极大似然估计方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极大似然估计方法
极大似然估计方法是一种常用的参数估计方法,它基于最大化观察到的样本数据出现的概率来选择最优的参数值。

具体来说,给定一个概率分布模型和一组观察到的样本数据,极大似然估计方法通过求解最大化似然函数的参数值来估计模型的参数。

似然函数是指,在给定参数值的情况下,观察到这组样本数据的概率密度函数。

假设样本数据为x_1,x_2,…,x_n,模型的概率密度函数为f(x \theta),其中\theta 是待估计的参数向量。

极大似然估计方法通过求解似然函数L(\theta
x_1,x_2,…,x_n)最大值的参数值来估计\theta,即:
\hat{\theta}=\arg \max _{\theta} L(\theta x_{1}, x_{2}, \ldots,
x_{n})=\arg \max _{\theta} \prod_{i=1}^{n} f\left(x_{i} \theta\right)
在实际应用中,通常使用对数似然函数来避免数值上的不稳定性,并使用优化算法求解最优参数值。

相关文档
最新文档