线性回归方程公式推导

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性回归方程公式推导
从现代经济学研究看,线性回归是一种多变量经济分析方法,它能够用来研究变量之间的关系,以便确定哪些变量具有影响性。

线性回归模型是描述一个响应变量和一组predictor变量之间关系的线
性关系模型。

线性回归模型有多种形式,其中最常见的是最小二乘法,即OLS,其核心思想是通过最小化以下损失函数来确定回归系数:
S=1/n (yi-i)
其中,yi是实际值,i是预测值,n是数据样本的个数。

有了线性回归模型,就可以推导出公式,即OLS回归方程。

它表述的意思是,假设回归系数β的值是已知的,即满足公式:β=(XX)^-1XY
其中,X指的是一个有m个变量的矩阵,Y指的是一个有n个观测值的矩阵,X指的是X矩阵的转置矩阵,(XX)^-1指的是求XX的逆矩阵,XY指的是X和Y的点乘积。

由此,OLS回归模型就可以用变量yi=b1x1i+b2x2i+…+bpxpi+
εi来表示,其中b1, b2,, bp分别是变量x1i, x2i,, xpi的回归系数,εi是误差项,它以期望值为零的正态分布的形式出现,表示随机噪声。

一般来说,OLS即可用来估计参数的可能性,但是,由于它们常常受到多重共线性的影响,因此需要检验其可靠性。

OLS的优点是可以提供一种最优的参数估计法,它能够有效地提高参数估计的准确性。

此外,OLS进行变量检验时,也可以有效地识别出具有影响性的变量。

不过,OLS也有其缺点,尤其是当数据存在某些问题时,可能会导致OLS的估计结果出现偏差。

主要问题包括多重共线性、异方差性和异常值。

对于这些问题,最好的解决方法是对数据进行相关性分析,从而将偏差减少到最小。

综上所述,OLS回归方程公式能够有效地描述变量之间的关系,检验其可靠性,以便确定哪些变量具有影响性。

为了确保其准确性,应当有效地处理多重共线性等问题,从而使得OLS具有更强的适用性。

相关文档
最新文档