无刷直流电机的驱动及控制[试题]

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无刷直流电机驱动

James P. Johnson, Caterpiller公司

本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。

2011-01-30

23.1 BLDC基本原理

在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形

2011-01-31

若干类型的电机和驱动被归类于无刷直流电机,它们包括:

1 永磁同步电机(PMSMs);

2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机;

3 正弦形表面安装磁铁无刷直流电机;

4 内嵌式磁铁无刷直流电机;

5 电机与驱动装置组合式无刷直流电机;

6 轴向磁通无刷直流电机。

图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

机的绕组也是这样。表面安装式磁铁无刷直流电机的反电势波形通常取决于磁铁的磁场取向。要获得正弦形反电势的一般方法是采用磁铁的并联式磁化方向。而梯形反电势则采用径向磁化方向。最一般的无刷直流电机形式是4极,类梯形反电势波形的表面安装磁铁电机。

23.2 控制原理和控制策略

一般的自同步无刷直流电动机逆变器和驱动的结构图如图23.2所示。图中所示之驱动系统通常较多用于电压源逆变器(VSI)。电压源逆变器的对应是电流源逆变器(CSI)。VSI 之所以较为广泛运用是因为其成本、重量、动态性能,以及易于控制均优于CSI[1]。两种逆变器重量和成本的差异是由于VSI采用电容器进行直流耦合,而CSI须要在整流器和逆变器之间接有笨重的电抗器。VSI在动态响应能力上也与CSI不同。由于大的电抗器的作用就是满足CSI作为恒流源的较大的换向重叠角的需要,防止电机绕组中电流的快速变化,抑制电机的高速伺服运行。这就会加大驱动系统中阻尼器的尺寸。对于CSI所期望得到的恒流控制和恒转矩控制性能,在VSI中,也可通过其内部的电流控制环中滞后型电流控制而近似得到。

2011-2-01

术语“自同步”指的是为了定子相电流脉冲与电机各相反电势一致所需正确的各管导通顺序,驱动电路对即时转子位置信息的要求。

图23.2 基本的无刷直流电动机驱动

图23.3是无刷直流电动机一经典的位置和转速控制方案的方框图。如果仅仅期望转速控制,可以将位置控制器和位置反馈电路去掉。通常在高性能的位置控制器中位置和转速传感器都是需要的。如果仅有位置传感器而没有转速传感器,那就要求检测位置信号的差异,在模拟系统中就要导致噪声的放大;而在数字系统中这不是问题。对于位置和转速控制的无刷直流电动机,位置传感器或者是其他获取转子位置信息的元件是一定要的。

图23.3经典转速和位置控制无刷直流电动机系统方框图

许多高性能的应用场合为了转矩控制还需要电流反馈[1]。至少,需要汇线电流反馈来防止电机和驱动系统过流。当添加一内电流闭环控制就能实现非常快的电流源逆变器那样的性能,而不需要直流耦合电抗器,它被称为电流调节电压源逆变器(CRVSI)[1]。驱动中的直流电压调节也可由作用类似直流电源的可控整流器来实现,或者既可通过在变换器中将PWM信号同时加在上下开关,也可通过仅仅加在上开关或下开关来实现。

2011-2-05

采用仅通断下开关或仅通断上开关的PWM技术可减少开关损耗,而上下开关同时通断则正相反。然而,如果运用提前角技术,上下两只管开和关,则由于在一个相臂上导通的开关管与另一相臂上的续流二极管间存在闭合路径,该路径产生的电流会导致负转矩。不运用一个“斩波”开关来调节直流母线电压可在驱动系统中省去一个开关,但是采用直流调节开关,也仅有一只功率半导体器件承受PWM的较高的载波频率开关损耗。采用可控整流器来改变直流母线电压要求额外的控制测量,增加开关损耗、驱动系统的原初成本和输电线功率因数控制的复杂性。当该驱动系统由公用电站供电,通常在整流器后要装一电抗器来降低公共电网的电流谐波含量。电抗器与直流耦合电容器共同工作形成一低通LC或比例-积分滤波器(CLC),该结构的截止频率足够低,可于一极低频率处封锁PWM的载波频率以及较低频率分量(如果有的话),诸如在调速驱动中。

直流耦合电容给逆变器的高频纹波电流提供了通路,而电抗器则封锁了较高的频率,让平均电流通过。如果驱动系统由直流电源供电,也可以用一滤波器来减少流过电源的电磁骚扰。如果没有采用PWM,单独电流控制对于非调节直流母线的高性能转矩控制也是有效的。图23.3中的控制器方框“位置控制器”和“速度控制器”可以是如何型式的传统控制器,如比例-积分控制器,或是一较为先进的控制器。“电流控制器和换向定序器”向三相逆变器提供适当的定序栅极信号,而将传感器所测电流与参照电流相比较,以通过滞后(电流斩波)

或由一电压源(PWM)型电流控制来维持电流控制。滞后电流控制可以是恒频滞后控制、频段滞后控制,或电平滞后控制。电流控制可用来产生正弦电流波形、限制峰值,或产生方

相关文档
最新文档