中考数学平行四边形综合经典题含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、平行四边形真题与模拟题分类汇编(难题易错题)
1.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且
AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;
(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;
(3)当点E、F运动到如图3所示的位置时,其它条件不变,请将图形补充完整,并直接写出∠BHO的度数.
【答案】(1)①证明见解析;②AG⊥BE.理由见解析;(2)证明见解析;(3)
∠BHO=45°.
【解析】
试题分析:(1)①根据正方形的性质得DA=DC,∠ADB=∠CDB=45°,则可根据“SAS”证明△ADG≌△CDG,所以∠DAG=∠DCG;②根据正方形的性质得AB=DC,
∠BAD=∠CDA=90°,根据“SAS”证明△ABE≌△DCF,则∠ABE=∠DCF,由于∠DAG=∠DCG,所以∠DAG=∠ABE,然后利用∠DAG+∠BAG=90°得到∠ABE+∠BAG=90°,于是可判断
AG⊥BE;
(2)如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,证明△AON≌△BOM,可得四边形OMHN为正方形,因此HO平分∠BHG结论成立;
(3)如答图2所示,与(1)同理,可以证明AG⊥BE;过点O作OM⊥BE于点M,
ON⊥AG于点N,构造全等三角形△AON≌△BOM,从而证明OMHN为正方形,所以HO 平分∠BHG,即∠BHO=45°.
试题解析:(1)①∵四边形ABCD为正方形,
∴DA=DC,∠ADB=∠CDB=45°,
在△ADG和△CDG中
,
∴△ADG≌△CDG(SAS),
∴∠DAG=∠DCG;
②AG⊥BE.理由如下:
∵四边形ABCD为正方形,
∴AB=DC,∠BAD=∠CDA=90°,
在△ABE和△DCF中
,
∴△ABE≌△DCF(SAS),
∴∠ABE=∠DCF,
∵∠DAG=∠DCG,
∴∠DAG=∠ABE,
∵∠DAG+∠BAG=90°,
∴∠ABE+∠BAG=90°,
∴∠AHB=90°,
∴AG⊥BE;
(2)由(1)可知AG⊥BE.
如答图1所示,过点O作OM⊥BE于点M,ON⊥AG于点N,则四边形OMHN为矩形.
∴∠MON=90°,
又∵OA⊥OB,
∴∠AON=∠BOM.
∵∠AON+∠OAN=90°,∠BOM+∠OBM=90°,
∴∠OAN=∠OBM.
在△AON与△BOM中,
∴△AON≌△BOM(AAS).
∴OM=ON,
∴矩形OMHN为正方形,
∴HO平分∠BHG.
(3)将图形补充完整,如答图2示,∠BHO=45°.
与(1)同理,可以证明AG ⊥BE .
过点O 作OM ⊥BE 于点M ,ON ⊥AG 于点N ,
与(2)同理,可以证明△AON ≌△BOM ,
可得OMHN 为正方形,所以HO 平分∠BHG ,
∴∠BHO=45°.
考点:1、四边形综合题;2、全等三角形的判定与性质;3、正方形的性质
2.问题发现:
(1)如图①,点P 为平行四边形ABCD 内一点,请过点P 画一条直线l ,使其同时平分平行四边形ABCD 的面积和周长.
问题探究:
(2)如图②,在平面直角坐标系xOy 中,矩形OABC 的边OA 、OC 分别在x 轴、y 轴正半轴上,点B 坐标为(8,6).已知点(6,7)P 为矩形外一点,请过点P 画一条同时平分矩形OABC 面积和周长的直线l ,说明理由并求出直线l ,说明理由并求出直线l 被矩形ABCD 截得线段的长度.
问题解决:
(3)如图③,在平面直角坐标系xOy 中,矩形OABCD 的边OA 、OD 分别在x 轴、y 轴正半轴上,DC x ∥轴,AB y ∥轴,且8OA OD ==,2AB CD ==,点
(1052,1052)P --为五边形内一点.请问:是否存在过点P 的直线l ,分别与边OA 与BC 交于点E 、F ,且同时平分五边形OABCD 的面积和周长?若存在,请求出点E 和点F 的坐标:若不存在,请说明理由.
【答案】(1)作图见解析;(2)25y x =-,35;(3)(0,0)E ,(5,5)F .
【解析】
试题分析:(1)连接AC 、BD 交于点O ,作直线PO ,直线PO 将平行四边形ABCD 的面积和周长分别相等的两部分.
(2)连接AC ,BD 交于点O ',过O '、P 点的直线将矩形ABCD 的面积和周长分为分别相等的两部分.
(3)存在,直线y x =平分五边形OABCD 面积、周长.
试题解析:(1)作图如下:
(2)∵(6,7)P ,(4,3)O ',
∴设:6PO y kx =+',
67{43k b k b +=+=,2{5
k b ==-, ∴25y x =-,
交x 轴于5,02N ⎛⎫ ⎪⎝⎭
, 交BC 于11,62M ⎛⎫ ⎪⎝⎭
, 2
211563522MN ⎛⎫=+-= ⎪⎝⎭.
(3)存在,直线y x =平分五边形OABCD 面积、周长.
∵(1052,102)P --在直线y x =上,
∴连OP 交OA 、BC 于点E 、F ,
设:BC y kx b =+,(8,2)(2,8)B C ,
82{28k b k +=+=,1{10
k b =-=,
∴直线:10BC y x =-+,
联立10{y x y x =-+=,得55x y =⎧⎨=⎩
, ∴(0,0)E ,(5,5)F .
3.已知:如图,在平行四边形ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD ,BC 于E ,F 两点,连结BE ,DF .
(1)求证:△DOE ≌△BOF .
(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由.
【答案】(1)证明见解析;(2)当∠DOE =90°时,四边形BFED 为菱形,理由见解析.
【解析】
试题分析:(1)利用平行四边形的性质以及全等三角形的判定方法得出△DOE ≌△BOF (ASA );
(2)首先利用一组对边平行且相等的四边形是平行四边形得出四边形EBFD 是平行四边形,进而利用垂直平分线的性质得出BE=ED ,即可得出答案.
试题解析:(1)∵在▱ABCD 中,O 为对角线BD 的中点,
∴BO=DO ,∠EDB=∠FBO ,
在△EOD 和△FOB 中
,
∴△DOE ≌△BOF (ASA );
(2)当∠DOE=90°时,四边形BFDE 为菱形,
理由:∵△DOE ≌△BOF ,∴OE=OF ,又∵OB=OD ,∴四边形EBFD 是平行四边形, ∵∠EOD=90°,∴EF ⊥BD ,∴四边形BFDE 为菱形.
考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.
4.已知矩形纸片OBCD 的边OB 在x 轴上,OD 在y 轴上,点C 在第一象限,且86OB OD ==,.现将纸片折叠,折痕为EF (点E ,F 是折痕与矩形的边的交点),点P 为点D 的对应点,再将纸片还原。
(I )若点P 落在矩形OBCD 的边OB 上,
①如图①,当点E 与点O 重合时,求点F 的坐标;
②如图②,当点E 在OB 上,点F 在DC 上时,EF 与DP 交于点G ,若7OP =,求点F 的坐标:
(Ⅱ)若点P 落在矩形OBCD 的内部,且点E ,F 分别在边OD ,边DC 上,当OP 取最小值时,求点P 的坐标(直接写出结果即可)。
【答案】(I )①点F 的坐标为(6,6);②点F 的坐标为85,614⎛⎫
⎪⎝⎭;(II )86,55P ⎛⎫ ⎪⎝⎭
【解析】
【分析】 (I )①根据折叠的性质可得45DOF POF ∴∠=∠=,再由矩形的性质,即可求出F 的坐标;
②由折叠的性质及矩形的特点,易得DGF PGE ∆≅∆,得到DF PE =,再加上平行,可以得到四边形DEPF 是平行四边形,在由对角线垂直,得出 DEPF 是菱形,设菱形的边长为x ,在Rt ODE ∆中,由勾股定理建立方程即可求解;
(Ⅱ)当O,P ,F 点共线时OP 的长度最短.
【详解】
解:(I )①∵折痕为EF,点P 为点D 的对应点
DOF POF ∴∆≅∆
45DOF POF ∴∠=∠=
∵四边形OBCD 是矩形,
90ODF ︒∴∠=
45DFO DOF ︒∴∠=∠=
6DF DO ∴==
点F 的坐标为(6,6)
②∵折痕为EF ,点P 为点D 的对应点.
,DG PG EF PD ∴=⊥
∵四边形OBCD 是矩形,
//DC OB ∴,
FDG EPG ∴∠=∠;
DGF PGE ∠=∠
DGF PGE ∴∆≅∆
DF PE ∴=
//DF PE
∴四边形DEPF 是平行四边形.
EF PD ⊥,
DEPF ∴是菱形.
设菱形的边长为x ,则DE EP x ==
7OP =,
7OE x ∴=-,
在Rt ODE ∆中,由勾股定理得222OD QB DE +=
2226(7)x x ∴+-= 解得8514
x = 8514DF ∴=
∴点F 的坐标为85,614⎛⎫ ⎪⎝⎭
(Ⅱ)86,55P ⎛⎫ ⎪⎝⎭
【点睛】
此题考查了几何折叠问题、等腰三角形的性质、平行四边形的判定和性质、勾股定理等知识,关键是根据折叠的性质进行解答,属于中考压轴题.
5.阅读下列材料:
我们定义:若一个四边形的一条对角线把四边形分成两个等腰三角形,则这条对角线叫这个四边形的和谐线,这个四边形叫做和谐四边形.如正方形就是和谐四边形.结合阅读材料,完成下列问题:
(1)下列哪个四边形一定是和谐四边形 .
A .平行四边形
B .矩形
C .菱形
D .等腰梯形
(2)命题:“和谐四边形一定是轴对称图形”是 命题(填“真”或“假”). (3)如图,等腰Rt △ABD 中,∠BAD =90°.若点C 为平面上一点,AC 为凸四边形ABCD 的和谐线,且AB =BC ,请求出∠ABC 的度数.
【答案】(1) C ;(2)∠ABC 的度数为60°或90°或150°.
【解析】
试题分析:(1)根据菱形的性质和和谐四边形定义,直接得出结论.
(2)根据和谐四边形定义,分AD=CD ,AD=AC ,AC=DC 讨论即可.
(1)根据和谐四边形定义,平行四边形,矩形,等腰梯形的对角线不能把四边形分成两个等腰三角形,菱形的一条对角线能把四边形分成两个等腰三角形够.故选C.
(2)∵等腰Rt △ABD 中,∠BAD=90°,∴AB=AD.
∵AC 为凸四边形ABCD 的和谐线,且AB=BC ,
∴分三种情况讨论:
若AD=CD ,如图1,则凸四边形ABCD 是正方形,∠ABC=90°;
若AD=AC ,如图 2,则AB=AC=BC ,△ABC 是等边三角形,∠ABC=60°;
若AC=DC ,如图 3,则可求∠ABC=150°.
考点:1.新定义;2.菱形的性质;3.正方形的判定和性质;4.等边三角形的判定和性质;5.分类思想的应用.
6.在ABC 中,AD BC ⊥于点D ,点E 为AC 边的中点,过点A 作//AF BC ,交DE 的延长线于点F ,连接CF .
()1如图1,求证:四边形ADCF 是矩形;
()2如图2,当AB AC =时,取AB 的中点G ,连接DG 、EG ,在不添加任何辅助线和字母的条件下,请直接写出图中所有的平行四边形(不包括矩形ADCF ).
【答案】(1) 证明见解析;(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.
【解析】
【分析】
(1)由△AEF ≌△CED ,推出EF=DE ,又AE=EC ,推出四边形ADCF 是平行四边形,只要证明∠ADC=90°,即可推出四边形ADCF 是矩形.
(2)四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.
【详解】
()1证明:∵//AF BC ,
∴AFE EDC ∠=∠,
∵E 是AC 中点,
∴AE EC =,
在AEF 和CED 中,
AFE CDE AEF CED AE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩
,
∴
AEF CED ≅,
∴EF DE =,∵AE EC =,
∴四边形ADCF 是平行四边形,
∵AD BC ⊥, ∴90ADC ∠=,
∴四边形ADCF 是矩形.
()2∵线段DG 、线段GE 、线段DE 都是ABC 的中位线,又//AF BC ,
∴//AB DE ,//DG AC ,//EG BC , ∴四边形ABDF 、四边形AGEF 、四边形GBDE 、四边形AGDE 、四边形GDCE 都是平行四边形.
【点睛】
考查平行四边形的判定、矩形的判定、三角形的中位线定理、全等三角形的判定和性质等知识,正确寻找全等三角形解决问题是解题的关键.
7.△ABC 为等边三角形,AF AB =.BCD BDC AEC ∠=∠=∠.
(1)求证:四边形ABDF是菱形.
的角平分线,连接AD,找出图中所有的等腰三角形.
(2)若BD是ABC
【答案】(1)证明见解析;(2)图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.
【解析】
【分析】
(1)先求证BD∥AF,证明四边形ABDF是平行四边形,再利用有一组邻边相等的平行四边形是菱形即可证明;(2)先利用BD平分∠ABC,得到BD垂直平分线段AC,进而证明△DAC是等腰三角形,根据BD⊥AC,AF⊥AC,找到角度之间的关系,证明△DAE是等腰三角形,进而得到BC=BD=BA=AF=DF,即可解题,见详解.
【详解】
(1)如图1中,∵∠BCD=∠BDC,
∴BC=BD,
∵△ABC是等边三角形,
∴AB=BC,
∵AB=AF,
∴BD=AF,
∵∠BDC=∠AEC,
∴BD∥AF,
∴四边形ABDF是平行四边形,
∵AB=AF,
∴四边形ABDF是菱形.
(2)解:如图2中,∵BA=BC,BD平分∠ABC,
∴BD垂直平分线段AC,
∴DA=DC,
∴△DAC是等腰三角形,
∵AF∥BD,BD⊥AC
∴AF⊥AC,
∴∠EAC=90°,
∵∠DAC=∠DCA,∠DAC+∠DAE=90°,∠DCA+∠AEC=90°,
∴∠DAE=∠DEA,
∴DA=DE,
∴△DAE是等腰三角形,
∵BC=BD=BA=AF=DF,
∴△BCD,△ABD,△ADF都是等腰三角形,
综上所述,图中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.
【点睛】
本题考查菱形的判定,等边三角形的性质,等腰三角形的判定等知识,属于中考常考题型,熟练掌握等腰三角形的性质是解题的关键.
8.如图,现将平行四边形ABCD沿其对角线AC折叠,使点B落在点B′处.AB′与CD交于点E.
(1)求证:△AED≌△CEB′;
(2)过点E作EF⊥AC交AB于点F,连接CF,判断四边形AECF的形状并给予证明.
【答案】(1)见解析(2)见解析
【解析】
【分析】
(1)由题意可得AD=BC=B'C,∠B=∠D=∠B',且∠AED=∠CEB',利用AAS证明全等,则结论可得;
(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根据等腰三角形的性质可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,则可证四边形AECF是菱形.
【详解】
证明:(1)∵四边形ABCD是平行四边形
∴AD=BC,CD∥AB,∠B=∠D
∵平行四边形ABCD沿其对角线AC折叠
∴BC=B'C,∠B=∠B'
∴∠D=∠B',AD=B'C且∠DEA=∠B'EC
∴△ADE≌△B'EC
(2)四边形AECF是菱形
∵△ADE≌△B'EC
∴AE=CE
∵AE=CE,EF⊥AC
∴EF垂直平分AC,∠AEF=∠CEF
∴AF=CF
∵CD∥AB
∴∠CEF=∠EFA且∠AEF=∠CEF
∴∠AEF=∠EFA
∴AF=AE
∴AF=AE=CE=CF
∴四边形AECF是菱形
【点睛】
本题考查了折叠问题,全等三角形的判定和性质,平行四边形的性质,菱形的判定,熟练掌握这些性质和判定是解决问题的关键.
9.如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),
∠APE=90°,且点E在BC边上,AE交BD于点F.
(1)求证:①△PAB≌△PCB;②PE=PC;
(2)在点P的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由;
(3)设DP=x,当x为何值时,AE∥PC,并判断此时四边形PAFC的形状.
【答案】(1)见解析;
(2);
(3)x=﹣1;四边形PAFC是菱形.
【解析】
试题分析:(1)根据四边形ABCD是正方形,得出AB=BC,∠ABP=∠CBP°,再根据
PB=PB,即可证出△PAB≌△PCB,
②根据∠PAB+∠PEB=180°,∠PEC+∠PEB=180°,得出∠PEC=∠PCB,从而证出PE=PC;(2)根据PA=PC,PE=PC,得出PA=PE,再根据∠APE=90°,得出∠PAE=∠PEA=45°,即可求
出;
(3)先求出∠CPE=∠PEA=45°,从而得出∠PCE,再求出∠BPC即可得出∠BPC=∠PCE,从而证出BP=BC=1,x=﹣1,再根据AE∥PC,得出∠AFP=∠BPC=67.5°,由△PAB≌△PCB
得出∠BPA=∠BPC=67.5°,PA=PC,从而证出AF=AP=PC,得出答案.
试题解析:(1)①∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=∠ABC=45°.
∵PB=PB,∴△PAB≌△PCB (SAS).
②由△PAB≌△PCB可知,∠PAB=∠PCB.∵∠ABE=∠APE=90°,∴∠PAB+∠PEB=180°,
又∵∠PEC+∠PEB=180°,∴∠PEC=∠PAB=∠PCB,∴PE=PC.
(2)在点P的运动过程中,的值不改变.
由△PAB≌△PCB可知,PA=PC.
∵PE=PC,
∴PA=PE,
又∵∠APE=90°,
∴△PAE是等腰直角三角形,∠PAE=∠PEA=45°,∴=.
(3)∵AE∥PC,∴∠CPE=∠PEA=45°,∴在△PEC中,∠PCE=∠PEC=(180°﹣45°)
=67.5°.
在△PBC中,∠BPC=(180°﹣∠CBP﹣∠PCE)=(180°﹣45°﹣67.5°)=67.5°.
∴∠BPC=∠PCE=67.5°,∴BP=BC=1,∴x=BD﹣BP=﹣1.∵AE∥PC,
∴∠AFP=∠BPC=67.5°,由△PAB≌△PCB可知,∠BPA=∠BPC=67.5°,PA=PC,
∴∠AFP=∠BPA,∴AF=AP=PC,∴四边形PAFC是菱形.
考点:四边形综合题.
10.(本题14分)小明在学习平行线相关知识时总结了如下结论:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.
小明应用这个结论进行了下列探索活动和问题解决.
问题1:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造
□APBQ,求对角线PQ的最小值及PQ最小时的值.
(1)在解决这个问题时,小明构造出了如图2的辅助线,则PQ的最小值为,当PQ最小时
= _____ __;
(2)小明对问题1做了简单的变式思考.如图3,P为AB边上的一动点,延长PA到点E,使AE=nPA(n
为大于0的常数).以PE,PC为边作□PCQE,试求对角线PQ长的最小值,并求PQ最小时的值;
问题2:在四边形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.
(1)如图4,若为上任意一点,以,为边作□.试求对角线长的最小值和PQ最小时的值.
(2)若为上任意一点,延长到,使,再以,为边作□.请直接写出对角线长的最小值和PQ最小时的值.
【答案】问题1:(1)3,;(2)PQ=,=.问题2:(1)=4,
.(2)PQ的最小值为..
【解析】
试题分析:问题1:(1)首先根据条件可证四边形PCBQ是矩形,然后根据条件“四边形
APBQ是平行四边形可得AP=QB=PC,从而可求的值.(2)由题可知:当QP⊥AC 时,PQ最小.过点C作CD⊥AB于点D.此时四边形CDPQ为矩形,PQ=CD,在Rt△ABC
中,∠C=90°,AC=4,BC=3,利用面积可求出CD=,然后可求出AD=,由AE=nPA可得PE=,而PE=CQ=PD=AD-AP=,所以AP=.所以
=.问题2:(1)设对角线与相交于点.Rt≌Rt.所以AD=HC,QH=AP.由题可知:当QP⊥AB时,PQ最小,此时=CH=4,根据条件可证四边
形BPQH为矩形,从而QH=BP=AP.所以.(2)根据题意画出图形,当AB 时,的长最小,PQ的最小值为..
试题解析:问题1:(1)3,;
(2)过点C作CD⊥AB于点D.
由题意可知当PQ⊥AB时,PQ最短.所以此时四边形CDPQ为矩形.PQ=CD,
DP=CQ=PE.因为∠BCA=90°,AC=4,
BC=3,所以AB=5.所以CD=.所以PQ=.
在Rt△ACD中AC=4,CD=,所以AD=.
因为AE=nPA,所以PE==CQ=PD=AD-AP=.
所以AP=.所以=.
问题2:
(1)如图2,设对角线与相交于点.
所以G是DC的中点,
作QH BC,交BC的延长线于H,
因为AD//BC,所以.
所以.
又,所以Rt≌Rt.所以AD=HC,QH=AP.
由图知,当AB时,的长最小,即=CH=4.
易得四边形BPQH为矩形,所以QH=BP=AP.所以.
(若学生有能力从梯形中位线角度考虑,若正确即可评分.但讲评时不作要求)
(2)PQ的最小值为..
考点:1.直角三角形的性质;2.全等三角形的判定与性质;3.平行四边形的性质;4矩形的判定与性质.。