专题54 绝对值不等式(押题专练)-2017年高考数学(文)一轮复习精品资料(解析版)
绝对值不等式(高考版)(含经典例题+答案)
绝对值不等式(一) 绝对值不等式c b x a x c b x a x ≤-+-≥-+-绝对值的几何意义:a 的几何意义是:数轴上表示数轴上点a 到原点的距离;b a -的几何意义是:数轴上表示数轴上,a b 两点的距离。
b a +的几何意义是:数轴上表示数轴上,a b -的两点的距离。
x a x b -+-的几何意义是:数轴上表示点x 到,a b 的两点的距离和,故b a b x a x -≥-+- 利用图像和几何意义解c b x a x ≤-+-或c b x a x ≥-+-的解集。
分区间讨论:()()()⎪⎩⎪⎨⎧>--≤≤-<++-=-+-b x b a x b x a a b a x b a x b x a x 22c b ax ≤-的解法:I.当0>c 时,不等式解集为:c b ax c ≤+≤- II.当0<c 时,不等式解集为:空集 c b ax ≥+的解法:I.当0>c 时,不等式解集为:c b ax c b ax -≤+≥+或 II.当0<c 时,不等式解集为:全体实数解:由于|x +1|+|x -2|≥|(1-(-2)|=3,所以只需a ≤3即可.若本题条件变为“∃x ∈R 使不等式|x +1|+|x -2|<a 成立为假命题”,求a 的范围.解:由条件知其等价命题为对∀x ∈R ,|x +1|+|x -2|≥a 恒成立,故a ≤(|x +1|+|x -2|)min ,又|x +1|+|x -2|≥|(x +1)-(x -2)|=3,∴a ≤3.例2:不等式log3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则实数a 的取值范围是________. 解:由绝对值的几何意义知:|x -4|+|x +5|≥9,则log 3(|x -4|+|x +5|)≥2所以要使不等式log 3(|x -4|+|x +5|)>a 对于一切x ∈R 恒成立,则需a <2.解:当x >1时,原不等式等价于2x <3⇒x <32,∴1<x <32;当-1≤x ≤1时,原不等式等价于x +1-x +1<3,此不等式恒成立,∴-1≤x ≤1;当x <-1时,原不等式等价于-2x <3⇒x >-32,∴-32<x <-1.综上可得:-32<x <32。
绝对值函数和绝对值不等式(下)
绝对值函数和绝对值不等式(下)上一期绝对值函数和绝对值不等式的专题,我们看到了:1.绝对值不等式的常规应用:基础中档2.2008,2017两年浙江高考数学一类绝对值问题的探究3.绝对值问题中平凡恒等式的运用本来不打算再更新绝对值不等式的内容了,因为去年浙江高考数学(2018)没有出现一道含绝对值的题目,大家都以为绝对值不等式要凉了,谁知道今年(2019)却又出现了,那句”无绝对值不浙江“真不是白说的,无论什么考点都有办法给你加上绝对值.这一期内容我们主要看看以下内容:4.最大值函数5.一类连加绝对值的最值问题6.绝对值函数问题中的思维拓展最经典的试卷是上个世纪以及20年代早几年的全国卷,最令人感动的是是浙江和江苏两个教育大省保持初心,赋有怀旧情怀,让经典延续.怎么说呢,近几年浙江小题压轴类型绝对值函数和绝对值不等式源于1996年全国卷,而同样是浙江高考近几年流行起来,风靡全网的数列放缩更是源于上个世纪1984年全国卷的最后一题数列大题.再看江苏高考及模拟考流行了好久的数列与不定方程结合的问题则是源于2003年全国卷(理工农衣类)最后一题.我们知道江浙不分家,这两家人用实力证明什么叫怀旧,与其说啃老本,不如他们用实力为全国卷打广告,证明经典无法超越或者说经典值得延续!我们闲话不多说了,请看正文:到这里,今天的专题就要结束了,相信同学们对很多绝对值函数的类型都有自己的想法了,应对起来也会越来越顺手了,感谢大家一直以来的支持,欢迎提出宝贵意见!好了,今天的专题就到这了!下面推荐一下小编的一本资料:培优985,可是得到了专家的肯定和业界人士的充分认可,某些学校更是集体订购,对拓宽学生的思维深度和思维广度有着巨大的帮助.某专家更是称赞其中的解题方法(一题多解)在通性通法中透露着灵活,真的很高的评价,再次感谢!【关于高考数学培优系列】关于价格:《培优985之心之所向,素履以往系列》,为回馈感恩一路陪伴的老师及朋友们,这个版本有一定的优惠措施,单本60元,5-10本每本55元,10-20本每本50元,团购30本以上每本45元.关于定位:这套《培优985之心之所,向素履以往》系列的定位是培优,是冲刺,用几种最常考的类型进行引申拓展,题题详解,含方法总结,旨在实现短期的超越!定位:中档学生及以上人群,当然成绩稍微差点的如果想充下电也可以,选题有亮点,代表性和针对性都是空前的,而且基本都是一题多解,多角度全方位的分析每个热点题型,让学生思维得到开拓,发散思维,做会几类型秒杀千万题!关于解析:本套书籍无论是例题还是习题题题详解,每题包含多种解法,一题多解,为开拓学生思维而努力着.从学生认为最棘手、最易错的点出发,点播方法,使学生考试不至于陷入瓶颈!关于亮点:本书新加入了编者编辑的几篇小论文,如关于绝对值不等式的《坚硬外壳,吹弹可破》,关于函数与方程思想的《疯狂的不等关系》以及《对江苏一道导数题目的详细分析》等,热点题型及相似题也进行了全方位的整合,力求覆盖全面.关于购书:可联系客服助理小夏进行详细咨询,购买,购买时注明姓名,电话及详细寄书地址,还有购买的本数.本书制作质量很高,无论是书的过硬内容还是外包装走心的制作都可圈可点,而且还包邮,而且还有一定的优惠措施,是一本真正不以赢利为目的,只为惠及更多的学生、老师的书,也欢迎大家对书进行批评指正.以下是小夏的微信二维码.唱歌吧,就像旁边没有人听一样;跳舞吧,就像旁边没有人看一样.人生最难的就是洒脱,尤其是成长过后的洒脱;人最难的就是坚持,特别是久经挫败却依旧选择坚持;人最难能可贵的就是无论走多远,都不忘保持开始的那份初心.加油吧,少年,很多年后你会感谢现在努力的自己!<<青春大而甜,你好旧时光>>-by袁理只要善于总结,善于思考,你就会学好;不搞难,不搞繁,夯实基础不一般.只要留心观察,善于发现,你就会学好;搞再难,搞再繁,思维不活也枉然.只要善于总结,善于思考,你就会学好;不搞难,不搞繁,夯实基础不一般.只要留心观察,善于发现,你就会学好; 搞再难,搞再繁,思维不活也枉然.只要善于总结,善于思考,你就会学好;不搞难,不搞繁,夯实基础不一般.只要留心观察,善于发现,你就会学好;搞再难,搞再繁,思维不活也枉然.重要的事情说三遍!。
专题62 绝对值不等式(押题专练)-2018年高考数学(理)一轮复习精品资料(解析版)
1.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}。
(1)求实数a ,b 的值;(2)求at +12+bt 的最大值。
解析:(1)由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1。
(2)-3t +12+t =34-t +t≤ [ 3 2+12][ 4-t 2+ t 2] =24-t +t =4,当且仅当4-t 3=t 1,即t =1时等号成立, 故(-3t +12+t )max =4。
2.设函数f (x )=|x -3|+|2x -4|-a 。
(1)当a =6时,解不等式f (x )>0;(2)如果关于x 的不等式f (x )<0的解集不是空集,求实数a 的取值范围。
3.设函数f (x )=|2x +2|-|x -2|。
(1)求不等式f (x )>2的解集;(2)若对于∀x ∈R ,f (x )≥t 2-72t 恒成立,求实数t 的取值范围。
解析:(1)f (x )=⎩⎪⎨⎪⎧ -x -4,x <-1,3x ,-1≤x <2,x +4,x ≥2。
当x <-1时,-x -4>2,x <-6,∴x <-6;当-1≤x <2时,3x >2,x >23,∴23<x <2; 当x ≥2时,x +4>2,x >-2,∴x ≥2。
综上所述,不等式f (x )>2的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >23或x <-6。
(2)由(1)可知f (x )min =f (-1)=-3,若∀x ∈R ,f (x )≥t 2-72t 恒成立, 则只需f (x )min =-3≥t 2-72t ⇒2t 2-7t +6≤0⇒32≤t ≤2, 所以实数t 的取值范围为32≤t ≤2。
4.已知函数f (x )=x |x -a |(a ∈R )。
高考数学压轴专题最新备战高考《不等式》真题汇编及答案
【最新】数学《不等式》期末复习知识要点一、选择题1.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .12,4⎡⎤-⎢⎥⎣⎦D .1,13⎡⎤⎢⎥⎣⎦【答案】B 【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦. 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.2.若,x y 满足约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则122y x⎛⎫⋅ ⎪⎝⎭的最小值为( )A .116B .18C .1D .2【答案】A 【解析】 【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解. 【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yxx y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值,所以z的最小值为min314z=--=-,则1 222yx x y-⎛⎫⋅=⎪⎝⎭的最小值为41216-=.故选:A.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.3.设变量,x y满足约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y=+的最大值为()A.2 B.3 C.4 D.5【答案】D【解析】【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案.【详解】根据约束条件211x yx yx y-≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z=5x+y可化为y=-5x+z,即表示斜率为-5,截距为z的动直线,由图可知,当直线5z x y=+过点()1,0A时,纵截距最大,即z最大,由211x yx y+=⎧⎨+=⎩得A(1,0)∴目标函数z=5x+y的最小值为z=5故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.4.设实数满足条件则的最大值为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C .232D .421【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++()002536643y y =++-≥=+ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.6.已知实数x ,y 满足不等式||x y +≥,则22x y +最小值为( )A .2B .4C .D .8【答案】B 【解析】 【分析】先去掉绝对值,画出不等式所表示的范围,再根据22x y +表示圆心在原点的圆求解其最小圆的半径的平方,即可求解. 【详解】 由题意,可得当0y ≥时,x y +≥ (2)当0y <时,x y -≥如图所示,画出的图形,可得不等式表示的就是阴影部分的图形, 又由22xy +最小值即为原点到直线的垂线段的长度的平方,又由2d ==,所以24d =,即22xy +最小值为4.故选:B .【点睛】本题主要考查了线性规划的知识,以及点到直线的距离公式的应用,着重考查了数形结合思想,以及计算能力.7.若,,则()A.B.C.D.【答案】C【解析】【分析】【详解】试题分析:用特殊值法,令,,得,选项A错误,,选项B错误,,选项D错误,因为选项C正确,故选C.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.8.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都、两种设备上加工,生产一件甲产品需用A设备2小时,B设备6小时;生产一需要在A B件乙产品需用A 设备3小时,B 设备1小时. A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为( ) A .320千元 B .360千元C .400千元D .440千元【答案】B 【解析】设生产甲、乙两种产品x 件,y 件时该企业每月利润的最大值,由题意可得约束条件:2348069600,0,x y x y x y x N y N+≤⎧⎪+≤⎪⎨≥≥⎪⎪∈∈⎩, 原问题等价于在上述约束条件下求解目标函数2z x y =+的最大值. 绘制目标函数表示的平面区域如图所示,结合目标函数的几何意义可知: 目标函数在点()150,60B 处取得最大值:max 2215060360z x y =+=⨯+=千元. 本题选择B 选项.点睛:含有实际背景的线性规划问题其解题关键是找到制约求解目标的两个变量,用这两个变量建立可行域和目标函数,在解题时要注意题目中的各种相互制约关系,列出全面的制约条件和正确的目标函数.9.某企业生产甲、乙两种产品需用到A,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲 乙 每天原料的可用总量 A(吨)3212B(吨)128A.12万元B.16万元C.17万元D.18万元【答案】D【解析】【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果.【详解】设每天甲、乙产品的产量分别为x吨、y吨由已知可得3212,28,0,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y=+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P处取得最大值,由28,3212,x yx y+=⎧⎨+=⎩得()2,3P,则max324318z=⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.10.设x,y满足102024xx yx y-≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x=r,()1,b m y=-r,则满足a b⊥r r的实数m 的最小值为()A.125B.125-C.32D.32-【答案】B【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.11.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32B .53 C .74D .95【答案】D 【解析】 【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案; 【详解】 当2m n +=时,Q131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭,当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D 【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.12.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.13.在ABC ∆中,222sin a b c C ++=,则ABC ∆的形状是 ( ) A .锐角三角形 B .直角三角形C .钝角三角形D .等边三角形【答案】D 【解析】 【分析】由余弦定理可知2222cos a b c ab C +-=,与已知条件相加,得到cos 3C π⎛⎫-⎪⎝⎭的表达式,利用基本不等式得到范围,结合其本身范围,得到cos 13C π⎛⎫-= ⎪⎝⎭,从而得到C 的大小,判断出ABC ∆的形状,得到答案. 【详解】由余弦定理可知2222cos a b c ab C +-=,222sin a b c C ++=两式相加,得到()22cos 2cos 3a b ab C C ab C π⎛⎫+=+=-⎪⎝⎭所以222cos 1322a b ab C ab ab π+⎛⎫-== ⎪⎝⎭≥,当且仅当a b =时,等号成立, 而[]cos 1,13C π⎛⎫-∈- ⎪⎝⎭所以cos 13C π⎛⎫-= ⎪⎝⎭, 因为()0,C π∈,所以2,333C πππ⎛⎫-∈- ⎪⎝⎭所以03C π-=,即3C π=,又a b =,所以ABC ∆是等边三角形, 故选D 项. 【点睛】本题考查余弦定理解三角形,基本不等式,余弦型函数的性质,判断三角形的形状,属于中档题.14.已知M 、N 是不等式组1,1,10,6x y x y x y ≥⎧⎪≥⎪⎨-+≥⎪⎪+≤⎩所表示的平面区域内的两个不同的点,则||MN 的最大值是( )AB.2C.D .172【答案】A 【解析】 【分析】先作可行域,再根据图象确定MN 的最大值取法,并求结果. 【详解】作可行域,为图中四边形ABCD 及其内部,由图象得A(1,1),B(2,1),C(3.5,2.5),D(1,5)四点共圆,BD 为直径,所以MN 的最大值为BD=21417+=,选A.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+= ()212222225529x y x yx y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号) 2x y ∴+的最小值为9故选:B 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.16.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3 B .(),1-∞-C .()1,1-D .()3,1-【答案】C 【解析】 【分析】解一元二次不等式求得M ,然后求两个集合的交集. 【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C. 【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.17.实数,x y 满足020360x y x y x y -≤⎧⎪+-≥⎨⎪-+≥⎩,则2x y -的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据平移得到答案. 【详解】如图所示,画出可行域和目标函数,2z x y =-,则2y x z =-,z 表示直线与y 轴截距的相反数,根据平移知:当3,3x y ==时,2z x y =-有最大值为3. 故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3【答案】B 【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.设x ,y 满足约束条件则的最大值与最小值的比值为( )A .B .C.D .【答案】A 【解析】 【分析】作出不等式组所表示的可行域,平移直线,观察直线在轴上取得最大值和最小值时相应的最优解,再将最优解代入目标函数可得出最大值和最小值,于此可得出答案。
专题54 排列与组合(押题专练)-2018年高考数学(理)一轮复习精品资料(原卷版)
1.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120C.72 D.242.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种3.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.1684.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对5.有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有() A.60种B.70种C.75种D.150种6.来自中国、英国、瑞典的乒乓球裁判员各两名,执行世锦赛的一号、二号和三号场地的乒乓球裁判工作,每个场地有两名来自不同国家的裁判,则不同的安排方案共有()A.48种B.24种C.36种D.96种7.把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有__________种。
8.在8张奖券中有一、二、三等奖各1张,其余5张无奖。
将这8张奖券分配给4个人,每人2张,不同的获奖情况有__________种(用数字作答)。
9.将并排的有不同编号的5个房间安排给5个工作人员临时休息,假定每个人可以选择任一房间,且选择各个房间是等可能的,则恰有2个房间无人选择且这2个房间不相邻的安排方式的种数为__________。
10.(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数有多少种?(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?(3)现有10个保送上大学的名额,分配给7所学校,每校至少有一个名额,问:名额分配的方法共有多少种?11.用数字0,1,2,3,4,5组成没有重复数字的数:(1)能组成多少个五位数?(2)能组成多少个正整数?(3)能组成多少个六位奇数?(4)能组成多少个能被25整除的四位数?12.已知平面α∥β,在α内有4个点,在β内有6个点。
高考数学一轮复习专题训练—绝对值不等式
绝对值不等式考纲要求1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:|a+b|≤|a|+|b|(a,b∈R);|a-b|≤|a-c|+|c-b|(a,b,c∈R);2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c;|ax+b|≥c;|x-c|+|x-b|≥a.知识梳理1.绝对值三角不等式定理1:如果a,b是实数,那么|a+b|≤|a|+|b|,当且仅当ab≥0时,等号成立.定理2:如果a,b,c是实数,那么|a-b|≤|a-c|+|c-b|,当且仅当(a-c)(c-b)≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集.不等式a>0a=0a<0|x|<a {x|-a<x<a}∅∅|x|>a {x|x>a或x<-a}{x|x∈R且x≠0}R(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.①|ax+b|≤c⇔-c≤ax+b≤c;②|ax+b|≥c⇔ax+b≥c或ax+b≤-c.(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型不等式的解法.①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.1.利用绝对值不等式的几何意义解决问题能有效避免分类讨论不全面的问题;若用零点分段法求解,要掌握分类讨论的标准,做到不重不漏.2.绝对值三角不等式|a±b|≤|a|+|b|,从左到右是一个放大过程,从右到左是缩小过程,证明不等式可以直接用,也可利用它消去变量求最值.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)若|x|>c的解集为R,则c≤0.()(2)不等式|x-1|+|x+2|<2的解集为∅.()(3)对|a+b|≥|a|-|b|当且仅当a>b>0时等号成立.()(4)对|a|-|b|≤|a-b|当且仅当|a|≥|b|时等号成立.()(5)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.()答案(1)×(2)√(3)×(4)×(5)√2.不等式|x-1|-|x-5|<2的解集是()A.(-∞,4) B.(-∞,1) C.(1,4) D.(1,5)答案 A解析①当x≤1时,原不等式可化为1-x-(5-x)<2,∴-4<2,不等式恒成立,∴x≤1.②当1<x<5时,原不等式可化为x-1-(5-x)<2,∴x<4,∴1<x<4,③当x≥5时,原不等式可化为x-1-(x-5)<2,该不等式不成立.综上,原不等式的解集为(-∞,4).3.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是________.答案(-∞,-3]∪[3,+∞)解析由于|x+1|+|x-2|≥|(x+1)-(x-2)|=3,∴|x+1|+|x-2|的最小值为3,要使原不等式有解,只需|a|≥3,即a≥3或a≤-3.4.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 答案 2解析 因为|kx -4|≤2,所以-2≤kx -4≤2,所以2≤kx ≤6.因为不等式的解集为{x |1≤x ≤3},所以k =2.5.(2021·天津联考)若对任意的x ∈R ,不等式|x -1|-|x +2|≤|2a -1|恒成立,则实数a 的取值范围为________.答案 (-∞,-1]∪[2,+∞)解析 ∵y =|x -1|-|x +2|≤|(x -1)-(x +2)|=3, ∴要使|x -1|-|x +2|≤|2a -1|恒成立, 则|2a -1|≥3,2a -1≥3或2a -1≤-3, 即a ≥2或a ≤-1,∴实数a 的取值范围是(-∞,-1]∪[2,+∞). 6.(2021·郑州质量预测)已知函数f (x )=|x +1|-a |x -1|. (1)当a =-2时,解不等式f (x )>5; (2)若f (x )≤a |x +3|恒成立,求a 的最小值. 解 (1)当a =-2时,f (x )=⎩⎪⎨⎪⎧1-3x ,x ≤-1,-x +3,-1<x ≤1,3x -1,x >1.当x ≤-1时,由1-3x >5,得x <-43;当-1<x ≤1时,无解;当x >1时,由3x -1>5,得x >2. 故f (x )>5的解集为⎝⎛⎭⎫-∞,-43∪(2,+∞). (2)由f (x )≤a |x +3|得a ≥|x +1||x -1|+|x +3|,由|x -1|+|x +3|≥2|x +1|, 得|x +1||x -1|+|x +3|≤12,故a ≥12(当且仅当x ≥1或x ≤-3时等号成立),故a 的最小值为12.考点一 绝对值不等式的解法【例1】 (2020·全国Ⅰ卷)已知函数f (x )=|3x +1|-2|x -1|.(1)画出y =f (x )的图象; (2)求不等式f (x )>f (x +1)的解集.解 (1)由题设知f (x )=⎩⎪⎨⎪⎧-x -3,x ≤-13,5x -1,-13<x ≤1,x +3,x >1.画出y =f (x )的图象如图(1)所示.图(1)(2)函数y =f (x )的图象向左平移1个单位长度后得到函数y =f (x +1)的图象,如图(2)所示.图(2)易得y =f (x )的图象与y =f (x +1)的图象的交点坐标为⎝⎛⎭⎫-76,-116. 由图象可知,当且仅当x <-76时,y =f (x )的图象在y =f (x +1)的图象上方. 故不等式f (x )>f (x +1)的解集为⎝⎛⎭⎫-∞,-76. 【例2】 (2021·驻马店联考)已知函数f (x )=|x +a |+|2x -1|(a ∈R). (1)当a =-1时,求不等式f (x )≥2的解集; (2)若f (x )≤2x 的解集包含⎣⎡⎦⎤12,34,求a 的取值范围.解 (1)当a =-1时,不等式f (x )≥2可化为|x -1|+|2x -1|≥2, 当x ≤12时,不等式为1-x +1-2x ≥2,解得x ≤0;当12<x <1时,不等式为1-x +2x -1≥2,无解; 当x ≥1时,不等式为x -1+2x -1≥2,解得x ≥43.综上,原不等式的解集为(-∞,0]∪⎣⎡⎭⎫43,+∞.(2)因为f (x )≤2x 的解集包含⎣⎡⎦⎤12,34,所以不等式可化为|x +a |+2x -1≤2x ,即|x +a |≤1.解得-a -1≤x ≤-a +1,由题意知⎩⎨⎧-a +1≥34,-a -1≤12,解得-32≤a ≤14.所以实数a 的取值范围是⎣⎡⎦⎤-32,14. 感悟升华 1.用零点分段法解绝对值不等式的步骤(1)求零点;(2)划区间、去绝对值符号;(3)分别解去掉绝对值的不等式;(4)取每个结果的并集,注意在分段时不要遗漏区间的端点值.2.含绝对值的函数本质上是分段函数,绝对值不等式可利用分段函数的图象的几何直观性求解,体现了数形结合的思想.【训练1】 (2019·全国Ⅱ卷)已知f (x )=|x -a |x +|x -2|(x -a ). (1)当a =1时,求不等式f (x )<0的解集; (2)若x ∈(-∞,1)时,f (x )<0,求a 的取值范围. 解 (1)当a =1时,f (x )=|x -1|x +|x -2|(x -1). 当x <1时,f (x )=-2(x -1)2<0; 当x ≥1时,显然f (x )≥0.所以,不等式f (x )<0的解集为(-∞,1).(2)当a <1时,若a ≤x <1,则f (x )=(x -a )x +(2-x )(x -a )=2(x -a )≥0,不合题意;所以a ≥1, 当a ≥1,x ∈(-∞,1)时,f (x )=(a -x )x +(2-x )(x -a )=2(a -x )(x -1)<0. 所以,a 的取值范围是[1,+∞). 考点二 绝对值不等式性质的应用【例3】 设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明 由|x -1|<a 3可得|2x -2|<2a 3,|2x +y -4|≤|2x -2|+|y -2|<2a 3+a3=a .【例4】 若f (x )=⎪⎪⎪⎪3x +1a +3|x -a |的最小值为4,求a 的值. 解 因为f (x )=⎪⎪⎪⎪3x +1a +3|x -a |≥⎪⎪⎪⎪⎝⎛⎭⎫3x +1a -3x -3a =⎪⎪⎪⎪1a +3a ,由⎪⎪⎪⎪1a +3a =4得a =±1或a =±13.感悟升华 1.求含绝对值的函数最值时,常用的方法有三种: (1)利用绝对值的几何意义.(2)利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥|a |-|b |. (3)利用零点分区间法.2.含绝对值不等式的证明中,关键是绝对值三角不等式的活用. 【训练2】 设函数f (x )=x 2-x -15,且|x -a |<1. (1)解不等式|f (x )|>5;(2)求证:|f (x )-f (a )|<2(|a |+1).(1)解 因为|x 2-x -15|>5,所以x 2-x -15<-5或x 2-x -15>5,即x 2-x -10<0或x 2-x -20>0,解得1-412<x <1+412或x <-4或x >5,所以不等式|f (x )|>5的解集为⎩⎨⎧⎭⎬⎫x |x <-4或1-412<x <1+412或x >5.(2)证明 因为|x -a |<1,所以|f (x )-f (a )|=|(x 2-x -15)-(a 2-a -15)|=|(x -a )(x +a -1)|=|x -a |·|x +a -1|<1·|x +a -1|=|x -a +2a -1|≤|x -a |+|2a -1|<1+|2a -1|≤1+|2a |+1=2(|a |+1),即|f (x )-f (a )|<2(|a |+1). 考点三 绝对值不等式的综合应用 角度1 绝对值不等式恒成立问题【例5】 (2021·陇南二诊)已知a ≠0,函数f (x )=|ax -1|,g (x )=|ax +2|. (1)若f (x )<g (x ),求x 的取值范围;(2)若f (x )+g (x )≥|2×10a -7|对x ∈R 恒成立,求a 的最大值与最小值之和. 解 (1)因为f (x )<g (x ), 所以|ax -1|<|ax +2|,两边同时平方得a 2x 2-2ax +1<a 2x 2+4ax +4, 即6ax >-3,当a >0时,x >-12a ,即x 的取值范围是⎝⎛⎭⎫-12a ,+∞;当a <0时,x <-12a ,即x 的取值范围是⎝⎛⎭⎫-∞,-12a . (2)因为f (x )+g (x )=|ax -1|+|ax +2|≥|(ax -1)-(ax +2)|=3, 所以f (x )+g (x )的最小值为3,所以|2×10a -7|≤3,则-3≤2×10a -7≤3, 解得lg 2≤a ≤lg 5,故a 的最大值与最小值之和为lg 2+lg 5=lg 10=1. 角度2 绝对值不等式能成立问题【例6】 (2021·东北三省三校联考)已知函数f (x )=|2x +a |+1. (1)当a =2时,解不等式f (x )+x <2;(2)若存在a ∈⎣⎡⎦⎤-13,1时,使不等式f (x )≥b +|2x +a 2|的解集非空,求b 的取值范围. 解 (1)当a =2时,函数f (x )=|2x +2|+1, 不等式f (x )+x <2化为|2x +2|<1-x . 当1-x ≤0时,即x ≥1时,该不等式无解. 当1-x >0时,原不等式化为x -1<2x +2<1-x . 解之得-3<x <-13.综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x -3<x <-13.(2)由f (x )≥b +|2x +a 2|, 得b ≤|2x +a |-|2x +a 2|+1,设g (x )=|2x +a |-|2x +a 2|+1,则不等式的解集非空,即不等式有解, 所以不等式等价于b ≤g (x )max .由g (x )≤|(2x +a )-(2x +a 2)|+1=|a 2-a |+1, 所以b ≤|a 2-a |+1.由题意知存在a ∈⎣⎡⎦⎤-13,1,使得上式成立,而函数h (a )=|a 2-a |+1在a ∈⎣⎡⎦⎤-13,1上的最大值为h ⎝⎛⎭⎫-13=139, 所以b ≤139,即b 的取值范围是⎝⎛⎦⎤-∞,139. 感悟升华 1.不等式恒成立问题,存在性问题都可以转化为最值问题解决.2.(1)在例6第(1)问,可作出函数y =|2x +2|与y =1-x 的图象,观察、计算边界,直观求得不等式的解集.(2)第(2)问把不等式解集非空,转化为求函数的最值.存在性问题转化方法:f (x )>a 有解⇔f (x )max >a ;f (x )<a 有解⇔f (x )min <a . 【训练3】 (2021·呼和浩特模拟)已知函数f (x )=|2x -a |+2|x +1|. (1)当a =1时,解关于x 的不等式f (x )≤6;(2)已知g (x )=|x -1|+2,若对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立,求实数a 的取值范围.解 (1)当a =1时,f (x )=|2x -1|+2|x +1|,则f (x )=⎩⎪⎨⎪⎧-4x -1,x <-1,3,-1≤x ≤12,4x +1,x >12.当x <-1时,由-4x -1≤6,得-74≤x <-1;当-1≤x ≤12时,f (x )≤6恒成立;当x >12时,由4x +1≤6,得12<x ≤54.综上,f (x )≤6的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-74≤x ≤54. (2)∵对任意x 1∈R ,都存在x 2∈R ,使得f (x 1)=g (x 2)成立, ∴{y |y =f (x )}⊆{y |y =g (x )}. 又f (x )=|2x -a |+2|x +1|≥|2x -a -(2x +2)| =|a +2|,g (x )=|x -1|+2≥2, ∴|a +2|≥2,解得a ≤-4或a ≥0,∴实数a 的取值范围是(-∞,-4]∪[0,+∞).1.(2020·全国Ⅱ卷)已知函数f (x )=|x -a 2|+|x -2a +1|. (1)当a =2时,求不等式f (x )≥4的解集; (2)若f (x )≥4,求a 的取值范围. 解 (1)当a =2时,f (x )=⎩⎪⎨⎪⎧7-2x ,x ≤3,1,3<x ≤4,2x -7,x >4.因此,不等式f (x )≥4的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤32或x ≥112. (2)因为f (x )=|x -a 2|+|x -2a +1|≥|a 2-2a +1|=(a -1)2, 故当(a -1)2≥4,即|a -1|≥2时,f (x )≥4. 所以当a ≥3或a ≤-1时,f (x )≥4.当-1<a <3时,f (a 2)=|a 2-2a +1|=(a -1)2<4. 所以a 的取值范围是(-∞,-1]∪[3,+∞). 2.已知f (x )=|x +1|-|ax -1|.(1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解 (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.则当x ≥1时,f (x )=2>1恒成立,所以x ≥1; 当-1<x <1时,f (x )=2x >1, 所以12<x <1;当x ≤-1时,f (x )=-2<1.故不等式f (x )>1的解集为⎩⎨⎧⎭⎬⎫x |x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,|ax -1|<1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <2a , 所以2a≥1,故0<a ≤2. 综上,a 的取值范围为(0,2].3.(2021·安徽江南十校模拟)已知函数f (x )=|x -1|+|x +2|.(1)求不等式f (x )<x +3的解集;(2)若不等式m -x 2-2x ≤f (x )在R 上恒成立,求实数m 的取值范围.解 (1)当x <-2时,f (x )<x +3可化为1-x -x -2<x +3,解得x >-43,无解; 当-2≤x ≤1时,f (x )<x +3可化为1-x +x +2<x +3,解得x >0,故0<x ≤1; 当x >1时,f (x )<x +3可化为x -1+x +2<x +3,解得x <2,故1<x <2. 综上可得,f (x )<x +3的解集为(0,2).(2)不等式m -x 2-2x ≤f (x )在R 上恒成立,可得m ≤x 2+2x +f (x )恒成立, 即m ≤[]x 2+2x +f x min .y =x 2+2x =(x +1)2-1的最小值为-1,此时x =-1.f (x )=|x -1|+|x +2|≥|x -1-x -2|=3,当且仅当-2≤x ≤1时,取得等号, 则[x 2+2x +f (x )]min =-1+3=2,所以m ≤2,即m 的取值范围是(-∞,2].4.已知f (x )=|x +1|+|x -m |.(1)若f (x )≥2,求m 的取值范围;(2)已知m >1,若∃x ∈(-1,1),f (x )≥x 2+mx +3成立,求m 的取值范围. 解 (1)因为f (x )=|x +1|+|x -m |≥|m +1|,所以只需|m +1|≥2,所以m +1≥2或m +1≤-2,解得m ≥1或m ≤-3,即m 的取值范围为(-∞,-3]∪[1,+∞).(2)因为m >1,所以当x ∈(-1,1)时,f (x )=m +1,所以f (x )≥x 2+mx +3,即m ≥x 2+mx +2,所以m (1-x )≥x 2+2,m ≥x 2+21-x , 令g (x )=x 2+21-x =1-x 2-21-x +31-x =(1-x )+31-x-2(-1<x <1). 因为-1<x <1,所以0<1-x <2,所以(1-x )+31-x≥23(当且仅当x =1-3时取“=”), 所以g (x )min =23-2,所以m ≥23-2.故实数m 的取值范围是[23-2,+∞).5.(2021·南昌摸底测试)已知f (x )=|2x +1|+|x -1|.(1)求不等式f (x )≥2的解集;(2)若f (x )≥a |x |恒成立,求a 的取值范围.解 (1)∵f (x )=|2x +1|+|x -1|≥2,①当x ≤-12时,⎩⎪⎨⎪⎧ x ≤-12,-2x -1-x +1≥2⇒x ≤-23; ②当-12<x <1时,⎩⎪⎨⎪⎧ -12<x <1,2x +1-x +1≥2⇒0≤x <1;③当x ≥1时,⎩⎪⎨⎪⎧x ≥1,2x +1+x -1≥2⇒x ≥1. 综上所述,f (x )≥2的解集为⎝⎛⎦⎤-∞,-23∪[0,+∞). (2)由题意知|2x +1|+|x -1|≥a |x |恒成立,①当x =0时,2≥a ·0恒成立,得a ∈R ;②当x ≠0时,|2x +1|+|x -1||x |=⎪⎪⎪⎪2+1x +⎪⎪⎪⎪1-1x ≥a 恒成立, 因为⎪⎪⎪⎪2+1x +⎪⎪⎪⎪1-1x ≥⎪⎪⎪⎪2+1x+1-1x =3,所以a ≤3. 综上所述,符合条件的实数a 的取值范围是(-∞,3].6.(2021·长春模拟)已知函数f (x )=|x +2|+|x -1|-a .(1)当a =4时,求函数f (x )的定义域;(2)若函数f (x )的定义域为R ,设a 的最大值为s ,当正数m ,n 满足12m +n +2m +3n =s 时,求3m +4n 的最小值.解 (1)当a =4时,|x +2|+|x -1|-4≥0,当x <-2时,-x -2-x +1-4≥0,解得x ≤-52; 当-2≤x ≤1时,x +2-x +1-4≥0,解得x ∈∅;当x >1时,x +2+x -1-4≥0,解得x ≥32. ∴函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-52或x ≥32. (2)∵函数f (x )的定义域为R ,∴|x +2|+|x -1|-a ≥0对任意的x ∈R 恒成立,∴a ≤|x +2|+|x -1|对任意的x ∈R 恒成立,又|x +2|+|x -1|≥|x +2-x +1|=3,∴a ≤3,∴s =3,∴12m +n +2m +3n=3,且m >0,n >0, ∴3m +4n =(2m +n )+(m +3n )=13[(2m +n )+(m +3n )]·⎝⎛⎭⎫12m +n +2m +3n =13⎣⎢⎡⎦⎥⎤3+22m +n m +3n +m +3n 2m +n ≥13(3+22)=1+223,当且仅当m =1+2215,n =3+215时取等号, ∴3m +4n 的最小值为1+223.。
绝对值不等式练习题及答案
绝对值不等式练习题及答案精品文档绝对值不等式练习题及答案?考纲解读 ?理解不等式a?b?a?b?a?b?掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式;?知识梳理1.绝对值的意义 ?___,?????代数意义:a??___,??? ?___,?????几何意义:a是数轴上表示a的点____________。
2. 含绝对值的不等式的解法?a?0时,|f|?a?____________;|f|?a?____________;?去绝对值符号是解绝对值不等式的常用方法;?根据绝对值的几何意义,通过数形结合解绝对值不等式(?基础训练1.函数y?|x|?|x?3|的最大值为 ___________.2( 函数y?x?4?x?6的最小值为.23.已知方程x?ax?b?0的两根分别为1和2,则不等式ax?b?1的解集为____________ .4.不等式x?x?1?2的解集是 (1 / 13精品文档?典型例题例1 .解不等式5x?1?2?x例2. 解不等式x?1?x?2?5变式1:x?1?x?2?a有解,求a的取值范围变式2:2x?1?x?2?a有解,求a的取值范围变式3:x?1?x?2?a恒成立,求a的取值范围?能力提升1.若关于x的不等式|x?a|?a?2的解集为?x|2?x?4?,则实数a?2.不等式|2x?1|?|x?2|?4的解集为3(若f?x??x?t?5?x的最小值为3, 则实数t的值是________.4. 若不等式x?1x则实数?a?2?1对于一切非零实数x均成立,a的取值范围是_________________。
5(关于x的不等式x?1?x?2?a?a?1的解集为空集,则实数a的取值范围是____.6. 若关于x的不等式x?2?x?1?a的解集为R,则实数a的取值范围是_____________.第10课绝对值不等式?知识梳理1.? a,0,?a, ? 到原点的距离.2. ?f?a或f??a,?a?f?a ?基础训练2 / 13精品文档1. ,.,3. ?13??1?,.??,?,1?3????22??典型例题例1. 解:原不等式又化为5x?1?2?x或5x?1??解之得x?16或x??34? 原不等式的解集为{xx?16或x??34}例2. 解:分区间去绝对值: ?x?1?x?2?5?x??2?x????????5???2?x?1????5?x???x?1?x? ???5?? 原不等式的解集为?xx??3??或??x?2?变式1:解:设f?x?1?x?要使f?a有解,则a应该大于f的最小值,?f?x?1?x?2???3, 所以f的最小值为3,?a?3变式2:解:设f?2x?1?x?要使f?a有解,则a应该大于f的最小值,113?f?2x?1?x?2???,223 / 13精品文档所以f的最小值为32, ?a?32变式3:解:设f?x?1?x?要使f?a恒成立,则a应该小于f的最小值,?f?x?1?x?2???3, 所以f的最小值为3,?a?3?能力提升1. ,. ,.或,4. 1?a? ,6.a?3. .,含有绝对值的不等式A卷一、选择题1、设命题A:2,x,3,命题B:| x,|,1,那么11、不等式x+ | x |,6,0的解集是。
高三数学绝对值不等式试题答案及解析
高三数学绝对值不等式试题答案及解析1.(不等式选讲题)对于任意实数和不等式恒成立,则实数x的取值范围是_________.【答案】【解析】依题意可得恒成立,等价于小于或等于的最小值.因为.所以.【考点】1绝对值不等式的性质.2.恒成立问题.3.最值问题.2.关于x的不等式|x-3|+|x-4|<a的解集不是空集,求a的取值范围.【答案】(1,+∞)【解析】∵|x-3|+|x-4|≥|(x-3)-(x-4)|=1,∴a>1.即a的取值范围是(1,+∞).3.设函数f(x)=|2x-1|+|2x-3|,x∈R.(1)求关于x的不等式f(x)≤5的解集.(2)若g(x)=的定义域为R,求实数m的取值范围.【答案】(1) x∈[-,] (2) m>-2【解析】(1)或或不等式的解集为x∈[-,].(2)若g(x)=的定义域为R.则f(x)+m≠0恒成立,即f(x)+m=0在R上无解,又f(x)=|2x-1|+|2x-3|≥|2x-1-2x+3|=2,f(x)的最小值为2,所以m>-2.4.若存在实数x使|x-a|+|x-1|≤3成立,则实数a的取值范围是________.【答案】[-2,4]【解析】|x-a|+|x-1|≥|a-1|,则只需要|a-1|≤3,解得-2≤a≤4.5.若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.【答案】(-∞,8]【解析】因为|x-5|+|x+3|表示数轴上的动点x到数轴上的点-3,5的距离之和,而(|x-5|+|x+=8,∴当a≤8时,|x-5|+|x+3|<a无解,3|)min故实数a的取值范围为(-∞,8].6.已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈时,f(x)≤g(x),求a的取值范围.【答案】(1){x|0<x<2}(2)【解析】(1)当a=-2时,不等式f(x)<g(x)化为|2x-1|+|2x-2|-x-3<0.设函数y=|2x-1|+|2x-2|-x-3,则y=其图象如图所示,由图象可知,当且仅当x∈(0,2)时,y<0.所以原不等式的解集是{x|0<x<2}.(2)当x∈时,f(x)=1+a,不等式f(x)≤g(x)化为1+a≤x+3,所以x≥a-2对x∈都成立,应有-≥a-2,则a≤,从而实数a的取值范围是.7.若不等式的解集为,则实数的取值范围是____.【答案】【解析】不等式的解集为,所以.,所以,.【考点】不等式8.设函数.(Ⅰ)当时,解不等式;(Ⅱ)当时,不等式的解集为,求实数的取值范围.【答案】(Ⅰ);(Ⅱ).【解析】(Ⅰ)原不等式的解集等价于不等式组或的解集的并集;(Ⅱ)当时,不等式的解集为,恒成立问题,对分类讨论,①,②.试题解析:(Ⅰ)当时,,或或,∴不等式的解集是. 5分[(Ⅱ)不等式可化为,∴,由题意,时恒成立,当时,可化为,,,,综上,实数的取值范围是. 10分【考点】绝对值不等式,恒成立问题.9.(本题满分10分)《选修4-5:不等式选讲》已知函数(1)证明:(2)求不等式:的解集【答案】(1);(2)【解析】(1)对于x进行分三类讨论,得到关于x的分段函数,进而分别求解得到解集取其并集得到。
2017-2021年高考真题 绝对值不等式 解答题全集 (学生版 解析版)
2017-2021年高考真题绝对值不等式解答题全集(学生版+解析版)1.(2021•乙卷)已知函数f(x)=|x﹣a|+|x+3|.(1)当a=1时,求不等式f(x)≥6的解集;(2)若f(x)>﹣a,求a的取值范围.2.(2020•江苏)设x∈R,解不等式2|x+1|+|x|<4.3.(2020•新课标Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;3.(2)用max{a,b,c}表示a,b,c的最大值,证明:max{a,b,c}≥√4 4.(2020•新课标Ⅰ)已知函数f(x)=|3x+1|﹣2|x﹣1|.(1)画出y=f(x)的图象;(2)求不等式f(x)>f(x+1)的解集.5.(2020•新课标Ⅱ)已知函数f(x)=|x﹣a2|+|x﹣2a+1|.(1)当a=2时,求不等式f(x)≥4的解集;(2)若f(x)≥4,求a的取值范围.6.(2020•新课标Ⅲ)设数列{a n}满足a1=3,a n+1=3a n﹣4n.(1)计算a2,a3,猜想{a n}的通项公式并加以证明;(2)求数列{2n a n}的前n项和S n.7.(2020•新课标Ⅲ)设a,b,c∈R,a+b+c=0,abc=1.(1)证明:ab+bc+ca<0;3.(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥√48.(2019•江苏)设x∈R,解不等式|x|+|2x﹣1|>2.9.(2019•新课标Ⅲ)设x,y,z∈R,且x+y+z=1.(1)求(x﹣1)2+(y+1)2+(z+1)2的最小值;(2)若(x﹣2)2+(y﹣1)2+(z﹣a)2≥13成立,证明:a≤﹣3或a≥﹣1.10.(2019•新课标Ⅱ)已知f(x)=|x﹣a|x+|x﹣2|(x﹣a).(1)当a=1时,求不等式f(x)<0的解集;(2)当x∈(﹣∞,1)时,f(x)<0,求a的取值范围.11.(2019•新课标Ⅰ)已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.12.(2018•北京)设n为正整数,集合A={α|α=(t1,t2,…t n),t k∈{0,1},k=1,2,…,n},对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…y n),记M(α,β)=12[(x1+y1﹣|x1﹣y1|)+(x2+y2﹣|x2﹣y2|)+…(x n+y n﹣|x n﹣y n|)].(Ⅰ)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素α,β,M(α,β)=0,写出一个集合B,使其元素个数最多,并说明理由.13.(2018•新课标Ⅰ)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.14.(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.15.(2017•新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.16.(2017•新课标Ⅱ)已知a>0,b>0,a3+b3=2.证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.17.(2017•新课标Ⅲ)已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.2017-2021年高考真题 绝对值不等式 解答题全集 (学生版+解析版)参考答案与试题解析1.(2021•乙卷)已知函数f (x )=|x ﹣a |+|x +3|.(1)当a =1时,求不等式f (x )≥6的解集;(2)若f (x )>﹣a ,求a 的取值范围.【解答】解:(1)当a =1时,f (x )=|x ﹣1|+|x +3|={−2x −2,x ≤−34,−3<x <12x +2,x ≥1, ∵f (x )≥6,∴{x ≤−3−2x −2≥6或{−3<x <14≥6或{x ≥12x +2≥6, ∴x ≤﹣4或x ≥2,∴不等式的解集为(﹣∞,﹣4]∪[2,+∞).(2)f (x )=|x ﹣a |+|x +3|≥|x ﹣a ﹣x ﹣3|=|a +3|,若f (x )>﹣a ,则|a +3|>﹣a ,两边平方可得a 2+6a +9>a 2,解得a >−32,即a 的取值范围是(−32,+∞).2.(2020•江苏)设x ∈R ,解不等式2|x +1|+|x |<4.【解答】解:2|x +1|+|x |={3x +2,x >0x +2,−1≤x ≤0−3x −2,x <−1.∵2|x +1|+|x |<4,∴{3x +2<4x >0或{x +2<4−1≤x ≤0或{−3x −2<4x <−1, ∴0<x <23或﹣1≤x ≤0或﹣2<x <﹣1,∴﹣2<x <23,∴不等式的解集为{x |﹣2<x <23}.3.(2020•新课标Ⅲ)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max {a ,b ,c }表示a ,b ,c 的最大值,证明:max {a ,b ,c }≥√43.【解答】证明:(1)∵a +b +c =0,∴(a +b +c )2=0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴2ab +2ac +2bc =﹣(a 2+b 2+c 2),∵abc =1,∴a ,b ,c 均不为0,∴2ab +2ac +2bc =﹣(a 2+b 2+c 2)<0,∴ab +ac +bc <0;(2)不妨设a ≤b <0<c <√43,则ab =1c >1√43, ∵a +b +c =0,∴﹣a ﹣b =c <√43,而﹣a ﹣b ≥2√ab >2√46=412416=413=√43,与假设矛盾, 故max {a ,b ,c }≥√43.4.(2020•新课标Ⅰ)已知函数f (x )=|3x +1|﹣2|x ﹣1|.(1)画出y =f (x )的图象;(2)求不等式f (x )>f (x +1)的解集.【解答】解:函数f (x )=|3x +1|﹣2|x ﹣1|={ x +3,(x ≥1)5x −1,(−13≤x <1)−x −3,(x <−13), 图象如图所示(2)由于f (x +1)的图象是函数f (x )的图象向左平移了一个单位所得,(如图所示)直线y =5x ﹣1向左平移一个单位后表示为y =5(x +1)﹣1=5x +4,联立{y =−x −3y =5x +4,解得横坐标为x =−76, ∴不等式f (x )>f (x +1)的解集为{x |x <−76}.5.(2020•新课标Ⅱ)已知函数f (x )=|x ﹣a 2|+|x ﹣2a +1|.(1)当a =2时,求不等式f (x )≥4的解集;(2)若f (x )≥4,求a 的取值范围.【解答】解:(1)当a =2时,f (x )=|x ﹣4|+|x ﹣3|={−2x +7,x ≤31,3<x <42x −7,x ≥4, ∴当x ≤3时,不等式f (x )≥4化为﹣2x +7≥4,即x ≤32,∴x ≤32;当3<x <4时,不等式f (x )≥4化为1≥4,此时x ∈∅;当x ≥4时,不等式f (x )≥4化为2x ﹣7≥4,即x ≥112,∴x ≥112.综上,当a =2时,不等式f (x )≥4的解集为{x |x ≤32或x ≥112};(2)f (x )=|x ﹣a 2|+|x ﹣2a +1|≥|x ﹣a 2﹣(x ﹣2a +1)|=|(a ﹣1)2|=(a ﹣1)2. 又f (x )≥4,∴(a ﹣1)2≥4,得a ﹣1≤﹣2或a ﹣1≥2,解得:a ≤﹣1或a ≥3.综上,若f (x )≥4,则a 的取值范围是(﹣∞,﹣1]∪[3,+∞).6.(2020•新课标Ⅲ)设数列{a n }满足a 1=3,a n +1=3a n ﹣4n .(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明;(2)求数列{2n a n }的前n 项和S n .【解答】解:(1)法一:数列{a n }满足a 1=3,a n +1=3a n ﹣4n ,则a 2=3a 1﹣4=5,a 3=3a 2﹣4×2=7,…,猜想{a n }的通项公式为a n =2n +1.证明如下:(i )当n =1,2,3时,显然成立,(ii )假设n =k 时,a k =2k +1(k ∈N +)成立,当n =k +1时,a k +1=3a k ﹣4k =3(k +1)﹣4k =2k +3=2(k +1)+1,故n =k +1时成立, 由(i )(ii )知,a n =2n +1,猜想成立,所以{a n }的通项公式a n =2n +1.法二:数列{a n }满足a 1=3,a n +1=3a n ﹣4n ,则a 2=3a 1﹣4=5,a 3=3a 2﹣4×2=7,…,猜想{a n }的通项公式为a n =2n +1.证明:设a n +1+α(n +1)+β=3(a n +αn +β),可得a n +1=3a n +2αn +2β﹣α,∴{2α=−42β−α=0,解得{α=−2β=−1, ∴a n +1﹣2(n +1)﹣1=3(a n ﹣2n ﹣1),(不能说明{a n ﹣2n ﹣1}是等比数列)∵a 1=3,a 1﹣2×1﹣1=0,并且a 2﹣2(2+1)﹣1=0,所以a n =2n +1恒成立. 所以a n =2n +1.(2)令b n =2n a n =(2n +1)•2n ,则数列{2n a n }的前n 项和S n =3×21+5×22+…+(2n +1)2n ,…①两边同乘2得,2S n =3×22+5×23+…+(2n +1)2n +1,…②①﹣②得,﹣S n =3×2+2×22+…+2×2n ﹣(2n +1)2n +1=6+8(1−2n−1)1−2−(2n +1)2n +1,所以S n =(2n ﹣1)2n +1+2.7.(2020•新课标Ⅲ)设a ,b ,c ∈R ,a +b +c =0,abc =1.(1)证明:ab +bc +ca <0;(2)用max {a ,b ,c }表示a ,b ,c 中的最大值,证明:max {a ,b ,c }≥√43.【解答】证明:(1)∵a +b +c =0,∴(a +b +c )2=0,∴a 2+b 2+c 2+2ab +2ac +2bc =0,∴2ab +2ac +2bc =﹣(a 2+b 2+c 2),∵abc =1,∴a ,b ,c 均不为0,∴2ab +2ac +2bc =﹣(a 2+b 2+c 2)<0,∴ab +ac +bc <0;(2)不妨设a ≤b <0<c <√43,则ab =1c √43, ∵a +b +c =0,∴﹣a ﹣b =c <√43,而﹣a ﹣b ≥2√ab >√46=412416=413=√43,与假设矛盾, 故max {a ,b ,c }≥√43.8.(2019•江苏)设x ∈R ,解不等式|x |+|2x ﹣1|>2.【解答】解:|x |+|2x ﹣1|={ 3x −1,x >12−x +1,0≤x ≤12−3x +1,x <0, ∵|x |+|2x ﹣1|>2,∴{3x −1>2x >12或{−x +1>20≤x ≤12或{−3x +1>2x <0, ∴x >1或x ∈∅或x <−13,∴不等式的解集为{x |x <−13或x >1}.9.(2019•新课标Ⅲ)设x ,y ,z ∈R ,且x +y +z =1.(1)求(x ﹣1)2+(y +1)2+(z +1)2的最小值;(2)若(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥13成立,证明:a ≤﹣3或a ≥﹣1.【解答】解:(1)x ,y ,z ∈R ,且x +y +z =1,由柯西不等式可得(12+12+12)[(x ﹣1)2+(y +1)2+(z +1)2]≥(x ﹣1+y +1+z +1)2=4,可得(x ﹣1)2+(y +1)2+(z +1)2≥43,即有(x ﹣1)2+(y +1)2+(z +1)2的最小值为43; (2)证明:由x +y +z =1,柯西不等式可得(12+12+12)[(x ﹣2)2+(y ﹣1)2+(z ﹣a )2]≥(x ﹣2+y ﹣1+z ﹣a )2=(a +2)2,可得(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥(a+2)23, 即有(x ﹣2)2+(y ﹣1)2+(z ﹣a )2的最小值为(a+2)23, 由题意可得(a+2)23≥13, 解得a ≥﹣1或a ≤﹣3.10.(2019•新课标Ⅱ)已知f (x )=|x ﹣a |x +|x ﹣2|(x ﹣a ).(1)当a =1时,求不等式f (x )<0的解集;(2)当x ∈(﹣∞,1)时,f (x )<0,求a 的取值范围.【解答】解:(1)当a =1时,f (x )=|x ﹣1|x +|x ﹣2|(x ﹣1),∵f (x )<0,∴当x <1时,f (x )=﹣2(x ﹣1)2<0,恒成立,∴x <1;当x ≥1时,f (x )=(x ﹣1)(x +|x ﹣2|)≥0恒成立,∴x ∈∅;综上,不等式的解集为(﹣∞,1);(2)当a ≥1时,f (x )=2(a ﹣x )(x ﹣1)<0在x ∈(﹣∞,1)上恒成立; 当a <1时,x ∈(a ,1),f (x )=2(x ﹣a )>0,不满足题意,∴a 的取值范围为:[1,+∞)11.(2019•新课标Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明:(1)1a +1b +1c ≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.【解答】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证(1)1a +1b +1c ≤a 2+b 2+c 2;因为abc =1.就要证:abc a +abc b +abc c ≤a 2+b 2+c 2;即证:bc+ac+ab≤a2+b2+c2;即:2bc+2ac+2ab≤2a2+2b2+2c2;2a2+2b2+2c2﹣2bc﹣2ac﹣2ab≥0(a﹣b)2+(a﹣c)2+(b﹣c)2≥0;∵a,b,c为正数,且满足abc=1.∴(a﹣b)2≥0;(a﹣c)2≥0;(b﹣c)2≥0恒成立;当且仅当:a=b=c=1时取等号.即(a﹣b)2+(a﹣c)2+(b﹣c)2≥0得证.故1a +1b+1c≤a2+b2+c2得证.(2)证(a+b)3+(b+c)3+(c+a)3≥24成立;即:已知a,b,c为正数,且满足abc=1.(a+b)为正数;(b+c)为正数;(c+a)为正数;(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a);当且仅当(a+b)=(b+c)=(c+a)时取等号;即:a=b=c=1时取等号;∵a,b,c为正数,且满足abc=1.(a+b)≥2√ab;(b+c)≥2√bc;(c+a)≥2√ac;当且仅当a=b,b=c;c=a时取等号;即:a=b=c=1时取等号;∴(a+b)3+(b+c)3+(c+a)3≥3(a+b)•(b+c)•(c+a)≥3×8√ab•√bc•√ac=24abc =24;当且仅当a=b=c=1时取等号;故(a+b)3+(b+c)3+(c+a)3≥24.得证.故得证.12.(2018•北京)设n为正整数,集合A={α|α=(t1,t2,…t n),t k∈{0,1},k=1,2,…,n},对于集合A中的任意元素α=(x1,x2,…,x n)和β=(y1,y2,…y n),记M(α,β)=12[(x1+y1﹣|x1﹣y1|)+(x2+y2﹣|x2﹣y2|)+…(x n+y n﹣|x n﹣y n|)].(Ⅰ)当n=3时,若α=(1,1,0),β=(0,1,1),求M(α,α)和M(α,β)的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素α,β,当α,β相同时,M(α,β)是奇数;当α,β不同时,M(α,β)是偶数.求集合B中元素个数的最大值;(Ⅲ)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素α,β,M (α,β)=0,写出一个集合B ,使其元素个数最多,并说明理由. 【解答】解:(I ) M (α,α)=1+1+0=2,M (α,β)=0+1+0=1. (II )考虑数对(x k ,y k )只有四种情况:(0,0)、(0,1)、(1,0)、(1,1),相应的x k +y k −|x k −y k |2分别为0、0、0、1,所以B 中的每个元素应有奇数个1,所以B 中的元素只可能为(上下对应的两个元素称之为互补元素): (1,0,0,0 )、(0,1,0,0)、(0,0,1,0)、(0,0,0,1), (0,1,1,1)、(1,0,1,1)、(1,1,0,1)、(1,1,1,0), 对于任意两个只有1个1的元素α,β都满足M (α,β)是偶数,所以四元集合B ={(1,0,0,0)、(0,1,0,0)、(0,0,1,0)、(0,0,0,1)}满足 题意,假设B 中元素个数大于等于4,就至少有一对互补元素, 除了这对互补元素之外还有至少1个含有3个1的元素α,则互补元素中含有1个1的元素β与之满足M (α,β)=1不合题意, 故B 中元素个数的最大值为4.(Ⅲ) B ={(0,0,0,…0),(1,0,0…,0),(0,1,0,…0),(0,0,1…0)…, (0,0,0,…,1)},此时B 中有n +1个元素,下证其为最大.对于任意两个不同的元素α,β,满足M (α,β)=0,则α,β中相同位置上的数字不能同时为1,假设存在B 有多于n +1个元素,由于α=(0,0,0,…,0)与任意元素β都有M (α,β)=0,所以除(0,0,0,…,0)外至少有n +1个元素含有1,根据元素的互异性,至少存在一对α,β满足x i =y i =l ,此时M (α,β)≥1不满足题意, 故B 中最多有n +1个元素.13.(2018•新课标Ⅰ)已知f (x )=|x +1|﹣|ax ﹣1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.【解答】解:(1)当a =1时,f (x )=|x +1|﹣|x ﹣1|={2,x >12x ,−1≤x ≤1−2,x <−1,由f (x )>1,∴{2x >1−1≤x ≤1或{2>1x >1, 解得x >12,故不等式f (x )>1的解集为(12,+∞),(2)当x ∈(0,1)时不等式f (x )>x 成立, ∴|x +1|﹣|ax ﹣1|﹣x >0, 即x +1﹣|ax ﹣1|﹣x >0, 即|ax ﹣1|<1, ∴﹣1<ax ﹣1<1, ∴0<ax <2, ∵x ∈(0,1), ∴a >0, ∴0<x <2a , ∴a <2x ∵2x >2,∴0<a ≤2,故a 的取值范围为(0,2].14.(2018•新课标Ⅱ)设函数f (x )=5﹣|x +a |﹣|x ﹣2|. (1)当a =1时,求不等式f (x )≥0的解集; (2)若f (x )≤1,求a 的取值范围.【解答】解:(1)当a =1时,f (x )=5﹣|x +1|﹣|x ﹣2|={2x +4,x ≤−12,−1<x <2−2x +6,x ≥2.当x ≤﹣1时,f (x )=2x +4≥0,解得﹣2≤x ≤﹣1, 当﹣1<x <2时,f (x )=2≥0恒成立,即﹣1<x <2,当x ≥2时,f (x )=﹣2x +6≥0,解得2≤x ≤3, 综上所述不等式f (x )≥0的解集为[﹣2,3], (2)∵f (x )≤1, ∴5﹣|x +a |﹣|x ﹣2|≤1, ∴|x +a |+|x ﹣2|≥4,∴|x +a |+|x ﹣2|=|x +a |+|2﹣x |≥|x +a +2﹣x |=|a +2|, ∴|a +2|≥4,解得a ≤﹣6或a ≥2,故a 的取值范围(﹣∞,﹣6]∪[2,+∞).15.(2017•新课标Ⅰ)已知函数f (x )=﹣x 2+ax +4,g (x )=|x +1|+|x ﹣1|. (1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[﹣1,1],求a 的取值范围.【解答】解:(1)当a =1时,f (x )=﹣x 2+x +4,是开口向下,对称轴为x =12的二次函数,g (x )=|x +1|+|x ﹣1|={2x ,x >12,−1≤x ≤1−2x ,x <−1,当x ∈(1,+∞)时,令﹣x 2+x +4=2x ,解得x =√17−12,g (x )在(1,+∞)上单调递增,f (x )在(1,+∞)上单调递减,∴此时f (x )≥g (x )的解集为(1,√17−12];当x ∈[﹣1,1]时,g (x )=2,f (x )≥f (﹣1)=2.当x ∈(﹣∞,﹣1)时,g (x )单调递减,f (x )单调递增,且g (﹣1)=f (﹣1)=2. 综上所述,f (x )≥g (x )的解集为[﹣1,√17−12]; (2)依题意得:﹣x 2+ax +4≥2在[﹣1,1]恒成立,即x 2﹣ax ﹣2≤0在[﹣1,1]恒成立,则只需{12−a ⋅1−2≤0(−1)2−a(−1)−2≤0,解得﹣1≤a ≤1,故a 的取值范围是[﹣1,1].16.(2017•新课标Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.【解答】证明:(1)由柯西不等式得:(a +b )(a 5+b 5)≥(√a ⋅a 5+√b ⋅b 5)2=(a 3+b 3)2≥4,当且仅当√ab 5=√ba 5,即a =b =1时取等号, (2)∵a 3+b 3=2,∴(a +b )(a 2﹣ab +b 2)=2, ∴(a +b )[(a +b )2﹣3ab ]=2, ∴(a +b )3﹣3ab (a +b )=2, ∴(a+b)3−23(a+b)=ab ,由均值不等式可得:(a+b)3−23(a+b)=ab ≤(a+b 2)2,∴(a +b )3﹣2≤3(a+b)34, ∴14(a +b )3≤2,∴a +b ≤2,当且仅当a =b =1时等号成立. 17.(2017•新课标Ⅲ)已知函数f (x )=|x +1|﹣|x ﹣2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2﹣x +m 的解集非空,求m 的取值范围.【解答】解:(1)∵f (x )=|x +1|﹣|x ﹣2|={−3,x <−12x −1,−1≤x ≤23,x >2,f (x )≥1,∴当﹣1≤x ≤2时,2x ﹣1≥1,解得1≤x ≤2; 当x >2时,3≥1恒成立,故x >2; 综上,不等式f (x )≥1的解集为{x |x ≥1}.(2)原式等价于存在x ∈R 使得f (x )﹣x 2+x ≥m 成立, 即m ≤[f (x )﹣x 2+x ]max ,设g (x )=f (x )﹣x 2+x .由(1)知,g (x )={−x 2+x −3,x ≤−1−x 2+3x −1,−1<x <2−x 2+x +3,x ≥2,当x ≤﹣1时,g (x )=﹣x 2+x ﹣3,其开口向下,对称轴方程为x =12>−1, ∴g (x )≤g (﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x <2时,g (x )=﹣x 2+3x ﹣1,其开口向下,对称轴方程为x =32∈(﹣1,2), ∴g (x )≤g (32)=−94+92−1=54;当x ≥2时,g (x )=﹣x 2+x +3,其开口向下,对称轴方程为x =12<2, ∴g (x )≤g (2)=﹣4+2+3=1; 综上,g (x )max =54,∴m 的取值范围为(﹣∞,54].。
高三数学绝对值不等式试题答案及解析
高三数学绝对值不等式试题答案及解析1.已知函数.(Ⅰ)求的解集;(Ⅱ)设函数,若对任意的都成立,求的取值范围.【答案】(Ⅰ)或(Ⅱ)【解析】(Ⅰ)先利用根式的性质将函数的解析式化为含绝对的函数,在将具体化为,利用零点分析法化为不等式组,通过解不等式组解出的解集;(Ⅱ)利用零点分析法,通过分讨论将的解析式化为分段函数,作出函数的图像,由函数知,函数图像是恒过(3,0),斜率为的直线,由对任意的都成立知,函数的图像恒在函数的上方,作出函数的图像,观察满足的条件,求出的取值范围.试题解析:(Ⅰ)∴即∴①或②或③解得不等式①:;②:无解③:所以的解集为或. 5分(Ⅱ)即的图象恒在图象的上方图象为恒过定点,且斜率变化的一条直线作函数图象如图,其中,,∴由图可知,要使得的图象恒在图象的上方∴实数的取值范围为. 10分【考点】根式性质,含绝对不等式解法,分段函数,数形结合思想,分类整合思想2. (1).(不等式选做题)对任意,的最小值为()A.B.C.D.【答案】C【解析】因为,当且仅当时取等号,所以的最小值为,选C.【考点】含绝对值不等式性质3.(2013•重庆)若关于实数x的不等式|x﹣5|+|x+3|<a无解,则实数a的取值范围是_________.【答案】(﹣∞,8]【解析】由于|x﹣5|+|x+3|表示数轴上的x对应点到5和﹣3对应点的距离之和,其最小值为8,再由关于实数x的不等式|x﹣5|+|x+3|<a无解,可得a≤8,故答案为:(﹣∞,8].4.已知关于x的不等式的解集不是空集,则a的最小值是__________。
【答案】-9【解析】解:由关于x的不等式的解集不是空集得:即a的最小值是,所以答案应填.【考点】1、绝对值不等式的性质;2、绝对值不等式的解法.5.已知函数.(1)当时,解不等式;(2)若不等式恒成立,求实数的取值范围.【答案】(1);(2).【解析】(1)将代入函数的解析式,利用零点分段法将区间分成三段,去绝对值符号,并求出相应的不等式;(2)将问题转化为,利用双绝对值函数的最小值为,于是得到,问题转化为来求解,解出不等式即可.(1)由得,,或,或,解得:或,原不等式的解集为;(2)由不等式的性质得:,要使不等式恒成立,则,解得:或所以实数的取值范围为.【考点】1.零点分段法求解不等式;2.不等式恒成立6.已知不等式|2x-t|+t-1<0的解集为,则t=()A.0B.-1C.-2D.-3【答案】A【解析】∵|2x-t|<1-t,∴t-1<2x-t<1-t,即2t-1<2x<1,,∴t=0,选A.7.求函数y=|x-4|+|x-6|的最小值.【答案】2【解析】y=|x-4|+|x-6|≥|x-4+6-x|=2.所以函数的最小值为2.8.若不等式|3x-b|<4的解集中整数有且只有1,2,3,求实数b的取值范围.【答案】5<b<7【解析】由|3x-b|<4,得-4<3x-b<4,即<x<.因为解集中整数有且只有1,2,3,所以解得所以5<b<7.9.A.不等式的解集为B.如图,已知的两条直角边的长分别为3cm,4cm,以为直径的圆与交于点,则.C.已知圆的参数方程为(为参数)以原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为,则直线与圆的交点的直角坐标系为_______【答案】A.;B.;C.和【解析】A.当时,原不等式等价于,即不成立;当时,原不等式等价于,解得;当时,原不等式等价于,即恒成立,所以原不等式的解集为.B.在中,.∵以为直径的圆与交于点,∴,∴,∴,∴.C.由题设知,在直角坐标系下,直线的方程为,圆的方程为.联立方程,得或,故所求交点的直角坐标为和.【考点】1、绝对值不等式的解法;2、与圆有关的比例线段;3、直线与圆的参数方程.10. A.(坐标系与参数方程)已知直线的参数方程为(为参数),圆的参数方程为(为参数),则圆心到直线的距离为_________.B.(几何证明选讲)如右图,直线与圆相切于点,割线经过圆心,弦⊥于点,,,则_________.C.(不等式选讲)若存在实数使成立,则实数的取值范围是_________.【答案】A.;B.;C.【解析】A.先把直线l和圆C的参数方程化为普通方程y=x+1,(x-2)2+y2=1,再利用点到直线的距离公式求出即可.B.在圆中线段利用由切割线定理求得PA,进而利用直角三角形PCO中的线段,结合面积法求得CE即可.C.由绝对值的基本不等式得:,解得-3≤m≤1.【考点】(1)参数方程;(2)圆的性质;(3)绝对值不等式.11.设函数(1)若时,解不等式;(2)若不等式的对一切恒成立,求实数的取值范围【答案】(1) (2)【解析】(1)可以采用零点分段法或者绝对值的定义来解决该绝对值不等式,其中零点分段法即把x分为三段讨论去掉绝对值来求的该不等式的解集,而绝对值的定义,即表示在数轴上点x到-1和a的距离之和,利用数轴即可得到相应的解集(2)首先由区间的a,再根据x的范围去掉绝对值,剩下即为恒成立问题,再利用分离参数法分离x与a,求出x一边的最值即可.解得a的范围.试题解析:(1)由题得a=2,法一.利用绝对值的定义,即|x+1|即为在数轴上x与-1之间的距离,|x-2|是x与2之间的距离.故利用数轴法可以求的,综上的解集为.法二.零点分段法,分为一下三种情况当x>2时,当-1x2时,当x<-1时,综上的解集为.(2)由题得,所以且,即在区间上恒成立,所以,综上a的取值范围为.【考点】绝对值不等式恒成立问题12.不等式的解集是【答案】【解析】解答本题可利用“分段讨论法”,也可利用“几何法”,根据绝对值的几何意义,结合数轴得,不等式的解集是.【考点】绝对值不等式的解法13.已知函数,若函数的图象恒在轴上方,求实数的取值范围.【答案】【解析】因为,所以的最小值为.因为函数的图象恒在轴上方,所以因此有,解得.试题解析:解:的最小值为, 5分由题设,得,解得. 10分【考点】绝对值不等式的应用14.已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.【答案】(1) a=2 (2) (-∞,5]【解析】(1)由f(x)≤3,得|x-a|≤3,解得a-3≤x≤a+3.又已知不等式f(x)≤3的解集为{x|-1≤x≤5},所以解得a=2.(2)方法一:当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|.由|x-2|+|x+3|≥|(x-2)-(x+3)|=5,当且仅当-3≤x≤2时等号成立,得g(x)的最小值为5.从而,若f(x)+f(x+5)≥m对一切实数x恒成立,实数m的取值范围为(-∞,5].方法二:当a=2时,f(x)=|x-2|,设g(x)=f(x)+f(x+5)=|x-2|+|x+3|.于是g(x)=|x-2|+|x+3|=所以当x<-3时,g(x)>5;当-3≤x≤2时,g(x)=5;当x>2时,g(x)>5.综上可得,g(x)的最小值为5.从而,若f(x)+f(x+5)≥m对一切实数x恒成立,实数m的取值范围为(-∞,5].15.解不等式:x+|2x-1|<3.【答案】{x|-2<x<}【解析】原不等式可化为或解得≤x<或-2<x<.所以不等式的解集是{x|-2<x<}.16.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=________.【答案】2【解析】由|kx-4|≤2⇔2≤kx≤6.∵不等式的解集为{x|1≤x≤3},∴k=2.17.已知不等式|x+2|+|x|≤a的解集不是空集,则实数a的取值范围是().A.(-∞,2)B.(-∞,2]C.(2,+∞)D.[2,+∞)【答案】D【解析】因为|x+2|+|x|的最小值为2,所以要使不等式的解集不是空集,则有a≥2.18.若存在实数使得成立,则实数的取值范围为.【答案】【解析】在数轴上,表示横坐标为的点到横坐标为的点距离,就表示点到横坐标为1的点的距离,∵,∴要使得不等式成立,只要最小值就可以了,即,∴.故实数的取值范围是,故答案为:.【考点】绝对值不等式的解法.19.不等式的解集是.【答案】【解析】含绝对值的不等式我们可以通过根据绝对值的定义通过分类讨论的方法去掉绝对值符号,然后解决问题,本题也可不分类讨论,首先不等式变形为,它等价于,这是二次不等式,解得,还要注意题目要求写成集合形式.【考点】解不等式.20.若关于x的不等式的解集为空集,则实数a的取值范围是。
绝对值不等式题型解法练习
一、几种常见的含绝对值不等式的解法1.类型一:形如a x f a x f ><)(,)(型不等式(1)当0>a 时a x f a a x f <<-⇔<)()(a x f a x f >⇔>)()(或a x f -<)((2)当0=a 时a x f <)(,无解⇔>a x f )(使()0)()(≠=x f x f y 成立的x 的解集(3)当0<a 时a x f <)(,无解⇔>a x f )(使)(x f y =成立的x 的解集例1(2009年理科第2题5分)若集合{}21|21|3,0,3x A x x B x x ⎧+⎫=-<=<⎨⎬-⎩⎭则A∩B 是( )A.11232x x x ⎧⎫-<<-<<⎨⎬⎩⎭或 B.{}23x x <<C.122x x ⎧⎫-<<⎨⎬⎩⎭D.112x x ⎧⎫-<<-⎨⎬⎩⎭分析:要解决这个题,就是解两个不等式,其中312<-x 即为含绝对值的不等式,这是形如a x f <)(型的绝对值不等式,其中0>a ,则a x f a <<-)(。
解:因为312<-x ,所以3123<-<-x ,即解得)2,1(-∈x 解0312<-+x x 得,3>x 或21-<x 所以⎭⎬⎫⎩⎨⎧-<<-=211x x B A ,故答案选D.二,形如)0()(>><<a b b x f a 型不等式b x f a a b b x f a <<⇔>><<)()0()(或a x f b -<<-)(。
例2不等式311<+<x 的解集为( )A.(0,2)B.)4,2()0,2( -C .)0,4(- D.)2,0()2,4( -- 分析:原不等式是形如)0()(>><<a b b x f a 型不等式,需将原不等式转化为以下的不等式求解:113311-<+<-<+<x x 或,这样就转化为解简单的不等式问题。
【推荐】专题15 不等式选讲(高考押题)-2017年高考数学(文)考纲解读与热点难点突破
1.已知函数f(x)=k-|x-3|,k∈R,且f(x+3)≥0的解集为-1,1].(导学号55460156) (1)求k的值;(2)若a,b,c是正实数,且1ka+12kb+13kc=1.求证:a+2b+3c≥9.2.已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含1,2],求a的取值范围.【解析】:(1)当a=-3时,不等式f(x)≥3化为|x-3|+|x-2|≥3.①若x≤2时,由①式,得5-2x≥3,∴x≤1.若2<x<3时,由①式知,解集为∅.若x≥3时,由①式,得2x-5≥3,∴x≥4.综上可知,f(x)≥3的解集是{x|x≥4或x≤1}.(2)原不等式等价于|x-4|-|x-2|≥|x+a|,②当1≤x≤2时,②式化为4-x-(2-x)≥|x+a|,解之得-2-a≤x≤2-a.由条件,1,2]是f (x )≤|x -4|的解集的子集,∴-2-a ≤1且2≤2-a ,则-3≤a ≤0.故满足条件的实数a 的取值范围是-3,0].3.已知正实数a ,b 满足:a 2+b 2=2ab .(1)求1a +1b 的最小值m ;(2)设函数f (x )=|x -t |+⎪⎪⎪⎪x +1t (t ≠0),对于(1)中求得的实数m 是否存在实数x ,使得f (x )=m 2成立,说明理由.4.已知函数f (x )=|x |+|x -1|.(1)若f (x )≥|m -1|恒成立,求实数m 的最大值M ;(2)在(1)成立的条件下,正实数a ,b 满足a 2+b 2=M ,证明:a +b ≥2ab .【解析】(1)解:∵f (x )=|x |+|x -1|≥|x -(x -1)|=1,当且仅当0≤x ≤1时,取等号,∴f (x )=|x |+|x -1|的最小值为1.要使f (x )≥|m -1|恒成立,只需|m -1|≤1,∴0≤m ≤2,则m 的最大值M =2.(2)证明:由(1)知,a 2+b 2=2,由a 2+b 2≥2ab ,知ab ≤1,①又a +b ≥2ab ,则(a +b )ab ≤2ab , 由①知,ab ≤1,故a +b ≥2ab .5.已知函数f (x )=|x +1|.(1)求不等式f (x )<|2x +1|-1的解集M ;(2)设a ,b ∈M ,证明:f (ab )>f (a )-f (-b ).6.设函数f (x )=|2x +1|-|x -2|.(1)求不等式f (x )>2的解集;(2)∀x ∈R ,使f (x )≥t 2-112t ,求实数t 的取值范围.【解析】 (1)f (x )=⎩⎨⎧-x -3,x <-12,3x -1,-12≤x <2,x +3,x ≥2,当x <-12时,-x -3>2⇒x <-5,∴x <-5.当-12≤x <2时,3x -1>2⇒x >1,∴1<x <2.当x ≥2时,x +3>2⇒x >-1,∴x ≥2.综上所述,不等式f (x )>2的解集为{x |x >1或x <-5}.(2)易得f (x )min =-52,若∀x ∈R 都有f (x )≥t 2-112t 恒成立,则只需f (x )min =-52≥t 2-11t 2,解得12≤t ≤5.7.若关于x 的不等式|x -1|+|x -3|≤a 2-2a -1在R 上的解集为∅,则实数a 的取值范围是( )A .a <-1或a >3B .a <0或a >3C .-1<a <3D .-1≤a ≤3【答案】 C【解析】 |x -1|+|x -3|的几何意义是数轴上与x 对应的点到1、3对应的两点距离之和,故它的最小值为2,∵原不等式解集为∅,∴a 2-2a -1<2. 即a 2-2a -3<0,解得-1<a <3. 故选C.8.设f (x )=1a x 2-bx +c ,不等式f (x )<0的解集是(-1,3),若f (7+|t |)>f (1+t 2),则实数t的取值范围是________.【答案】 (-3,3)9.已知函数f (x )=|x -4|+|x +5|.(1)试求使等式f (x )=|2x +1|成立的x 的取值范围;(2)若关于x 的不等式f (x )<a 的解集不是空集,求实数a 的取值范围.10.已知函数f (x )=|x +2|-|x -1|.(1)试求f (x )的值域;(2)设g (x )=ax 2-3x +3x(a >0),若任意s ∈(0,+∞),任意t ∈(-∞,+∞),恒有g (s )≥f (t )成立,试求实数a 的取值范围.11.设函数f (x )=|2x -1|-|x +2|.(1)求不等式f (x )≥3的解集;(2)若关于x 的不等式f (x )≥t 2-3t 在0,1]上无解,求实数t 的取值范围.【解析】 (1)f (x )=⎩⎨⎧x -3,x ≥12,-3x -1,-2≤x <12,3-x ,x <-2,所以原不等式转化为⎩⎪⎨⎪⎧x ≥12,x -3≥3,或⎩⎪⎨⎪⎧-2≤x <12,-3x -1≥3,或⎩⎪⎨⎪⎧x <-2,3-x ≥3,所以原不等式的解集为⎝⎛⎦⎤-∞,-43∪6,+∞). (2)只要f (x )max <t 2-3t ,由(1)知f (x )max =-1<t 2-3t 解得t >3+52或t <3-52.12.设函数f (x )=|x +1a |+|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.13.已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.【解析】 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5;所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧-2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12.又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧a -12=1,a +12=2,于是a =3.14.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab ≥8;(2)⎝⎛⎭⎫1+1a ⎝⎛⎭⎫1+1b ≥9.15.已知关于x的不等式m-|x-2|≥1,其解集为0,4].(1)求m的值;(2)若a,b均为正实数,且满足a+b=m,求a2+b2的最小值.16.已知a ,b 均为正数,且a +b =1,证明:(1)(ax +by )2≤ax 2+by 2;(2)⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2≥252.【解析】证明:(1)(ax +by )2-(ax 2+by 2)=a (a -1)x 2+b (b -1)y 2+2abxy ,因为a +b =1,所以a -1=-b ,b -1=-a .又a ,b 均为正数,所以a (a -1)x 2+b (b -1)y 2+2abxy=-ab (x 2+y 2-2xy )=-ab (x -y )2≤0,当且仅当x =y 时等号成立.所以(ax +by )2≤ax 2+by 2.(2)⎝⎛⎭⎫a +1a 2+⎝⎛⎭⎫b +1b 2=4+a 2+b 2+⎝⎛⎭⎫1a 2+1b 2=4+a 2+b 2+(a +b )2a 2+(a +b )2b 2=4+a 2+b 2+1+2b a +b 2a 2+a 2b 2+2a b +1=4+(a 2+b 2)+2+2⎝⎛⎭⎫b a +a b +⎝⎛⎭⎫b 2a 2+a 2b 2≥4+(a +b )22+2+4+2=252.当且仅当a =b 时等号成立.17.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为-1,1],且|f (x )|的最大值为M .(1)证明:|1+b |≤M ;(2)证明:M ≥12.18.已知a ,b ,c 为非零实数,且a 2+b 2+c 2+1-m =0,1a 2+4b 2+9c 2+1-2m =0.(1)求证:1a 2+4b 2+9c 2≥36a 2+b 2+c 2; (2)求实数m 的取值范围.【解析】:(1)证明:由柯西不等式得⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1a 2+⎝⎛⎭⎫2b 2+⎝⎛⎭⎫3c 2(a 2+b 2+c 2)≥⎝⎛⎭⎫1a ·a +2b ·b +3c ·c 2, 即⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1a 2+⎝⎛⎭⎫2b 2+⎝⎛⎭⎫3c 2(a 2+b 2+c 2)≥36. ∴1a 2+4b 2+9c 2≥36a 2+b 2+c 2. (2)由已知得a 2+b 2+c 2=m -1,1a 2+4b 2+9c 2=2m -1,∴(m -1)(2m -1)≥36,即2m 2-3m -35≥0,解得m ≤-72或m ≥5.又a 2+b 2+c 2=m -1>0,1a 2+4b 2+9c 2=2m -1>0,∴m ≥5.即实数m 的取值范围是5,+∞).19.已知函数f(x)=m-|x-1|-|x-2|,m∈R,且f(x+1)≥0的解集为0,1].(1)求m的值;(2)若a,b,c,x,y,z∈R,且x2+y2+z2=a2+b2+c2=m,求证:ax+by+cz≤1.。
【推荐】专题03 不等式(高考押题)-2017年高考数学(文)考纲解读与热点难点突破
1.若a >b ,则下列不等式成立的是( ) A .ln a >ln b B .0.3a>0.3bC .a >b D.3a >3b【答案】 D2.设a =lg e ,b =(lg e)2,c =lg e ,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a【答案】 B【解析】 0<lg e<1,即0<a <1,b =(lg e)2=a 2<a ,c =lg e =12lg e =12a <a ,又b =(lg e)2<lg 10lg e =12lg e =c ,因此a >c >b .故选B.3.在R 上定义运算⊗:x ⊗y =x (1-y ).若不等式(x -a )⊗(x +a )<1对任意实数x 成立,则( )A .-1<a <1B .0<a <2C .-12<a <32D .-32<a <12【答案】 C【解析】 (x -a )⊗(x +a )<1对任意实数x 成立, 即(x -a )(1-x -a )<1对任意实数x 成立. ∴x 2-x -a 2+a +1>0恒成立,∴Δ=1-4(-a 2+a +1)<0,∴-12<a <32,故选C.4.函数f (x )=(x -2)(ax +b )为偶函数,且在(0,+∞)上单调递增,则f (2-x )>0的解A .{x |x >2或x <-2}B .{x |-2<x <2}C .{x |x <0或x >4}D .{x |0<x <4} 【答案】 C5.已知点A (-2,0),点M (x ,y )为平面区域⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0上的一个动点,则|AM |的最小值是( )A .5B .3C .2 2 D. 655【答案】 D【解析】 不等式组⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0表示的平面区域如图,结合图象可知|AM |的最小值为点A 到直线2x +y -2=0的距离,即|AM |min =|2×(-2)+0-2|5=655.6.如果实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥1,目标函数z =kx -y 的最大值为6,最小值为0,则实数k 的值为( )A .1B .2C .3D .4 【答案】 B【解析】 不等式组表示的可行域如图,A (1,2),B (1,-1),C (3,0)∵目标函数z =kx -y 的最小值为0,∴目标函数z =kx -y 的最小值可能在A 或B 时取得; ∴①若在A 上取得,则k -2=0,则k =2,此时,z =2x -y 在C 点有最大值,z =2×3-0②若在B 上取得,则k +1=0,则k =-1,此时,z =-x -y ,在B 点取得的应是最大值, 故不成立,∴k =2,故答案为B.7.已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A .(-∞,-1)B .(-∞,22-1)C .(-1,22-1)D .(-22-1,22-1) 【答案】 B【解析】 由f (x )>0得32x-(k +1)·3x+2>0, 解得k +1<3x+23x ,而3x +23x ≥22(当且仅当3x=23x ,即x =log 32时,等号成立),∴k +1<22,即k <22-1.8.已知二次函数f (x )=ax 2+2x +c (x ∈R )的值域为0,+∞),则a +1c +c +1a的最小值为( )A .4B .4 2C .8D .8 2 【答案】 A9.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为( ) A .n +1B .2nC.n 2+n +22D .n 2+n +1【答案】 C【解析】 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域,选C.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2;④a 2+b 2>2;⑤ab >1.其中能推出:“a ,b 中至少有一个大于1”的条件是( )A .②③B .①②③C .③D .③④⑤ 【答案】 C11.已知a ,b ,c 满足c <b <a 且ac <0,则下列选项中不一定能成立的是( ) A.c a <ba B.b -ac>0 C.b 2c <a 2c D.a -c ac<0 【答案】:C【解析】:∵c <b <a 且ac <0,∴c <0,a >0,∴c a <b a ,b -ac >0,a -cac<0,但b 2与a 2的关系不确定,故b 2c <a 2c不一定成立.12.已知不等式ax 2-bx -1≥0的解集是⎣⎢⎡⎦⎥⎤-12,-13,则不等式x 2-bx -a <0的解集是( )A .(2,3)B .(-∞,2)∪(3,+∞)C.⎝ ⎛⎭⎪⎫13,12 D.⎝ ⎛⎭⎪⎫-∞,13∪⎝ ⎛⎭⎪⎫12,+∞ 【答案】:A【解析】:依题意,-12与-13是方程ax 2-bx -1=0的两根,则⎩⎪⎨⎪⎧b a =-12-13,-1a =-12×⎝ ⎛⎭⎪⎫-13,即⎩⎪⎨⎪⎧b a =-56,1a =-16,又a <0,不等式x 2-bx -a <0可化为1a x 2-b a x -1>0,即-16x 2+56x -1>0,解得2<x <3.13.若正数x ,y 满足x +y =1,且1x +ay≥4对任意的x ,y ∈(0,1)恒成立,则a 的取值范围是( )A .(0,4]B .4,+∞)C .(0,1]D .1,+∞) 【答案】:D14.已知函数f (x )=ax 2+bx +c ,不等式f (x )<0的解集为{x |x <-3或x >1},则函数y =f (-x )的图象可以为( )【答案】:B【解析】:由f (x )<0的解集为{x |x <-3或x >1}知a <0,y =f (x )的图象与x 轴交点为(-3,0),(1,0),∴f (-x )图象开口向下,与x 轴交点为(3,0),(-1,0). 15.设a ,b ∈R ,且a +b =3,则2a+2b的最小值是( ) A .6 B .4 2 C .2 2 D .2 6 【答案】:B【解析】:2a+2b≥22a +b=223=42,当且仅当2a =2b,a +b =3,即a =b =32时,等号成立.故选B.16.已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥0x -y ≥02x -y -2≥0,则z =y -1x +1的取值范围是( ) A.⎣⎢⎡⎦⎥⎤-1,13 B.⎣⎢⎡⎦⎥⎤-12,13C.⎣⎢⎡⎭⎪⎫-12,+∞D.⎣⎢⎡⎭⎪⎫-12,1 【答案】:D【解析】:由题知可行域如图阴影部分所示,∴z =y -1x +1的取值范围为k MA,1),即⎣⎢⎡⎭⎪⎫-12,1.17.设a ,b 为实数,则“a <1b 或b <1a”是“0<ab <1”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】:D18.已知函数y =x -4+9x +1(x >-1),当x =a 时,y 取得最小值b ,则a +b 等于( )A .-3B .2C .3D .8 【答案】:C 【解析】:y =x -4+9x +1=x +1+9x +1-5,因为x >-1,所以x +1>0,9x +1>0.所以由基本不等式,得y =x +1+9x +1-5≥2 x +9x +1-5=1,当且仅当x +1=9x +1,即(x +1)2=9,即x +1=3,x =2时取等号,所以a =2,b =1,a +b =3.19.若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1x -y ≥-12x -y ≤2,且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .-4,2]B .(-4,2)C .-4,1]D .(-4,1) 【答案】:B【解析】:作出不等式组表示的区域如图中阴影部分所示,直线z =ax +2y 的斜率为k =-a2,从图中可看出,当-1<-a2<2,即-4<a <2时,仅在点(1,0)处取得最小值.故选B.20.若关于x 的不等式x 2+ax -2>0在区间1,5]上有解,则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D .(-∞,-1) 【答案】:A21.已知1≤lg x y ≤2,2≤lg x 3y ≤3,求lg x 33y的取值范围.=3·2b -a 5-13·2b -6a 5=1615b -15a .由⎩⎪⎨⎪⎧1≤a ≤2,2≤b ≤3, 得⎩⎪⎨⎪⎧-25≤-15a ≤-15,3215≤1615b ≤165.∴2615≤1615b -15a ≤3, 即2615≤lg x33y≤3. ∴lgx 33y的取值范围是⎣⎢⎡⎦⎥⎤2615,3.22.据调查,湖南某地区有100万从事传统农业的农民,人均年收入3 000元.为了增加农民的收入,当地政府积极引资建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作.据统计,如果有x (x >0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x %,而进入企业工作的农民人均年收入为3 000 a 元(a >0为常数).(1)在建立加工企业后,要使该地区从事传统农业的农民的年总收入不低于加工企业建立前的年总收入,求x 的取值范围;(2)在(1)的条件下,当地政府应安排多少万农民进入加工企业工作,才能使这100万农民的人均年收入达到最大?答:当0<a ≤1时,安排25(a +1)万人进入加工企业工作,当a >1时,安排50万人进入加工企业工作,才能使这100万人的人均年收入最大.23.某企业生产A ,B 两种产品,生产每一吨产品所需的劳动力、煤和电耗如下表:已知生产每吨A 产品的利润是7万元,生产每吨B 产品的利润是12万元,现因条件限制,该企业仅有劳动力300个,煤360吨,并且供电局只能供电200千瓦,试问该企业如何安排生产,才能获得最大利润?【解析】 设生产A ,B 两种产品分别为x 吨,y 吨,利润为z 万元,依题意,得 ⎩⎪⎨⎪⎧3x +10y ≤300,9x +4y ≤360,4x +5y ≤200,x ≥0,y ≥0.目标函数为 z =7x +12y .作出可行域,如图阴影所示.当直线7x +12y =0向右上方平行移动时,经过M (20,24)时z 取最大值.∴该企业生产A ,B 两种产品分别为20吨和24吨时,才能获得最大利润.24.某造纸厂拟建一座平面图形为矩形且面积为200平方米的二级污水处理池,池的深度一定,池的四周墙壁建造单价为每米400元,中间一条隔壁建造单价为每米100元,池底建造单价每平方米60元(池壁厚忽略不计).(1)污水处理池的长设计为多少米时,可使总造价最低;(2)如果受地形限制,污水处理池的长、宽都不能超过14.5米,那么此时污水处理池的长设计为多少米时,可使总造价最低.25.设函数f (x )=x ln x (x >0).(1)求函数f (x )的最小值;(2)设F (x )=ax 2+f ′(x )(a ∈R ),讨论函数F (x )的单调性;(3)斜率为k 的直线与曲线y =f ′(x )交于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,求证:1x 2<k <1x 1. 【解析】(1)解 f ′(x )=ln x +1(x >0),令f ′(x )=0,得x =1e, 当x ∈⎝ ⎛⎭⎪⎫0,1e ,f ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0. ∴当x =1e 时,f (x )min =1e ln 1e =-1e. (2)解 F (x )=ax 2+ln x +1(x >0),F ′(x )=2ax +1x =2ax 2+1x(x >0), 当a ≥0时,恒有F ′(x )>0,F (x )在(0,+∞)上单调递增;当a <0时,令F ′(x )>0,得2ax 2+1>0,解得0<x <-12a; 令F ′(x )<0,得2ax 2+1<0,解得x >-12a. 综上,当a ≥0时,F (x )在(0,+∞)上单调递增. 当a <0时,F (x )在⎝ ⎛⎭⎪⎫0,-12a 上单调递增,在 ⎝ ⎛⎭⎪⎫-12a ,+∞上单调递减.②令函数h (t )=t ln t -(t -1)(t ≥1), 则h ′(t )=ln t ≥0(t ≥1),故h(t)在1,+∞)上是增函数,∴当t>1时,h(t)=t ln t-(t-1)>h(1)=0,即t-1<t ln t(t>1).由①②知(*)成立,得证.。
(浙江专用)2017版高考数学一轮复习 第七章 不等式 第4讲 绝对值不等式练习
【创新设计】(浙江专用)2017版高考数学一轮复习 第七章 不等式第4讲 绝对值不等式练习基础巩固题组 (建议用时:40分钟)一、选择题1.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =( ) A.2B.3C.4D.5解析 ∵|kx -4|≤2,∴-2≤kx -4≤2,∴2≤kx ≤6. ∵不等式的解集为{x |1≤x ≤3},∴k =2. 答案 A2.不等式|x +3|-|x -2|≥3的解集为( ) A.(-∞,1) B.(-∞,1] C.(1,+∞)D.[1,+∞)解析 当x ≥2时,原不等式化为x +3-(x -2)≥3.解得x ≥2; 当-3<x <2时,原不等式化为x +3-(2-x )≥3,解得1≤x <2; 当x ≤-3时,原不等式化为-x -3-(2-x )≥3,无解. 综上,x 的取值范围为x ≥1. 答案 D3.不等式|2x -1|-|x -2|<0的解集为( ) A.(0,1) B.(-1,0) C.(-1,1)D.(-2,2)解析 法一 原不等式即为|2x -1|<|x -2|, ∴4x 2-4x +1<x 2-4x +4,∴3x 2<3,∴-1<x <1. 法二 原不等式等价于不等式组①⎩⎪⎨⎪⎧x ≥2,2x -1-(x -2)<0或②⎩⎪⎨⎪⎧12<x <2,2x -1+(x -2)<0或③⎩⎪⎨⎪⎧x ≤12,-(2x -1)+(x -2)<0.不等式组①无解,由②得12<x <1,由③得-1<x ≤12.综上得-1<x <1,所以原不等式的解集为{x |-1<x <1}. 答案 C4.(2016·杭州质量检测)不等式|x +2|-|x |≤1的解集为( ) A.⎝⎛⎦⎥⎤-∞,-12 B.⎝⎛⎦⎥⎤-∞,12C.⎣⎢⎡⎭⎪⎫-12,+∞D.⎣⎢⎡⎭⎪⎫12,+∞解析 ①当x ≤-2时,原不等式可化为-x -2+x ≤1,该不等式恒成立. ②当-2<x <0时,原不等式可化为x +2+x ≤1, ∴2x ≤-1,∴x ≤-12,∴-2<x ≤-12.③当x ≥0时,原不等式可化为x +2-x ≤1,不成立.综上,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-12. 答案 A5.若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为( ) A.(2,4) B.(3,5) C.(4,7)D.(5,7)解析 由|3x -b |<4得-4<3x -b <4,即-4+b 3<x <4+b3,∵不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则 ⎩⎪⎨⎪⎧0≤-4+b3<1,3<4+b 3≤4⇒⎩⎪⎨⎪⎧4≤b <7,5<b ≤8,∴5<b <7. 答案 D 二、填空题6.不等式|2x -1|<3的解集为________.解析 |2x -1|<3⇔-3<2x -1<3⇔-1<x <2. 答案 (-1,2)7.在实数范围内,不等式||x -2|-1|≤1(x ∈R )的解集是________.解析 由||x -2|-1|≤1,得-1≤|x -2|-1≤1,即0≤|x -2|≤2,∴-2≤x -2≤2,∴0≤x ≤4. 答案 {x |0≤x ≤4}8.(2016·湖州质检)不等式|x +1|-|x -2|>k 的解集为R ,则实数k 的取值范围是________.解析 法一 根据绝对值的几何意义,设数x ,-1,2在数轴上对应的点分别为P ,A ,B ,则原不等式等价于PA -PB >k 恒成立.∵AB =3,即|x +1|-|x -2|≥-3. 故当k <-3时,原不等式恒成立. 法二 令y =|x +1|-|x -2|,则y =⎩⎪⎨⎪⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2,要使|x +1|-|x -2|>k 恒成立,从图象中可以看出,只要k <-3即可.故k <-3满足题意. 答案 (-∞,-3) 三、解答题9.已知函数f (x )=|x +a |+|x -2|.(1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 解 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1; 当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4. 所以f (x )≥3的解集为{x |x ≤1,或x ≥4}. (2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |. 当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔ 4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a . 由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0. 故满足条件的a 的取值范围是[-3,0]. 10.设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3; (2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 解 (1)当a =-1时,f (x )=|x -1|+|x +1|, f (x )=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1.作出函数f (x )=|x -1|+|x +1|的图象.由图象可知,不等式f (x )≥3的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≤-32,或x ≥32.(2)若a =1,f (x )=2|x -1|, 不满足题设条件;若a <1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤a ,1-a ,a <x <1,2x -(a +1),x ≥1,f (x )的最小值为1-a ;若a >1,f (x )=⎩⎪⎨⎪⎧-2x +a +1,x ≤1,a -1,1<x <a ,2x -(a +1),x ≥a ,f (x )的最小值为a -1.∴对于∀x ∈R ,f (x )≥2,∴当a <1时,1-a ≥2, ∴a ≤-1,当a >1时,a -1≥2,∴a ≥3. ∴a 的取值范围是(-∞,-1]∪[3,+∞).能力提升题组 (建议用时:20分钟)11.已知h >0,a ,b ∈R ,命题甲:|a -b |<2h ;命题乙:|a -1|<h 且|b -1|<h ,则甲是乙的________条件( ) A.充分不必要 B.必要不充分 C.充要D.既不充分也不必要解析 |a -b |=|a -1+1-b |≤|a -1|+|b -1|<2h ,故由乙能推出甲成立,但甲成立不能推出乙成立,所以甲是乙的必要不充分条件. 答案 B12.(2015·台州质检)若关于x 的不等式|a |≥|x +1|+|x -2|存在实数解,则实数a 的取值范围是________.解析 ∵f (x )=|x +1|+|x -2|=⎩⎪⎨⎪⎧-2x +1(x ≤-1),3 (-1<x <2),2x -1 (x ≥2),∴f (x )≥3.要使|a |≥|x +1|+|x -2|有解,∴|a |≥3,即a ≤-3或a ≥3. 答案 (-∞,-3]∪[3,+∞)13.(2014·湖南卷)若关于x 的不等式|ax -2|<3的解集为⎩⎨⎧⎭⎬⎫x |-53<x <13,则a =________.解析 ∵|ax -2|<3,∴-1<ax <5. 当a >0时,-1a <x <5a,与已知条件不符;当a =0时,x ∈R ,与已知条件不符;当a <0时,5a <x <-1a ,又不等式的解集为{x |-53<x <13},故a =-3.答案 -314.设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N . (1)求M ;(2)当x ∈(M ∩N )时,证明:x 2f (x )+x [f (x )]2≤14.(1)解 f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1)当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0,故0≤x <1. 所以f (x )≤1的解集为M ={x |0≤x ≤43}.(2)证明 由g (x )=16x 2-8x +1≤4得16⎝ ⎛⎭⎪⎫x -142≤4, 解得-14≤x ≤34.因此N =⎩⎨⎧⎭⎬⎫x |-14≤x ≤34,故M ∩N =⎩⎨⎧⎭⎬⎫x |0≤x ≤34.当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·[f (x )]2=xf (x )[x +f (x )] =x ·f (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14.。
2017年高考数学(文)一轮复习精品资料 专题55 不等式的证明(押题专练) 含解析
1.若a>0,b>0,且错误!+错误!=错误!.(1)求a3+b3的最小值;(2)是否存在a,b,使得2a+3b=6?并说明理由。
2.若a,b,c∈R+,且满足a+b+c=2。
(1)求abc的最大值;(2)证明:错误!+错误!+错误!≥错误!。
解析:(1)因为a,b,c∈R+,所以2=a+b+c≥33,abc,故abc≤错误!。
当且仅当a=b=c=23时等号成立,所以abc的最大值为错误!。
(2)证明:因为a,b,c∈R+,且a+b+c=2,所以根据柯西不等式,可得错误!+错误!+错误!=错误!(a+b+c)错误!=错误!×错误!≥错误!错误!2=错误!.所以错误!+错误!+错误!≥错误!。
3.设a>0,b>0,且a+b=错误!+错误!,证明:(1)a+b≥2;(2)a2+a<2与b2+b<2不可能同时成立。
4.已知函数f(x)=|x+a|+错误!(a>0).(1)当a=2时,求不等式f(x)〉3的解集;(2)证明:f(m)+f错误!≥4。
解析:(1)当a=2时,f(x)=|x+2|+错误!,原不等式等价于错误!或错误!或错误!∴x〈-错误!或∅或x>错误!,∴不等式的解集为错误!。
(2)证明:f(m)+f错误!=|m+a|+错误!+错误!+错误!=错误!+错误!+错误!≥2错误!=2错误!≥4(当且仅当错误!时等号成立)。
5.设函数f(x)=|x+2|+|x-2|,x∈R.不等式f(x)≤6的解集为M。
(1)求M;(2)当a2,b2∈M时,证明:错误!|a+b|≤|ab+3|。
解析:(1)|x+2|+|x-2|≤6等价于错误!或错误!或错误!,解得-3≤x≤3,∴M=。
(2)当a2,b2∈M,即0≤a2≤3,0≤b2≤3时,要证3|a+b|≤|ab+3|,即证3(a+b)2≤(ab+3)2,3 (a+b)2-(ab+3)2=3(a2+2ab+b2)-(a2b2+6ab+9)=3a2+3b2-a2b2-9=(a2-3)(3-b2)≤0,∴3|a+b|≤|ab+3|。
高考数学一轮复习课时跟踪检测五绝对值不等式含解析
课时跟踪检测(五) 绝对值不等式一抓基础,多练小题做到眼疾手快1.已知a ,b ∈R ,则使不等式|a +b |<|a |+|b |一定成立的条件是( ) A .a +b >0 B .a +b <0 C .ab >0D .ab <0解析:选D 当ab >0时,|a +b |=|a |+|b |,当ab <0时,|a +b |<|a |+|b |,故选D.2.设集合A ={x ||4x -1|<9,x ∈R},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪xx +3≥0,x ∈R ,则(∁R A )∩B =( ) A .(-∞,-3)∪⎣⎢⎡⎭⎪⎫52,+∞B .(-3,-2]∪⎣⎢⎡⎭⎪⎫0,52C .(-∞,-3]∪⎣⎢⎡⎭⎪⎫52,+∞ D .(-3,-2]解析:选A 由题意得A =⎝⎛⎭⎪⎫-2,52,B =(-∞,-3)∪[0,+∞),∴(∁R A )∩B =(-∞,-3)∪⎣⎢⎡⎭⎪⎫52,+∞.3.不等式|x +2|>3x +145的解集是( )A .(-3,-2)B .(-2,0)C .(0,2)D .(-∞,-3)∪(2,+∞)解析:选D 不等式即为5(x +2)>3x +14或5(x +2)<-(3x +14),解得x >2或x <-3,故选D.4.不等式|x -1|-|x -5|<2的解集为____________. 解析:不等式|x -1|-|x -5|<2等价于⎩⎪⎨⎪⎧ x <1,-x -+x -<2或⎩⎪⎨⎪⎧1≤x ≤5,x -1+x -5<2或⎩⎪⎨⎪⎧ x >5,x -1-x -<2,即⎩⎪⎨⎪⎧x <1,-4<2或⎩⎪⎨⎪⎧1≤x ≤5,2x <8或⎩⎪⎨⎪⎧x >5,4<2,故原不等式的解集为{x |x <1}∪{x |1≤x <4}∪∅={x |x <4}. 答案:{x |x <4}5.不等式|x (x -2)|>x (x -2)的解集为________.解析:不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案:{x |0<x <2}二保高考,全练题型做到高考达标1.(2018·台州联考)不等式(1+x )(1-|x |)>0的解集是( ) A .{x |0≤x <1} B .{x |x <0且x ≠-1} C .{x |-1<x <1}D .{x |x <1且x ≠-1}解析:选D 不等式等价于⎩⎪⎨⎪⎧x ≥0,1-x 2>0或⎩⎪⎨⎪⎧x <0,+x2>0,解得0≤x <1或x <0且x ≠-1.故选D.2.已知a ,b ∈R ,则“|a |+|b |>1”是“b <-1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 令a =0,b =2,则|a |+|b |>1成立,但推不出b <-1;反之,若b <-1,则|b |>1,又|a |≥0,所以|a |+|b |>1.所以“|a |+|b |>1”是“b <-1”的必要不充分条件.3.不等式|x -5|+|x +3|≥10的解集是( ) A .[-5,7]B .[-4,6] C. (-∞,-5]∪[7,+∞)D. (-∞,-4]∪[6,+∞)解析:选D 当x ≤-3时,|x -5|+|x +3|=5-x -x -3=2-2x ≥10,即x ≤-4,∴x ≤-4.当-3<x <5时,|x -5|+|x +3|=5-x +x +3=8≥10,不成立,∴无解.当x ≥5时,|x -5|+|x +3|=x -5+x +3=2x -2≥10,即x ≥6,∴x ≥6.综上可知,不等式的解集为(-∞,-4]∪[6,+∞).4.不等式x 2-|x -1|-1≤0的解集为( ) A .{x |-2≤x ≤1} B .{x |-1≤x ≤2} C .{x |1≤x ≤2}D .{x |-1≤x ≤1}解析:选A 当x -1≥0时,原不等式化为x 2-x ≤0,解得0≤x ≤1.∴x =1; 当x -1<0时,原不等式化为x 2+x -2≤0, 解得-2≤x ≤1.∴-2≤x <1. 综上,-2≤x ≤1.所以原不等式的解集为{x |-2≤x ≤1},故选A.5.(2018·长沙六校联考)设f (x )=1ax 2-bx +c ,不等式f (x )<0的解集是(-1,3),若f (7+|t |)>f (1+t 2),则实数t 的取值范围为( )A .(-3,1)B .(-3,3)C .(-1,3)D .(-1,1)解析:选B ∵f (x )<0的解集是(-1,3), ∴a >0,f (x )的对称轴是x =1,且ab =2. ∴f (x )在[1,+∞)上单调递增. 又∵7+|t |≥7,1+t 2≥1,∴由f (7+|t |)>f (1+t 2),得7+|t |>1+t 2. ∴|t |2-|t |-6<0,解得-3<t <3. 故选B.6.已知函数f (x )=|x +6|-|m -x |(m ∈R),若不等式f (x )≤7对任意实数x 恒成立,则m 的取值范围为________.解析:由绝对值三角不等式得f (x )=|x +6|-|m -x |≤|x +6+m -x |=|m +6|,由题意得|m +6|≤7,则-7≤m +6≤7,解得-13≤m ≤1,故m 的取值范围为[-13,1].答案:[-13,1]7.设|x -2|<a 时,不等式|x 2-4|<1成立,则正数a 的取值范围为____________. 解析:由|x -2|<a 得2-a <x <a +2, 由|x 2-4|<1,得3<x 2<5, 所以-5<x <-3或3<x < 5.因为a >0,所以由题意得⎩⎨⎧3≤2-a ,a +2≤ 5.解得 0<a ≤5-2,故正数a 的取值范围为(0,5-2]. 答案:(0,5-2]8.(2018·杭州五校联考)已知不等式|x 2-4x +a |+|x -3|≤5的x 的最大值为3,则实数a 的值是____________.解析:∵x ≤3,∴|x -3|=3-x .若x 2-4x +a <0,则原不等式化为x 2-3x +a +2≥0. 此不等式的解集不可能是集合{x |x ≤3}的子集, ∴x 2-4x +a <0不成立. 于是,x 2-4x +a ≥0,则原不等式化为x 2-5x +a -2≤0.∵x ≤3,令x 2-5x +a -2=(x -3)(x -m )=x 2-(m +3)x +3m ,比较系数,得m =2,∴a =8.答案:89.已知|2x -3|≤1的解集为[m ,n ].(1)求m +n 的值;(2)若|x -a |<m ,求证:|x |<|a |+1.解:(1)不等式|2x -3|≤1可化为-1≤2x -3≤1, 解得1≤x ≤2,所以m =1,n =2,m +n =3.(2)证明:若|x -a |<1,则|x |=|x -a +a |≤|x -a |+|a |<|a |+1.即|x |<|a |+1. 10.(2018·杭州质检)已知函数f (x )=|x -4|+|x -a |(a ∈R)的最小值为a . (1)求实数a 的值; (2)解不等式f (x )≤5.解:(1)f (x )=|x -4|+|x -a |≥|a -4|=a , 从而解得a =2.(2)由(1)知,f (x )=|x -4|+|x -2|=⎩⎪⎨⎪⎧-2x +6,x ≤2,2,2<x ≤4,2x -6,x >4.故当x ≤2时,令-2x +6≤5,得12≤x ≤2,当2<x ≤4时,显然不等式成立, 当x >4时,令2x -6≤5,得4<x ≤112,故不等式f (x )≤5的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤112. 三上台阶,自主选做志在冲刺名校1.(2018·金丽衢十二校联考)设a ,b 为实数,则“|a -b 2|+|b -a 2|≤1”是“⎝ ⎛⎭⎪⎫a -122+⎝ ⎛⎭⎪⎫b -122≤32”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选 A ⎝ ⎛⎭⎪⎫a -122+⎝ ⎛⎭⎪⎫b -122≤32⇔a 2-a +14+b 2-b +14≤32⇔a 2-a +b 2-b ≤1⇔b 2-a+a 2-b ≤1,令b 2-a =x ,a 2-b =y ,则|x |+|y |≥|x +y |≥x +y ,所以|x |+|y |≤1⇒x +y ≤1,故充分性成立,必要性不成立,故选A.2.已知函数f (x )=|x -1|+|x -a |(a >1).(1)若不等式f (x )≥2的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12或x ≥52,求a 的值; (2)若对任意的x ∈R ,都有f (x )+|x -1|≥1,求实数a 的取值范围.解:(1)f (x )=|x -1|+|x -a |=⎩⎪⎨⎪⎧2x -a -1,x ≥a ,a -1,1≤x <a ,-2x +a +1,x <1,当x ≥a 时,由2x -a -1≥2,解得x ≥a +32=52;当x <1时,由-2x +a +1≥2,解得x ≤a -12=12. 综上得a =2.(2)由x ∈R ,f (x )+|x -1|≥1,可得2|x -1|+|x -a |≥1.当x ≥a 时,只需3x -2-a ≥1恒成立即可,此时只需3a -2-a ≥1⇒a ≥32;当1≤x <a 时,只需x -2+a ≥1恒成立即可,此时只需1-2+a ≥1⇒a ≥2;当x <1时,只需-3x +2+a ≥1恒成立即可,此时只需-3+2+a ≥1⇒a ≥2.综上可得,a 的取值范围为[2,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}。
(1)求实数a ,b 的值;
(2)求at +12+bt 的最大值。
2.设函数f (x )=|x -3|+|2x -4|-a 。
(1)当a =6时,解不等式f (x )>0;
(2)如果关于x 的不等式f (x )<0的解集不是空集,求实数a 的取值范围。
解析:(1)由f (x )>0,可得⎩⎪⎨⎪⎧ x <2-3x +1>0,或⎩⎪⎨⎪⎧ 2≤x ≤3x -7>0,或⎩⎪⎨⎪⎧
x >33x -13>0, 解得x <13或x >133。
(2)∵|x -3|+|2x -4|<a 的解集不是空集,
|x -3|+|2x -4|=⎩⎪⎨⎪⎧ -3x +7,x <2x -1,2≤x ≤3,
3x -7,x >3
∴(|x -3|+|2x -4|)min =1,∴a >1。
3.设函数f (x )=|2x +2|-|x -2|。
(1)求不等式f (x )>2的解集;
(2)若对于∀x ∈R ,f (x )≥t 2-72
t 恒成立,求实数t 的取值范围。
解析:(1)f (x )=⎩⎪⎨⎪⎧ -x -4,x <-1,3x ,-1≤x <2,
x +4,x ≥2。
当x <-1时,-x -4>2, x <-6,∴x <-6;
当-1≤x <2时,3x >2,x >23,∴23
<x <2; 当x ≥2时,x +4>2,x >-2,∴x ≥2。
综上所述,不等式f (x )>2的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪
x >23或x <-6。
(2)由(1)可知f (x )min =f (-1)=-3,
若∀x ∈R ,f (x )≥t 2-72
t 恒成立, 则只需f (x )min =-3≥t 2-72t ⇒2t 2-7t +6≤0⇒32
≤t ≤2, 所以实数t 的取值范围为32
≤t ≤2。
4.已知函数f (x )=x |x -a |(a ∈R )。
(1)若a =2,解关于x 的不等式f (x )<x ;
(2)若对任意的x ∈(0,4]都有f (x )<4,求a 的取值范围。
又∵p ′(x )=1-4x 2=x -x +x 2,
∴p (x )在(0,2]上单调递减,[2,4]上单调递增。
∴p (x )min =p (2)=4。
故a ∈(3,4)。
5.已知a ∈R ,设关于x 的不等式|2x -a |+|x +3|≥2x +4的解集为A 。
(1)若a =1,求A ;
(2)若A =R ,求a 的取值范围。
6.已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3。
(1)当a =-2时,求不等式f (x )<g (x )的解集;
(2)设a >-1,且当x ∈⎣⎡⎭
⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围。
解析:(1)当a =-2时,不等式f (x )<g (x )转化为|2x -1|+|2x -2|-x -3<0。
设函数y =|2x -1|+|2x -2|-x -3,则
y =⎩⎪⎨⎪⎧ -5x , x <12,-x -2,12≤x ≤1,3x -6,x >1。
)
其图象如图所示。
从图象可知,当且仅当x ∈(0,2)时,y <0,
∴原不等式的解集是{x |0<x <2}。
(2)当x ∈⎣⎡⎭
⎫-a 2,12时,f (x )=1+a 。
不等式f (x )≤g (x )化为1+a ≤x +3。
∴x ≥a -2对x ∈⎣⎡⎭
⎫-a 2,12都成立。
故-a 2≥a -2,即a ≤43。
从而a 的取值范围是⎝
⎛⎦⎤-1,43。
7.已知函数f (x )=|x -a |,其中a >1。
(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;
(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值。
8.已知函数f (x )=|x +1|+|x -3|-m 的定义域为R 。
(1)求实数m 的取值范围;
(2)若m 的最大值为n ,当正数a ,b 满足23a +b +1a +2b
=n 时,求7a +4b 的最小值。