STP配置详解(推荐)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、网桥/交换机工作原理
首先,交换机通过学习每个端口所接收到的数据帧的源MAC地址来建立MAC地址表,然后根据MAC地址表来转发数据帧。
若目的地址在MAC表中没有相应的表项,则从所有端口(接收端口除外)泛洪出去;若有则转发到目的地址对应的端口。
为了控制广播风暴及提高安全性,通常在交换机上规划VLAN;交换网络冗余链路的引入提供了更高的可靠性,为解决交换网络冗余链路中环路问题,又引入了STP(Spanning-Tree Protocol)协议。
二VLAN与生成树
在缺省的CISCOSTP模式中,每个VLAN定义一个STP.
IEEE802.1Q标准是在整个交换VLAN网络中使用一个STP,但并不排除在每个VLAN中实现STP.
1VLAN与生成树的关系
>IEEE通用生成树(CST)
>CISCOPERVLAN生成树(PVST)
>带CST的CISCOPERVLAN生成树(PVST+)
CST是IEEE解决运行虚拟局域网VLAN生成树的方法.CST定义,整个第2层交换网络所有实现了的VLAN,仅使用一个生成树实例.这个生成树实例运行在整个交换局域网上.PVST是解决在虚拟局域网上处理生成树的CISCO特有解决方案.PVST为每个虚拟局域网运行单独的生成树实例.一般情况下PVST要求在交换机之间的中继链路上运行CISCO的ISL.
PVST+是CISCO解决在虚拟局域网上处理生成树问题的另一个方案.PVST+允许CST信息传给PVST,以便与其他厂商在VLAN上运行生成树的实现方法进行操作.
2按VLAN生成树(PVST)
为每个VLAN建立一个独立的生成树实例(PVST).
生成树算法计算整个交换型网络的最佳无环路径.
PVST的优点:
>生成树拓扑结构的总体规模减少.
>改进了生成树的扩展性,并减少了收敛时间.
>提供更快的收敛恢复能力和更高的可靠性.
PVST的缺点:
>为了维护针对每个VLAN而生成的生树,交换机的利用率会更高
>为了支持各个VLAN的BPDU,需要占用更多的TRUNK链路带宽
生成树仅可运行在64个VLAN上.
3公共生成树(CST)
CST是IEEE在虚拟局域网上处理生成树的特有方法,这是一种VLAN解决方案,称为单一或者公共生成树.生成树协议运行在VLAN1即缺省的VLAN上.所有的交换机都举出同一个根网桥,并建立与该根网桥的关系.
公共生成树不能针对每个VLAN来优化根网桥的位置.
公共生成树优点:
>最小数量的BPDU通信,带宽占用少.
>交换机负载保持最小.
公共生成树的缺点如下:
>只用一个根网桥,这不能为所有的VLAN做到网桥的优化放置,导致对某些设备来说可能存在次优化路径.
>为包括交换架构中的所有端口,生成树的拓扑结构较大,这就会导致较长的收敛时间和更频繁的重新配置.
4增强型的按VLAN生成树(PVST+)
PVST+有以下特征:
>它是CISCO发展的,可以与802.1Q公共生成树(CST)互操作.
>通过ISL中继,PVST+与现存的CISCO交换机PVST协议向后兼容,同时,PVST+也通过802.1Q中继与CST连接互操作.
>如果PVST区域和CST区域之间要互操作,一定要通过PVST+区域.
三生成树配置
生成树配置涉及下面一些任务:
>选举和维护一个根网桥.
>通过配置一些生成树的参数来优化生成树.(如端口优先级端口成本)
>通过配置上行链路来减少生成树的收敛时间.
2950交换机上生成树的缺省配置:
>STP启用:缺省情况下VLAN1启用
>STP模式:PVST+
>交换机优先级:32768
>STP端口优先级:128
>STP路径成本:1000M:4100M:1910M:100
>STPVLAN端口成本:(同上)
>STP计时器:HELLO时间:2秒转发延迟:15秒最大老化时间:20秒
1启用生成树:
switch(config)#spanning-tree vlan vlan-list
步骤:
switch#c onfig t
switch(config)# spanning-tree vlan 10
switch(config)#end
switch#show spanning-tree summary/detail
summary摘要detail详细
Bridge Identifier has priority 8912,address 0006.eb06.1741 (本地交换机网桥ID)desigated root has priority 8912,address 0006.eb06.1741 (根网桥ID)
designated port is 7,path cost 0 (路径成本)
times: hold1, topology change 35, notification 2
hello 2, max age 20, forward delay 15 (根计时器)
2人为建立根网桥
在生成树网络中,最重要的事情就是决定根网桥的位置.
可以让交换机自己根据一定的原则来选择根网桥以及备份或从(secondary)根网桥,也可使用命令人为指定根网桥.
PS:不要将接入层的交换机配置为根网桥.STP根网桥通常是汇聚层或者核心层的交换机.通过命令直接建立根网桥:
spanning-tree vlan vlan-id root primary (网桥优先级被置为24576)
步骤:
switch#c onfig terminal
switch(config)#spanning-tree vlan vlan-id root primary dianmeter net-diameter
hello-time sec
为VLAN配置根网桥、网络半径以及HELLO间隔
ROOT关键字:指定这台交换机为根网桥
diameter netdianmeter:该关键字指定在末端口主机任意两点之间的网段的最大数
量.net-diameter的值是2-7.这个直径应该从根网桥开始计算,根网桥是1
switch(config)#end
switch#show spanning-tree vlan vlan-id detail
让交换机返回缺省的配置,可以使用如下命令:
no spanstree vlan vlan-id root
2>修改网桥的优先级别:
多数情况下做如下配置:
spanning -tree vlan vlan-id root primary (主ROOT网桥优先级被置为24576)spanning-tree vlan vlan-id root secondary(备份ROOT网桥优先级被置为28672)
修改网桥优先级:
spanning-tree vlan vlan-id priority bridge-priority
3确定到根网桥的路径
生成树协议依次用BPDU中这些不同域来确定根网桥的最佳路径:
>根路径成本(ROOTPATHCOST)
>发送网桥ID(BRIDGEID)
>发送端口ID(PORTID)
从端口发出BPDU时,它会被施加一个端口成本,所有端口成本的总和就是根路径成本.生成树首先查看根路径成本,以确定哪些端口应该转发,哪些端口应该阻塞.报告最低路径成本的端口被选为转发端口.
如果对多个端口来说,其中根路径成本相同,那么,生成树将查看网桥ID.报告有最低网桥ID的BPDU端口被允许进行转发,而其他所有端口被阻断.
如果路径成本和发送网桥ID都相同(如在平行链路中),生成树将查看发送端口ID.端口ID值小的优先级高,将作为转发端口.
4修改端口成本
如果想要改变某台交换机和根网桥之间的数据通路,就要仔细计算当前的路径成本,然后,改变所希望路径的端口成本.
我们可以更改交换机端口的成本,端口成本更低的端口更容易被选为转发帧的端口.
spanning-tree vlan vlan-id cost cost
no spanning-tree vlan vlan-id cost(恢复默认成本)
配置步骤:
>1config terminal 进入配置状态
>2interface interface-id 进入端口配置界面
>3spanning-tree vlan vlan-id cost cost值为某个VLAN配置端口成本
>4end
>5show spanning-tree interface interface-id detail 查看配置
>6write
5修改端口优先级
在根路径成本和发送网桥ID都相同的情况下,有最低优先级的端口将为vlan转发数据帧.
对应基于CLI的命令的交换机,可能的端口优先级别范围为0~63,缺省为32.基于IOS的交换机端口的优先级别范围是0~255,缺省为128.
spanning-tree vlan vlan-id port-priority priority值
no spanning-tree vlan vlan-id port-priority
1>config terminal (进入配置模式)
2>interface interface-id (进入端口配置模式)
3> spanning-tree vlan vlan-id port-priority 值
4> end
5>show spanning-tree interface interface-id detail
6>write
6修改生成树计时器
使用缺省的STP计时器配置,从一条链路失效到另一条接替,需要花费50秒.这可能使网络存取被耽误,从而引起超时,不能阻止桥接回路的产生,还会对某些协议的应用产生不良影响,会引起连接、会话或数据的丢失。
还有一种情况就是使用热备份路由选择协议(HSRP),将两台路由器连接到一台交换机上。
某些情况下,缺省的STP的计时器值对于HSRP而言过长,会引起“活动”路由器的选择的错误。
1修改HELLO时间
spanning-tree vlan vlan-id hello-time seconds
可以修改每一个VLAN的Hello间隔(HELLOTIME),它的取值范围是1~10秒
2修改转发延迟计时器
转发延迟计时器(forward delay timer)确定一个端口在转换到学习状态之前处于侦听状态的时间,以及在学习状态转换到转发状态之前处于学习状态的时间。
spanning-tree vlan vlan-id forward-time seconds
PS:转发时间过长,会导致生成树的收敛过慢
转发时间过短,可能会在拓扑改变的时候,引入暂时的路径回环。
3修改最大老化时间
最大老化时间(MAX—AGETIMER)规定了从一个具有指定端口的邻接交换机上所收到的BPDU报文的生存时间。
如果非指定端口在最大老化时间内没有收到BPDU报文,该端口将进入listening状态,并接收交换机产生配置BPDU报文。
修改命令:
spanning-tree vlan vlan-id max-age seconds
no spanning-tree vlan vlan-id max-age (恢复默认值)
7速端口的配置
通过速端口,可以大大减少处于侦听和学习状态的时间,速端口几乎立刻进入转发状态。
速端口将工作站或者服务器连接到网络的时间减至最短。
PS:确定一个端口下面接的是终端的时候,方可启用速端口设置
switch(config-if)#spanning-tree portfast
switch(config-if)#no spanning-tree portfast(关闭速端口)
查看端口的速端口状态:
show spanning-tree interface interface-id detail (最后一行)
8上行速链路的配置
当检测到转发链路发生失效时,上行链路可使交换机上一个阻断的端口几乎立刻马上开始进行转发。
1>上行速链路在企业网中的应用
交换机可以分为3级:
>核心层交换机
>汇聚层交换机
>接入层交换机
汇聚层和接入层的交换机上各自都至少有一条冗作链路被STP阻塞,以避免环路.
使用STP上行速链路,可以在链路或者交换机失效或者STP重新配置时,加速新的根端口的选择过程.被阻塞端口会立即转换到转发状态.
上行速链路还可以通过减少参数最大更新速率(max-update-rate,IOS)来限制突发的组播通信.这些参数的缺省值是150包/秒.
在网络边缘的接入层上,上行速链路是一项最有用的功能,但它不适合用在骨干设备上.
上行速链路能在直连链路失效时实现快速收敛,并能通过上行链路组(uplink group),在多个冗余链路之间实现负载平衡.上行链路组是一组接口(属于各个VLAN)
上行链路组由一个根端口(处于转发状态)和一组阻塞状态的端口组成.
上行链路的配置:
要在配置了网桥优先级的VLAN上启动上行速链路,必须首先将VLAN上的交换机优先级恢复到缺省值.使用:
no spanning-tree vlan vlan-id priority
要配置上行速链路,需要使用命令:
spanning-tree uplinkfast [ max-uplink-rate pkts-per-second]
pkts-per-second的取值范围是每秒0到32000个数据包.缺省值是150,通常这个值就足够了.
要检查上行速链路的配置,可以使用如下命令:show spanning-tree summary
no spanning-tree uplinkfast(关闭)。