大塘瑶族乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大塘瑶族乡初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)用代入法解方程组的最佳策略是()
A.消y,由②得y= (23-9x)
B.消x,由①得x= (5y+2)
C.消x,由②得x= (23-2y)
D.消y,由①得y= (3x-2)
【答案】B
【考点】解二元一次方程组
【解析】【解答】解:因为方程②中x的系数是方程①中x的系数的3倍,
所以用代入法解方程组的最佳策略是:
由①得
再把③代入②,消去x.
故答案为:B
【分析】因为方程②中x的系数是方程①中x的系数的3倍,故用代入法解该方程组的时候,将原方程组中的①方程变形为用含y的代数式表示x,得出③方程,再将③代入②消去x得到的方程也是整数系数,从而使解答过程简单。

2、(2分)如图,长方形ABCD的边AD长为2,边AB长为1,AD在数轴上,以原点D为圆心,对角
线BD的长为半径画弧,交正半轴于一点,则这个点表示的实数是()
A. B. C. D.
【答案】A
【考点】实数在数轴上的表示
【解析】【解答】解:∵长方形ABCD的边AD长为2,边AB长为1,
∴,
∴这个点表示的实数是:,
故答案为:A.
【分析】首先根据勾股定理算出DB的长,然后根据同圆的半径相等及原点右边表示的是正数即可得出答案。

3、(2分)下图中与是内错角的是()
A. B.
C. D.
【答案】A
【考点】同位角、内错角、同旁内角
【解析】【解答】观察图形可知:A答案中的两个角是内错角
故应选:A。

【分析】根据三线八角的定义,内错角形如Z形图,即可得出答案。

4、(2分)关于x、y的方程组的解x、y的和为12,则k的值为()
A.14
B.10
C.0
D.﹣14
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:解方程得:
根据题意得:(2k﹣6)+(4﹣k)=12
解得:k=14.
故答案为:A
【分析】先将k看作已知数解这个方程组,可将x、y用含k的代数式表示出来,由题意再将x、y代入x+y=12可得关于k的一元一次方程,解这个方程即可求得k的值。

5、(2分)如图是某同学家拥有DVD碟的碟数统计图,则扇形图中的各部分分别表示哪一类碟片()
A. ①影视,②歌曲,③相声小品
B. ①相声小品,②影视,③歌曲
C. ①歌曲,②相声小品,③影视
D. ①歌曲,②影视,③相声小品
【答案】A
【考点】扇形统计图,条形统计图
【解析】【解答】解:由条形统计图可知,影视最少,歌曲最多,相声小品其次,
所以,①影视,②歌曲,③相声小品.
故答案为:A
【分析】根据条形统计图看到影视、歌曲、相声人数的大小关系,从而确定扇形统计图中所占的百分比的大小.
6、(2分)若a,b为实数,且|a+1|+ =0,则(ab)2 017的值是()
A. 0
B. 1
C. -1
D. ±1
【答案】C
【考点】非负数之和为0
【解析】【解答】解:因为|a+1|+ =0,
所以a+1=0且b-1=0,
解得:a=-1,b=1,
所以(ab)2 017=(-1)2 017=-1.
故答案为:C
【分析】先根据若几个非负数的和等于0,则每个非负数都等于0,建立关于a、b的方程组求解,再将a、b
的值代入代数式求值即可。

7、(2分)下列计算正确的是()
A. B. C. D.
【答案】D
【考点】算术平方根,立方根及开立方,同底数幂的乘法,同类项
【解析】【解答】解:A.∵2a与3b不是同类项,不能合并,故错误,A不符合题意;
B.∵=6,故错误,B不符合题意;
C.∵≠3,故错误,C不符合题意;
D.∵72×73=75,故正确,D符合题意;
故答案为:D.
【分析】A.同类项:所含字母相同,相同字母指数相同,由此判断是否为同类项;故可判断错误;
B.算术平方根只有正,平方根才有正负;故错误;
C.9开立方根不会等于3,故错误;
D.同底数幂相乘,底数不变,指数相加,由此计算即可.
8、(2分)6月8日我县最高气温是29℃,最低气温是19℃,则当天我县气温t(℃)的变化范围是()
A.19≤t≤29
B.t<19
C.t≤19
D.t≥29
【答案】A
【考点】不等式及其性质
【解析】【解答】解:因为最低气温是19℃,所以19≤t,最高气温是29℃,t≤29,
则今天气温t(℃)的范围是19≤t≤29.
故答案为:A.
【分析】由最高气温是19℃,最低气温是29℃可得,气温变化范围是19≤t≤29,即可作出判断。

9、(2分)若关于x的一元一次不等式组有解,则m的取值范围为()
A.
B.
C.
D.
【答案】C
【考点】解一元一次不等式组
【解析】【解答】解:,
解①得:x<2m,
解②得:x>2-m,
根据题意得:2m>2-m,
解得:.
故答案为:C.
【分析】先求出每个不等式的解集,再根据已知不等式组有解,即可得出关于m的不等式,即可得出答案.
10、(2分)某校对全体学生进行体育达标检测,七、八、九三个年级共有800名学生,达标情况如表所示.则下列三位学生的说法中正确的是()
甲:“七年级的达标率最低”;
乙:“八年级的达标人数最少”;
丙:“九年级的达标率最高”
A. 甲和乙
B. 乙和丙
C. 甲和丙
D. 甲乙丙【答案】C
【考点】扇形统计图,条形统计图
【解析】【解答】解:由扇形统计图可以看出:八年级共有学生800×33%=264人;
七年级的达标率为×100%=87.8%;
九年级的达标率为×100%=97.9%;
八年级的达标率为.
则九年级的达标率最高.则甲、丙的说法是正确的.
故答案为:C
【分析】先根据扇形统计图计算八年级的学生人数,然后计算三个年级的达标率即可确定结论.
11、(2分)下列运算正确的是()
A. =±3
B. (﹣2)3=8
C. ﹣22=﹣4
D. ﹣|﹣3|=3【答案】C
【考点】绝对值及有理数的绝对值,算术平方根,实数的运算,有理数的乘方
【解析】【解答】解:A、原式=2 ,不符合题意;
B、原式=﹣8,不符合题意;
C、原式=﹣4,符合题意;
D、原式=﹣3,不符合题意,
故答案为:C.
【分析】做这种类型的选择题,我们只能把每个选项一个一个排除选择。

A项:指的是求8的算术平方根(在这里,我们要区分平方根与算数平方根的区别,求平方根的符号是);B项:指的是3个-2相乘,即(-2)(-2)(-2)=-8;C项要特别注意负号在的位置(区分与),像是先算,再在结果前面填个负号,所以结果是-4;D项:先算绝对值,再算绝对值之外的,所以答案是-3
12、(2分)在,1.01001000100001,2 ,3.1415,- ,,0,,这些数中,无理数共有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】A
【考点】无理数的认识
【解析】【解答】解:∵=3,=2,∴无理数有:2 ,- ,一共有2个.故答案为:A.
【分析】无理数是指无限不循环小数,根据无理数的定义可知,-是无理数。

二、填空题
13、(1分)小亮解方程组的解为,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这个数=________.
【答案】-2
【考点】解二元一次方程组
【解析】【解答】解:把x=5代入2x-y=12得2×5-y=12,解得y=-2.
∴★为-2.
故答案为-2.
【分析】将x=5代入两方程,就可求出结果。

14、(1分)若x+y+z≠0且,则k=________.
【答案】3
【考点】三元一次方程组解法及应用
【解析】【解答】解:∵,
∴,
∴,即.
又∵,
∴.
【分析】将已知方程组转化为2y+z=kx;2x+y=kz;2z+x=ky,再将这三个方程相加,由x+y+z≠0,就可求出k 的值。

15、(1分)如图,已知直线AB、CD、EF相交于点O,∠1=95°,∠2=32°,则∠BOE=________.
【答案】53°
【考点】对顶角、邻补角
【解析】【解答】解:∵∠2和∠COE为对顶角
∴∠2=∠COE=32°
∵∠1+∠COE+∠BOE=180°
即95°+32°+∠BOE=180°
∴∠BOE=53°
故答案为:53°。

【分析】根据对顶角相同,可求∠COE的度数,因为∠AOB为平角,根据平角等于180度,即可求得∠1+∠COE+∠BOE的和为180°,从而得出∠BOE的度数。

16、(1分)的算术平方根为________.
【答案】2
【考点】算术平方根
【解析】【解答】解:的算术平方根为2.
故答案为:2.
【分析】,即求4的算术平方根;算术平方根是正的平方根.
17、(3分)的平方根是________,的算术平方根是________,-216的立方根是________.
【答案】±

;-6
【考点】平方根,算术平方根,立方根及开立方
【解析】【解答】解:的平方根为:±;
=3,所以的算术平方根为:;
-216的立方根为:-6
故答案为:±;;-6
【分析】根据正数的平方根有两个,它们互为相反数,正数的算术平方根是正数,及立方根的定义,即可解决问题。

18、(1分)如图,某煤气公司安装煤气管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设.已知∠ABC=135°,∠BCD =65°,则∠CDE=________.
【答案】110°
【考点】平行公理及推论,平行线的性质
【解析】【解答】解:过点C作CF∥AB,如图:
∵AB∥DE,CF∥AB,
∴DE∥CF,
∴∠CDE=∠FCD,
∵AB∥CF,∠ABC=135°,
∴∠BCF=180°-∠ABC=45°,
又∵∠FCD=∠BCD+∠BCF,∠BCD=65°,
∴∠FCD=110°,
∴∠CDE=110°.
故答案为:110°.
【分析】过点C作CF∥AB,由平行的传递性得DE∥CF,由平行线性质得∠CDE=∠FCD,由AB∥CF得∠BCF=45°,由∠FCD=∠BCD+∠BCF即可求得答案.
三、解答题
19、(5分)如图,直线AB、CD相交于O点,∠AOC=80°,OE⊥AB,OF平分∠DOB,求∠EOF的度数.
【答案】解:∵∠AOC=80°,∴∠BOD=∠AOC=80°,∵OF平分∠DOB,∴∠DOF= ∠DOB=40°,∵OE⊥AB,∴∠AOE=90°,∵∠AOC=80°,∴∠EOD=180°-90°-80°=10°,∴∠EOF=∠EOD+∠DOF=10°+40°=50°.
【考点】角的平分线,角的运算,对顶角、邻补角
【解析】【分析】根据图形和已知求出∠EOD的度数,再由角平分线性质、对顶角相等和角的和差,求出∠EOF=∠EOD+∠DOF的度数.
20、(5分)把下列各数填在相应的括号内:
整数:
分数:
无理数:
实数:
【答案】解:整数:
分数:
无理数:
实数:
【考点】实数及其分类
【解析】【分析】实数分为有理数和无理数,有理数分为整数和分数,无理数就是无限不循环的小数,根据定义即可一一判断。

21、(5分)如图,∠ABC+∠BCD+∠EDC=360°.求证:AB∥ED.
【答案】证明:过C作AB∥CF,
∴∠ABC+∠BCF=180°,
∵∠ABC+ ∠BCD+ ∠EDC=360°,
∴∠DCF+ ∠EDC=180°,
∴CF∥DE,
∴ABF∥DE.
【考点】平行公理及推论,平行线的判定与性质
【解析】【分析】过C作AB∥CF,根据两直线平行,同旁内角互补,得∠ABC+∠BCF=180°,再结合已知条件得∠DCF+ ∠EDC=180°,由平行线的判定得CF∥DE,结合平行公理及推论即可得证.
22、(5分)把下列各数填在相应的大括号里:
,,-0.101001,,―,0.202002…, ,0,
负整数集合:( …);
负分数集合:( …);
无理数集合:( …);
【答案】解:= -4,= -2,= ,所以,负整数集合:(,
,…);负分数集合:(-0.101001,―,,…);无理数集合:(0.202002…,
,…);
【考点】有理数及其分类,无理数的认识
【解析】【分析】根据实数的分类填写。

实数包括有理数和无理数。

有理数包括整数(正整数,0,负整数)和分数(正分数,负分数),无理数是指无限不循环小数。

23、(5分)如图所示是小明自制对顶角的“小仪器”示意图:
(1 )将直角三角板ABC的AC边延长且使AC固定;
(2 )另一个三角板CDE的直角顶点与前一个三角板直角顶点重合;
(3 )延长DC,∠PCD与∠ACF就是一组对顶角,已知∠1=30°,∠ACF为多少?
【答案】解:∵∠PCD=90°-∠1,又∵∠1=30°,∴∠PCD=90°-30°=60°,而∠PCD=∠ACF,∴∠ACF=60°.
【考点】角的运算,对顶角、邻补角
【解析】【分析】根据题意画出图形,根据三角板各个角的度数和∠1的度数以及对顶角相等,求出∠ACF的度数.
24、(15分)“节约用水、人人有责”,某班学生利用课余时间对金辉小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,并且将5月份各户居民的节水量统计整理成如图所示的统计图表
节水量/立方米1 1.52.53
户数/户5080a70
(1)写出统计表中a的值和扇形统计图中2.5立方米对应扇形的圆心角度数.
(2)根据题意,将5月份各居民的节水量的条形统计图补充完整.
(3)求该小区300户居民5月份平均每户节约用水量,若用每立方米水需4元水费,请你估算每户居民1年可节约多少元钱的水费?
【答案】(1)解:由题意可得,a=300﹣50﹣80﹣70=100,
扇形统计图中2.5立方米对应扇形的圆心角度数是:=120°
(2)解:补全的条形统计图如图所示:
(3)解:由题意可得,5月份平均每户节约用水量为:=2.1(立方米),
2.1×12×4=100.8(元),
即求该小区300户居民5月份平均每户节约用水量2.1立方米,若用每立方米水需4元水费,每户居民1年可节约100.8元钱的水费
【考点】扇形统计图,条形统计图
【解析】【分析】(1)根据总数减去节水量对应的数据和可得a的值,利用节水量是2.5立方米的百分比乘以360°可得对应的圆心角的度数;
(2)根据(1)中a的值即可补全统计图;
(3)利用加权平均数计算平均每户节约的用水量,然后乘以需要的水费乘以12个月可得结论.
25、(10分)
(1)如图AB∥CD,∠ABE=120°,∠EC D=2 5°,求∠E的度数。

(2)小亮的一张地图上有A、B、C三个城市,但地图上的C城市被墨迹污染了(如图),但知道∠BAC=∠1,∠ABC=∠2,请你用尺规作图法帮他在如图中确定C城市的具体位置.(用尺规作图,保留作图痕迹,不写作法)
【答案】(1)解:过点E作EF∥AB,∵AB∥CD,∠ABE=120°
∴∠FEB=60°,EF∥CD
∴∠FEC=25°
∴∠BEC=25°+60°=85°
(2)解:连接AB,以AB为边,作∠BAC=∠1,作∠ABC=∠2,则两个弧相交的点即为点C的位置。

【考点】平行线的性质,作图—复杂作图
【解析】【分析】(1)根据直线平行的性质,两直线平行,内错角相等,同旁内角互补,即可得到∠E的值。

(2)根据作一个角等于已知角的方法进行操作即可,可得最后两个直线的交点即为C点所在的位置。

26、(5分)如图,某村庄计划把河中的水引到水池M中,怎样开的渠最短,为什么?(保留作图痕迹,不写作法和证明)
理由是:▲ .
【答案】解:垂线段最短。

【考点】垂线段最短
【解析】【分析】直线外一点到直线上所有点的连线中,垂线段最短。

所以要求水池M和河流之间的渠道最短,过点M作河流所在直线的垂线即可。

相关文档
最新文档