上海市2019届初三数学一模提升题汇编第24题(二次函数综合)(含2019上海中考试题答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市2019届一模提升题汇编第24题(二次函数综合)含2019
上海中考试题中考
【2019届一模徐汇】
24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)
如图,在平面直角坐标系xoy 中,顶点为M 的抛物线C 1:2(0)y ax bx a =+<经过点A 和x 轴上的点B ,AO =OB =2,120AOB ∠=.
(1)求该抛物线的表达式; (2)联结AM ,求AOM
S

(3)将抛物线C 1向上平移得到抛物线C 2,抛物线C 2与x 轴分别交于点E 、F (点E 在点F 的左侧),如果△MBF 与△AOM 相似,求所有符合条件的抛物线C 2的表达式.
【24.解:(1)过A 作AH ⊥x 轴,垂足为H ,
∵OB=2,∴B (2,0)………………………………(1分) ∵120AOB ∠=︒
∴60,30AOH HAO ∠=︒∠=︒.
∵OA=2,∴1
1
2OH OA ==.
∵2
2
2
Rt AHO OH AH OA +=在中,,∴22
213AH =-=.
∴(1,3)A --……………………………………(1分)
(第24题图)
∵抛物线
21:C y ax bx A B
=+经过点、,
∴可得:42033a a b a b b ⎧=-⎪+=⎧⎪⎪⎨⎨
-=⎪⎩⎪=⎪⎩………………………………………………(1分)
∴这条抛物线的表达式为
233y x x =-
+…………………………………………(1
分)
(2)过M 作MG ⊥x 轴,垂足为G
,∵
2y x x =+
∴顶点M
是⎛ ⎝

,得3MG = ……………………………………………………(1分)
∵(1,A -,
M
⎛ ⎝⎭. ∴得:直线AM

33y x =
- …………………………………………………(1分)
∴直线AM 与x 轴的交点N 为1,02⎛⎫

⎝⎭……………………………………………………(1
分)
∴11
22AOM S ON MG ON AH ∆=⋅+
⋅111122322=⨯⨯
+⨯
=
…………………………………………………………………………(1分)
(3)∵
)33

1(M 、)0,2(B ,

3MG Rt BGM MBG BG ∆∠=在中,tan =
,∴MBG ∠︒=30.
∴MBF 150∠=︒.由抛物线的轴对称性得:MO=MB ,
∴MBO MOB=150∠=∠︒. ∵OB=120A ∠︒,∴OM=150A ∠︒ ∴OM=MBF A ∠∠.

BM BF
OA OM 或BF BM OA OM 相似时,有:AOM 与MBF 当=
=∆∆ 即
33
2BF 233
2或BF 3322332==,∴32BF 或2BF =
=. ∴)
0,38
)或(0,4(F ………………………………………………(2分)
设向上平移后的抛物线
k x x y ++-
=33
233:为C 22,
当)0,4(F 时,
338=
k ,∴抛物线33
833233:为C 22+
+-=x x y …(1
分)
当)0,38

F 时,27316=
k ,
抛物线22:3327C y x x =-++…….(1分)】
【2019届一模浦东】
24. (本题满分12分,其中每小题各4分)
已知:如图9,在平面直角坐标系xOy 中,直线1
2y x b
=-+与x 轴相交于点A ,与y 轴相交于点B. 抛物线(1)求抛物线的表达式; (2)求证: △BOD ∽△AOB;
(3)如果点P 在线段AB 上,且∠BCP=∠DBO
求点P 的坐标.
【24、(1)211
482y x x =-++;(2)证明略;(3)1612,55⎛⎫ ⎪
⎝⎭】
【2019届一模杨浦】
24.(本题满分12分,每小题各4分) 在平面直角坐标系xOy 中,抛物线2(0)y
ax bx c a
与y 轴交于点C (0,2),
它的顶点为D (1,m ),且
1
tan 3COD
.
(1)求m 的值及抛物线的表达式;
(2)将此抛物线向上平移后与x 轴正半轴交于点A ,与y 轴交于点B ,且OA=OB.若点
A 是由原抛物线上的点E 平移所得,求点E 的坐标;
(3)在(2)的条件下,点P 是抛物线对称轴上的一点(位于x 轴上方),且∠APB=45°.求P 点的坐标.
O
x
y
1 2 3 4 1 2
3 4 5
-1 -2 -3
-1 -2 -3 (第24题图)
【24.解:(1)作DH ⊥y 轴,垂足为H ,∵D (1,m )(0m
),∴DH= m ,HO=1.

1
tan 3COD
,∴1
3OH DH ,∴m=3. ····················································· (1分)
∴抛物线2
y ax bx c 的顶点为D (1,3). 又∵抛物线2y
ax bx
c 与y 轴交于点C (0,2), ∴
3,
1,22.
a
b c b
a c (2分)∴
1,2,2.
a b c
∴抛物线的表达式为
2
22y x x
.
······ (1分)
(2)∵将此抛物线向上平移, ∴设平移后的抛物线表达式为2
22(0)y x x k k
,. ···························· (1分)
则它与y 轴交点B (0,2+k ).
∵平移后的抛物线与x 轴正半轴交于点A ,且OA=OB ,∴A 点的坐标为(2+k,0). .(1分) ∴20(2)2(2)2
k k k .∴1
2
2,1k k .
∵0k
,∴1k
.
∴A (3,0),抛物线
2
22y x x
向上平移了1个单位. . ·
····························· (1分)
∵点A 由点E 向上平移了1个单位所得,∴E (3,-1). . ··································· (1分) (3)由(2)得A (3,0),B (0, 3),∴32AB
.
∵点P 是抛物线对称轴上的一点(位于x 轴上方),且∠APB=45°,原顶点D (1,3), ∴设P (1,y ),设对称轴与AB 的交点为M ,与x 轴的交点为H ,则H (1,0). ∵A (3,0),B (0, 3),∴∠OAB=45°, ∴∠AMH=45°. ∴M (1,2). ∴2BM
.
∵∠BMP=∠AMH, ∴∠BMP=45°. ∵∠APB=45°, ∴∠BMP=∠APB.
∵∠B=∠B ,∴△BMP ∽△BPA. ·································································· (2分)
B A
P
y O
M H
∴BP BA
BM
BP .∴2
32
2
6BP
BA BM
∴2
2
1(3)6BP
y .∴1
2
3
53
5y y ,(舍).. ···························· (1分)
∴(1,35)P . . ····················································································· (1分)】
【2019届一模普陀】 24.(本题满分12分) 如图10,在平面直角坐标系
中,抛物线
2
3y ax bx =+-(0)a ≠与x 轴交于点A ()1,0-和点B ,且3OB OA =,与y 轴交于点C ,此抛物线顶点为点D .
(1)求抛物线的表达式及点D 的坐标;
(2)如果点E 是y 轴上的一点(点E 与点C 不重合),当BE DE ⊥时,求点E 的坐标; (3)如果点F 是抛物线上的一点,且,求点F 的坐标.
135FBD ∠=
xOy
图10
【24.解:
(1)∵抛物线与x 轴交于点A ()1,0-和点,且3OB OA =,
∴点的坐标是
()3,0. ·
·········································································· (1分)
解法一:由抛物线
2
3y ax bx =+-经过点()1,0-和()3,0. 得03,093 3.a b a b =--⎧⎨=+-⎩ 解得1,
2.a b =⎧⎨=-⎩ ······························································ (1分)
∴抛物线的表达式是2
23y x x =--. ······················································ (1分)
点D 的坐标是
()1,4-. ············································································· (1分)
解法二:由抛物线
2
3y ax bx =+-经过点()1,0-和()3,0. 可设抛物线的表达式为(1)(3)y a x x =+-, 由抛物线与y 轴的交点C 的坐标是
()0,3-,
得3(01)(03)a -=+-,解得1a =. ······························································ (1分)
∴抛物线的表达式是2
23y x x =--. ························································ (1分)
点D 的坐标是
()1,4-. ·
············································································ (1分)
(2)过点D 作DH OC ⊥,H 为垂足. ∴90DHO ∠=.∴90DEH EDH ∠+∠=. ∵BE DE ⊥,∴90DEH BEO ∠+∠=. ∴BEO EDH ∠=∠.
又∵BOE EHD ∠=∠,∴△BOE ∽△EHD . ········································· (1分)
∴BO OE
EH HD =

∵点D 的坐标是
()1,4-,∴1DH =,4OH =.
B B
∵点的坐标是
()3,0,∴3OB =.
∴341OE
OE =
-. ·············································································· (1分)
∴1OE =或3OE =. ················································································ (1分) ∵点E 与点C 不重合,∴1OE =. ∴点E 的坐标是
()0,1-. ·
·········································································· (1分)
(3)过点F 作FG x ⊥轴,G 为垂足.
作45DBM ∠=,由第(2)题可得,点M 与点E 重合. ∵1OE =,1DH =,∴OE DH =. 可得△BOE ≌△EHD . ∴BE ED =. ∵90BED ∠=,∴45DBE ∠=. ∵135FBD ∠=,
∴90FBE ∠=. ················································································ (1分) ∴OBE GFB ∠=∠.
∴在Rt △BOE 中,90BOE ∠=,∴cot 3OBE ∠=∴cot 3GFB ∠=. ·········· (1分) ∴3FG BG =.
设点F 点的坐标为
()
2
,23m m
m --.
∴2
23FG m m =--,3BG m =-.
∴2233(3)m m m --=-. ··································································· (1分)
解得3m =,4m =-. ∵3m =不合题意舍去,∴4m =-. 点F 的坐标是
()4,21-. ·
········································································· (1分)】
【2019届一模奉贤】
24.(本题满分12分,每小题满分6分)
B
如图10,在平面直角坐标系中,直线AB 与抛物线2
y
ax bx 交于点A(6,0)和
点B(1,-5).
(1)求这条抛物线的表达式和直线AB 的表达式;
(2)如果点C 在直线AB 上,且∠BOC 的正切值是3
2,
求点C 的坐标.
【24.解:(1)由题意得,抛物线2
y
ax bx 经过点A(6,0)和点B(1,-5),
代入得3660,
5.
a b a b 解得
1,6.
a
b
∴抛物线的表达式是2
6y x x =-. ······ (4分)
由题意得,设直线AB 的表达式为y
kx
b ,它经过点A(6,0)和点B(1,-5),
代入得60,5.
k b
k b
解得
1,6.
k b
∴直线AB 的表达式是
6y x =-. ·
······· (2分)
(2)过点O 作OH AB ,垂足为点H .
设直线AB 与y 轴交点为点D ,则点D 坐标为()0,6-.
∴45ODA OAD
,cos45DH OH OD ==•︒= ∵2BD
,∴22BH
.
在Rt △OBH 中,90OHB ,
3
tan 2OH
OBH
BH
. ······························· (2分)
∵∠BOC 的正切值是3
2,∴BOC
CBO . ··············································· (1分) ①当点C 在点B 上方时,BOC
CBO .∴CO
CB . 设点C
(,6)x x -,
22
2
2(6)(1)(65)x x x
xOy
图10
A
B
x
y
o
解得
17
4x

177
66
4
4x .--------------------------------------------------------------------(2分)
所以点D
坐标为17
7,4
4⎛⎫-
⎪⎝⎭. ②当点C 在点B 下方,BOC CBO 时,OC//AB. 点C 不在直线AB 上. ········ (1分)
综上所述,如果∠BOC 的正切值是32,点C 的坐标是17
7,44⎛⎫-
⎪⎝⎭.】
【2019届一模松江】
24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)
如图,抛物线c
bx x y ++-=221
经过点A (﹣2,0),点B (0,4).
(1)求这条抛物线的表达式;
(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标; (3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE
∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值.
【24.解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)
∴⎩⎨⎧==+--4022c c b …………(1分), 解得1
4b c =⎧⎨=⎩
………………………(1分) ∴抛物线解析式为21
4
2y x x =-++ …………………………………………(1分)
(第24题图)
y x
O
B
A
(2)
()
2
9
1
2
1
4
2
12
2+
-
-
=
+
+
-
=x
x
x
y
…………………………………(1分)
∴对称轴为直线x=1,过点P作PG ⊥y轴,垂足为G ∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
∴PG BO
BG AO
=
……………………………………………(1分)

12
1
BG
=
,∴
1
2
BG=
…………………………………(1分)

7
2
OG=
,∴P(1,2
7
)………………………………(1分)
(3)设新抛物线的表达式为
2
1
4
2
y x x m
=-++-
…(1分)

()
0,4
D m
-
,
()
2,4
E m
-
,DE=2……………………(1分)
过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF

2
=
1
DE EO DO
FH OF OH
==
,∴FH=1……………………………………………(1分)
点D在y轴的正半轴上,则
5
1,
2
F m
⎛⎫
--

⎝⎭,∴
5
2
OH m
=-

42
51
2
DO m
OH m
-
==
-
,∴m=3……………………………………………………(1分)
点D在y轴的负半轴上,则
9
1,
2
F m
⎛⎫
-

⎝⎭,∴
9
2
OH m
=-

42
91
2
DO m
OH m
-
==
-
,∴m=5……………………………………………………(1分)
∴综上所述m的值为3或5.】
(第24题图)
y
x O
B
A
E
D
F H
【2019届一模嘉定】
24.(本题满分12分,每小题4分)
在平面直角坐标系xOy (如图7)中,抛物线22
++=bx ax y 经过点)0,4(A 、)2,2(B ,
与y 轴的交点为C .
(1)试求这个抛物线的表达式;
(2)如果这个抛物线的顶点为M ,求△AMC 的面积; (3)如果这个抛物线的对称轴与直线BC 交于点D ,点E 在线段AB 上,且︒=∠45DOE ,求点E 的坐标.
【24. 解:(1)∵抛物线
22
++=bx ax y 点经过)0,4(A 、)2,2(B ∴⎩

⎧=++=++222402416b a b a ……………………1分 ∴⎪⎪⎩
⎪⎪⎨
⎧=-=2141b a …………2分 ∴抛物线的表达式是2
21
412++-=x x y …………1分 (2)由(1)得:抛物线221412++-=x x y 的顶点M 的坐标为)
49,1(……1分
图7
O 1
1
-1 -1
∴点C 的坐标为)0,2(, ……………………1分 过点M 作y MH ⊥轴,垂足为点H ∴
AOC
MHC AOHM AMC S S S S ∆∆∆--= …………1分

4221
1412149)41(21⨯⨯-⨯⨯-⨯+⨯=
∆AMC S

23
=
∆AMC S …………1分
(3)联结OB
过点B 作x BG ⊥轴,垂足为点G
∵点B 的坐标为)2,2(,点A 的坐标为)0,4(∴2=BG ,2=GA ∴△BGA 是等腰直角三角形∴︒=∠45BAO 同理:︒=∠45BOA
∵点C 的坐标为)0,2(∴2=BC ,2=OC 由题意得,△OCB 是等腰直角三角形 ∴︒=∠45DBO ,22=BO ∴DBO BAO ∠=∠
∵︒=∠45DOE ∴︒=∠+∠45BOE DOB ∵︒=∠+∠45EOA BOE ∴DOB EOA ∠=∠ ∴△AOE ∽△BOD
∴BO AO
BD AE =
…………1分 ∵抛物线2
21
412++-=x x y 的对称轴是直线1=x ,
∴点D 的坐标为)2,1(
∴1=BD …………1分
∴224
1
=
AE ∴2=
AE …………1分
过点E 作x EF ⊥轴,垂足为点F 易得,△AFE 是等腰直角三角形 ∴1==AF EF
∴点E 的坐标为)1,3( …………1分】 【2019届一模青浦】
24.(本题满分12分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)
在平面直角坐标系xOy 中,将抛物线2
y x =-平移后经过点A (-1,0)、B (4,0),且
平移后的抛物线与y 轴交于点C (如图). (1)求平移后的抛物线的表达式;
(2)如果点D 在线段CB 上,且
CAD 的正弦值;
(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.
【24.解:(1)设平移后的抛物线的解析式为2
+=-+y x bx c . ·
······················ (1分)
将A (-1,0)、B (4,0),代入得
(第24题图)
(备用图)
101640.,--+=⎧⎨
-++=⎩b c b c ··············································································· (1分) 解得:34.,
=⎧⎨
=⎩
b c
所以,2
+34=-+y x x . ·········································································· (1分)
(2)∵2+34=-+y x x ,∴点C 的坐标为(0,4) ····································· (1分).
设直线BC 的解析式为y= kx+4,将B (4,0),代入得kx+4=0,解得k=-1,
∴y= -x+4. ········································································································ 设点D 的坐标为(m ,4- m ).

,∴2
2=2m ,解得=1m 或=1-m (舍去),
∴点D 的坐标为(1,3). ········································································· (1分) 过点D 作DM ⊥AC ,过点B 作BN ⊥AC ,垂足分别为点M 、N .
∵1122⋅=⋅AC BN AB OC
54=⨯BN
,∴17=BN . ········ (1分) ∵DM ∥BN ,∴=
DM CD BN CB
,∴=DM BN
,∴17=DM . ···················· (1分)

sin =17221∠=
=DM CAD AD . ············································· (1分)
(3)设点Q 的坐标为(n ,2
+34-+n n ).
如果四边形ECPQ 是菱形,则0>n ,PQ ∥y 轴,PQ=PC ,点P 的坐标为(n ,4-+n ).
∵22
+3444=-++-=-PQ n n n n n
,=PC , ····································· (2分)
∴2
4-n n
,解得=4n 或=0n (舍). ·········································· (1分) ∴点Q
的坐标为(4
,2). ···················································· (1分)】
【2019届一模静安】
24.(本题满分12分,其中第(1)小题4分,第(2)小题3分,第(3)小题5分)
在平面直角坐标系xOy 中(如图10),已知抛物线
2
(0)y ax bx c a =++≠的图像经过点(40)B ,、(53)D ,,设它与x 轴的另一个交点为A (点A 在点B 的左侧),且ABD ∆的
面积是3.
(1)求该抛物线的表达式; (2)求ADB ∠的正切值;
(3)若抛物线与y 轴交于点C ,直线CD 交
x 轴于点E ,点P 在射线AD 上,当APE ∆与 ABD ∆相似时,求点P 的坐标.
【24.解:
(1)过点D 作DH ⊥x 轴,交x 轴于点H .

1
32ABD S AB DH ∆=
⋅=,又∵(5,3)D
∴2AB =.····························································································· (1分) ∵(4,0)B ,点A 在点B 的左侧,
∴(2,0)A . ····························································································· (1分)
把(2,0)A ,(4,0)B ,(5,3)D 分别代入
2
y ax bx c =++, 得
04201643255a b c
a b c a b c =++⎧⎪
=++⎨⎪=++⎩
解得
168a b c =⎧⎪
=-⎨⎪=⎩
. ···························································· (1分)
∴抛物线解析式是2
68y x x =-+. ······························································ (1分)
(2)过点B 作BG AD ⊥,交AD 于点G . ··················································· (1分)
B
D O
图10
x
y
﹒ ﹒
由(2,0)A ,(5,0)H ,(5,3)D ,得ADH ∆是等腰直角三角形,且45HAD ∠=
∵3AH DH ==
,∴AD = ································································ (1分) ∴在等腰直角AGB ∆中,由2AB =
,得AG BG ==,
∴DG AD AG =-=
∴在Rt DGB ∆中,
1
tan 2BG ADB DG ∠=
=
. ·················································· (1分)
(3)∵抛物线2
68y x x =-+与y 轴交于点(0,8)C ,又(5,3)D ,
∴直线CD 的解析式为8y x =-+,
∴(8,0)E . ···························································································· (1分) 当点P 在线段AD 上时,APE ∆∽ABD ∆,点,,A P E 分别与点,,A B D 对应,则
AP AE AB AD =
,即AB AE AP AD ⨯===.………………………………………(1分)
··························································································································· 过点P 作PQ ⊥∴2AQ PQ ==,即(4,2)P . ····································································· (1分) ②当点P 在线段AD 延长线上时,APE ADB ∠=∠, ·················································· ∴EP //DB
过点P 作PR x ⊥轴于点R , ··················································································
1
3AH AD AB AR AP AE ===

∴9AR PR ==, ······················································································ (1分) 即(11,9)P . ···························································································· (1分) ∴APE ∆与ABD ∆相似时,点P 的坐标为 (4,2)或 (11,9).】 【2019届一模宝山】
24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 如图9,已知:二次函数
的图像交x 轴正半轴于点A ,顶点为P,一次函数
2y x bx
=+。

相关文档
最新文档