2015-2016七下期末试题2016.06.08
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015~2016学年度第二学期期末模拟测试题
七年级数学
本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为36分;第Ⅱ卷共4页,满分为84分.本试题共6页,满分为120分.考试时间为120分钟.答卷前,请考生务必将自己的姓名、准考证号、座号、考试科目涂写在答题卡上,并同时将考点、姓名、准考证号、座号填写在试卷规定的位置.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.
第I卷(选择题共36分)
注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.
一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.以下是回收、绿色包装、节水、低碳四个标志,其中是轴对称图形的是
2. 二元一次方程组
3
24
x y
x
+=
⎧
⎨
=
⎩
的解是
A.
2
1
x
y
=
⎧
⎨
=-
⎩
B.
2
5
x
y
=
⎧
⎨
=
⎩
C.
2
5
x
y
=
⎧
⎨
=-
⎩
D.
2
1
x
y
=
⎧
⎨
=
⎩
3. 已知∠A=60°,则∠A的补角是
A.160°B.120°C.60°D.30°
4. 在△ABC中,∠C=60°,∠B=70°,则∠A的度数是
A.70°
B. 55°
C. 50°
D. 40°
5. 如图,直线l1∥l2,若∠1=50°,则∠2的度数是
A.40°B.50°
C.90°D.130°
6.下列长度的三条线段,不能组成三角形的是
A.3,8,4
B.4,9,6
C.15,20,8
D.9,15,8
7.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是
A. AB=AC
B. ∠B=∠C
C. BD=CD
D. ∠BDA=∠CDA
8.如图,AB∥CD,点E在BC上,且CD=CE,∠D=74︒,则∠B的度数为A.68︒B.32︒C.22︒D.16︒
9. 已知两数x、y之和是10,x比y的3倍大2,则下面所列方程组正确的是
A.
10
32
x y
y x
+=
⎧
⎨
=+
⎩
B.
10
32
x y
y x
+=
⎧
⎨
=-
⎩
C.
10
32
x y
x y
+=
⎧
⎨
=+
⎩
D.
10
32
x y
x y
+=
⎧
⎨
=-
⎩
10.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD、CE相交于O点,且BD交AC于点D,CE 交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;
④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是
A.①②③B.②③④C.①③⑤D.①③④
11.如图,在△ABC中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB于M,交AC于N,若BM+CN=9,则线段MN的长
A.6 B.7 C.8 D.9
12. 如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为
A. 11
B. 5.5
C. 7
D.
第Ⅱ卷(非选择题共84分)
注意事项:
所有答案必须用的黑色签字笔(不得使用铅笔和圆珠笔)写在答题卡各题目指定区域内(超出方框无效),不能写在试卷上,不能使用涂改液、修正带等.
不按以上要求做答,答案无效.
二、填空题(本大题共6个小题.每小题3分,共18分.把答案填在题中横线上.)
13. 如图,∠AOB = 90°,∠BOC = 30°,则∠AOC = 度.
14. 若x 、y 满足方程组37
35x y x y +=⎧⎨+=⎩
,则x -y 的值等于 .
15.如图所示,AB =DB ,∠ABD =∠CBE ,请你添加一个适当的条件__________________,使△ABC ≌△DBE .(只
需添加一个即可)
16.如图,在直角△ABC 中,90BAC ∠=︒,CB =10,AC =6,DE 是AB 边的垂直平分线,垂足为D ,交BC 于点E ,连接AE ,则△ACE 的周长为 .
17.如图,在边长为a 的大正方形中剪去一个边长为b 的小正方形,再将图中的阴影拼成一个长方形,这个拼成的长方形的长为30,宽为20,则右图中Ⅱ部分的面积是 .
18.如图,已知∠AOB =α,在射线OA 、OB 上分别取点A 1、B 1,使OA 1=OB 1,连结A 1B 1,在B 1A 1、B 1B 上分别取点A 2、B 2,使B 1B 2= B 1A 2,连结A 2B 2……按此规律继续下去,记∠A 2B 1B 2=α1,∠323A B B =α2……∠n+11A n n B B +=αn ,则αn = .
三、解答题(本大题共9个小题,共66分.解答应写出文字说明,证明过程或演算步骤.) 19(1) (本小题满分3分)解方程组25
4x y x y +=⎧⎨
-=⎩
19(2) (本小题满分4分)如图,∠B =30°,若AB ∥CD ,CB 平分∠ACD ,求∠A 的度数.
20.(本小题满分5分)
已知:如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.
求证:BC∥EF.
21.(本小题满分6分)
已知:如图,在△ABC中,∠C=90°,∠B=15°,AB的垂直平分线交BC于D,交AB•于E,DB=10.
求∠ADC的度数和边AC的长.
22.(本小题满分7分)
为了改善全市中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元.问购买一块电子白板和一台投影机各需要多少元?
23.(本小题满分7分)
如图为一机器零件,∠A=36°的时候是合格的,小明测得∠BDC=98°,∠C=38°,∠B=23°.
请问该机器零件是否合格并说明你的理由.
24.(本小题满分8分)
如图,AB∥CD,直线MN分别交AB、CD于点E、F,EG平分∠AEF.EG⊥FG于点G,∠BEM=50°.
求∠CFG的度数.
25.(本小题满分8分)
如图,在10×10的正方形网格中,每个小正方形的边长都为1,网格中有两个格点A、B和直线l.
(1)求作点A关于直线l的对称点A1;
(2)P为直线l上一点,连接BP,AP,求△ABP周长的最小值.
26.(本小题满分9分)
如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE. 点F是AE的中点,FD的延长线与AB的延长线相交于点M,连接MC.
(1)求证:∠FMC=∠FCM;
(2)AD与MC垂直吗?说明你的理由.
27.(本小题满分9分)
如图,△ABC、△ADC、△AMN均为等边三角形,AM>AB,AM与DC交于点E,AN与BC交于点
F.
(1)求证:△ABF≌△ACE;
(2)猜测△AEF的形状,并证明你的结论;
(3)请直接指出当F点在BC何处时,AC⊥EF.
参考答案与评分标准一、选择题
二、填空
13. 60°
14. -1
15. BC=BE(或∠D=∠BAC;或∠E=∠C)
16. 16
17. 100
18. (21)180
2
n
n
α
-⋅︒+
或90°+45°+……+
180
2n
︒
+
2n
α
三、解答题
19.解:(1) 解:①+②得3x=9,····························································· 1分∴x=3. ······························································································ 2分把x=3代入②得3-y=4
∴y=-1
∴方程组的解为
3
1
x
y
=
⎧
⎨
=-
⎩
. ······································································ 3分
(2)解:∵AB∥CD(已知)
∴∠B=∠BCD(两直线平行,内错角相等) ··············································· 1分∵∠B=30°
∴∠BCD=30°(等量代换)································································· 2分∵CB平分∠ACD(已知)
∴∠BCD=∠ACB=30°(角平分线定义) ··············································· 3分∴∠A ==180°-∠ACB-∠B=180°-30°-30°=120°(三角形内角和定理) ····· 4分
20. 证明:∵AF =DC ,(已知) ∴AF +FC =FC +DC ,(等式的性质) ························································ 1分 即AC =DF ,
又∵AB =DE ,∠A =∠D ,(已知) ∴△ACB ≌△DEF (SAS ) ···································································· 3分 ∴∠ACB =∠DFE ,(全等三角形的对应角相等) ········································ 4分 ∴BC ∥EF .(内错角相等,两直线平行) ················································ 5分 21. 解:∵DE 为AB 的垂直平分线,DB =10 (已知) ∴AD=BD=10(线段垂直平分线定理) ······················································· 1分 ∴∠B =∠BAD=15°,(等边对等角) ························································· 2分 ∴∠ADC =15°+15°=30°(三角形外角定理) ················································· 4分 ∵∠C =90°(已知) ∴AC=
12AD =1
2
×10=5(直角三角形中30°角所对直角边等于斜边的一半) ······································································································ 6分 22. 解:设购买一块电子白板需x 元,设购买一台投影机需y 元, ················ 1分
234000
4344000x y x y -=⎧⎨
+=⎩
··········································································· 4分 ①+②得6x =48000, x =8000, ·························································································· 5分 把x =8000代入①得2×8000-3y =4000, 解得y =4000,
∴⎩⎨⎧x =8000,y =4000
················································································· 6分 答:购买一台电子白板需8000元,一台投影机需4000元. ·························· 7分 23.解:不合格 ··················································································· 1分 连接AD 并延长, ··············································································· 2分 ∴∠BDE =∠B +∠BAD (三角形外角定理) ∠CDE =∠C +∠CAD (三角形外角定理)············································· 4分 ∴∠BDE +∠CDE =∠B +∠BAD +∠C +∠CAD ,(等式的性质) 即∠BDC =∠B +∠C +∠BAC , ···························································· 5分 ∵∠BDC =98°,∠C =38°,∠B =23° ∴∠BAC =98°-38°-23°=37° ······························································ 6分 所以该机器零件不合格. ····································································· 7分
24. 解:∵AB ∥CD ,
∴∠AEF+∠CFE=180°,(两直线平行,同旁内角互补) ····························· 1分∵∠AEF=∠BEM=50°,(对顶角相等) ··················································· 2分∴∠CFE=130°, ················································································ 3分∵EG平分∠AEF,(已知)
∴∠GEF=1
2
∠AEF=25°(角平分线定义),················································ 4分
∵EG⊥FG,(已知)
∴∠EGF=90°,(垂直定义)································································· 5分∴∠GFE=90°-∠GEF=65°,(直角三角形两锐角互余) ····························· 7分∴∠CFG=∠GFE=65°(等量代换).························································· 8分25.(1)略 ························································································ 4分(2)连接B A1交于P,连接AP ···························································· 5分则AP=P A1························································································ 6分△ABP的周长的最小值为AB+AP+BP= AB+P A1+BP=4+B A1=4+6=10 ·········· 8分
26.解:(1)证明:∵△ADE是等腰直角三角形,F是AE的中点.
∴DF⊥AE,DF=AF=EF. ····································································· 1分又∵∠ABC=90°,∠DCF、∠AMF都与∠MAC互余,
∴∠DCF=∠AMF. ············································································· 2分又∵∠DFC=∠AFM=90°,
∴△DFC≌△AFM(ASA). ································································· 3分∴CF=MF. ······················································································· 4分∴∠FMC=∠FCM. ············································································· 5分(2)AD⊥MC.
理由如下:
如图,延长AD交MC于点G.
由(1)知∠MFC=90°,FD=FE,FM=FC.
∴∠FDE=∠FMC=45°, ······································································ 6分∴DE//CM. ······················································································· 7分∴∠AGC=∠ADE=90°,······································································· 8分∴AG⊥MC,即AD⊥MC. ··································································· 9分
27.证明:(1)∵△ABC、△ADC均为等边三角形,(已知)
∴AB=AC,,∠B=∠BAC =∠DAC=∠ACD=60°(等边三角形的性质) ······································································································ 1分∴∠BAC-∠F AC=∠DAC-∠F AC,(等式的性质)··································· 2分即∠BAF=∠CAE
∴△ACE≌△ABF(AAS)···································································· 3分(2)△AEF为等边三角形 ··································································· 4分∵△ABC≌△ABC
∴AE=AF(全等三角形的对应边相等) ··················································· 5分∵△AMN为等边三角形,
∴∠MAN=60°(等边三角形的性质) ·························································· 6分∴△AEF为等边三角形(有一个角为60°的等腰三角形是等边三角形) ·············· 7分(3)当点F为BC中点AC⊥EF···························································· 9分。