x ∈[0,1],a ≥e x ”为真命题,则a ≥e ;若命题q :“∃x ∈R ,x 2+4x +a =0”为真命题,则Δ=16-4a ≥0,即a ≤4,所以若 “p ∧q ”是真命题,则实数a 的范围是[e ,4]. 答案 A2.对于中国足球参与的某次大型赛事,有三名观众对结果作如下猜测:甲:中国非第一名,也非第二名; 乙:中国非第一名,而是第三名; 丙:中国非第三名,而是第一名.竞赛结束后发现,一人全猜对,一人猜对一半,一人全猜错,则中国足球队得了第________名. 答案 一解析 由上可知:甲、乙、丙均为“p 且q ”形式,所以猜对一半者也说了错误“命题”,即只有一个为真,所以可知丙是真命题,因此中国足球队得了第一名3.若f(x)=x2-2x,g(x)=ax+2(a>0),∀x1∈[-1,2],∃x0∈[-1,2],使g(x1)=f(x0),则实数a的取值范围是________.答案:(0,12]解析:由于函数g(x)在定义域[-1,2]内是任意取值的,且必存在x0∈[-1,2],使得g(x1)=f(x0),因此问题等价于函数g(x)的值域是函数f(x)值域的子集.函数f(x)的值域是[-1,3],函数g(x)的值域是[2-a,2+2a],则有2-a≥-1且2+2a≤3,即a≤12.又a>0,故a的取值范围是(0,1 2].变式训练4:1.已知命题“∃x∈R,x2+2ax+1<0”是真命题,则实数a的取值范围是()A.(-∞,-1) B.(1,+∞)C.(-∞,-1)∪(1,+∞) D.(-1,1)答案:C解析:“∃x∈R,x2+2ax+1<0”是真命题,即不等式x2+2ax+1<0有解,∴Δ=(2a)2-4>0,得a2>1,即a>1或a<-1.2.甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为________.答案A解析由题意:甲没去过B城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A,C城市,而乙“没去过C城市”,说明乙去过城市A,由此可知,乙去过的城市为A.3.已知命题p:∃x0∈R,e0x-mx0=0,q:∀x∈R,x2+mx +1≥0,若p∨(¬q)为假命题,则实数m的取值范围是() A.(-∞,0)∪(2,+∞) B.[0,2]C.R D.∅答案:B解析:若p∨(¬q)为假命题,则p假q真.命题p为假命题时,有0≤m<e;命题q为真命题时,有Δ=m2-4≤0,即-2≤m≤2.所以当p∨(¬q)为假命题时,m的取值范围是0≤m≤2.※重点题型精练(时限:35分钟)1.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=() A.(-1,1) B.(0,1)C.(-1,+∞) D.(0,+∞)答案 C2.命题“∃x0∈(0,+∞),ln x0=x0-1”的否定是() A.∀x∈(0,+∞),ln x≠x-1B.∀x∉(0,+∞),ln x=x-1C.∃x0∈(0,+∞),ln x0≠x0-1D.∃x0∉(0,+∞),ln x0=x0-1解析:该命题的否定是将存在量词改为全称量词,等号改为不等号即可,故选A.答案:A3.已知复数z=i(-2-i)2(i为虚数单位),z在复平面内所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限答案:A解析:因为z=i(-2-i)2=i4+4i-1=i3+4i=i(3-4i)25=425+325i,所以z在复平面内所对应的点()425,325在第一象限,故选A.4.命题“1+3x-1≥0”是命题“(x+2)(x-1)≥0”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 A5.有下列四个命题:p1:若a·b=0,则一定有a⊥b;p2:∃x,y∈R,sin(x-y)=sin x-sin y;p3:∀a∈(0,1)∪(1,+∞),f(x)=a1-2x+1恒过定点()12,2;p4:方程x2+y2+Dx+Ey+F=0表示圆的充要条件是D2+E2-4F≥0.其中假命题的是()A.p1,p4B.p2,p3C.p1,p3D.p2,p4答案 A解析:选A对于p1:∵a·b=0⇔a=0或b=0或a⊥b,当a=0,则a方向任意,a,b不一定垂直,故p1假,否定B、D,又p3显然为真,否定C.6.下列命题中的假命题是()A.∀x∈R,2x-1>0 B.∀x∈N*,(x-1)2>0 C.∃x0∈R,lg x0<1 D.∃x0∈R,tan()x0+π4=5答案 B7.若复数z 满足(2-i)z =|1+2i|,则z 的虚部为( )A .55B .55iC .1D .i [答案] A[解析] ∵(2-i)z =|1+2i|=5,∴z =52-i =52+i 5=255+55i ,∴复数z 的虚部为55.8.已知复数z =1+a i(a ∈R ,i 是虚数单位),z -z =-35+45i ,则a =( )A .2B .-2C .±2D .-12[答案] B[解析] 由题意可知:1-a i 1+a i =1-a i 21+a i 1-a i =1-2a i -a 21+a 2=1-a 21+a 2-2a 1+a 2i =-35+45i ,因此1-a 21+a 2=-35,化简得5a 2-5=3a 2+3,a 2=4,则a =±2,由-2a 1+a 2=45可知a <0,仅有a =-2满足,故选B .9.设a ,b 是非零向量,“a·b =|a ||b |”是“a ∥b ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 [答案] A [解析] 若a·b =|a ||b |,则a 与b 的方向相同,所以a ∥b .若a ∥b ,则a·b =|a ||b |,或a·b =-|a ||b |,所以“a·b =|a ||b |”是“a ∥b ”的充分而不必要条件,选A .10.在△ABC 中,设p :a sin B =b sin C =csin A;q :△ABC 是正三角形,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:C解析:若p 成立,即a sin B =b sin C =csin A ,由正弦定理,可得a b =b c =ca=k .∴⎩⎪⎨⎪⎧a =kb ,b =kc ,c =ka ,∴a =b =c .则q :△ABC 是正三角形,成立.反之,若a =b =c ,则∠A =∠B =∠C =60°,则a sin B =b sin C =c sin A. 因此p ⇒q 且q ⇒p ,即p 是q 的充要条件.故选C .11.设i 是虚数单位,若z ·z i +2=2z ,则z =( ) A .1+i B .1-iC .-1+iD .-1-i [答案] A[解析] 设z =a +b i(a ,b ∈R ),则由z ·z i +2=2z 得(a +b i)(a -b i)i +2=2(a +b i),即(a 2+b 2)i +2=2a +2b i , 所以2a =2,a 2+b 2=2b ,所以a =1,b =1,即z =a +b i =1+i .12.函数f (x )=⎩⎨⎧log2x ,x >0,-2x +a ,x ≤0有且只有一个零点的充分不必要条件是( )A .a <0B .0<a <12C .12<a <1 D .a ≤0或a >1答案 A解析 因为函数f (x )过点(1,0),所以函数f (x )有且只有一个零点⇔函数y =-2x +a (x ≤0)没有零点⇔函数y =2x (x ≤0)与直线y =a 无公共点.由数形结合,可得a ≤0或a >1.观察选项,根据集合间关系得{a |a <0}{a |a ≤0或a >1},故答案选A .13.已知命题“∃x ∈R ,使2x 2+(a -1)x +12≤0”是假命题,则实数a 的取值范围是________. 答案 (-1,3)解析 原命题的否定为“∀x ∈R ,2x 2+(a -1)x +12>0”,且为真命题,则Δ=(a -1)2-4×2×12<0,解得-1<a <3.14.设复数z 满足|z |=5且(3+4i)z 是纯虚数,则z =________. 答案:±(4-3i)解析:设z =a +b i(a ,b ∈R ),则有a 2+b 2=5. 于是(3+4i)z =(3a -4b )+(4a +3b )i .由题设得⎩⎨⎧3a -4b =04a +3b ≠0得b =34a 代入得a 2+()34a 2=25,a =±4,∴⎩⎨⎧ a =4,b =3或⎩⎨⎧a =-4,b =-3. ∴z =4-3i 或z =-4+3i .。

常用逻辑用语近3年高考试题【精品教案】—【教学设计】

常用逻辑用语近3年高考试题【精品教案】—【教学设计】

中小学教学参考资料教学设计试卷随堂检测近3年(2016——2018)《常用逻辑用语》部分高考真题一.选择题(共22小题)1.(2018•天津)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件2.(2018•天津)设x∈R,则“|x ﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件3.(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件4.(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件5.(2018•北京)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件6.(2018•北京)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件7.(2016•四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.(2017•天津)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件9.(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件11.(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件12.(2017•山东)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q13.(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x215.(2016•北京)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件16.(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件17.(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件18.(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件19.(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n﹣1+a2n<0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件20.(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均是以T为周期的函数,则f(x)、g(x)、h (x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题近3年(2016——2018)《常用逻辑用语》部分高考真题参考答案与试题解析一.选择题(共22小题)1.(2018•天津)设x∈R,则“x3>8”是“|x|>2”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】由x3>8得到|x|>2,由|x|>2不一定得到x3>8,然后结合查充分条件、必要条件的判定方法得答案.【解答】解:由x3>8,得x>2,则|x|>2,反之,由|x|>2,得x<﹣2或x>2,则x3<﹣8或x3>8.即“x3>8”是“|x|>2”的充分不必要条件.故选:A.【点评】本题考查充分条件、必要条件及其判定方法,是基础题.2.(2018•天津)设x∈R,则“|x﹣|<”是“x3<1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】先解不等式,再根据充分条件和必要条件的定义即可求出.【解答】解:由|x﹣|<可得﹣<x﹣<,解得0<x<1,由x3<1,解得x<1,故“|x﹣|<”是“x3<1”的充分不必要条件,故选:A.【点评】本题考查了不等式的解法和充分必要条件,属于基础题.3.(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(2018•浙江)已知平面α,直线m,n满足m⊄α,n⊂α,则“m∥n”是“m∥α”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据线面平行的定义和性质以及充分条件和必要条件的定义进行判断即可.【解答】解:∵m⊄α,n⊂α,∴当m∥n时,m∥α成立,即充分性成立,当m∥α时,m∥n不一定成立,即必要性不成立,则“m∥n”是“m∥α”的充分不必要条件.故选:A.【点评】本题主要考查充分条件和必要条件的判断,根据线面平行的定义和性质是解决本题的关键,是基础题.5.(2018•北京)设a,b,c,d是非零实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义结合等比数列的性质进行判断即可.【解答】解:若a,b,c,d成等比数列,则ad=bc,反之数列﹣1,﹣1,1,1.满足﹣1×1=﹣1×1,但数列﹣1,﹣1,1,1不是等比数列,即“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合等比数列的性质是解决本题的关键.6.(2018•北京)设,均为单位向量,则“|﹣3|=|3+|”是“⊥”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量数量积的应用,结合充分条件和必要条件的对应进行判断即可.【解答】解:∵“|﹣3|=|3+|”∴平方得||2+9||2﹣6•=9||2+||2+6•,即1+9﹣6•=9+1+6•,即12•=0,则•=0,即⊥,则“|﹣3|=|3+|”是“⊥”的充要条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,结合向量数量积的公式进行转化是解决本题的关键.7.(2017•上海)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存在k∈N*,使得x100+k、x200+k、x300+k成等差数列”的一个必要条件是()A.a≥0B.b≤0C.c=0D.a﹣2b+c=0【分析】由x100+k,x200+k,x300+k成等差数列,可得:2x200+k=x100+k x300+k,代入化简即可得出.【解答】解:存在k∈N*,使得x100+k、x200+k、x300+k成等差数列,可得:2[a(200+k)2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0.∴使得x100+k,x200+k,x300+k成等差数列的必要条件是a≥0.故选:A.【点评】本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.8.(2017•天津)设x∈R,则“2﹣x≥0”是“|x﹣1|≤1”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【解答】解:由2﹣x≥0得x≤2,由|x﹣1|≤1得﹣1≤x﹣1≤1,得0≤x≤2.则“2﹣x≥0”是“|x﹣1|≤1”的必要不充分条件,故选:B.【点评】本题主要考查充分条件和必要条件的判断,结合充分条件和必要条件的定义以及不等式的性质是解决本题的关键.9.(2017•天津)设θ∈R,则“|θ﹣|<”是“sinθ<”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【分析】运用绝对值不等式的解法和正弦函数的图象和性质,化简两已知不等式,结合充分必要条件的定义,即可得到结论.【解答】解:|θ﹣|<⇔﹣<θ﹣<⇔0<θ<,sinθ<⇔﹣+2kπ<θ<+2kπ,k∈Z,则(0,)⊊(﹣+2kπ,+2kπ),k∈Z,可得“|θ﹣|<”是“sinθ<”的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查正弦函数的图象和性质,运用定义法和正确解不等式是解题的关键,属于基础题.10.(2017•北京)设,为非零向量,则“存在负数λ,使得=λ”是“•<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.即可判断出结论.【解答】解:,为非零向量,存在负数λ,使得=λ,则向量,共线且方向相反,可得•<0.反之不成立,非零向量,的夹角为钝角,满足•<0,而=λ不成立.∴,为非零向量,则“存在负数λ,使得=λ”是•<0”的充分不必要条件.故选:A.【点评】本题考查了向量共线定理、向量夹角公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.11.(2017•浙江)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.【解答】解:∵S4+S6>2S5,∴4a1+6d+6a1+15d>2(5a1+10d),∴21d>20d,∴d>0,故“d>0”是“S4+S6>2S5”充分必要条件,故选:C.【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题12.(2017•山东)已知命题p:∃x∈R,x2﹣x+1≥0.命题q:若a2<b2,则a<b,下列命题为真命题的是()A.p∧q B.p∧¬q C.¬p∧q D.¬p∧¬q【分析】先判断命题p,q的真假,进而根据复合命题真假的真值表,可得答案.【解答】解:命题p:∃x=0∈R,使x2﹣x+1≥0成立.故命题p为真命题;当a=1,b=﹣2时,a2<b2成立,但a<b不成立,故命题q为假命题,故命题p∧q,¬p∧q,¬p∧¬q均为假命题;命题p∧¬q为真命题,故选:B.【点评】本题以命题的真假判断与应用为载体,考查了复合命题,特称命题,不等式与不等关系,难度中档.13.(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.【解答】解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选:A.【点评】本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题.14.(2016•浙江)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2【分析】特称命题的否定是全称命题,全称命题的否定是特称命题,依据规则写出结论即可【解答】解:“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是“∃x∈R,∀n∈N*,使得n<x2“故选:D.【点评】本题考查命题的否定,解本题的关键是掌握住特称命题的否定是全称命题,书写答案是注意量词的变化.15.(2016•浙江)已知实数a,b,c.()A.若|a2+b+c|+|a+b2+c|≤1,则a2+b2+c2<100B.若|a2+b+c|+|a2+b﹣c|≤1,则a2+b2+c2<100C.若|a+b+c2|+|a+b﹣c2|≤1,则a2+b2+c2<100D.若|a2+b+c|+|a+b2﹣c|≤1,则a2+b2+c2<100【分析】本题可根据选项特点对a,b,c设定特定值,采用排除法解答.【解答】解:A.设a=b=10,c=﹣110,则|a2+b+c|+|a+b2+c|=0≤1,a2+b2+c2>100;B.设a=10,b=﹣100,c=0,则|a2+b+c|+|a2+b﹣c|=0≤1,a2+b2+c2>100;C.设a=100,b=﹣100,c=0,则|a+b+c2|+|a+b﹣c2|=0≤1,a2+b2+c2>100;故选:D.【点评】本题主要考查命题的真假判断,由于正面证明比较复杂,故利用特殊值法进行排除是解决本题的关键.16.(2016•浙江)已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f (x)的最小值相等”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】求出f(x)的最小值及极小值点,分别把“b<0”和“f(f(x))的最小值与f(x)的最小值相等”当做条件,看能否推出另一结论即可判断.【解答】解:f(x)的对称轴为x=﹣,f min(x)=﹣.(1)若b<0,则﹣>﹣,∴当f(x)=﹣时,f(f(x))取得最小值f(﹣)=﹣,即f(f(x))的最小值与f(x)的最小值相等.∴“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的充分条件.(2)设f(x)=t,则f(f(x))=f(t),∴f(t)在(﹣,﹣)上单调递减,在(﹣,+∞)上单调递增,若f(f(x))=f(t)的最小值与f(x)的最小值相等,则﹣≤﹣,解得b≤0或b≥2.∴“b<0”不是“f(f(x))的最小值与f(x)的最小值相等”的必要条件.故选:A.【点评】本题考查了二次函数的性质,简易逻辑关系的推导,属于基础题.17.(2016•天津)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.18.(2016•上海)设a∈R,则“a>1”是“a2>1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【分析】根据不等式的关系,结合充分条件和必要条件的定义进行判断即可.【解答】解:由a2>1得a>1或a<﹣1,即“a>1”是“a2>1”的充分不必要条件,故选:A.【点评】本题主要考查充分条件和必要条件的判断,利用不等式的关系结合充分条件和必要条件的定义是解决本题的关键,比较基础.19.(2016•四川)设p:实数x,y满足x>1且y>1,q:实数x,y满足x+y>2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】由x>1且y>1,可得:x+y>2,反之不成立,例如取x=3,y=.【解答】解:由x>1且y>1,可得:x+y>2,反之不成立:例如取x=3,y=.∴p是q的充分不必要条件.故选:A.【点评】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.20.(2016•北京)设,是向量,则“||=||”是“|+|=|﹣|”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据向量模相等的几何意义,结合充要条件的定义,可得答案.【解答】解:若“||=||”,则以,为邻边的平行四边形是菱形;若“|+|=|﹣|”,则以,为邻边的平行四边形是矩形;故“||=||”是“|+|=|﹣|”的既不充分也不必要条件;故选:D.【点评】本题考查的知识点是充要条件,向量的模,分析出“||=||”与“|+|=|﹣|”表示的几何意义,是解答的关键.21.(2016•天津)设{a n}是首项为正数的等比数列,公比为q,则“q<0”是“对任意的正整数n,a2n+a2n<0”的()﹣1A.充要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】利用必要、充分及充要条件的定义判断即可.【解答】解:{a n}是首项为正数的等比数列,公比为q,+a2n<0”不一定成立,若“q<0”是“对任意的正整数n,a2n﹣1例如:当首项为2,q=﹣时,各项为2,﹣1,,﹣,…,此时2+(﹣1)=1>0,+(﹣)=>0;+a2n<0”,前提是“q<0”,而“对任意的正整数n,a2n﹣1+a2n<0”的必要而不充分条件,则“q<0”是“对任意的正整数n,a2n﹣1故选:C.【点评】此题考查了必要条件、充分条件与充要条件的判断,熟练掌握各自的定义是解本题的关键.22.(2016•上海)设f(x)、g(x)、h(x)是定义域为R的三个函数,对于命题:①f(x)+g(x)、f(x)+h(x)、g(x)+h(x)均为增函数,则f(x)、g(x)、h(x)中至少有一个增函数;②若f(x)+g(x)、f(x)+h(x)、g(x)+h (x)均是以T为周期的函数,则f(x)、g(x)、h(x)均是以T为周期的函数,下列判断正确的是()A.①和②均为真命题B.①和②均为假命题C.①为真命题,②为假命题D.①为假命题,②为真命题【分析】①不成立.可举反例:f(x)=.g(x)=,h(x)=.②由题意可得:f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),可得:g(x)=g(x+T),h (x)=h(x+T),f(x)=f(x+T),即可判断出真假.【解答】解:①不成立.可举反例:f(x)=.g(x)=,h(x)=.②∵f(x)+g(x)=f(x+T)+g(x+T),f(x)+h(x)=f(x+T)+h(x+T),h(x)+g(x)=h(x+T)+g(x+T),前两式作差可得:g(x)﹣h(x)=g(x+T)﹣h(x+T),结合第三式可得:g (x)=g(x+T),h(x)=h(x+T),同理可得:f(x)=f(x+T),因此②正确.故选:D.【点评】本题考查了函数的单调性与周期性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.二.填空题(共2小题)23.(2018•北京)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f (x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sinx.【分析】本题答案不唯一,符合要求即可.【解答】解:例如f(x)=sinx,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sinx.【点评】本题考查了函数的单调性,属于基础题.24.(2018•北京)能说明“若a>b,则<”为假命题的一组a,b的值依次为a=1,b=﹣1.【分析】根据不等式的性质,利用特殊值法进行求解即可.【解答】解:当a>0,b<0时,满足a>b,但<为假命题,故答案可以是a=1,b=﹣1,故答案为:a=1,b=﹣1.【点评】本题主要考查命题的真假的应用,根据不等式的性质是解决本题的关键.比较基础.。

高考名校真题模拟专题训练1-集合与简易逻辑(数学)

高考名校真题模拟专题训练1-集合与简易逻辑(数学)

2009届全国名校真题模拟专题训练01集合与简易逻辑一、选择题1、(广东省广州执信中学、中山纪念中学、深圳外国语学校三校期末联考)设全集U=R ,A={x∈N ︱1≤x ≤10},B={ x ∈R ︱x 2+ x -6=0},则下图中阴影表示的集合为( ) A .{2} B .{3} C .{-3,2} D .{-2,3} 答案:A2、(江苏省启东中学2008年高三综合测试一)当x ∈R ,下列四个集合中是空集的是( ) A. {x|x 2-3x+2=0} B {x|x 2<x} C. {x|x 2-2x+3=0} C. {x|sinx+cosx=65} 答案:C3、(江苏省启东中学2008年高三综合测试一)若命题“p 或q ”是真命题,“p 且q ”是假命题,则( )A.命题p 和命题q 都是假命题B.命题p 和命题q 都是真命题C.命题p 和命题“非q ”的真值不同D. 命题p 和命题q 的真值不同 答案:D4、(江苏省启东中学2008年高三综合测试一)设M ,P 是两个非空集合,定义M 与P 的差集为M-P={x|x ∈M 且x ∉p},则M-(M-P )等于( ) A. P B. M P C. MP D. M答案:B5、(江苏省启东中学高三综合测试二)定义集合A*B ={x |x ∈A,且x ∉B },若A ={1,3,5,7},B ={2,3,5},则A*B 的子集个数为 A.1 B.2 C.3 D.4 答案:D6、(江苏省启东中学高三综合测试二)已知集合{}4,3,2,1=A ,集合{}2,1-=B ,设映射B A f →:,如果集合B 中的元素都是A 中元素的f 下的象,那么这样的映射f 有A .16个B .14个C .12个D .8个答案:B7、(江苏省启东中学高三综合测试二)若A.、B 均是非空集合,则A ∩B ≠φ是A ⊆B 的 A.充分不必要条件 B.必要不充分条件C.充要条件D.即不充分也不必要条件 答案:B8、(江苏省启东中学高三综合测试三)已知0<a<1,集合A={x||x -a|<1}, B={x|log a x>1},若A ∩B=A .(a -1,a)B .(a,a+1)C .(0,a)D .(0,a+1) 答案:C 9、(江苏省启东中学高三综合测试四)已知集合}4,3,2,1{=I , }1{=A ,}4,2{=B , 则A ( IB )=( )A .}1{B .}3,1{C . }3{D .}3,2,1{ 答案:B10、(安徽省皖南八校2008届高三第一次联考)已知条件p :2|1|>+x ,条件q :a x >,且p ⌝是q ⌝的充分不必要条件,则a 的取值范围可以是( )A .1≥a ;B .1≤a ;C .1-≥a ;D .3-≤a ;答案:A11、(四川省巴蜀联盟2008届高三年级第二次联考)已知集合A={x|x-m<0},B={y|y=x 2+2x ,x ∈N},若A ∩B=Φ,则实数m 的范围为A .m ≤-1B .m<-1C .m ≤0D .m<0答案:C12、(陕西长安二中2008届高三第一学期第二次月考)已知集合M =},23|{2R a a a x x ∈+-=,N =},|{2R b b b x x ∈-=,则N M ,的关系是A .M ≠⊆NB .M ≠⊇NC .M =ND .不确定答案:C13、(四川省成都市新都一中高2008级一诊适应性测试)设集合M ={θ|θ=k π4,k ∈Z },N={x |c os2x =0,x ∈R },P ={α|si n 2α=1,α∈R },则下列关系式中成立的是( )A .P ≠⊂N ≠⊂MB .P =N ≠⊂MC .P ≠⊂N =MD .P =N =M答案:A14、(四川省成都市一诊)已知集合P ={a,b,c},Q ={-1,0,1},映射f:P →Q 中满足f(b)=0的映射个数共有 A 、2个 B 、4个 C 、6个 D 、9个答案:D a 的象有C 31种,c 的象有C 31种,满足f(b)=0的映射个数为C 31C 31=9.选D 15、(四川省成都市新都一中高2008级12月月考)集合{|1}P x y x ==-,集合{|1}Q y y x ==-,则P 与Q 的关系是( ) A 、P =QB 、PQC 、P ≠⊂QD 、P ∩Q=∅本题主要考查集合的基本概念和运算解析:P ={x |x ≥1},Q ={y |y ≥0},故P 是Q 的真子集. 答案:C16、(安徽省淮南市2008届高三第一次模拟考试)已知集合P={x |5x -a ≤0}, Q={x |6x -b >0},a ,b ∈N, 且A ∩B ∩N={2,3,4},则整数对(a , b )的个数为( )A. 20B. 30C. 42D. 56答案:B17、(安徽省巢湖市2008届高三第二次教学质量检测)设全集U R =,集合2{|2}M x x x x R ==-∈,,{|12}N x x x R =+≤∈,,则()U M N ð等于( )A.{2}B.{|1223}x x x -<<<≤,或C.{|1223}x x x -≤<<≤,或D.{|321}x x x x ≤≠≠-,且, 答案:C18、(北京市朝阳区2008年高三数学一模)已知集合{}2M xx =<,103x N x x ⎧+⎫=<⎨⎬-⎩⎭,则集合N M 等于 A .{}2-<x xB .{}3>x xC .{}21<<-x xD .{}32<<x x答案:C19、(北京市朝阳区2008年高三数学一模)已知a ÎR 且0a ¹,则“11<a”是 “a >1”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:B20、(北京市崇文区2008年高三统一练习一)如果全集U=R ,A=⋂=≤<A B x x 则},4,3{},42|{(U B )( ) A .(2,3)∪(3,4) B .(2,4)C .(2,3)∪(3,4]D .(2,4]答案:A21、(北京市东城区2008年高三综合练习二)设命题42:2>>x x p 是的充要条件,命题b a cb c a q >>则若,:22,则 ( )A .“p 或q ”为真B .“p 且q ”为真C .p 真q 假D .p ,q 均为假命题答案:A22、(北京市丰台区2008年4月高三统一练习一)设集合{}25, log (3)A a =+,集合{, }B a b =,若{2}A B =, 则A B 等于(A ){}1,2,5 (B ){}1,2,5- (C ){}2,5,7 (D ){}7,2,5- 答案:A23、(北京市丰台区2008年4月高三统一练习一)设集合{} 0 1 2 3 4 5, , , , , S A A A A A A =,在S 上定义运算“⊕”为:i j k A A A ⊕=,其中k 为i + j 被4除的余数 ,,0,1,2,3,4,5i j =.则满足关系式20()x x A A ⊕⊕=的 ()x x S ∈的个数为(A )1 (B )2 (C )3 (D )4 答案:C24、(北京市海淀区2008年高三统一练习一)若集合{}21,A m =,集合{}2,4B =,则“2m =”是“{}4AB =”的()(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件 答案:A25、(北京市十一学校2008届高三数学练习题)已知A 、B 、C 分别为ΔABC 的三个内角,那么“sin cos A B >”是“ΔABC 为锐角三角形”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案:B26、(北京市西城区2008年4月高三抽样测试)若集合2{|540}A x x x =-+<,{|||1}B x x a =-<,则“(23)a ∈,”是“B A ⊆”的( ) A. 充分但不必要条件 B. 必要但不充分条件C. 充要条件D. 既不充分又不必要条件 答案:A27、(北京市西城区2008年5月高三抽样测试)设A ,B 是全集I 的两个子集,且A B ⊆,则下列结论一定正确的是( )A .I AB =I B .I A B =UC .()I B A =U I ðD .()I I A B =U ð 答案:C28、(山东省博兴二中高三第三次月考)若集合()()1,,,2,A B =+∞=-∞全集,U R =则()U A B ð是A .(,1)(2,)-∞+∞B .(,1)[2,)-∞+∞C .(,1][2,)-∞+∞D .(,1](2,)-∞+∞答案:C29、(四川省成都市高2008届毕业班摸底测试)已知集合U={1,2,3,4,5,6},集合A={2,3},集合B={3,5},则A ∩(U B) =( ) A .{2} B .{2,3,5}C .{1,4,6}D .{5}答案:A30、东北区三省四市2008年第一次联合考试)设集合{}{}1,12>=>=x x P x x M ,则下列关系中正确的是A .M =PB .P P M =C .M P M =D .P P M =答案:B31、(东北三校2008年高三第一次联考)若,,R y x ∈则“()324log 2=-+y x xy ”是“0258622=++-+y x y x ”成立的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:B32、(东北师大附中高2008届第四次摸底考试)已知命题p :1≤∈x cos R x ,有对任意,则( )A .1≥∈⌝x cos R x p ,使:存在B .1≥∈⌝x cos R x p ,有:对任意C .1>∈⌝x cos R x p ,使:存在D .1>∈⌝x cos R x p ,有:对任意答案:C33、(福建省莆田一中2007~2008学年上学期期末考试卷)设M 为非空的数集,M{1,2,3},且M 中至少含有一个奇数元素,则这样的集合M 共有( ) A .6个B .5个C .4个D .3个答案:B34、(福建省泉州一中高2008届第一次模拟检测)集合{}{}2160,2,P x x Q x x n n Z =-<==∈,则P Q= ( )A .{}2,2-B .{}2,2,4,4--C .{}2,0,2-D .{}2,2,0,4,4--答案:C35、(福建省泉州一中高2008届第一次模拟检测)已知a ﹑b 均为非零向量,:p 0,a b ⋅>:q a b p q 与的夹角为锐角,则是成立的( )A.充要条件 B.充分而不必要的条件 C.必要而不充分的条件 D.既不充分也不必要的条件 答案:C36、(福建省师大附中2008年高三上期期末考试)已知命题p : :对任意的,s i n 1x R x ∈≤有,则p ⌝是( )A .存在,sin 1x R x ∈≥有B .对任意的,sin 1x R x ∈≥有C .存在,sin 1x R x ∈>有D .对任意的,sin 1x R x ∈>有 答案:C37、(福建省仙游一中2008届高三第二次高考模拟测试)设2:x x f →是集合A 到B 的映射,如果B={1,2},则A ∩B 只可能是( )A.φ或{1}B.{1}C.φ或{2}D.φ或{1}或{2} 答案:A38、(福建省仙游一中2008届高三第二次高考模拟测试)已知α、β是不同的两个平面,直线α⊂a ,直线β⊂b ,命题p :a 与b 没有公共点;命题q :βα//,则p 是q 的( ) A.充分不必要的条件 B.必要不充分的条件 C.充要条件 D.既不充分也不必要的条件B 答案:B39、(福建省漳州一中2008年上期期末考试)已知命题p :不等式12x x m -++>的解集为R ;命题q :(52)()log m f x x -=为减函数. 则p 是q 成立的 A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B40、(甘肃省河西五市2008年高三第一次联考)已知集合M ={x|x <3},N ={x |122x>},则M ∩N 等于( ) A ∅B {x |-1<x <3}C {x |0<x <3}D {x |1<x <3}答案:B41、(甘肃省河西五市2008年高三第一次联考)在ABC ∆中,“0>⋅AC AB ”是“ABC∆为锐角三角形”的( ) A 充分不必要条件B 必要不充分条件C 充要条件D 既非充分又非必要条件答案:B42、(甘肃省兰州一中2008届高三上期期末考试)已知集合},3sin |{Z n n x x A ∈==π,则集合A 的真子集的个数为( ) A .3 B .7 C .15 D .31答案:B43、(甘肃省兰州一中2008届高三上期期末考试)"0102""0)1)(2(">->->--x x x x 或是的( )A .充要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案:D44、(广东省2008届六校第二次联考)已知{}{}2230,A x x x B x x a =--<=<, 若A ⊆/B , 则实数a 的取值范围是( )A. (1,)-+∞B. [3,)+∞C. (3,)+∞D. (,3]-∞ 答案:B45、(广东省2008届六校第二次联考)命题“ax 2-2ax + 3 > 0恒成立”是假命题, 则实数a的取值范围是( )A. a < 0或a ≥3B. a ≤0或a ≥3C. a < 0或a >3D. 0<a <3 答案:A46、(广东省佛山市2008年高三教学质量检测一)已知I 为实数集,2{|20},{|1}M x x x N x y x =-<==-,则I ()M N ð= ( ).A .{|01}x x <<B .{|02}x x <<C .{|1}x x <D .∅ 答案:A47、(广东省佛山市2008年高三教学质量检测一)“2a =” 是“函数()f x x a =-在区间[2,)+∞上为增函数”的( ).A .充分条件不必要B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A48、(广东省惠州市2008届高三第三次调研考试)设集合{1,2}A =,则满足{1,2,3}A B ⋃=的集合B 的个数是( ).A .1B .3C .4D .8解析:{1,2}A =,{1,2,3}A B ⋃=,则集合B 中必含有元素3,即此题可转化为求集合{1,2}A =的子集个数问题,所以满足题目条件的集合B 共有224=个。

高考数学强基计划专题1集合与简易逻辑

高考数学强基计划专题1集合与简易逻辑

2022年高考数学尖子生强基计划专题1集合与简易逻辑 一、真题特点分析:1. 突出对思维能力的考查。

例1.【2020年武汉大学9】设A 是集合{}12345678910,,,,,,,,,的子集,只含有3个元素,且不含相邻的整数,则这种子集A 的个数为( ) A. 32B. 56C. 72D. 84答案:B 进行分类讨论例2.【2020 年清华大学】已知集合{},,1,2,3,,2020A B C ⊆,且A B C ⊆⊆,则有序集合组(),,A B C 的个数是( ).A .20202B .20203C .20204D .20205答案:C例3.【北大】已知()01,2,...,i x i n >=11.n i i x ==∏求证:))11.nni i x =≥∏【解析】不等式;柯西不等式或AM GM -平均不等式. 法一:AM GM -不等式.调和平均值n n ni n H G =≤=⎛⎫∑≤n i n ⎛⎫∑ni ≤∑ni ⎛⎫≤∑1nn i i n n +⎛⎫≤+=∑∑,即)1≤,即))1n ni ix ≤∏法二:由11.ni ix ==∏及要证的结论分析,由柯西不等式得))211i i x x ⎫≥⎪⎭,从而可设1i i y x =,且1111.n ni i i iy x ====∏∏从而本题也即证))11.n ni i y =≥∏从而))211nni ii x x ⎫+≥⎪⎭∏,即))21nnii ix y ≥∏,假设原式不成立,即))11,nni i x =<∏则))11.nni i y =<∏从而))21nnii ix y <∏,矛盾.得证.2.注重和解题技巧,考查学生应用知识解决问题的能力。

例4.【北大】10、已知实系数二次函数()f x 与()()(),g x f x g x =和()()30f x g x +=有两重根,()f x 有两相异实根,求证:()g x 没有实根. 【解析】设()2,f x ax bx c =++()2,g x dx ex f =++则由()()f x g x =,可得()()()()()()220,40.a d x b e x c f b e a d c f -+-+-=∆=----=由()()30f x g x +=可得()()()()()()223330,34330.a d x b e x c f b e a d c f +++++=∆=+-++=化简得223124,b e ac df +=+即()22434e df ac b -=-又240.b ac ->240.e df ∴-<()g x ∴没有实根.二、应试和准备策略1. 注意知识点的全面数学题目被猜中的可能性很小,一般知识点都是靠平时积累,因此,要求学生平时要把基础知识打扎实。

集合与简易逻辑知识复习练习及典型高考题

集合与简易逻辑知识复习练习及典型高考题

A B且 B A ,则 A B 中的元素是一样的,因此 A B
即AB
AB BA
结论: 任何一个集合是它本身的子集 (三) 真子集的概念
若集合 A B ,存在元素 x B且 x A ,则称集合 A 是集合 B 的真子集( proper
subset)。 记作: A
B(或 B A )
读作: A 真包含于 B(或 B 真包含 A )
()
(A)p>1
(B)p≥1
(C)p<1
(D)p≤1
( 10)设全集 U x, y | x, y R ,集合 M
y x, y |
3
1

x2
T x , y | y 3 x 2 ,那么 ( CU M ) T 等于( )
( A) Φ
(B) 2,3
(C) 2,3
(D) x, y | y 3 x 2
二.填空题 ( 11)已知集合 A={y| y=2x + 1,x > 0} , B={y| y= - x2+ 9, x ∈ R}, 则 A∩
5/8
B=________. ( 12)设集合 A={ x| x=6k, k ∈Z} ,B={ x| x=3k, k ∈ Z} ,两个集合的关系可 表示为 A B. ( 13)设集合 P x | x 2, x R ,集合 Q x | x 2 x 2 0, x N ,则集合
P Q 等于
( 14)设 U=R,集合 A= {x| x 2+ px+12=0, x ∈N},集合 B= {x| x 2-5x+q=0,
那么就称这个
集合为 全集( Universe),通常记作 U。
补集:对于全集 U 的一个子集 A ,由全集 U 中所有不属于集合 A 的所有元素组成的集 合称为集合 A 相对于全集 U 的补集( complementary set) ,简称为集合 A 的补集, 记作: CUA 即: CUA={x|x ∈ U 且 x ∈ A} 补集的 Venn 图表示

高考集合与简易逻辑专题练习

高考集合与简易逻辑专题练习

专题二 集合与简易逻辑1.设P={x ︱x <4},Q={x ︱2x <4},则( )(A )p Q ⊆ (B )Q P ⊆ (C )R p Q C ⊆ (D )R Q P C ⊆2. 已知{}21|log ,1,|,2U y y x x P y y x x ⎧⎫==>==>⎨⎬⎩⎭,则U C P =3. 若集合121log 2A x x ⎧⎫⎪⎪=≥⎨⎬⎪⎪⎩⎭,则A =R ð( )A 、2(,0],2⎛⎫-∞+∞⎪ ⎪⎝⎭ B 、2⎛⎫+∞ ⎪ ⎪⎝⎭ C 、2(,0][,)2-∞+∞ D 、[)2+∞4.已知集合A=)}4lg(|{2x y x -=,B=}0,6|{ x y x x =,则B A ⋂=5.集合A=)}1(log |{2-=x y x ,B=}4|{2x x y y -=,则B A C R ⋂)(=( )A .)1,(-∞B .(0,1)C .[0,1]D .(1,2]6.集合A={}{}|||1,,|||2,.x x a x R B x x b x R -<∈=->∈若A ⊆B,则实数a,b 必满足( )(A )||3a b +≤ (B )||3a b +≥ (C )||3a b -≤ (D )||3a b -≥7.设集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值范围是()(A){}a |0a 6≤≤ (B){}|2,a a ≤≥或a 4 (C){}|0,6a a ≤≥或a (D){}|24a a ≤≤8.已知集合(){,A x y = ∣,x y 为实数,且}221x y +=,(){,B x y =,x y 为实数,且}y x =, 则A B ⋂的元素个数为( )A .0B .1C .2D .39.“14m <”是“一元二次方程20x x m ++=”有实数解的( )A .充分非必要条件 B.充分必要条件 C .必要非充分条件 D.非充分必要条件10.“x <-1”是“x 2-1>0”的 条件11.()24x k k Z ππ=+∈”是“tan 1x =”成立的 条件12. 对于函数(),y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“y =()f x 是奇函数”的13. 若,a b 为实数,则“01m ab <<”是11a b b a <或>的 条件 14. 设0<x <2π,则“x sin 2x <1”是“x sinx <1”的 条件 15. a 、b 为非零向量。

简易逻辑全国高考试题精选(含答案)

简易逻辑全国高考试题精选(含答案)

简易逻辑全国卷试题精选一、选择题1. “21=m ”是“直线03)2()2(013)2(=-++-=+++y m x m my x m 与直线相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 2. 设集合A ={x |11+-x x <0},B ={x || x -1|<a },若“a =1”是“A ∩B ≠”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分又不必要条件3. 命题p :“有些三角形是等腰三角形”,则┐p 是( )A .有些三角形不是等腰三角形B .所有三角形是等腰三角形C .所有三角形不是等腰三角形D .所有三角形是等腰三角形4. 设命题p :方程2310x x +-=的两根符号不同;命题q :方程2310x x +-=的两根之和为3,判断命题“p ⌝”、“q ⌝”、“p q ∧”、“p q ∨”为假命题的个数为( )A .0B .1C .2D .35.“a >b >0”是“ab <222b a +”的 ( ) A .充分而不必要条件 B .必要而不充分条件C .充要条件D .既不充分也不必要条件6. 若不等式|x -1| <a 成立的充分条件是0<x <4,则实数a 的取值范围是 ( )A .a ≤1B .a ≤3C .a ≥1D .a ≥37. 下列命题中,其“非”是真命题的是( )A .∀x ∈R ,x ²-22x + 2 ≥ 0B .∃x ∈R ,3x-5 = 0C .一切分数都是有理数D .对于任意的实数a,b,方程ax=b 都有唯一解8. 0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件二、填空题9. (1)命题:,R x ∈∃ x 2+x +1<0的否定是 ,(2) 命题“∀x ∈R ,x 2-x +3>0”的否定是 , (3) 命题 “对任意的x ∈{x|-2<x<4},|x-2|<3”的否定形式 (4)命题 “∀x ,y ∈R ,有x ²+ y ² ≥ 0”的否定是 (5) 命题 “不等式x 2+x -6>0的解是x <-3或x >2”的逆否命题是(6)命题“∀a ,b ∈R ,如果ab >0,则a >0”的否命题是(7)命题 “△ABC 中,若∠C=90°,则∠A 、∠B 都是锐角”的否命题为:,否定形式: 。

2021年高考真题汇编——理科数学(解析版)1:集合与简易逻辑

2021年高考真题汇编——理科数学(解析版)1:集合与简易逻辑

2021高|考真题分类汇编:集合与简易逻辑1.【2021高|考真题浙江理1】设集合A ={x|1<x <4} ,集合B ={x|2x -2x -3≤0}, 那么A ∩ (C R B ) =A .(1,4)B .(3,4) C.(1,3) D .(1,2)∪ (3,4 ) 【答案】B【解析】B ={x|2x -2x -3≤0} =}31|{≤≤-x x ,A ∩ (C R B ) ={x|1<x <4} }3,1|{>-<x x x 或 =}43|{<<x x .应选B.2.【2021高|考真题新课标理1】集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,那么B 中所含元素的个数为 ( )()A 3 ()B 6 ()C 8 ()D 10【答案】D【解析】要使A y x ∈-,当5=x 时 ,y 可是1 ,2 ,3 ,4.当4=x 时 ,y 可是 1 ,2 ,3.当3=x 时 ,y 可是1 ,2.当2=x 时 ,y 可是1 ,综上共有10个 ,选D.3.【2021高|考真题陕西理1】集合{|lg 0}M x x => ,2{|4}N x x =≤ ,那么M N =( ) A. (1,2) B. [1,2) C. (1,2] D. [1,2] 【答案】C.【解析】}22|{}4|{},1|{}0lg |{2≤≤-=≤=>=>=x x x x N x x x x M ,]2,1(=∴N M ,应选C.4.【2021高|考真题山东理2】全集{}0,1,2,3,4U = ,集合{}{}1,2,3,2,4A B == ,那么U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4 【答案】C【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C.5.【2021高|考真题辽宁理1】全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,那么)()(B C A C U U 为(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6} 【答案】B【解析】1.因为全集U ={0,1,2,3,4,5,6,7,8,9} ,集合A ={0,1,3,5,8} ,集合B ={2,4,5,6,8} ,所以{}{}9,7,3,1,0,9,7,6,4,2==B C A C U U ,所以)()(B C A C U U 为{7,9} .应选B2. 集合)()(B C A C U U 为即为在全集U 中去掉集合A 和集合B 中的元素 ,所剩的元素形成的集合 ,由此可快速得到答案 ,选B【点评】此题主要考查集合的交集、补集运算 ,属于容易题 .采用解析二能够更快地得到答案 . 6.【2021高|考真题辽宁理4】命题p :∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0 ,那么⌝p 是 (A) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (B) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 (C) ∃x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 (D) ∀x 1 ,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 【答案】C【解析】命题p 为全称命题 ,所以其否认⌝p 应是特称命题 ,又(f (x 2)-f (x 1))(x 2-x 1)≥0否认为(f (x 2)-f (x 1))(x 2-x 1)<0 ,应选C【点评】此题主要考查含有量词的命题的否认 ,属于容易题 .7.【2021高|考真题江西理1】假设集合A ={ -1 ,1} ,B ={0 ,2} ,那么集合{z ︱z =x +y,x ∈A,y ∈B }中的元素的个数为 A .5 B.4 C 【答案】C【命题立意】此题考查集合的概念和表示 .【解析】因为B y A x ∈∈, ,所以当1-=x 时 ,2,0=y ,此时1,1-=+=y x z .当1=x 时 ,2,0=y ,此时3,1=+=y x z ,所以集合}2,1,1{}2,1,1{-=-=z z 共三个元素 ,选C. 8.【2021高|考真题江西理5】以下命题中 ,假命题为 A .存在四边相等的四边形不.是正方形 B .1212,,z z C z z ∈+为实数的充分必要条件是12,z z 为共轭复数C .假设,x y ∈R ,且2,x y +>那么,x y 至|少有一个大于1D .对于任意01,nn n nn N C C C ∈+++都是偶数 【答案】B【命题立意】此题考查命题的真假判断 .【解析】对于B,假设21,z z 为共轭复数 ,不妨设bi a z bi a z -=+=21, ,那么a z z 221=+ ,为实数 .设di c z bi a z +=+=21, ,那么i d b c a z z )()(21+++=+ ,假设21z z +为实数 ,那么有0=+d b ,当c a ,没有关系 ,所以B 为假命题 ,选B.9.【2021高|考真题湖南理1】设集合M ={ -1,0,1} ,N ={x|x 2≤x} ,那么M ∩N = A.{0} B.{0,1} C.{ -1,1} D.{ -1,0,0} 【答案】B 【解析】{}0,1N = M ={ -1,0,1} ∴M ∩N ={0,1}.【点评】此题考查了{}0,1N =,再利用交集定义得出M ∩N. 10.【2021高|考真题湖南理2】命题 "假设α =4π,那么tan α =1”的逆否命题是 α≠4π ,那么tan α≠1 B. 假设α =4π,那么tan α≠1 C. 假设tan α≠1 ,那么α≠4π D. 假设tan α≠1 ,那么α =4π【答案】C【解析】因为 "假设p ,那么q 〞的逆否命题为 "假设p ⌝ ,那么q ⌝〞 ,所以 "假设α =4π ,那么tan α =1”的逆否命题是 "假设tan α≠1 ,那么α≠4π〞. 【点评】此题考查了 "假设p ,那么q 〞形式的命题的逆命题、否命题与逆否命题 ,考查分析问题的能力.11.【2021高|考真题湖北理2】命题 "0x ∃∈R Q ,30x ∈Q 〞的否认是A .0x ∃∉R Q ,30x ∈QB .0x ∃∈R Q ,30x ∉QC .x ∀∉R Q ,3x ∈QD .x ∀∈R Q ,3x ∉Q【答案】D【解析】根据对命题的否认知 ,是把谓词取否认 ,然后把结论否认 .因此选D 12.【2021高|考真题广东理2】设集合U ={1,2,3,4,5,6} , M ={1,2,4 } ,那么CuM = A .U B . {1,3,5} C .{3,5,6} D . {2,4,6}【答案】C【解析】}6,5,3{=M C U ,应选C.13.【2021高|考真题福建理3】以下命题中 ,真命题是 A. 0,00≤∈∃x eR xB. 22,x R x x >∈∀C.a +b =0的充要条件是ab= -1 D.a>1,b>1是ab>1的充分条件 【答案】D.【解析】此类题目多项选择用筛选法 ,因为0>xe 对任意R x ∈恒成立 ,所以A 选项错误;因为当3=x 时93,8223==且8<9,所以选项B 错误;因为当0==b a 时,0=+b a 而ab无意义 ,所以选项C 错误;应选D.14.【2021高|考真题北京理1】集合A ={x ∈R|3x +2>0} B ={x ∈R| (x +1 )(x -3)>0} 那么A ∩B = A ( -∞ , -1 )B ( -1 , -23 ) C ( -23,3 )D (3, +∞)【答案】D【解析】因为32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .应选D .15.【2021高|考真题安徽理6】设平面α与平面β相交于直线m ,直线a 在平面α内 ,直线b 在平面β内 ,且b m ⊥ ,那么 "αβ⊥〞是 "a b ⊥〞的 ( )()A 充分不必要条件 ()B 必要不充分条件 ()C 充要条件 ()D 即不充分不必要条件【答案】A【命题立意】此题借助线面位置关系考查条件的判断【解析】①,b m b b a αβα⊥⊥⇒⊥⇒⊥ ,②如果//a m ,那么a b ⊥与b m ⊥条件相同.16.【2021高|考真题全国卷理2】集合A ={1.3.} ,B ={1 ,m} ,A B =A, 那么m =A 0B 0或3C 1D 1或3 【答案】B【解析】因为A B A = ,所以A B ⊆,所以3=m 或m m =.假设3=m ,那么}3,1{},3,3,1{==B A ,满足A B A = .假设m m = ,解得0=m 或1=m .假设0=m ,那么}0,3,1{},0,3,1{==B A ,满足A B A = .假设1=m ,}1,1{},1,3,1{==B A 显然不成立 ,综上0=m 或3=m ,选B..17【2021高|考真题四川理13】设全集{,,,}U a b c d = ,集合{,}A a b = ,{,,}B b c d = ,那么B C A C U U ___________ .【答案】{},,a c d【命题立意】此题考查集合的根本运算法那么 ,难度较小. 【解析】},{d c A C U = ,}{a B C U = ,},,{d c a B C A C U U =∴18.【2021高|考真题上海理2】假设集合}012|{>+=x x A ,}2|1||{<-=x x B ,那么=B A .【答案】)3,21(-【解析】集合}21{}012{->=>+=x x x x A ,}31{}21{<<-=<-=x x x x B ,所以}321{<<-=x x B A ,即)3,21(- .19.【2021高|考真题天津理11】集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 那么m =__________ ,n =__________. 【答案】1,1-【解析】由32<+x ,得323<+<-x ,即15<<-x ,所以集合}15{<<-=x x A ,因为)1(n B A ,-= ,所以1-是方程0)2)((=--x m x 的根 ,所以代入得0)1(3=+m ,所以1-=m ,此时不等式0)2)(1(<-+x x 的解为21<<-x ,所以)11(,-=B A ,即1=n .20.【2021高|考江苏1】 (5分 )集合{124}A =,, ,{246}B =,, ,那么A B = ▲ .【答案】{}1,2,4,6 . 【考点】集合的概念和运算 . 【分析】由集合的并集意义得{}1,2,4,6AB = .21.【2021高|考江苏26】 (10分 )设集合{12}n P n =,,,… ,*N n ∈.记()f n 为同时满足以下条件的集合A 的个数:①n A P ⊆;②假设x A ∈ ,那么2x A ∉;③假设A C x n p ∈ ,那么A C x np ∉2 .(1 )求(4)f ;(2 )求()f n 的解析式 (用n 表示 ).【答案】解: (1 )当=4n 时 ,符合条件的集合A 为:{}{}{}{}21,42,31,3,4,,, , ∴ (4)f =4 .( 2 )任取偶数n x P ∈ ,将x 除以2 ,假设商仍为偶数.再除以2 ,··· 经过k 次以后.商必为奇数.此时记商为m .于是=2k x m ,其中m 为奇数*k N ∈ .由条件知.假设m A ∈那么x A k ∈⇔为偶数;假设m A ∉ ,那么x A k ∈⇔为奇数 .于是x 是否属于A ,由m 是否属于A 确定 .设n Q 是n P 中所有奇数的集合.因此()f n 等于n Q 的子集个数 . 当n 为偶数〔 或奇数 )时 ,n P 中奇数的个数是2n (12n + ) . ∴()()2122()=2nn n f n n +⎧⎪⎨⎪⎩为偶数为奇数. 【考点】集合的概念和运算 ,计数原理 .【解析】 (1 )找出=4n 时 ,符合条件的集合个数即可 . (2 )由题设 ,根据计数原理进行求解 .22.【2021高|考真题陕西理18】 (本小题总分值12分 )(1 )如图 ,证明命题 "a 是平面π内的一条直线 ,b 是π外的一条直线 (b 不垂直于π ) ,c 是直线b 在π上的投影 ,假设a b ⊥ ,那么a c ⊥〞为真 . (2 )写出上述命题的逆命题 ,并判断其真假 (不需要证明 )【答案】分析: (1 )证法一:做出辅助线 ,在直线上构造对应的方向向量 ,要证两条直线垂直 ,只要证明两条直线对应的向量的数量积等于0 ,根据向量的运算法那么得到结果.证法二:做出辅助线 ,根据线面垂直的性质 ,得到线线垂直 ,根据线面垂直的判定定理 ,得到线面垂直 ,再根据性质得到结论.(2 )把所给的命题的题设和结论交换位置,得到原命题的逆命题,判断出你命题的正确性.。

高考数学第一轮复习单元试卷1-集合与简易逻辑

高考数学第一轮复习单元试卷1-集合与简易逻辑

第一单元 集合与简易逻辑班级学号姓名一.填空题1.设集合M =,N =,则M N2.若集合M={y| y=},P={y| y=}, 则M∩P=3.不等式的解集为4.集合M={x|},N={},则MN =5.下列四个集合 ①;②.;③{ ; ④中,是空集的是6.已知集合M={a2, a+1,-3}, N={a-3, 2a-1, a2+1}, 若M∩N={-3}, 则a的值是7.对任意实数, 若不等式恒成立, 则实数的取值范围是8.一元二次方程有一个正根和一个负根的充分不必要条件是9.设命题甲:的解集是实数集R;命题乙:,则命题甲是命题乙成立的 条件10.函数f(x)=其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.给出下列四个判断:①若P∩M=,则f(P)∩f(M)=;②若P∩M≠,则f(P)∩f(M) ≠;③若P∪M=R,则f(P)∪f(M)=R;④若P∪M≠R,则f(P) ∪f(M)≠R.其中正确判断有 个11.若不等式的解集是,则________12.抛物线的对称轴方程是 .13.已知全集U,A,B,那么14.设二次函数,若(其中),则等于二.解答题15.用反证法证明:已知,且,则中至少有一个大于1.16.设全集U=R, 集合A={x| x2- x-6<0}, B={x|| x|= y+2, y∈A}, 求C U B, A∩B, A∪B, A∪(C U B), A∩(B), C U(A∪B), (C U A)∩(C U B).17.若不等式的解集为,求的值18.已知集合A,B,且,求实数的值组成的集合。

19.设全集,函数的定义域为A,集合,若恰好有2个元素,求a 的取值集合。

20.,其中,由中的元素构成两个相应的集合:,.其中是有序数对,集合和中的元素个数分别为和.若对于任意的,总有,则称集合具有性质.(I)对任何具有性质的集合,证明:;(II)判断和的大小关系,并证明你的结论.参考答案( )A.M=NB.MNC.MND.MN=y| y=},则M∩P= ()A{y| y>1} B{y| y≥1} C{y| y>0} D{y| y≥0}(3) 不等式的解集为 ( )A. B. C. D.(4) 集合M={x|}, N={}, 则 MN = ( )A.{0}B.{2}C.D. {(5)下列四个集合中,是空集的是 ( )A .B .C. { D .3}, N={a-3, 2a-1, a2+1}, 若M∩N={-3}, 则a的值是( )A -1B 0C 1D 2(7) 对任意实数, 若不等式恒成立, 则实数的取值范围是( )A k≥1B k >1C k≤1D k <1(8) 一元二次方程有一个正根和一个负根的充分不必要条件是:()A. B. C. D.(9) 设命题甲:的解集是实数集R;命题乙:,则命题甲是命题乙成立的( )A . 充分非必要条件 B.必要非充分条件C. 充要条件D. 既非充分又非必要条件(10) 函数f(x)=其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}.给出下列四个判断:①若P∩M=,则f(P)∩f(M)=;②若P∩M≠,则f(P)∩f(M) ≠;③若P∪M=R,则f(P)∪f(M)=R;④若P∪M≠R,则f(P) ∪f(M)≠R.其中正确判断有 ( )A 0个B 1个C 2个D 4个1.1.B[解析]:当 k=2m (为偶数)时, N = =当 k=2m-1 (为奇数)时,N = ==M2.C[解析]:M={y| y=}=,P={y| y=}=3.A[解析]:4.A[解析]:M={x|}=,对于N={}必须有故x=2,所以N= {0}5.D[解析]:对于,,所以是空集.6.A[解析]:M∩N={-3} N={a-3, 2a-1, a2+1}若a-3=-3, 则a=0,此时M={0,1,- 3} ,N={- 3,- 1,1} 则M∩N={-3,1}故不适合若2a-1=-3,则a= - 1,此时M={1, 0,- 3}, N={- 4,- 3, 2}若a2+1=-3,此方程无实数解7.D[解析]:对任意实数, 若不等式恒成立等价于而=1故k<18. D[解析]:一元二次方程有一个正根和一个负根的充要条件是,即而的一个充分不必要条件是9.B.[解析]:的解集是实数集①a=0, 则1>0恒成立②a≠0,则,故0<a<1由①②得10.A[解析]:①②③④错若P={1}, M={- 1}则f(P)={1},f(M)={1} 则f(P)∩f(M) ≠故①错若P={1,2}, M={1}则f(P)={1,2},f(M)={1}则f(P)∩f(M) =故②错若P={非负实数},M={负实数}则f(P)={ 非负实数},f(M)={ 正实数} 则f(P) ∪f(M)≠R.故③错若P={非负实数},M={正实数}则f(P)={ 非负实数},f(M)={ 负实数} 则f(P) ∪f(M)=R.故④错2. 填空题11. 1 ,[解析]:不等式的解集是等价于有两个根0,112. ,[解析]: =13. ,[解析]:={1,5}14. .[解析]:若,则对称轴为直线,故=3. 解答题(15). 假设均不大于1,即,这与已知条件矛盾中至少有一个大于1(16) )解:A=(-2,3), ∵-2<x <3, ∴0<|x|<5. ∴B=(-5,0)∪(0,5).∴C U B=,A∩B=(-2,0)∪(0,3),A∪B=(-5,5),A∪(C U B)=∪(-2,3)∪, A∩(C U B)={0},C U(A∪B)=( C U A)∩(C U B)=∪(17) 由题意知方程的两根为,又,即,解得,(18)① ;② 时,由。

高三数学复习练习题及答案x

高三数学复习练习题及答案x

停课辅导期间数学专用材料一、集合与简易逻辑1.已知集合A={x| -2≤x ≤7 }, B={x|m+1<x <2m -1},若A ∪B=A ,B≠∅,则函数m 的取值范围是____ A .-3≤m ≤4 B .-3<m <4 C .2<m <4 D . m ≤42.已知集合A={x x 2+(p+2)x+1=0, p ∈R },若A ∩R +=φ。

则实数P 的取值范围为 。

3.命题“若△ABC 有一内角为3π,则△ABC 的三内角成等差数列”的逆命题是( )A .与原命题真值相异B .与原命题的否命题真值相异C .与原命题的逆否命题的真值不同D .与原命题真值相同【参考答案】1. P ∈(-4,+∞) 2. D 3. D二、函数: 研究函数的问题一定要注意定义域优先的原则。

4.判断函数f(x)=(x -1)x x-+11的奇偶性为_______________5.函数y=3472+++kx kx kx 的定义域是一切实数,则实数k 的取值范围是_________6.设函数f(x)=132-+x x ,函数y=g(x)的图象与函数y=f -1(x+1)的图象关于直线y=x 对称,则g (3)=_____________7. 方程log 2(9x -1-5)-log 2(3 x -1-2)-2=0的解集为______________【参考答案】4. k ⎪⎭⎫⎢⎣⎡∈43,0 5. 非奇非偶 6. g ( 3 ) = 27 7. {x x = 2}三、数列8.x=ab 是a 、x 、b 成等比数列的( ) A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 9.已知数列{a n }的前n 项和S n =a n -1(a 0,≠∈a R ),则数列{a n}___________ A.一定是A ²P B.一定是G ²PC.或者是A ²P 或者是G ²PD.既非等差数列又非等比数列10.A ²P {a n }中, a 1=25, S 17=S 9,则该数列的前____项之和最大,其最大值为_____。

高考试卷分类汇编01----集合与简易逻辑

高考试卷分类汇编01----集合与简易逻辑

高考试卷分类汇编集合与简易逻辑一、选择题•(安徽理)集合A -R|y=lgx,x 1, B =「-2, -1,1,2?则下列结论正确的是()•AnB-「-2,—1? •G R A)U B=(」:,0)•A[JB =(0, =)•(e R A)n B・._2,-1解:A m y R y0 ?, 6 A) = { y | y 岂0},又B—-2,-1,1,2}••• (e R A)PlB J—2,-1 ?,选。

.(安徽理文)a :0是方程ax2 2x ^0至少有一个负数根的()•必要不充分条件•充分不必要条件•充分必要条件•既不充分也不必要条件2 1解:当,=2…4a_0,得a_1时方程有根。

<时,X1X2 0,方程有负根,又时,方程根为ax = -1,所以选•(安徽文)若A为位全体正实数的集合,B_-2,-1,1,2?则下列结论正确的是()APl B = :-2,-1 f •G R A) U B =(-〜0)•AUB =(0,二)•(e R A)n^f.-2^1 /解:e R A是全体非正数的集合即负数和,所以(€R A)p]B =「-2,-1•(北京理)已知全集U = R,集合A,x| -2 < x< 3 , B=「x|x :::-1或x - 4,那么集合A「| $B 等于()•'x| -2 < x 4• x | x < 3或x > 4』•「x| -2 < x :-1 • 1x|—1W x < 3?解: U [, ], AR e u B = 'x| -1 < x < 3?•(北京理)“函数f(x)(x・R)存在反函数”是“函数f(x)在R上为增函数”的()•充分而不必要条件•必要而不充分条件•充分必要条件•既不充分也不必要条件解:函数f(x)(x・R)存在反函数,至少还有可能函数f(x)在R上为减函数,充分条件不成立;而必有条件显然成立。

【新人教】高考数学总复习专题训练集合与简易逻辑

【新人教】高考数学总复习专题训练集合与简易逻辑

第一章集合与简易逻辑【知识网络】【学法点拨】集合与简易逻辑是近代数学中最基本、应用非常广泛的基础知识,是研究数学问题、进行数学思维的基本工具.集合的语言、思想、观点渗透于中学数学内容的各个分支,有关简易逻辑常识与原理无不贯穿在数学的分析推理、计算与探索之中.复习巩固有关知识,对于提升数学语言素养,增强解决数学问题能力、提高思维能力等都会产生一定的影响,同时也为今后进一步学习高等数学打好基础.解决集合问题时一要注意吃透概念,准确表示,善于推理判断,并留心元素互异性的特征的利用、所给集合能否为空集的讨论、所求特定系数的取舍;二要注意集合与函数、方程、不等式、三角、解几、立几等知识的密切联系与综合应用;三要注意灵活运用等价转化、分类讨论、数形结合、补集法等思想方法解题.在面临与命题相关的具体问题中,应结合语境仔细阅读、推敲,反复咀嚼有关逻辑联结词.为了加深对于逻辑联结词“或”、“且”、“非”的含义的理解,可联系集合运算中的“交”、“并”、“补”对应地理解.尤其应注意,对逻辑联结词“或”的理解是难点;在研究四种命题及其相互关系时,应注意逆命题、否命题、逆否命题都是相对于原命题而言的.另应注意区分“否命题”与“命题的否定”的不同含义:前者是同时否定条件和结论,而后者只否定结论;反证法是一种重要的证题方法,其理论基础是互为逆否命题的等价性,证明步骤应分为三步:反设、归谬、结论.具体证题时,应注意书写的规范性、步骤的完整性以及导出矛盾时推理的严密性;判断条件的充要关系时,究竟是充分非必要条件,还是必要非充分条件?还是既充分又必要条件?还是非充分又非必要条件?应当判断到位.在寻求充要条件或证明充要性命题时,应准确运用相关概念,防止误把“充分”当“必要”,或把“必要”当“充分”.第1课 集合的概念【考点指津】理解集合、子集、全集、交集、并集、补集等基本概念的内涵,了解属于、包含、相等关系的意义;正确识别与使用集合的有关术语和符号,并会用它们正确表示一些简单的集合.【知识在线】1.设集合A ⎭⎬⎫⎩⎨⎧∈==N m x x m ,21|,若,,21A x A x ∈∈则必有 ( ) A .A x x ∈+21 B .A x x ∈21 C .A x x ∈-21 D .A x x ∈21 2.给出6个关系式:(1)0∈∅,(2)∅∈{∅},(3){}0φ,(4){}φφ≠,(5)φ {}φ,(6){}0φ≠.其中正确的个数是 ( )A .6B . 5C . 4D . 33.设S为全集,,B A S ⊆⊆则下列结论中不正确的是 ( )A.S S A B ⊆ B.A B B = C.()S A B =∅ D.()S A B =∅4.已知集合A=},21|{+≤≤-a x a x B=},53|{<<x x 则能使A ⊇B 成立的实数a 的取值范围是5.满足{1,2}X ⊆ {1,2,3,4,5}的集合X 的个数为 . 【讲练平台】例1.(2002年全国高考)设集合1,24k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭,1,42k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则 ( )A .M =NB 。

2020年高考数学试题分项版——集合(解析版)

2020年高考数学试题分项版——集合(解析版)

2020年高考数学试题分项版——集合与简易逻辑(解析版)一、选择题1.(2020·全国Ⅰ理,2)设集合A ={x |x 2-4≤0},B ={x |2x +a ≤0},且A ∩B ={x |-2≤x ≤1},则a 等于( )A .-4B .-2C .2D .4答案 B解析 A ={x |-2≤x ≤2},B =⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-a 2. 由A ∩B ={x |-2≤x ≤1},知-a 2=1, 所以a =-2.2.(2020·全国Ⅱ理,1)已知集合U ={-2,-1,0,1,2,3},A ={-1,0,1},B ={1,2},则∁U (A ∪B )等于( )A .{-2,3}B .{-2,2,3}C .{-2,-1,0,3}D .{-2,-1,0,2,3}答案 A解析 ∵A ={-1,0,1},B ={1,2},∴A ∪B ={-1,0,1,2}.又U ={-2,-1,0,1,2,3},∴∁U (A ∪B )={-2,3}.3.(2020·全国Ⅲ理,1)已知集合A ={(x ,y )|x ,y ∈N *,y ≥x },B ={(x ,y )|x +y =8},则A ∩B 中元素的个数为( )A .2B .3C .4D .6答案 C解析 A ∩B ={(x ,y )|x +y =8,x ,y ∈N *,y ≥x }={(1,7),(2,6),(3,5),(4,4)},共4个元素.4.(2020·新高考全国Ⅰ,1)设集合A ={x |1≤x ≤3},B ={x |2<x <4},则A ∪B 等于( )A .{x |2<x ≤3}B .{x |2≤x ≤3}C .{x |1≤x <4}D .{x |1<x <4} 答案 C解析 A ∪B ={x |1≤x ≤3}∪{x |2<x <4}={x |1≤x <4}.5.(2020·新高考全国Ⅰ,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42%答案 C解析用Venn图表示该中学喜欢足球和游泳的学生所占的比例之间的关系如图,设既喜欢足球又喜欢游泳的学生占该中学学生总数的比例为x,则(60%-x)+(82%-x)+x=96%,解得x=46%.6.(2020·新高考全国Ⅱ,1)设集合A={2,3,5,7},B={1,2,3,5,8},则A∩B等于() A.{1,8} B.{2,5}C.{2,3,5} D.{1,2,3,5,8}答案 C解析A∩B={2,3,5,7}∩{1,2,3,5,8}={2,3,5}.7.(2020·新高考全国Ⅱ,5)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62% B.56% C.46% D.42%答案 C解析用Venn图表示该中学喜欢足球和游泳的学生所占的比例之间的关系如图,设既喜欢足球又喜欢游泳的学生占该中学学生总数的比例为x,则(60%-x)+(82%-x)+x=96%,解得x=46%.8.(2020·北京,1)已知集合A={-1,0,1,2},B={x|0<x<3},则A∩B等于()A.{-1,0,1} B.{0,1}C.{-1,1,2} D.{1,2}答案 D解析∵-1∉B,0∉B,1∈B,2∈B,∴A∩B={1,2}.9.(2020·天津,1)设全集U={-3,-2,-1,0,1,2,3},集合A={-1,0,1,2},B={-3,0,2,3},则A∩(∁U B)等于()A.{-3,3} B.{0,2}C.{-1,1} D.{-3,-2,-1,1,3}答案 C解析由题意,得∁U B={-2,-1,1},∴A∩(∁U B)={-1,1}.10.(2020·天津,2)设a ∈R ,则“a >1”是“a 2>a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由a 2>a ,得a 2-a >0,解得a >1或a <0,∴“a >1”是“a 2>a ”的充分不必要条件.11.(2020·浙江,1)已知集合P ={x |1<x <4},Q ={x |2<x <3},则P ∩Q 等于( )A .{x |1<x ≤2}B .{x |2<x <3}C .{x |3≤x <4}D .{x |1<x <4} 答案 B解析 由题意得⎩⎪⎨⎪⎧1<x <4,2<x <3,解得2<x <3, 所以P ∩Q ={x |2<x <3}.12.(2020·浙江,10)设集合S ,T ,S ⊆N *,T ⊆N *,S ,T 中至少有2个元素,且S ,T 满足: ①对于任意的x ,y ∈S ,若x ≠y ,都有xy ∈T ;②对于任意的x ,y ∈T ,若x <y ,则y x∈S . 下列命题正确的是( )A .若S 有4个元素,则S ∪T 有7个元素B .若S 有4个元素,则S ∪T 有6个元素C .若S 有3个元素,则S ∪T 有5个元素D .若S 有3个元素,则S ∪T 有4个元素答案 A解析 由题意,①令S ={1,2,4},则T ={2,4,8},此时,S ∪T ={1,2,4,8},有4个元素;②令S ={2,4,8},则T ={8,16,32},此时S ∪T ={2,4,8,16,32},有5个元素;③令S ={2,4,8,16},则T ={8,16,32,64,128},此时,S ∪T ={2,4,8,16,32,64,128},有7个元素.综合①②,S 有3个元素时,S ∪T 可能有4个元素,也可能有5个元素,可排除C ,D ; 由③可知A 正确.13.(2020·全国Ⅰ文,1)已知集合A ={x |x 2-3x -4<0},B ={-4,1,3,5},则A ∩B 等于( )A.{-4,1} B.{1,5} C.{3,5} D.{1,3}答案 D解析∵A={x|x2-3x-4<0}={x|(x+1)(x-4)<0}={x|-1<x<4},B={-4,1,3,5},∴A∩B={1,3}.14.(2020·全国Ⅱ文,1)已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B等于()A.∅B.{-3,-2,2,3}C.{-2,0,2} D.{-2,2}答案 D解析集合A={x|-3<x<3,x∈Z}={-2,-1,0,1,2},将这五个值逐一代入集合B验证,只有-2和2符合题意,所以A∩B={-2,2}.15.(2020·全国Ⅲ文,1)已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2 B.3 C.4 D.5答案 B解析因为A∩B={5,7,11},所以A∩B中元素的个数为3.二、填空题1.(2020·江苏,1)已知集合A={-1,0,1,2},B={0,2,3},则A∩B=________.答案{0,2}解析A∩B={-1,0,1,2}∩{0,2,3}={0,2}.。

2012年高考数学分类汇编简易逻辑部分

2012年高考数学分类汇编简易逻辑部分

02 简易逻辑1.(2012 (重庆文))命题“若p 则q”的逆命题是( )A .若q 则pB .若⌝p 则⌝ qC .若q ⌝则p ⌝D .若p 则q ⌝2.(2012 (天津文))设x R ∈,则“12x >”是“2210x x +->”的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.(2012 (上海文))对于常数m 、n ,“0>mn ”是“方程122=+ny mx的曲线是椭圆”的 ( )A .充分不必要条件.B .必要不充分条件C .充分必要条件.D .既不充分也不必要条件.4.(2012 (山东文))设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是 ( )A .p 为真B .q ⌝为假C .p q ∧为假D .p q ∨为真5.(2012 (辽宁文))已知命题p :∀x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)≥0,则⌝p 是 ( )A .∃x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)≤0B .∀x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)≤0C .∃x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)<0D .∀x 1,x 2∈R,(f (x 2)-f (x 1)(x 2-x 1)<06.(2012 (湖南文))命题“若α=4π,则tan α=1”的逆否命题是 ( )A .若α≠4π,则tan α≠1B .若α=4π,则tan α≠1C .若tan α≠1,则α≠4πD .若tan α≠1,则α=4π7.(2012 (湖北文))设,,a b c R ∈,则“1abc =a b c≤+=”的 ( )A .充分条件但不是必要条件,B .必要条件但不是充分条件C .充分必要条件D .既不充分也不必要的条件 8.(2012 (湖北文))命题“存在一个无理数,它的平方是有理数”的否定是 ( )A .任意一个有理数,它的平方是有理数B .任意一个无理数,它的平方不是有理数C .存在一个有理数,它的平方是有理数D .存在一个无理数,它的平方不是有理数 9.(2012 (安徽文))命题“存在实数x ,,使1x >”的否定是 ( )A .对任意实数x , 都有1x >B .不存在实数x ,使1x ≤C .对任意实数x , 都有1x ≤D .存在实数x ,使1x ≤10.(2012 (湖北理))命题“0x ∃∈R Q ð,30x ∈Q ”的否定是( )A .0x ∃∉R Q ð,30x ∈QB .0x ∃∈R Q ð,30x ∉QC .x ∀∉R Q ð,3x ∈QD .x ∀∈R Q ð,3x ∉Q11.(2012 (福建理))下列命题中,真命题是( )A .00,0xx R e ∃∈≤B .2,2x x R x ∀∈>C .0a b +=的充要条件是1ab=- D .1,1a b >>是1ab >的充分条件。

高考数学二轮复习习题精选(附答案)

高考数学二轮复习习题精选(附答案)

第1章集合与简易逻辑§1–1集合一、集合的概念1.1.1在“①难解的题目;②方程x2+1=0在实数集内的解;③直角坐标平面上第四象限内的所有点;④很多多项式”中,能够组成集合的是().(A) ②③(B) ①③(C) ②④(D) ①②④解析由集合中元素的确定性可知只有②和③能组成集合,答案为A.1.1.2下列集合中,有限集是().(A) {x|x<10,x∈N} (B) {x|x<10,x∈Z}(C) {x|x2<10,x∈Q} (D) {x|x=y+10,y∈R}解析由N表示自然数集得{x|x<10,x∈N}={0,1,2,3,4,5,6,7,8,9}是有限集,答案为A.1.1.3若集合M={x|x≤6},a=,则下列结论中正确的是().(A) {a}M(B) a M(C) {a}∈M(D) a∉M解析因为 <6,则∈M,{a}M,所以,答案为A.1.1.4已知集合A={0,1},B={y|y2=1-x2,x∈A},则A与B的关系是().(A) A=B(B) A B(C) A∈B(D) A B解析由已知得集合B={-1,0,1},所以,A B,答案为B.1.1.5下列四个关系中,正确的是().(A) ∅∈{0} (B) 0∉{0} (C) {0}∈{0,1} (D) 0∈{0,1}解析∅与{0},{0}与{0,1}是两个集合间的关系,这种关系不应用表达元素与集合间关系的“∈”来表达;而0∈{0},又0是集合{0,1}中的元素,所以,0∈{0,1}是正确的,答案为D.1.1.6设a,b∈R,集合{1,a+b,a}=,则b-a=().(A) 1 (B) -1 (C) 2 (D) -2解析由已知得0∈{1,a+b,a},而a≠0,于是,只能a+b=0,则=-1,又-1∈{1,a+b,a},所以,a=-1,b=1,b-a=2,答案为C.1.1.7用适当的方式写出下列集合:(1) 组成中国国旗的颜色名称的集合;(2) 不大于6的非负整数所组成的集合;(3) 所有正奇数组成的集合;(4) 方程x3+6=0的实数解构成的集合;(5) 不等式x2-5x+4<0的解集;(6) 直角坐标平面中,第一象限内的所有点组成的集合;(7) 直角坐标平面中,直线y=2x-1上的所有点组成的集合.解析(1) 组成中国国旗的颜色名称的集合是{红,黄}.(2) 不大于6的非负整数所组成的集合是{0,1,2,3,4,5,6}.(3) 所有正奇数组成的集合是{x|x=2k+1,k∈N}.(4) 方程x3+6=0的实数解构成的集合是{x|x3+6=0,x∈R}.(5) 不等式x2-5x+4<0的解集{x|x2-5x+4<0}或写成{x|1<x<4}.(6) 直角坐标平面中,第一象限内的所有点组成的集合是{(x,y)|x>0且y>0}.(7) 直角坐标平面中,直线y=2x-1上的所有点组成的集合是{(x,y)|y=2x -1}.1.1.8已知集合A={1,3,x},集合B={1,x2},若有B A且x∉B,则A=.解析由x2∈A及x∉B得x2=3,解得x=±,经检验此x的值符合集合中元素的互异性,所以,集合A={1,3,}或{1,3,-}.1.1.9集合A={x|-3≤x≤2},B={x|2m-1≤x≤2m+1},若B⊆A,则m的取值范围是.解析由已知可得解得-1≤m≤.1.1.10若集合M={0,1,2},N={(x,y)|x-2y+1≥0且x-2y-1≤0,x,y∈M},则N中元素的个数为().(A) 9 (B) 6 (C) 4 (D) 2解析将点(0,0),(1,1),(2,2),(0,1),(1,0),(0,2),(2,0),(1,2),(2,1)的坐标代入不等式组可知只有点(0,0),(1,1),(1,0),(2,1)四个点在集合N内,所以,答案为C.1.1.11定义集合运算:A☉B={z|z=xy(x+y),x∈A,y∈B},设集合A={0,1},B={2,3},则集合A☉B的所有元素之和为().(A) 0 (B) 6 (C) 12 (D) 18解析由已知可得A☉B={0,6,12},所以,A☉B中所有元素之和为18,答案为D.1.1.12设⊕是R上的一个运算,A是R的非空子集,若对任意a,b∈A,有a⊕b∈A,则称A对运算⊕封闭.下列数集对加法,减法,乘法和除法(除数不等于零)四则运算都封闭的是().(A) 自然数集(B) 整数集(C) 有理数集 (D) 无理数集解析任意两个自然数或整数的商不一定是自然数或整数,任意两个无理数的积不一定是无理数,而任意两个有理数的和、差、积、商一定都是有理数,所以,有理数集对加法,减法,乘法和除法(除数不等于零)四则运算都封闭的,答案为C.1.1.13集合M={x|a1x>b1},N={x|a2x>b2},其中常数a1b1a2b2≠0,则“”是“M=N”的().(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件解析若a1=b1=1,a2=b2=-1,则有,此时,M={x|x>1},N={x|x<1},M≠N;若M=N,则必有a1a2>0,于是,M=,N=,或者,M=,N=,于是,,即,所以,“”是“M=N”的必要不充分条件,答案为B.1.1.14已知集合M={x|x≤a2+b2},其中a,b是常数.给出下列四个命题:① 2ab一定属于M② 2ab一定不属于M③-2ab一定属于M④-2ab一定不属于M其中正确命题的序号是(写出所有正确命题的序号).解析由(a-b)2≥0和(a+b)2≥0对任意a,b∈R恒成立可得2ab≤a2+b2,-2ab≤a2+b2,所以,2ab∈M,-2ab∈M,在上述四个命题中,①和③是正确的.1.1.15已知集合A是非零实数集的子集,并且有如下性质:对任意x∈A,必有3-∈A.问:(1) 集合A可否有且仅有一个元素?如果可以,求出所有满足要求的集合A;若不可以,则说明理由;(2) 集合A可否有且仅有两个元素?如果可以,求出所有满足要求的集合A;若不可以,则说明理由.解析(1) 若集合A中有且仅有一个元素x,则3-=x,即x2-3x+2=0,解得x=1或x=2,所以,集合{1}和{2}是两个满足要求的单元集.(2) 集合{1,2}是满足要求的二元集.若集合A={a,b}是满足要求的二元集,并且即则a=b,矛盾,所以,满足要求的二元集只能是{1,2}.1.1.16同时满足{1}A⊆{1,2,3,4,5},且A中所有元素之和为奇数的集合A的个数是().(A) 5 (B) 6 (C) 7 (D) 8解析若A为二元集,则A可为{1,2}、{1,4};若A为三元集,则A可为{1,2,4}、{1,3,5};若A为四元集,则A可为{1,2,3,5}、{1,3,4,5};若A为五元集,则A可为{1,2,3,4,5},所以,共有7个符合条件的集合,答案为C.1.1.17对于集合A和B,当A B时,下列集合之间的关系一定不能成立的是().(A) ∅⊆A(B) ∅B(C) B=∅(D) A=∅解析由于不存在集合是空集的真子集,所以,由A B可得B≠∅,所以,答案为C.1.1.18下列各组集合中,M与P表示同一个集合的是().(A) M={(1,-3)},P={(-3,1)}(B) M=∅,P={0}(C) M={y|y=x2+1,x∈R},P={(x,y)|y=x2+1,x∈R}(D) M={y|y=x2+1,x∈R},P={t|t=(y-1)2+1,y∈R}解析(1,-3)与(-3,1)是平面直角坐标系中两个不相同的点;集合{0}中有一个元素,它不是空集.集合M={y|y=x2+1,x∈R}是二次函数y=x2+1的因变量的集合,它是一个数集,而集合P={(x,y)|y=x2+1,x∈R}表示平面直角坐标系中的一条抛物线,它是点的集合.集合M={y|y=x2+1,x∈R}={t|t=(y-1)2+1,y∈R}={y|y≥1},所以,答案为D.1.1.19写出集合A={(x,y)|x2+y2=2且x+y=0}的所有子集:.解析集合A={(1,-1),(-1,1)},所以,A的所有子集是∅,{(1,-1)},{(-1,1)},{(1,-1),(-1,1)}.1.1.20用适当的方式写出下列集合并化简:(1) 方程x2+2=0的全体实数解组成的集合:;(2) 函数y=3x+2,1≤x≤3的所有因变量组成的集合:;(3) 函数y=-x2+4x+3,x∈R的所有因变量组成的集合:.解析(1) 方程x2+2=0的全体实数解组成的集合是{x|x2+2=0,x∈R}=∅;(2) 函数y=3x+2,1≤x≤3的所有因变量组成的集合是{y|y=3x+2,1≤x≤3}={y|5≤y≤11};(3) 函数y=-x2+4x+3,x∈R的所有因变量组成的集合是{y|y=-x2+4x +3,x∈R}={y|y≤7}.1.1.21已知集合{x|ax2+2x+1=0,a∈R,x∈R}中有且仅有一个元素,则a的值是.解析要使得集合{x|ax2+2x+1=0,a∈R,x∈R}中有且仅有一个元素,则a=0或Δ=22-4a=0,所以,a=0或a=1.1.1.22关于x的不等式≤的解集是A,关于x的不等式x2-3(a+1)x+2(3a +1)≤0 (其中a∈R)的解集是B,求使A⊆B的a的取值范围.解析不等式≤的解集A=[2a,a2+1].不等式x2-3(a+1)x+2(3a+1)≤0即为(x-2)(x-3a-1)≤0.若a≥,则B=[2,3a+1];若a<,则B=[3a+1,2].由A⊆B得或解得1≤a≤3或a=-1.所以,a的取值范围是a=-1或1≤a≤3.1.1.23已知集合A={x|x2-3x+2=0},B={x|x2-ax+(a-1)=0},C={x|x2-bx+2=0,x∈R},若B⊆A,C⊆A,求实数a,b应满足的条件.解析集合A={1,2},而x2-ax+(a-1)=0即为(x-1)(x-a+1)=0,若a-1=1,即a=2,则B={1}满足;若a-1≠1,即a≠2,则B={1,a-1},由B⊆A知a-1=2,即a=3.对于集合C,由C⊆A知,若C=∅,则Δ=(-b)2-8<0,解得-2<b<2;若C为单元集,则Δ=(-b)2-8=0,此时C={}或C={-},与C⊆A矛盾;若C={1,2},即C中方程两根为1和2,则b=3.所以,a,b应满足的条件是a=2或a=3而-2<b<2或b=3.1.1.24已知集合A={(x,y)|y=-x2+mx-1},B={(x,y)|x+y=3,0≤x≤3},若有且仅有一个点同时属于集合A和B,求实数m的取值范围.解析由已知得抛物线与线段有且仅有一个交点.由得x2-(1+m)x+4=0,该方程在区间[0,3]上只有一个解.若Δ=(m+1)2-16=0,则m=3或m=-5,如果m=3,解得x=2;如果m=-5,解得x=-2∉[0,3],于是m=-5舍去.若Δ>0,则记f(x)=x2-(1+m)x+4,此时,只需f(3)<0,即9-3(m+1)+4<0,解得m>.所以,m的取值范围是m>或m=3.1.1.25设集合M={1,2,3,4,5,6},S1,S2,…,S k都是M的含两个元素的子集,且满足:对任意的S i={a i,b i},S j={a j,b j}(i≠j,i,j∈{1,2,3,…,k}),都有min≠min(min{x,y}表示两个数x,y中的较小者),则k的最大值是().(A) 10 (B) 11(C) 12 (D) 13解析集合M的所有两元子集是{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共计15个,其中,不同min (i=1,2,…,15)有共11个,所以,答案为B.1.1.26设P是一个数集,且至少含有两个数,若对任意a,b∈P,都有a +b,a-b,ab,∈P (除数b≠0),则称P是一个数域.例如有理数集Q是数域;数集F={a+b|a,b∈Q}也是数域.有下列命题:①整数集是数域;②若有理数集Q⊆M,则数集M必为数域;③数域必为无限集;④存在无穷多个数域.其中正确的命题的序号是(把你认为正确的命题的序号填上).解析因为任意两个整数的商不一定是整数,故命题①不正确;当集合M =Q∪{}时,由于1∈Q,而∉M,故命题②不正确;由数域P的定义知,必有=1∈P,从而2∈P,则3∈P,…,所以,整数集Z⊆P,故数域P中必有无穷多个元素,命题③正确;由于数集F={a+b|a,b∈Q}是数域,则将其中的换成,…等仍为数域,所以数域有无穷多个,命题④正确.所以,在上述四个命题中,正确命题的序号是③,④.1.1.27非空集合G关于运算⊕满足:(1) 对任意a,b∈G,都有a⊕b∈G;(2) 存在e∈G,使得对一切a∈G,都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”.现给出下列集合和运算:①G={非负整数},⊕为整数的加法;②G={偶数},⊕为整数的乘法;③G={平面向量},⊕为平面向量的加法;④G={二次三项式},⊕多项式的乘法;⑤G={虚数},⊕为复数的乘法.其中G关于运算⊕为“融洽集”的是(写出所有“融洽集”的序号).解析对于非负整数集以及加法运算,两个非负整数之和一定是非负整数,其中e=0;对于偶数集和乘法运算,其中不存在满足要求的元素e;对于平面向量集合以及向量的加法运算,任意两个平面向量之和仍为该平面内的向量,e=;对于二次三项式集合以及多项式的乘法,其中不存在满足要求的元素e;对于虚数集和复数的乘法运算,其中不存在满足要求的元素e,所以,集合G关于运算⊕为“融洽集”的是①和③.1.1.28已知集合S={x|x=m2+n2,m,n∈Z}.求证:若a,b∈S,则ab ∈S.解析由a,b∈S得存在整数p,q,r,s,使得a=p2+q2,b=r2+s2,则ab=(p2+q2)(r2+s2)=p2r2+q2s2+p2s2+q2r2=(pr+qs)2+(ps-qr)2,其中pr+qs 和ps-qr都是整数,所以,ab∈S.1.1.29已知集合A={x|x=12a+8b,a,b∈Z},B={y|y=20c+16d,c,d ∈Z}.判断集合A与集合B之间存在什么关系,并说明理由.解析若y∈B,即y=20c+16d=12c+8(c+2d),因为c,d∈Z,则有c+2d∈Z,得y∈A,于是B⊆A;若x∈A,则x=12a+8b=60a-48a+40b-32b =20(3a+2b)+16(-3a-2b),因为a,b∈Z,则有3a+2b,-3a-2b∈Z,于是A⊆B.所以,A=B.1.1.30若f(x)=x2+ax+b,a,b∈R,A={x|x=f(x),x∈R},B={x|x=f[f(x)],x∈C}.(1) 写出集合A与B之间的关系,并证明;(2) 当A={-1,3}时,用列举法表示集合B.解析(1) 任取x∈A,则f(x)=x,于是,f [ f(x)]=f(x)=x,即有x∈B,所以有A⊆B,但由于x=f[f(x)]必为四次方程,在复数集C上有4个根,所以A B.(2) 当A={-1,3}时,即方程x2+ax+b=x的两根为-1、3,于是-1+3=-(a-1),(-1)×3=b,所以a=-1,b=-3,即f(x)=x2-x-3,此时,集合B中的方程为(x2-x-3)2-(x2-x-3)-3=x,即(x2-x-3)2-x2=0,(x2-3)(x2-2x-3)=0,所以,B={-1,3,,-}.1.1.31已知A={(x,y)|x2+y2+4x+4y+7=0,x,y∈R},B={(x,y)|xy =-10,x,y∈R}.(1) 对于直线m和直线外的一点P,用“m上的点与点P距离的最小值”定义点P到直线m的距离与原有的点线距离概念是等价的.试以类似的方式给出一个点集A与B的“距离”的定义;(2) 依照(1)中的定义求出A与B 的“距离”.解析(1) 定义:在点集A,B中分别任取一点,所取两点间的距离若有最小值,则此最小值称为点集A与B的“距离”.(2) 集合A中的点构成一个圆,其方程是(x+2)2+(y+2)2=1,圆心C(-2,-2),半径为1,设P(x,y)为曲线xy=-10上任意一点,则|PC|2=(x+2)2+(y+2)2=x2+y2+4(x+y)+8=(x+y)2-2xy+4(x+y)+8=(x+y)2+4(x+y)+28=(x+y+2)2+24.=2,所以,A与B的“距离”为2-当且仅当即或时,|PC=24,|PC|最小值1.二、集合的运算1.1.32已知全集I={a1,a2,a3,a4,a5,a6},集合A={a1,a3,a4,a5},B={a1,a4},则A∩∁I B=().(A) {a1,a4} (B) {a2,a6}(C) {a3,a5} (D) {a2,a3,a5,a6}解析∁I B={a2,a3,a5,a6},所以,A∩∁I B={a3,a5},答案为C.1.1.33若集合M={x||x|≤2},N={x|x2-3x=0},则M∩N=().(A) {3} (B) {0} (C) {0,2} (D) {0,3}解析M=[-2,2],N={0,3},所以M∩N={0},答案为B.1.1.34设A,B,I均为非空集合,且满足A⊆B⊆I,则下列各式中错误的是().(A) (∁I A)∪B=I(B) (∁I A)∪(∁I B)=I题1.1.34(C) A∩(∁I B)=∅(D) (∁I A)∩(∁I B)=(∁I B)解析集合A,B,I的关系如图所示,可知(∁I A)∪(∁I B)=∁I A≠I,所以,答案为B.1.1.35设全集I={2,3,5},A={|a-5|,2},∁I A={5},则a的值为().(A) 2 (B) 8 (C) 2或8 (D) -2或8解析由A∪∁I A=I得|a-5|=3,所以a=2或8,答案为C.1.1.36设集合M={x|a1x2+b1x+c1=0},N={x|a2x2+b2x+c2=0},则方程(a1x2+b1x+c1)(a2x2+b2x+c2)=0的解集是().(A) M∩N(B) M∪N(C) N(D) M解析由(a1x2+b1x+c1)(a2x2+b2x+c2)=0可得(a1x2+b1x+c1)=0或(a2x2+b2x+c2)=0,所以,该方程的解集是M∪N,答案为B.1.1.37若集合M={(x,y)|x+y=0},P={(x,y)|x-y=2},则M∩P=().(A) (1,-1) (B) {x=1}∪{y=-1}(C) {1,-1} (D) {(1,-1)}解析由得所以,M∩P={(1,-1)},答案为D.1.1.38满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M 的个数是().(A) 1 (B) 2 (C) 3 (D) 4解析由M∩{a1,a2,a3}={a1,a2}知a1、a2∈M,a3∉M,a4可以在集合M也可以不在集合M中,所以,满足要求的集合M的个数是2个.答案为B.1.1.39若A,B,C为三个集合,A∪B=B∩C,则一定有().(A) A⊆C(B) C⊆A(C) A≠C(D) A=∅解析任取x∈A,则x∈A∪B=B∩C,于是,x∈B∩C,则x∈C,所以,A⊆C,答案为A.1.1.40已知A={x|x≤7},B={x|x<2},C={x|x>5},则A∩B=;A ∪C=;A∩B∩C=.解析由已知得A∩B={x|x<2},A∪C=R,A∩B∩C=∅.1.1.41若集合A={x|-2<x<1或x>1},B={x|a≤x≤b}满足A∪B={x|x>-2},A∩B={x|1<x≤3},则a=;b=.解析在数轴上画出集合A∪B和A∩B可得a=1,b=3.1.1.42全集U的子集A、B、C的关系如图所示:其中三个圆分别表示集合A、B、C,试用集合A、B、C的运算结果表述图中的阴影所代表的集合:.解析图中的阴影部分表示集合∁U A∩B∩C.题1.1.41题1.1.421.1.43已知a>b>0,全集I=R,集合M=,N=,P={x|b<x<},则下列关系式中正确的是().(A) P=M∩∁I N(B) P=∁I M∩N(C) P=M∪N(D) P=M∩N题1.1.43 解析由a>b>0得b<<<a,将集合M,N表示在数轴上可知P=M∩∁I N,答案为A.1.1.44对于集合A,B,C,“A∩C=B∩C”是“A=B”的().(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件解析若A=B,则显然有A∩C=B∩C;反之,若C={1},A={1,2},B={1,3},此时A∩C=B∩C={1},但A≠B,所以,“A∩C=B∩C”是“A=B”的必要不充分条件,答案为B.1.1.45设全集I={(x,y)|x,y∈R},集合M=,N={(x,y)|y≠x+1},那么∁I(M∪N)=().(A) ∅(B) {(2,3)}(C) (2,3) (D) {(x,y)|y=x+1}解析集合I表示平面上所有的点,集合M表示直线y=x+1上除(2,3)外的所有点,集合N表示不在直线y=x+1上的所有点,所以M∪N表示平面上除(2,3)外的所有点,所以,∁I(M∪N)是集合{(2,3)},答案为B.1.1.46若全集I=R,f(x),g(x)都是定义域为R的函数,P={x|f(x)<0},Q ={x|g(x)≥0},则不等式组的解集用P,Q表示为.解析由已知可得不等式g(x)<0的解集是∁I Q,所以,不等式组的解集是P∩∁I Q.1.1.47设P表示△ABC所在平面上的点,则集合{P|PA=PB}∩{P|PB=PC}=.解析由已知得点P到△ABC三顶点等距,所以,{P|PA=PB}∩{P|PB=PC}={△ABC的外心}.1.1.48集合A={(x,y)|ax+y=1},B={(x,y)|x+ay=1},C={(x,y)|x2+y2=1},分别求使得集合(A∪B)∩C为含有两个元素和三个元素的集合的a的值.解析集合A、B分别表示过定点(0,1)和(1,0)的两条直线,集合C表示单位圆,且(0,1),(1,0)∈C,若(A∪B)∩C含有两个元素,则两直线重合或同时与圆相切,可得a=1或a=0.若(A∪B)∩C含有三个元素,即表明两条直线与圆有且仅有三个公共点,由于两直线或同时与圆相切,或同时与圆不相切,则必须有上述两条直线的交点在圆上,两直线的交点是,则=1,所以,a=-1±.1.1.49若集合A是一个有限集,我们以f(A)表示该集合中元素的个数.例如:f (∅)=0,f ({a })=1等等.(1) 已知集合M ={(x ,y )|y =x 2,x ∈R},若集合N ={(x ,y )|y =b },其中b 是实常数,求f (M ∩N )的值;(2) 已知集合M ={(x ,y )|y =x 2,x ∈Z},若集合P ={(x ,y )|y =x +p },其中p 是实常数,如果存在整数k 使得(k ,k 2)∈M ∩P ,求证:f (M ∩P )=2.解析 (1) 若b <0,则f (M ∩N )=0;若b =0,则f (M ∩N )=1;若b >0,则f (M ∩N )=2.(2) 由已知可得关于x 的方程x 2=x +p 有一个根是k ,则k 2=k +p ,即p =k 2-k ,于是,方程x 2=x +p 即为x 2-x -(k -1)k =0,即(x -k )(x +k -1)=0,解得x =k 或x =1-k ,所以,M ∩P ={(k ,k 2),(1-k ,(1-k )2)},由k 是整数得k ≠1-k ,则f (M ∩N )=2.1.1.50 设全集为R ,A ={x |x 2-5x -6>0},B ={x ‖x -5|<a }(a 是常数),且11∈B ,则( ).(A) ∁R A ∪B =R (B) A ∪∁R B =R(C) ∁R A ∪∁R B =R (D) A ∪B =R解析 集合A ={x |x >6或x <-1},由11∈B 得|11-5|<a ,即a >6,集合B =(5-a ,5+a ),此时5-a <-1,5+a >6,所以,A ∪B =R ,答案为D .1.1.51 已知P ={y |y =x 2+1,x ∈R},Q ={y |y =x +1,x ∈R},则P ∩Q =( ).(A) {(0,1),(1,0)} (B) {0,1}(C) {1,2} (D) {y |y ≥1}解析 集合P ,Q 分别是函数y =x 2+1,y =x +1的值域,于是P =[1,+∞),Q =R ,所以P ∩Q =[1,+∞),答案为D .1.1.52 设A 、B 是两个非空集合,定义A 与B 的“差集”为A -B ={x |x ∈A ,且x ∉B },则A -(A -B )=( ).(A) B (B) A ∩B (C) A ∪B (D) A解析 由“差集”的定义可知集合A –B 如图中阴影部分所示,所以,A -(A -B )=A ∩B ,答案为B .1.1.53 已知全集U =A ∪B 中有m 个元素,(∁U A )∪(∁U B )中有n 个元素,若A ∩B 非空,则A ∩B 的元素个数为( ).(A) mn (B) m +n (C) n -m (D) m -n解析 由文氏图可得A ∩B 的元素个数为m -n ,答案为D .1.1.54 设全集U =N *,集合A ={x |x =2n ,n ∈N *},B ={x |x =3n ,n ∈N *},则∁U (A ∪B )=( ).(A) {x |x =6n ,n ∈N *} (B) {x |x =6n ±1,n ∈N *}(C) {x |x =6n ±2,n ∈N *} (D) {x |x =6n ±3,n ∈N *}解析 对于x =2n ,n ∈N *,若n =3k (k ∈N *),则x =6k ;若n =3k -1 (k ∈题1.1.52题1.1.53N *),则x =6k -2;若n =3k -2 (k ∈N *),则x =6k -4,对于x =3n ,若n =2k (k ∈N *),则x =6k ;若n =2k -1 (k ∈N *),则x =6k -3,所以,∁U (A ∪B )= {x |x =6n ±1,n ∈N *},答案为B .1.1.55 我们称(P ,Q )为“有序集合对”,其中P ,Q 是集合,当P ≠Q 时,认为(P ,Q )与(Q ,P )是两个不同的“有序集合对”.那么,使得A ∪B ={a ,b }成立的“有序集合对”(A ,B )共有( )个.(A) 9 (B) 4 (C) 7 (D) 16 解析 若A =∅,则只能B ={a ,b };若A ={a },则B 可以为{b }或{a ,b };若A ={b },则B 可以为{a }或{a ,b };若A ={a ,b },则B 可以是∅,{a },{b },{a ,b }这四个集合中的某一个,所以,使得A ∪B ={a ,b }成立的“有序集合对”(A ,B )共有9个,答案为A .1.1.56 有限集合S 中元素的个数记做card(S ).设A ,B都为有限集合,给出下列命题:① A ∩B =∅的充要条件是card(A ∪B )=card(A )+card(B );② A ⊆B 的必要条件是card(A )≤card(B );③ A ⊈B 的充分条件是card(A )≤card(B );④ A =B 的充要条件是card(A )=card(B ),其中真命题的序号是( ).(A) ③,④ (B) ①,②(C) ①,④ (D)②,③ 解析 用文氏图可知,当A ∩B =∅时,必有card(A ∪B )=card(A )+card(B ).反之,若card(A ∪B )=card(A )+card(B ),也必有A ∩B =∅.于是,card(A ∪B )=card(A )+card(B )是A ∩B =∅的充要条件;若A ⊆B ,则card(A )≤card(B );反之,当card(A )≤card(B )时,未必有A ⊆B ,于是,card(A )≤card(B )是A ⊆B 的必要条件;当card(A )≤card(B )时,有可能有A ⊆B ,于是,card(A )≤card(B )是A ⊈B 的既不充分,也不必要条件;card(A )=card(B )是A =B 的必要不充分条件,所以,答案为B .1.1.57 若非空集合A ,B ,C 满足A ∪B =C ,且B 不是A 的子集,则( ).(A) x ∈C 是x ∈A 的充分条件但不是必要条件(B) x ∈C 是x ∈A 的必要条件但不是充分条件(C) x ∈C 是x ∈A 的充要条件(D) x ∈C 既不是x ∈A 的充分条件,也不是x ∈A 的必要条件解析 若x ∈A ,则一定有x ∈A ∪B =C ,于是,x ∈C 是x ∈A 的必要条件;如果x ∈C =A ∪B 时必有x ∈A ,则C ⊆A ,即A ∪B ⊆A ,于是,任取y ∈B ⊆A ∪B ⊆A ,则y ∈A ,B ⊆A ,矛盾,所以,x ∈C 是x ∈A 的必要条件但不是充分条件,答案为B .题1.1.561.1.58 已知集合M ={2,3,m 2+4m +2},P ={0,7,m 2+4m -2,2-m }满足M ∩P ={3,7},则实数m 的值是 .解析 由已知得7∈M ,则m 2+4m +2=7,解得m =1或m =-5.若m =1,则m 2+4m -2=3,2-m =1.若m =-5,2-m =7,与集合中元素的互异性矛盾,所以,m 的值是1.1.1.59 如果全集U ={a ,b ,c ,d ,e ,f },A ={a ,b ,c ,d },A ∩B ={a },∁U (A ∪B )={f },则B= .解析 由表示集合U ,A ,B 的图形可得只有e ∈(∁U A )∩B ,所以,B ={a ,e }.1.1.60 如果全集U 含有12个元素,P ,Q 都是U 的子集,P ∩Q 中含有2个元素,∁U P ∩∁U Q 含有4个元素,∁U P ∩Q含有3个元素,则P 含有 个元素;Q 含有 个元素.解析 由表示集合U ,P ,Q 的图形可得P ,Q 中各有5个元素.1.1.61 集合A ={x |x =5k +3,k ∈N}, B ={x |x =7k +2,k ∈N},则A ∩B 中的最小元素是 .解析 由已知可得集合A ={3,8,13,18,23,28,33,…}, B ={2,9,16,23,30,…},所以,A ∩B 中的最小元素是23.1.1.62 已知集合A ={x |-8≤x ≤6},B ={x |x ≤m },若A∪B ≠B 且A ∩B ≠∅,则m 的取值范围是 . 解析 将集合A ,B 表示在数轴上可知m 的取值范围是-8≤m <6.1.1.63 已知常数a 是正整数,集合A =, B ={x ‖x |<2a ,x ∈Z},则集合A ∪B 中所有元素之和为 .解析 由|x -a |<a +可得-<x <2a +,而x ∈Z ,于是,A ={0,1,2,3,…,2a -1,2a },由|x |<2a 得-2a <x <2a ,又x ∈Z ,则B ={-(2a -1),-(2a -2),…,(2a -2),(2a -1)}.于是,A ∪B ={-(2a -1),-(2a -2),…,-1,0,1,…,(2a -2),(2a -1),2a },其中所有元素之和为2a .1.1.64 我们将b -a 称为集合{x |a ≤x ≤b }的“长度”.若集合M =,N =,且M 和N 都是集合{x |0≤x ≤1}的子集,则集合M ∩N 的“长度”的最小值是( ).(A) (B) (C) (D)解析 集合M 和N 的“长度”分别是和,又M 和N 都是集合{x |0≤x ≤1}的子集,于是,当m =,n =0时,集合M ∩N 的“长度”取得最小值,答案为B .题1.1.59 题1.1.60 题1.1.621.1.65已知集合A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,求实数m的取值范围.解析若A=∅,则Δ=(m+2)2-4<0,解得-4<m<0;若A≠∅,则由x2+(m+2)x+1=0没有正数根得解得m≥0.所以,m的取值范围是m>-4.1.1.66若集合A={x|x2-2ax+a=0,x∈R},B={x|x2-4x+a+5=0,x ∈R}.(1) 若A=B=∅,求a的取值范围;(2) 若A和B中至少有一个是∅,求a的取值范围;(3) 若A和B中有且仅有一个是∅,求a的取值范围.解析(1) 若A=∅,则4a2-4a<0,解得0<a<1.若B=∅,则16-4(a+5)<0,解得a>-1,所以,使A=B=∅成立的a的取值范围是0<a<1.(2) 设A'=(0,1),B'=(-1,+∞),则使A和B中至少有一个是∅的实数a ∈A'∪B',即使A和B中至少有一个是∅的实数a的取值范围是a>-1.(3) 使A和B中有且仅有一个是∅的a∈[A'∩(∁R B')]∪[(∁R A')∩B'],所以,使A和B中有且仅有一个是∅的a的取值范围是-1<a≤0或a≥1.§1–2简易逻辑一、命题1.2.1如果一个命题的逆命题是真命题,那么这个命题的().(A) 否命题必是真命题(B) 否命题必是假命题(C) 原命题必是假命题(D) 逆否命题必是真命题解析一个命题的逆命题与否命题真假相同,答案为A.1.2.2命题“对任意的x∈R,x3-x2+1≤0”的否定是().(A) 不存在x∈R,x3-x2+1≤0(B) 存在x∈R,x3-x2+1≤0(C) 存在x∈R,x3-x2+1>0(D) 对任意的x∈R,x3-x2+1>0解析“对任意的x∈R,x3-x2+1≤0”的否定是“存在x∈R,使得x3-x2+1>0”,答案为C.1.2.3与命题“若a∉M,则b∉M”等价的命题是().(A) 若b∈M,则a∉M(B) 若b∉M,则a∈M(C) 若b∈M,则a∈M(D) 若a∉M,则b∈M解析逆否命题与原命题互为等价命题,原命题的逆否命题为“若b∈M,则a∈M”,所以,答案为C.1.2.4设f(x)是定义在正整数集上的函数,且f(x)满足:“当f(k)≥k2成立时,总可以推出f(k+1)≥(k+1)2成立”,那么,下列命题总成立的是().(A) 若f(3)≥9成立,则当k≥1时,均有f(k)≥k2成立(B) 若f(5)≥25成立,则当k≤5时,均有f(k)≥k2成立(C) 若f(7)<49成立,则当k≥8时,均有f(k)<k2成立(D) 若f(4)=25成立,则当k≥4时,均有f(k)≥k2成立解析由25>16得f(4)=25使得f(4)≥42成立,由已知可得当k≥4时,均有f(k)≥k2成立,答案为D.1.2.5命题“若x2<1,则-1<x<1”的逆否命题是().(A) 若x2≥1,则x≥1或x≤-1 (B) 若-1<x<1,则x2<1(C) 若x>1或x<-1,则x2>1 (D) 若x≥1或x≤-1,则x2≥1解析命题“若x2<1,则-1<x<1”的逆否命题是“若x≥1或x≤-1,则x2≥1”,答案为D.1.2.6在原命题“若A∪B≠B,则A∩B≠A”与它的逆命题、否命题、逆否命题这四个命题中,真命题的个数是.解析原命题的逆否命题为“若A∩B=A,则A∪B=B”.当A∩B=A 时,任取x∈A=A∩B,必有x∈B,则A⊆B,必有A∪B=B成立,所以,逆否命题和原命题都是真命题.原命题的否命题为“若A∪B=B,则A∩B=A”,同上,可知否命题和逆命题也都是真命题.所以,在这四个命题中,真命题的个数是4.1.2.7若a,b都是非零实数,证明:|a|+|b|=|a+b|与ab>0等价.解析若|a|+|b|=|a+b|,则(|a|+|b|)2=|a+b|2,a2+b2+2|a||b|=a2+b2+2ab,于是,|ab|=ab,可得ab>0;若ab>0,则或于是,|a|+|b|=|a+b|.所以,当a,b都是非零实数时,|a|+|b|=|a+b|与ab>0等价.1.2.8已知A和B都是非空集合,证明:“A∪B=A∩B”与“A=B”是等价的.解析若A∪B=A∩B,则任取x∈A,必有x∈A∪B=A∩B,于是,x∈A∩B,则x∈B,所以,A⊆B,同理可得B⊆A,于是,A=B;若A=B,则显然有A∪B=A∩B,所以,“A∪B=A∩B”与“A=B”是等价的.1.2.9已知a,b,c是实数,则与“a,b,c互不相等”等价的是().(A) a≠b且b≠c(B) (a-b)(b-c)(c-a)≠0(C) (a-b)2+(b-c)2+(c-a)2≠0(D) a2,b2,c2互不相等解析由于不相等关系不具有传递性,当a≠b且b≠c,a与c可能相等;由(a-b)2+(b-c)2+(c-a)2≠0可得a=b,b=c,c=a中至少有一个不成立,即(a-b)2+(b-c)2+(c-a)2≠0等价于“a,b,c不全相等”,而不能等价于“a,b,c互不相等”;a=-1,b=0,c=1,此时a,b,c互不相等,但a2=c2,所以,“a,b,c互不相等”与“a2,b2,c2互不相等”不是等价的;a≠b等价于a-b≠0,“a,b,c互不相等”等价于a-b≠0,b-c≠0,c-a≠0同时成立,所以,“a,b,c互不相等”与“(a-b)(b-c)(c-a)≠0”等价,答案为B.1.2.10命题“若ab=0,则a、b中至少有一个为零”的逆否命题为.解析原命题的逆否命题为“若a、b均不为零,则ab≠0”.1.2.11给出下列四个命题:①若x2=y2,则x=y;②若x≠y,则x2≠y2;③若x2≠y2,则x≠y;④若x≠y且x≠-y,则x2≠y2,其中真命题的序号是.解析由x2=y2可得x=y或x=-y,命题①不成立;若x=-y≠0,此时x≠y,而x2=y2,于是,命题②不成立;若x2≠y2时有x=y,则可得x2=y2,矛盾,于是,命题③成立;对于x≠y且x≠-y,如果x2=y2,则有x=y或x=-y,即x=y与x=-y至少有一个成立,矛盾,于是,命题④成立.所以,上述四个命题中,真命题的序号是③和④.1.2.12已知命题p:方程x2+mx+1=0有两个不等的负实根.命题q:方程4x2+ 4(m-2)x+1=0没有实根.若“p或q”为真,“p且q”为假,求实数m 的取值范围.解析当命题p为真时,应有解得m>2.当命题q为真时,应有Δ=16(m -2)2-16<0,解得1<m<3.于是,使“p或q”为真的m的取值范围是m>1,使“p且q”为假的m的取值范围是m≤2或m≥3,所以,使两者同时成立的m 的取值范围是m≥3或1<m≤2.1.2.13某人要在一张3×3的表格中填入9个数(填的数有正有个数之和为负.求证:他一定不能写出满足要求的数表.解析若此人能写出满足要求的数表,则由a11+a12+a13>0,a21+a22+a23>0,a31+a32+a33>0可得数表中的九个数之和为正;同时,又有a11+a21+a31<0,a12+a22+a32<0,a13+a23+a33<0,则数表中的九个数之和为负,矛盾,所以,此人一定不能写出满足要求的数表.1.2.14设a,b∈R,A={(x,y)|y=ax+b,x∈Z},B={(x,y)|y=3x2+15,x∈Z},C={(x,y)|x2+y2≤144}都是平面xOy内的点的集合.求证:不存在a,b,使得A∩B≠∅,且点(a,b)∈C 同时成立.解析设满足要求的a,b存在,则P(a,b)∈C,即a2+b2≤144.由得ax+b-(3x2+15)=0,在aOb平面内,原点到直线ax+b-(3x2+15)=0的距离是=3≥12,其中等号当且仅当3,即x2=3时成立,但它与x∈Z矛盾,所以,使A∩B≠∅成立的(a,b)必有 >12,与a2+b2≤144矛盾,所以,满足要求的a,b不存在.1.2.15中学数学中存在许多关系,比如“相等关系”,“平行关系”等等,如果集合A中元素之间的一个关系“~”满足以下三个条件:(1) 自反性:对于任意a∈A,都有a~a;(2) 对称性:对于a,b∈A,若a~b,则有b~a;(3) 传递性:对于a,b,c∈A,若a~b,b~c,则有a~c,则称“~”是集合A的一个等价关系,例如:“数的相等”是等价关系,而“直线的平行”不是等价关系(自反性不成立),请你再列出三个等价关系:.解析由集合、角、向量的性质可知,“集合相等”、“角相等”、“向量相等”都是满足要求的等价关系.1.2.16已知函数f(x)在R上是增函数,a,b∈R.写出命题“若a+b>0,则f(a)+f(b)>f(-a)+f(-b)”的逆命题,并判断其真假.若所写命题是真命题,给出证明;若所写命题是假命题,给出反例.解析所求逆命题为:已知函数f(x)在R上是增函数,a,b∈R.若f(a)+f(b)>f(-a)+f(-b),则a+b>0.该命题是真命题.证明如下:若a+b≤0,即a≤-b,由函数f(x)在R上是增函数得f(a)≤f(-b),同理f(b)≤f(-a),由此可得f(a)+f(b)≤f(-a)+f(-b),与已知条件矛盾.所以,a+b>0.二、充分条件和必要条件1.2.17两个圆“周长相等”是“面积相等”的().(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件解析两个圆周长相等,则由2πr1=2πr2得两圆半径r1=r2,则两圆面积相等,反之亦然,所以,两个圆“周长相等”是“面积相等”的充要条件,答案为C.1.2.18P:四边形四条边长相等,Q:四边形是平行四边形,则P是Q的().(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件解析当四边形的四条边长相同时,它是菱形,一定是平行四边形;反之,一个平行四边形的四条边长不一定都相等,所以,P是Q的充分不必要条件,答案为A.1.2.19已知a,b,c,d都是实数,则“a=b且c=d”是“a+c=b+d”的().(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件解析 对于实数a ,b ,c ,d ,如果a =b 且c =d ,则有a -b =0,c -d =0,则a +c -(b +d )=(a -b )+(c -d )=0,于是,a +c =b +d ;反之,如果a =1,b =2,c =4,d =3,有a +c =b +d ,但此时a ≠b ,c ≠d ,所以,“a =b 且c =d ”是“a +c =b +d ”的充分不必要条件,答案为A .1.2.20 已知a ,b ,c 是实数,则“a =b ”是“ac =bc ”的( ).(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件解析 如果a =b ,则a -b =0,于是,ac -bc =(a -b )c =0,可得ac =bc ;反之,如果c =0,a =1,b =2,此时有ac =bc ,但a ≠b ,所以,“a =b ”是“ac =bc ”的充分不必要条件,答案为A .1.2.21 设m ,n 是整数,则“m ,n 均为偶数”是“m +n 是偶数”的( ).(A) 充分不必要条件 (B) 必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件解析 如果m ,n 均为偶数,则m +n 一定是偶数;反之,如果m =1,n =3,m +n =4为偶数,但此时m 和n 都不是偶数,所以,“m ,n 均为偶数”是“m +n 是偶数”的充分而不必要条件,答案为A .1.2.22 设集合A ,B 是全集U 的两个子集,则A B 是∁U A ∪B =U 的( ).(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件 解析 由表示集合U ,A ,B 关系的图形可知当A B 时必有∁U A ∪B =U 成立,反之,当A =B 时,也有∁U A ∪B =U 成立,即A 是B 的真子集不是∁U A ∪B =U 成立的必要条件,所以,答案为A .1.2.23 对于集合M 和P ,“x ∈M 或x ∈P ”是“x ∈M ∩P ”的( ).(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件解析 由表示集合M ,P 的图形可知当x ∈M 或x ∈P 时不一定有x ∈M ∩P ,而当x ∈M ∩P 时必有x ∈M 或x ∈P ,所以,“x ∈M 或x ∈P ”是“x ∈M ∩P ”的必要不充分条件,答案为B .题1.2.22题1.2.231.2.24如果x,y是实数,那么“cos x=cos y”是“x=y”的().(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件解析当cos x=cos y时,不一定有x=y,而当x=y时,必有 cos x=cos y,所以,“cos x=cos y”是“x=y”的必要不充分条件,答案为B.1.2.25使不等式(1-|x|)(1+x)>0成立的充要条件为().(A) x<-1或x>1 (B) -1<x<1(C) x>-1且x≠1(D) x<1且x≠-1解析此不等式等价于或解得-1<x<1或x<-1,即为x<1且x≠-1,所以,答案为D.1.2.26一元二次方程ax2+bx+c=0有一个正数根和一个负数根的充要条件是().(A) ab>0 (B) ab<0 (C) ac>0 (D) ac<0解析若一元二次方程ax2+bx+c=0有一个正数根x1和一个负数根x2,则x1x2=<0,则ac<0;反之,若ac<0,一元二次方程的判别式Δ=b2-4ac>0,此方程一定有两个实数根,且两根之积为<0,这两个实数根一定是一个正数和一个负数,所以,一元二次方程ax2+bx+c=0有一个正数根和一个负数根的充要条件是ac<0,答案为D.1.2.27“x>1”是“<1”的().(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件解析若x>1,则-1=<0,即<1;反之,如果x<0,则有<1,此时,x>1不成立,所以,“x>1”是“<1”的充分不必要条件,答案为A.1.2.28已知x是实数,则“x≠1”是“x2-4x+3≠0”的().(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件解析如果x=3,则x≠1,此时x2-4x+3=(x-1)(x-3)=0;反之,如果x2-4x+3≠0,即(x-3)(x-1)≠0,则x≠3且x≠1,所以,“x≠1”是“x2-4x+3≠0”的必要不充分条件,答案为B.1.2.29“一个正整数的个位数字是5”是“这个正整数是5的倍数”的().(A) 充分不必要条件(B) 必要不充分条件(C) 充要条件(D) 既不充分也不必要条件解析如果一个正整数的个位数是5,即此正整数一定可表示成10k+5(k 是非负整数),它一定是5的倍数;反之,可写成10n(n是正整数)的正整数一定是5的倍数,但它的个位数不是5,所以,“一个正整数的个位数字是5”是“这个正整数是5的倍数”的充分不必要条件,答案为A.1.2.30对于集合A,B,下列四个命题中正确的是().。

高考数学难点突破——集合与简易逻辑

高考数学难点突破——集合与简易逻辑

集合思想及应用集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用.本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用.●难点磁场(★★★★★)已知集合A ={(x ,y )|x 2+mx -y +2=0},B ={(x ,y )|x -y +1=0,且0≤x ≤2},如果A ∩B ≠∅,求实数m 的取值范围.●案例探究 [例1]设A ={(x ,y )|y 2-x -1=0},B ={(x ,y )|4x 2+2x -2y +5=0},C ={(x ,y )|y =kx +b },是否存在k 、b ∈N ,使得(A ∪B )∩C =∅,证明此结论.技巧与方法:由集合A 与集合B 中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b 、k 的范围,又因b 、k ∈N ,进而可得值.解:∵(A ∪B )∩C =∅,∴A ∩C =∅且B ∩C =∅∵⎩⎨⎧+=+=bkx y x y 12 ∴k 2x 2+(2bk -1)x +b 2-1=0 ∵A ∩C =∅∴Δ1=(2bk -1)2-4k 2(b 2-1)<0∴4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1①∵⎩⎨⎧+==+-+bkx y y x x 052242 ∴4x 2+(2-2k )x +(5+2b )=0∵B ∩C =∅,∴Δ2=(1-k )2-4(5-2b )<0∴k 2-2k +8b -19<0,从而8b <20,即b <2.5 ② 由①②及b ∈N ,得b =2代入由Δ1<0和Δ2<0组成的不等式组,得⎪⎩⎪⎨⎧<--<+-032,018422k k k k ∴k =1,故存在自然数k =1,b =2,使得(A ∪B )∩C =∅.[例2]向50名学生调查对A 、B 两事件的态度,有如下结果:赞成A 的人数是全体的五分之三,其余的不赞成,赞成B 的比赞成A 的多3人,其余的不赞成;另外,对A 、B 都不赞成的学生数比对A 、B 都赞成的学生数的三分之一多1人.问对A 、B 都赞成的学生和都不赞成的学生各有多少人?知识依托:解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来. 错解分析:本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索.技巧与方法:画出韦恩图,形象地表示出各数量关系间的联系. 解:赞成A 的人数为50×53=30,赞成B 的人数为30+3=33,如上图,记50名学生组成的集合为U ,赞成事件A 的学生全体为集合A ;赞成事件B 的学生全体为集合B .设对事件A 、B 都赞成的学生人数为x ,则对A 、B 都不赞成的学生人数为3x+1,赞成A 而不赞成B 的人数为30-x ,赞成B 而不赞成A 的人数为33-x .依题意(30-x )+(33-x )+x +(3x+1)=50,解得x =21. 所以对A 、B 都赞成的同学有21人,都不赞成的有8人. ●锦囊妙计1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x |x ∈P },要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,通过数形结合直观地解决问题.2.注意空集∅的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A =∅或A ≠∅两种可能,此时应分类讨论.●歼灭难点训练 一、选择题1.(★★★★)集合M ={x |x =42π+kx ,k ∈Z },N ={x |x =22ππ+k ,k ∈Z },则( ) A.M =N B.M N C.M N D.M ∩N =∅2.(★★★★)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1}且B ≠∅,若A ∪B =A ,则( )A.-3≤m ≤4B.-3<m <4C.2<m <4D.2<m ≤4 二、填空题3.(★★★★)已知集合A ={x ∈R |a x 2-3x +2=0,a ∈R },若A 中元素至多有1个,则a 的取值范围是_________.4.(★★★★)x 、y ∈R ,A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|bya x - =1,a >0,b >0},当A ∩B 只有一个元素时,a ,b 的关系式是_________.三、解答题5.(★★★★★)集合A ={x |x 2-ax +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |x 2+2x -8=0},求当a 取什么实数时,A ∩B ∅和A ∩C =∅同时成立.6.(★★★★★)已知{a n }是等差数列,d 为公差且不为0,a 1和d 均为实数,它的前n 项和记作S n ,设集合A ={(a n ,nS n )|n ∈N *},B ={(x ,y )|41x 2-y 2=1,x ,y ∈R }.试问下列结论是否正确,如果正确,请给予证明;如果不正确,请举例说明.(1)若以集合A 中的元素作为点的坐标,则这些点都在同一条直线上; (2)A ∩B 至多有一个元素;(3)当a 1≠0时,一定有A ∩B ≠∅.7.(★★★★)已知集合A ={z ||z -2|≤2,z ∈C },集合B ={w |w =21zi +b ,b ∈R },当A ∩B =B 时,求b 的值.8.(★★★★)设f (x )=x 2+px +q ,A ={x |x =f (x )},B ={x |f [f (x )]=x }. (1)求证:A ⊆B ;(2)如果A ={-1,3},求B .参考答案难点磁场解:由⎩⎨⎧≤≤=+-=+-+)20(01022x y x y mx x 得x 2+(m -1)x +1=0①∵A ∩B ≠∅∴方程①在区间[0,2]上至少有一个实数解.首先,由Δ=(m -1)2-4≥0,得m ≥3或m ≤-1,当m ≥3时,由x 1+x 2=-(m -1)<0及x 1x 2=1>0知,方程①只有负根,不符合要求.当m ≤-1时,由x 1+x 2=-(m -1)>0及x 1x 2=1>0知,方程①只有正根,且必有一根在区间(0,1]内,从而方程①至少有一个根在区间[0,2]内.故所求m 的取值范围是m ≤-1. 歼灭难点训练一、1.解析:对M 将k 分成两类:k =2n 或k =2n +1(n ∈Z ),M ={x |x =n π+4π,n ∈Z }∪{x |x =n π+43π,n ∈Z },对N 将k 分成四类,k =4n 或k =4n +1,k =4n +2,k =4n +3(n ∈Z ),N ={x |x =n π+2π,n ∈Z }∪{x |x =n π+43π,n ∈Z }∪{x |x =n π+π,n ∈Z }∪{x |x =n π+45π,n ∈Z }.答案:C2.解析:∵A ∪B =A ,∴B ⊆A,又B ≠∅,∴⎪⎩⎪⎨⎧-<+≤--≥+12171221m m m m 即2<m ≤4. 答案:D 二、3.a =0或a ≥89 4.解析:由A ∩B 只有1个交点知,圆x 2+y 2=1与直线b ya x -=1相切,则1=22ba ab +,即ab =22b a +. 答案:ab =22b a +三、5.解:log 2(x 2-5x +8)=1,由此得x 2-5x +8=2,∴B ={2,3}.由x 2+2x -8=0,∴C ={2,-4},又A ∩C =∅,∴2和-4都不是关于x 的方程x 2-ax +a 2-19=0的解,而A ∩B ∅,即A ∩B ≠∅,∴3是关于x 的方程x 2-ax +a 2-19=0的解,∴可得a =5或a =-2.当a =5时,得A ={2,3},∴A ∩C ={2},这与A ∩C =∅不符合,所以a =5(舍去);当a =-2时,可以求得A ={3,-5},符合A ∩C =∅,A ∩B ∅,∴a =-2.6.解:(1)正确.在等差数列{a n }中,S n =2)(1n a a n +,则21=n S n (a 1+a n ),这表明点(a n ,nS n )的坐标适合方程y 21=(x +a 1),于是点(a n , nS n )均在直线y =21x +21a 1上.(2)正确.设(x ,y )∈A ∩B ,则(x ,y )中的坐标x ,y 应是方程组⎪⎪⎩⎪⎪⎨⎧=-+=1412121221y x a x y 的解,由方程组消去y 得:2a 1x +a 12=-4(*),当a 1=0时,方程(*)无解,此时A ∩B =∅;当a 1≠0时,方程(*)只有一个解x =12124a a --,此时,方程组也只有一解⎪⎪⎩⎪⎪⎨⎧-=--=1211214424a a y a a y ,故上述方程组至多有一解.∴A ∩B 至多有一个元素.(3)不正确.取a 1=1,d =1,对一切的x ∈N *,有a n =a 1+(n -1)d =n >0,nS n>0,这时集合A 中的元素作为点的坐标,其横、纵坐标均为正,另外,由于a 1=1≠0.如果A ∩B ≠∅,那么据(2)的结论,A ∩B 中至多有一个元素(x 0,y 0),而x 0=5224121-=--a a <0,y 0=43201=+x a <0,这样的(x 0,y 0)∉A ,产生矛盾,故a 1=1,d =1时A ∩B =∅,所以a 1≠0时,一定有A ∩B ≠∅是不正确的.7.解:由w =21zi +b 得z =ib w 22-, ∵z ∈A ,∴|z -2|≤2,代入得|ibw 22--2|≤2,化简得|w -(b +i )|≤1.∴集合A 、B 在复平面内对应的点的集合是两个圆面,集合A 表示以点(2,0)为圆心,半径为2的圆面,集合B 表示以点(b ,1)为圆心,半径为1的圆面.又A ∩B =B ,即B ⊆A ,∴两圆内含.因此22)01()2(-+-b ≤2-1,即(b -2)2≤0,∴b =2. 8.(1)证明:设x 0是集合A 中的任一元素,即有x 0∈A . ∵A ={x |x =f (x )},∴x 0=f (x 0).即有f [f (x 0)]=f (x 0)=x 0,∴x 0∈B ,故A ⊆B .(2)证明:∵A ={-1,3}={x |x 2+px +q =x },∴方程x 2+(p -1)x +q =0有两根-1和3,应用韦达定理,得⎩⎨⎧-=-=⇒⎩⎨⎧=⨯---=+-313)1(),1(31q p q p ∴f (x )=x 2-x -3.于是集合B 的元素是方程f [f (x )]=x ,也即(x 2-x -3)2-(x 2-x -3)-3=x (*)的根. 将方程(*)变形,得(x 2-x -3)2-x 2=0解得x =1,3,3,-3. 故B ={-3,-1,3,3}.充要条件的判定充分条件、必要条件和充要条件是重要的数学概念,主要用来区分命题的条件p 和结论q 之间的关系.本节主要是通过不同的知识点来剖析充分必要条件的意义,让考生能准确判定给定的两个命题的充要关系.●难点磁场(★★★★★)已知关于x 的实系数二次方程x 2+ax +b =0有两个实数根α、β,证明:|α|<2且|β|<2是2|a |<4+b 且|b |<4的充要条件.●案例探究[例1]已知p :|1-31-x |≤2,q :x 2-2x +1-m 2≤0(m >0),若⌐p 是⌐q 的必要而不充分条件,求实数m 的取值范围.命题意图:本题以含绝对值的不等式及一元二次不等式的解法为考查对象,同时考查了充分必要条件及四种命题中等价命题的应用,强调了知识点的灵活性.知识依托:本题解题的闪光点是利用等价命题对题目的文字表述方式进行转化,使考生对充要条件的难理解变得简单明了.错解分析:对四种命题以及充要条件的定义实质理解不清晰是解此题的难点,对否命题,学生本身存在着语言理解上的困难.技巧与方法:利用等价命题先进行命题的等价转化,搞清晰命题中条件与结论的关系,再去解不等式,找解集间的包含关系,进而使问题解决.解:由题意知:命题:若⌐p 是⌐q 的必要而不充分条件的等价命题即逆否命题为:p 是q 的充分不必要条件.p :|1-31-x |≤2⇒-2≤31-x -1≤2⇒-1≤31-x ≤3⇒-2≤x ≤10 q :x 2-2x +1-m 2≤0⇒[x -(1-m )][x -(1+m )]≤0 *∵p 是q 的充分不必要条件, ∴不等式|1-31-x |≤2的解集是x 2-2x +1-m 2≤0(m >0)解集的子集. 又∵m >0∴不等式*的解集为1-m ≤x ≤1+m∴⎩⎨⎧≥≥⇒⎩⎨⎧≥+-≤-9110121m m m m ,∴m ≥9, ∴实数m 的取值范围是[9,+∞).[例2]已知数列{a n }的前n 项S n =p n +q (p ≠0,p ≠1),求数列{a n }是等比数列的充要条件. 命题意图:本题重点考查充要条件的概念及考生解答充要条件命题时的思维的严谨性. 知识依托:以等比数列的判定为主线,使本题的闪光点在于抓住数列前n 项和与通项之间的递推关系,严格利用定义去判定.错解分析:因为题目是求的充要条件,即有充分性和必要性两层含义,考生很容易忽视充分性的证明.技巧与方法:由a n =⎩⎨⎧≥-=-)2()1(11n S S n S n n关系式去寻找a n 与a n +1的比值,但同时要注意充分性的证明.解:a 1=S 1=p +q .当n ≥2时,a n =S n -S n -1=p n -1(p -1)∵p ≠0,p ≠1,∴)1()1(1---p p p p n n =p若{a n }为等比数列,则nn a a a a 112+==p ∴qp p p +-)1(=p , ∵p ≠0,∴p -1=p +q ,∴q =-1 这是{a n }为等比数列的必要条件.下面证明q =-1是{a n }为等比数列的充分条件. 当q =-1时,∴S n =p n -1(p ≠0,p ≠1),a 1=S 1=p -1当n ≥2时,a n =S n -S n -1=p n -p n -1=p n -1(p -1)∴a n =(p -1)p n -1 (p ≠0,p ≠1)211)1()1(-----=n n n n p p p p a a =p 为常数 ∴q =-1时,数列{a n }为等比数列.即数列{a n }是等比数列的充要条件为q =-1. ●锦囊妙计本难点所涉及的问题及解决方法主要有: (1)要理解“充分条件”“必要条件”的概念:当“若p 则q ”形式的命题为真时,就记作p ⇒q ,称p 是q 的充分条件,同时称q 是p 的必要条件,因此判断充分条件或必要条件就归结为判断命题的真假.(2)要理解“充要条件”的概念,对于符号“⇔”要熟悉它的各种同义词语:“等价于”,“当且仅当”,“必须并且只需”,“……,反之也真”等.(3)数学概念的定义具有相称性,即数学概念的定义都可以看成是充要条件,既是概念的判断依据,又是概念所具有的性质.(4)从集合观点看,若A ⊆B ,则A 是B 的充分条件,B 是A 的必要条件;若A =B ,则A 、B 互为充要条件.(5)证明命题条件的充要性时,既要证明原命题成立(即条件的充分性),又要证明它的逆命题成立(即条件的必要性).●歼灭难点训练 一、选择题1.(★★★★)函数f (x )=x |x +a |+b 是奇函数的充要条件是( ) A.ab =0 B.a +b =0 C.a =b D.a 2+b 2=02.(★★★★)“a =1”是函数y =cos 2ax -sin 2ax 的最小正周期为“π”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既非充分条件也不是必要条件 二、填空题3.(★★★★)a =3是直线ax +2y +3a =0和直线3x +(a -1)y =a -7平行且不重合的_________.4.(★★★★)命题A :两曲线F (x ,y )=0和G (x ,y )=0相交于点P (x 0,y 0),命题B :曲线F (x ,y )+λG (x ,y )=0(λ为常数)过点P (x 0,y 0),则A 是B 的__________条件.三、解答题5.(★★★★★)设α,β是方程x 2-ax +b =0的两个实根,试分析a >2且b >1是两根α、β均大于1的什么条件?6.(★★★★★)已知数列{a n }、{b n }满足:b n =nna a a n+++++++ 321221,求证:数列{a n }成等差数列的充要条件是数列{b n }也是等差数列.7.(★★★★★)已知抛物线C :y =-x 2+mx -1和点A (3,0),B (0,3),求抛物线C 与线段AB 有两个不同交点的充要条件.8.(★★★★★)p :-2<m <0,0<n <1;q :关于x 的方程x 2+mx +n =0有2个小于1的正根,试分析p 是q 的什么条件.(充要条件)参考答案难点磁场证明:(1)充分性:由韦达定理,得|b |=|α·β|=|α|·|β|<2×2=4. 设f (x )=x 2+ax +b ,则f (x )的图象是开口向上的抛物线. 又|α|<2,|β|<2,∴f (±2)>0.即有⇒⎩⎨⎧>+->++024024b a b a 4+b >2a >-(4+b )又|b |<4⇒4+b >0⇒2|a |<4+b (2)必要性:由2|a |<4+b ⇒f (±2)>0且f (x )的图象是开口向上的抛物线. ∴方程f (x )=0的两根α,β同在(-2,2)内或无实根. ∵α,β是方程f (x )=0的实根,∴α,β同在(-2,2)内,即|α|<2且|β|<2. 歼灭难点训练一、1.解析:若a 2+b 2=0,即a =b =0,此时f (-x )=(-x )|x +0|+0=-x ·|x |=-(x |x +0|+b ) =-(x |x +a |+b )=-f (x ).∴a 2+b 2=0是f (x )为奇函数的充分条件,又若f (x )=x |x +a |+b 是奇函数,即f (-x )= (-x )|(-x )+a |+b =-f (x ),则必有a =b =0,即a 2+b 2=0.∴a 2+b 2=0是f (x )为奇函数的必要条件. 答案:D2.解析:若a =1,则y =cos 2x -sin 2x =cos2x ,此时y 的最小正周期为π.故a =1是充分条件,反过来,由y =cos 2ax -sin 2ax =cos2ax .故函数y 的最小正周期为π,则a =±1,故a =1不是必要条件.答案:A二、3.解析:当a =3时,直线l 1:3x +2y +9=0;直线l 2:3x +2y +4=0.∵l 1与l 2的A 1∶A 2=B 1∶B 2=1∶1,而C 1∶C 2=9∶4≠1,即C 1≠C 2,∴a =3⇔l 1∥l 2.答案:充要条件4.解析:若P (x 0,y 0)是F (x ,y )=0和G (x ,y )=0的交点,则F (x 0,y 0)+λG (x 0,y 0)=0,即F (x ,y )+λG (x ,y )=0,过P (x 0,y 0);反之不成立.答案:充分不必要三、5.解:根据韦达定理得a =α+β,b =αβ.判定的条件是p :⎩⎨⎧>>12b a 结论是q :⎩⎨⎧>>11βα(注意p 中a 、b 满足的前提是Δ=a 2-4b ≥0)(1)由⎩⎨⎧>>11βα,得a =α+β>2,b =αβ>1,∴q ⇒p(2)为证明pq ,可以举出反例:取α=4,β=21,它满足a =α+β=4+21>2,b =αβ=4×21=2>1,但q 不成立. 综上讨论可知a >2,b >1是α>1,β>1的必要但不充分条件. 6.证明:①必要性:设{a n }成等差数列,公差为d ,∵{a n }成等差数列.dn a n n n n d n a n na a a b n n 32)1(1])1(3221[)21(32121121⋅-+=+++-++⋅+⋅++++=+++++++=∴ 从而b n +1-b n =a 1+n ·32d -a 1-(n -1) 32d =32d 为常数.故{b n }是等差数列,公差为32d .②充分性:设{b n }是等差数列,公差为d ′,则b n =(n -1)d ′ ∵b n (1+2+…+n )=a 1+2a 2+…+na n ①b n -1(1+2+…+n -1)=a 1+2a 2+…+(n -1)a n②①-②得:na n =2)1(2)1(--+n n b n n n b n -1 ∴a n =d n b d n b n d n b n b n b n n n '⋅-+='-+--'-++=--+-23)1(])2([21])1([2121211111,从而得a n +1-a n =23d ′为常数,故{a n }是等差数列.综上所述,数列{a n }成等差数列的充要条件是数列{b n }也是等差数列. 7.解:①必要性:由已知得,线段AB 的方程为y =-x +3(0≤x ≤3) 由于抛物线C 和线段AB 有两个不同的交点,所以方程组⎩⎨⎧≤≤+-=-+-=)30(312x x y mx x y *有两个不同的实数解. 消元得:x 2-(m +1)x +4=0(0≤x ≤3) 设f (x )=x 2-(m +1)x +4,则有⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<≤<⇒≥++-=≥=>⨯-+=∆3210310304)1(39)3(04)0(044)1(2m m m f f m ②充分性: 当3<x ≤310时, x 1=2)1(1216)1(122+-+>-+-+m m m m >0 3216)1310(1310216)1(1222=-+++≤-+-+=m m x∴方程x 2-(m +1)x +4=0有两个不等的实根x 1,x 2,且0<x 1<x 2≤3,方程组*有两组不同的实数解.因此,抛物线y =-x 2+mx -1和线段AB 有两个不同交点的充要条件3<m ≤310.8.解:若关于x 的方程x 2+mx +n =0有2个小于1的正根,设为x 1,x 2. 则0<x 1<1,0<x 2<1,有0<x 1+x 2<2且0<x 1x 2<1,根据韦达定理:⎩⎨⎧<<<-<⎩⎨⎧=-=+10202121n m n x x m x x 得 有-2<m <0;0<n <1即有q ⇒p . 反之,取m =-21491,02131,21,312⨯-=∆=+-=x x n <0 方程x 2+mx +n =0无实根,所以p q综上所述,p 是q 的必要不充分条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简易逻辑(理)1. (2015·安徽·3)设:12,:21x p x q <<>,则p 是q 成立的()(A )充分不必要条件(B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件2. (2015·北京·4)设α,β是两个不同的平面,m 是直线且m α⊂.“m β∥”是“αβ∥”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3. (2015·福建·7)若,l m 是两条不同的直线,m 垂直于平面α,则“l m ⊥”是“//l α的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. (2015·湖南·2)设A,B 是两个集合,则”A B A =”是“A B ⊆”的( )A.充分不必要条件B.必要不充分条件C .充要条件 D.既不充分也不必要条件5. (2015·四川·8)设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的()(A )充要条件(B )充分不必要条件(C )必要不充分条件(D )既不充分也不必要条件6. (2015·新课标I ·3)设命题P :∃n ∈N ,2n >2n ,则⌝P 为(A )∀n ∈N, 2n >2n (B )∃ n ∈N, 2n ≤2n (C )∀n ∈N, 2n ≤2n (D )∃ n ∈N, 2n =2n7. (2015·浙江·4)命题“**,()n N f n N ∀∈∈且()f n n ≤的否定形式是()A. **,()n N f n N ∀∈∈且()f n n >B. **,()n N f n N ∀∈∈或()f n n >C. **00,()n N f n N ∃∈∈且00()f n n >D . **00,()n N f n N ∃∈∈或00()f n n >8. (2015·浙江·6)设,A B 是有限集,定义(,)()()d A B card AB card A B =-,其中()card A 表示有限集A 中的元素个数,命题①:对任意有限集,A B ,“A B ≠”是“ (,)0d A B >”的充分必要条件;命题②:对任意有限集,,A B C ,(,)(,)(,)d A C d A B d B C ≤+,A . 命题①和命题②都成立 B. 命题①和命题②都不成立C. 命题①成立,命题②不成立D. 命题①不成立,命题②成立9. (2015·广东·4).“x>1”是“12log (x+2)<0”的A 、充要条件B 、充分不必要条件C 、必要不充分条件D 、既不充分也不必要条件10. (2014重庆理6)已知命题p :对任意x ∈R ,总有2x >0,q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是()A .p ∧qB .p ∧qC .p ∧qD .p ∧q11. (2014新课标1理9)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题: p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2,p 3:∀(x ,y )∈D ,x +2y ≤3,p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是()A .p 2,p 3B .p 1,p 2C .p 1,p 4D .p 1,p 312. (2014天津理7)设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件13. (2014上海理15)设R b a ∈,,则“4>+b a ”是“2,2>>b a 且”的( )(A )充分条件 (B )必要条件 (C )充分必要条件 (D )既非充分又非必要条件14. (2014陕西理8)原命题为“若12,z z 互为共轭复数,则12z z =”,关于逆命题,否命题,逆否命题真假性的判断依次如下,正确的是( )(A )真,假,真 (B )假,假,真 (C )真,真,假 (D )假,假,假15. (2014辽宁理5)设a ,b ,c 是非零向量,已知命题p :若a ·b =0,b ·c =0,则a ·c =0,命题q :若a ∥b ,b ∥c ,则a ∥c ,则下列命题中真命题是()A .p ∨qB .p ∧qC .(p )∧(q )D .p ∨(q )16. (2014湖南理5)已知命题p :若x>y ,则-x<-y :命题q :若x>y ,在命题①p q Λ ②p q ∨ ③()p q ∧⌝ ④()p q ⌝∨中,真命题是A 、①③B 、①④C 、②③D 、②④17. (2014湖北理3)设U 为全集,B A ,是集合,则“存在集合C 使得C C B C A U ⊆⊆,”是“∅=B A ”的( )A. 充分而不必要的条件B. 必要而不充分的条件C . 充要条件 D. 既不充分也不必要的条件18. 【14年福建理6】直线1:+=kx y l 与圆1:22=+y x O 相交于B A ,两点,则“1=k ”是“OAB ∆的面积为21”是的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件 D .既不充分又不必要条件19. (2014北京理5)设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件 .C 充分必要条件 D .既不充分也不必要条件20. (2014安徽理2)“0<x ”是“0)1ln(<+x ”的 .A . 充分不必要条件B .必要不充分条件C . 充分必要条件D . 既不充分也不必要条件21. (2013福建数学(理)试题)已知集合{}1,A a =,{}1,2,3B =,则“3a =”是“A B ⊆”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件22. (2013年重庆数学(理))命题“对任意x R ∈,都有20x ≥”的否定为( )A .对任意x R ∈,都有20x <B .不存在x R ∈,都有20x <C .存在0x R ∈,使得200x ≥D .存在0x R ∈,使得200x < 23. (2013年四川卷(理))设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )A .B x A x p ∉∈∃⌝2,:B .:,2p x A x B ⌝∀∉∉C .:,2p x A x B ⌝∃∉∈D .:,2p x A x B ⌝∃∈∈24. (2013年湖北卷(理))在一次跳伞训练中,甲.乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( )A .()()p q ⌝∨⌝B .()p q ∨⌝C .()()p q ⌝∧⌝D .p q ∨25. (2013年高考上海卷(理))钱大姐常说“便宜没好货”,她这句话的意思是:“不便宜”是“好货”的( )A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件26. (2013年天津数学(理))已知下列三个命题: ①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等; ③直线x + y + 1 = 0与圆2212x y +=相切. 其中真命题的序号是:( )A .①②③B .①②C .①③D .②③27. (2013年高考陕西卷(理))设z 1, z 2是复数, 则下列命题中的假命题是( )A .若12||0z z -=, 则12z z =B .若12z z =, 则12z z =C .若||||21z z =, 则2112··z z z z =D .若12||||z z =, 则2122z z = 28. (2013年山东数学(理))给定两个命题p ,q .若p ⌝是q 的必要而不充分条件,则p 是q ⌝的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 29. (2013年高考陕西卷(理))设a , b 为向量, 则“||||||=a a b b ·”是“a //b ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件30. (2013年浙江数学(理))已知函数),0,0)(cos()(R A x A x f ∈>>+=ϕωϕω,则“)(x f 是奇函数”是2πϕ=的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 31. (2013年安徽数学(理))"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件32. (2013年高考北京卷(理))“φ=π”是“曲线y =sin (2x +φ)过坐标原点的”( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 33. (2013年上海市春季)已知 a b c R ∈、、,“240b ac -<”是“函数2()f x ax bx c =++的图像恒在x 轴上方”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件 34. (2013年山东数学(理))定义“正对数”:0,01,ln ln ,1,x x x x +<<⎧=⎨≥⎩现有四个命题: ①若0,0a b >>,则ln ()ln b a b a ++=;②若0,0a b >>,则ln ()ln ln ab a b +++=+③若0,0a b >>,则ln ()ln ln a a b b +++≥-④若0,0a b >>,则ln ()ln ln ln 2a b a b ++++≤++其中的真命题有_________________.(写出所有真命题的编号)。

相关文档
最新文档