2015-2016学年四川省资阳市高二下学期期末质量检测数学(理)试题(图片版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资阳市2015—2016学年度高中二年级第二学期期末质量检测
数学参考答案及评分意见(理工类)
一、选择题:本大题共12小题,每小题5分,共60分。
1.A 2.C 3.B 4.C 5.A 6.D 7.A
8.B
9. B
10.D
11.B
12.C
二、填空题:本大题共4小题,每小题5分,共20分。
13. -20
14. -1
15.
2
1
3- 16.(2,)-+∞ 三、解答题:本大题共6个小题,共70分。
17.(本小题满分10分)
解析:设2
()4
x P x ,,其中0>x ,
(Ⅰ)由题,F 坐标为(0,1),
由2PF =
2,化简得428480x x +-=,
解得2x =±,又0>x ,所以2x =.
所以点P 的坐标为(21),. ·································································································· 5分
(Ⅱ)设点P 到直线10y x =-的距离为d ,
则d
21(2)36
4x -+=2x =时等号成立),
所以点P 到直线10y x =-
,此时点P 为(21),. (10)
分
18.(本小题满分12分)
解析:(Ⅰ)记甲获奖为事件A ,
事件A 发生的概率3222()5454P A =⨯+⨯101
202==. ·
····················································· 4分 (Ⅱ)ξ的可能取值为012,
,, 221
(0)545
P ξ==⨯=;
22321
(1)54542
P ξ==⨯+⨯=;
323
(2)5410
P ξ==⨯=.
所以ξ的分布列为
数学期望()0125210E ξ=⨯+⨯+⨯10
=. (12)
分
19.(本小题满分12分)
解析:(Ⅰ)由3()2a f x x '=
-,则31
(1)22
f a '=-=,得2a =, 所以3()2ln 32f x x x =-+,3
(1)2
f =,
把切点3(1,)2代入切线方程有31
22
b =+,解得1b =,
综上:2a =,1b =. ········································································································· 6分 (Ⅱ)由(Ⅰ)有2343()22x
f x x x
-'=-=
, 当3
40<
<x 时,()0f x '>,()f x 单调递增;当4
3x >时,()0f x '<,()f x 单调递减.
所以()f x 在43
x =时取得极大值44
()2ln 133f =+,()f x 无极小值. (12)
分
20.(本小题满分12分)
解析:(Ⅰ)由题得
(7595)P X <<1(75)(95)P X P X =-≤-≥0.4= ··························································· 4分
(Ⅱ)ξ可能值为0123.,
,, 则03
311(0)()28
P C ξ===;
13
313(1)()28
P C ξ===;
23313
(2)()28
P C ξ===;
33
311(3)()28
P C ξ===.
所以ξ的分布列为
数学期望1331()01238888E ξ=⨯+⨯+⨯+⨯3
2=. (12)
分
21.(本小题满分12分)
解析:(Ⅰ)由题2
222
222
3413
14c a b c
a a
b ⎧=-⎪⎪⎪=⎨⎪⎪+=⎪⎩,
,,解得222
413a b c ⎧=⎪=⎨⎪=⎩,,,
所以椭圆C 的方程为2
214
x y +=. ····················································································· 4分
(Ⅱ)由(Ⅰ)知(2,0)B -.
①当直线MN 斜率存在时,设直线MN 方程为y kx n =+,11(,)M x y ,22(,)N x y , 联立直线与椭圆方程22
44y kx n x y =+⎧⎨+=⎩,
,
整理得222(41)8440k x knx n +++-=, 则122841kn
x x k -+=+,21224441
n x x k -⋅=+, ··········································································· 6分
判别式2222Δ644(41)(44)k n k n =-+-226416160k n =-+>,即2241n k <+,()* 因为12,l l 互相垂直,所以0BM BN ⋅=
,即1212(2)(2)0x x y y +++⋅=,
整理得221212(1)(2)()40k x x kn x x n +⋅+++++=, ······················································ 8分
所以22222(1)(44)8(2)(4)(41)041
k n kn kn n k k +--++++=+,
即22516120n kn k -+=,解得2n k =或6
5
n k =.
当2n k =时,直线MN 方程为2y kx k =+过点(2,0)B -,不合题意应舍去;
当65n k =时,满足不等式()*,直线MN 方程为6
5y kx k =+,过定点6(,0)5-. (10)
分
②当直线MN 斜率不存在时,设直线MN 方程为x n =,
则M 坐标为(,2)n n +,代入椭圆方程得2
2(2)14n n ++=,解得65n =-,2n =-(舍去).
此时直线MN 过点6
(,0)5-. (11)
分
综上所述:直线MN 过定点6
(,0)5-. (12)
分
22.(本小题满分12分)
解析:(Ⅰ) 当4a =-时,211()4ln 22f x x x =-+-(0x >),则244
()x f x x x x -'=-=.
当02x <<时,()0f x '<,()f x 单调递减;当2x >时,()0f x '>,()f x 单调递增, 所以()f x 递减区间是(02),;递增区间是(2)+∞,. ····················································· 4分
(Ⅱ) 2()a x a
f x x x x
+'=+=(0x >),
(1)当0a ≥时,在[1
)+∞,上()0f x '>,此时()f x 单调递增, 所以()(1)0f x f ≥=,故0a ≥满足条件. ····································································· 6分
(2)当0a <时,2()x a f x x
+'=2()x a x --=
, 令()0f x '=,可得x =舍去),或x
当0x <<时,()0f x '<,此时()f x 单调递减;当x ()0f x '>,
此时()f x 单调递增.········································································································ 8分
①1,即10a -≤<时, 函数()f x 在[1
)+∞,上单调递增, 所以()(1)0f x f ≥=,故10a -≤<满足条件.······························································ 10分
②1>,即1a <-时,
函数()f x 在(1上单调递减;在)+∞上单调递增,
不妨取
0x ∈,则0()(1)0f x f <=,所以1a <-不满足条件. 综上所述,函数()0f x ≥在区间[1
)+∞,上恒成立时,1a ≥-, 所以()0f x ≥在区间[1)+∞,上恒成立时a 的最小值为-1. (12)
分。