数学(理)卷·2014届四川省资阳市高二下学期期末质量检测(2013.07)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
资阳市2012—2013学年度高中二年级第二学期期末质量检测
理 科 数 学
本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.
第Ⅰ卷(选择题 共50分)
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上. 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.
3. 本试卷共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.
一、选择题:本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项
中,只有一项是符合题目的要求的.
1. 复数12z i =-的虚部和模分别是
(A) -2
(B )2i -,5
(C )-2,5
(D )-2i
2. 命题“0x ∃∈R ,使得20x x ->”的否定是 (A )x ∀∈R ,20x x -> (B )x ∀∈R ,20x x -≤ (C )0x ∃∉R ,使得20x x -< (D )0x ∃∉R ,使得20x x -≤
3. 已知1(|)3P B A =,2
()5
P A =,则()P AB 等于( ) (A )
56 (B )910 (C )2
15
(D )
115
4. 已知条件p :1a ≤,条件q :||1a ≤,则p 是q 的( )
(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 5. 函数()f x 的定义域为(,)a b ,导函数()f x '在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极值点( )
(A )1个
(B )2个
(C )3个
(D )4个
6. 一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为来源:学科
](A )3×3!
(B )(3!)4
(C )9!
(D )3×(3!)4
7. 如图,椭圆中心在坐标原点,点F 为左焦点,点B 为短轴的上顶点,点A 为长轴的
右顶点.当FB BA ⊥
时,椭圆被称为“黄金椭圆”,则“黄金椭圆”的离心
率e 等于
(A (B
(C (D 8. 下列随机变量ξ服从二项分布的是
①随机变量ξ表示重复抛掷一枚骰子n 次中出现点数是3的倍数的次数; ②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;
③有一批产品共有N 件,其中M 件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M <N );
④有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数(M <N ).
(A )②③ (B )①④ (C )③④ (D )①③
9. 如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是
(A )圆 (B )椭圆 (C )双曲线 (D )抛物线
10.设函数()y f x =(x ∈R)的导函数为)(x f ',且)()(x f x f <',则下列成立的是 (A )2(2)(1)(0)e f ef f -<-<
(B )2(1)(0)(2)ef f e f --<< (C )2(1)(2)(0)ef e f f --<< (D )2(2)(0)(1)e f f ef -<<-
资阳市2012—2013学年度高中二年级第二学期期末质量检测
理 科 数 学
第Ⅱ卷(非选择题 共100分)
注意事项:
1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷上. 2.答卷前将密封线内的项目填写清楚.
二、填空题: 本大题共5个小题,每小题5分,共25分.把
答案直接填在题中横线上.
11. 计算
5
1
1i i i
-⋅+= . 12. 抛物线21
6
y x =-的焦点坐标为 .
13. 如右图所示,机器人亮亮从A 地移动到B 地,每次只移动一个单位长度,则亮亮从A 移动到B 最近的走法共有_____种.
14. 由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有 .
15. 下列是有关直线与圆锥曲线的命题:
①过点(2,4)作直线与抛物线28y x =有且只有一个公共点,这样的直线有2条; ②过抛物线24y x =的焦点作一条直线与抛物线相交于,A B 两点,它们的横坐标之和等于5,则这样的直线有且仅有两条;
③过点(3,1)作直线与双曲线2
214
x y -=有且只有一个公共点,这样的直线有3条
④过双曲线22
12
y x -=的右焦点作直线l 交双曲线于,A B 两点,若AB =4,则满足条件
的直线l 有3条;
⑤已知双曲线2
2
12
y x -=和点(1,1)A ,
过点A 能作一条直线l ,使它与双曲线交于,P Q 两点,且点A 恰为线段PQ 的中点.
其中说法正确的序号有 .(请写出所有正确的序号)
三、解答题:本大题共6个小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.
16.(本小题满分12分)
写出命题“若a b >,则22a b ->-”的否命题、逆命题、逆否命题、命题的否定,并判断真假.
17.(本小题满分12分)
在 2x
8
1)展开式中,求: (Ⅰ)展开式中的二项式系数之和及各项系数的和; (Ⅱ)展开式中含x 的一次幂的项.
18.(本小题满分12分)
某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,
再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2
件二等品,其余为一等品.用ξ表示抽检的6件产品中二等品的件数.
(Ⅰ)求在抽检的6件产品中恰有一件二等品的概率; (Ⅱ)求ξ的分布列和数学期望值;
(Ⅲ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.
19.(本小题满分12分)已知函数32()f x x ax bx c =+++在
2
3
x =-与1x =处均取得极值
(Ⅰ)求,a b 的值与函数()f x 的单调区间
(Ⅱ)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围.
20.(本小题满分13分)
设1122(,),(,)A x y B x y 是椭圆22
221(0)y x a b b
+=>>上的两点,已知O 为坐
标原点,椭圆的离心率e =短轴长为2,且1122(,),(,)
x y x y m n b a b a
== ,若0m n ⋅=
.
(Ⅰ)求椭圆的方程;
(Ⅱ)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
21.(本小题满分14分)
已知函数()x f x ae =和()ln ln g x x a =-的图象与坐标轴的交点分别是点,A B ,且以点,A B 为切点的切线互相平行.
(Ⅰ)求实数a 的值;
(Ⅱ)若函数1
()()F x g x x =+,求函数()F x 的极值;
(Ⅲ)对于函数()y f x =和()y g x =公共定义域中的任意实数0x ,我们把00|()()|f x g x -的值称为两函数在0x 处的偏差,求证:函数()y f x =和()y g x =在其公共定义域内的所有偏差都大于2.
资阳市2012—2013学年度高中二年级第二学期期末质量检测
理科数学试题参考答案及评分意见
一、选择题:本大题共10个小题,每小题5分,共50分.在每个小题给出的四个选项中,只有一项是符合题目的要求的.
1-5. ABCBC ;6-10. BADCD.
二、填空题: 本大题共5个小题,每小题5分,共25分.把答案直接填在题中横线上.
11.1; 12.3
(0,)2
-; 13.80; 14. 60; 15. ①②④.
三、解答题:本大题共6个小题,共75分.解答应写出必要的文字说明,证明过程或演算步骤.
16.(本小题满分12分)
解析:否命题: 若a b ≤,则22a b -≤-,真命题; ········································· 3分 逆命题: 若22a b ->-,则a b >,真命题; ····················································· 6分 逆否命题: 若22a b -≤-,则a b ≤,真命题; ····················································· 9分 命题的否定:若a b >,则22a b -≤-,假命题. ···················································· 12分
17.(本小题满分12分)
解析:(Ⅰ)在展开式中的二项式系数之和为018888C C C +++= 82256= ··········· 3分
在展开式中,令x =1得,各项系数的和为8813
(1)()22+=. ··································· 6分
(Ⅱ)设在2x
8
1)展开式中的通项为1T r +, 则8321
81T ()(0,1,2,,8)2
r
r
r r C x r -+== , ········································································ 8分
由题意得:
8312
r
-=,∴2r =
··············································································· 10分 ∴22381
T ()72
C x x ==. ····························································································· 12分
18.(本小题满分12分) 解析:(Ⅰ)在抽检的
6件产品中恰有一件二等品的概率为
21112
3
324422225555C C C C C 12P(1)C C C C 25
ξ==⋅⋅=+ ····················································································· 3分
(Ⅱ)ξ可能的取值为0,1,2,3. ·············································································· 4分
2
23
42255C C 189P(0)C C 10050
ξ==⋅==;
211123324422225555C C C C C 12P(1)C C C C 25ξ==⋅⋅=+; 11122
32442
22225555C C C C C 153P(2)C C C C 5010
ξ==⋅⋅==+;
12
42
2255C C 1P(3)C C 25
ξ==⋅=.
······························································································· 7分 ξ的分布列为
ξ 0[来
1
2
3
P
950 1225 310[来 125
····································································································································· 8分
912316
()0123502510255
E ξ=⨯
+⨯+⨯+⨯= ·
·································································· 9分 (Ⅲ)所求的概率为15117
P(2)P(2)P(3).502550
ξξξ≥=====++ ·
····························· 12分
19.(本小题满分12分)
解析:(Ⅰ)32'2(),()32f x x ax bx c f x x ax b =+++=++
由'
2124()03
93f a b -=
-+=,'(1)320f a b =++=得1
,22
a b =-=- 经检验知,当1
,22
a b =-=-时,满足题意. ···························································· 4分
'2()32(32)(1)f x x x x x =--=+-,函数()f x 的单调区间如下表:
所以函数()f x 的递增区间是(,)3
-∞-,(1,)+∞,递减区间是2
(,1)3
-
·················· 8分 (Ⅱ)3
21()2,[1,2]2f x x x x c x =--+∈-,当23x =-时,222()327
f c -=
+ 为极大值,而(2)2f c =+,则(2)2f c =+为最大值,要使2
(),[1,2]
f x c x <∈
-恒成立,
则只需要
(2)2c f c >=+,得c 12c <->或.
∴c 的取值范围是(,1)(2,)-∞-+∞ ········································································· 12分
20.(本小题满分13分)
解析:(Ⅰ)221,2,c b b e a c a =⇒===
=⇒==
所以椭圆的方程为2
214
y x += ·
···················································································· 5分 (Ⅱ)是,证明如下:
①当直线AB 的斜率不存在时,即1212,x x y y ==- 当0m n ⋅= ,得22
221111044
y x y x -=⇒= 又A (x 1,y 1
)在椭圆上,所以22
111141|||4x x x y +=⇒==所以1121111
||||||2||122
S x y y x y =-== ······································································· 7分
②当直线AB 的斜率存在时,设AB 的方程为y kx m =+,
222
22
(4)24014
y kx m k x kmx m y x =+⎧⎪⇒+++-=⎨+=⎪⎩ 得到2121222
24
,44
km m x x x x k k --+==++ ··············································································· 9分 12121212()()0044
kx m kx m y y
x x x x +++=⇒+=代入整理,
得2224m k -=, ······································································································· 10分
1||2
S AB m ==
1= ·
·············································································· 12分 综上所述,所以三角形的面积为定值 ······································································ 13分
21.(本小题满分14分)
解析:(Ⅰ)1
'(),'(),x f x ae g x x
==
函数()y f x =的图象与坐标轴的交点为(0, a ), 函数()y g x =的图象与坐标轴的交点为(a ,0),
由题意得1
'(0)'(),f g a a a ==即, 又0,1a a >∴= ··················································· 4分
(Ⅱ)∵1()()F x g x x =+,∴22111
'()x F x x x x
-=-=,
∴函数()F x 的递减区间是(0,1),递增区间是(1,)+∞, 所以函数()F x 极小值是(1)1F =,函数()F x 无极大值 ·············································· 8分
(Ⅲ)解:函数()y f x =和()y g x =的偏差为()|()()|ln ,(0,)x F x f x g x e x x =-=-∈+∞,
1
'()x F x e x
∴=-
设x t =为x 1F'(x)e 0x =-=的解,即1
t e t
=
则当(0,)x t ∈时,'()0F x <,当x (t,)∈+∞时,'()0,F x > ()F x ∴在(0,t )内单调递减,在(,)t +∞上单调递增,
min 11
()()ln ln t t t F x F t e t e t e t
∴==-=-=+ ·
····························································· 10分
11
'(1)10,'()20,122
F e F t =->=<∴<< ,
故min 1
()2F x t t
=+>,
即函数()y f x =和()y g x =在其公共定义域内的所有偏差都大于2 ························ 14分。