2018届二轮(理科数学)概率、离散型随机变量及其分布列专题卷(全国通用)

合集下载

2018届高考理科数学二轮复习《概率与统计》检测试卷及答案解析

2018届高考理科数学二轮复习《概率与统计》检测试卷及答案解析

课时跟踪检测(二十)概率与统计1.(2017·广州二测)某种商品价格与该商品日需求量之间的几组对照数据如下表:价格x (元/kg)1015202530日需求量y (kg)1110865(1)求y 关于x 的线性回归方程;(2)利用(1)中的回归方程,当价格x =40元/kg 时,日需求量y 的预测值为多少?参考公式:线性回归方程y ^=b ^x +a ^,其中b ^=错误!,a ^=y -b ^x .2.(2018届高三·广西五校联考)下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).(1)假设生产状态正常,记X 表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x =116错误!i =9.97,s =错误!=错误!≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).性别有关,现从该市高三理科生中随机抽取50名学生进行调查,得到如下2×2列联表:(单位:人)报考“经济类”不报考“经济类”总计男62430女14620总计203050(1)据此样本,判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X,求随机变量X的概率分布列及数学期望.附:P(K2≥k0)0.10.050.010.001k0 2.706 3.841 6.63510.828K2=n(ad-bc)2,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)天的日营业额y (单位:万元)与该地当日最低气温x (单位:℃)的数据,如下表:x 258911y1.210.80.80.7(1)求y 关于x 的线性回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X ≤13.4).附:①回归方程y ^=b ^x +a ^中,b ^=错误!,a ^=y -b ^x .②10≈3.2, 3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.6827,P (μ-2σ<X ≤μ+2σ)=0.9545.定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄[15,25)[25,35)[35,45)[45,55)[55,65]支持“延迟退155152817休”的人数(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持总计(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.参考数据:P(K2≥k0)0.1000.0500.0100.001k0 2.706 3.841 6.63510.828K2=n(ad-bc)2,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)课时跟踪检测(二十)概率与统计1.(2017·广州二测)某种商品价格与该商品日需求量之间的几组对照数据如下表:价格x (元/kg)1015202530日需求量y (kg)1110865(1)求y 关于x 的线性回归方程;(2)利用(1)中的回归方程,当价格x =40元/kg 时,日需求量y 的预测值为多少?参考公式:线性回归方程y ^=b ^x +a ^,其中b ^=错误!,a ^=y -b ^x .解:(1)由所给数据计算得x =15×(10+15+20+25+30)=20,y =15×(11+10+8+6+5)=8,错误!(x i -x )2=(-10)2+(-5)2+02+52+102=250,错误!(x i -x )(y i -y )=(-10)×3+(-5)×2+0×0+5×(-2)+10×(-3)=-80.b ^=错误!=-80250=-0.32.a ^=y -b ^x=8+0.32×20=14.4.所求线性回归方程为y ^=-0.32x +14.4.(2)由(1)知当x =40时,y ^=-0.32×40+14.4=1.6.故当价格x =40(元/kg)时,日需求量y 的预测值为1.6kg.2.(2018届高三·广西五校联考)下图是某市11月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气重度污染的天数,求X 的分布列与数学期望.解:设A i 表示事件“此人于11月i 日到达该市”(i =1,2,…,12).依题意知,P (A i )=112,且A i ∩A j =∅(i ≠j ).(1)设B 为事件“此人到达当日空气重度污染”,则B =A 1∪A 2∪A 3∪A 7∪A 12,所以P (B )=P (A 1∪A 2∪A 3∪A 7∪A 12)=P (A 1)+P (A 2)+P (A 3)+P (A 7)+P (A 12)=512.即此人到达当日空气重度污染的概率为512.(2)由题意可知,X 的所有可能取值为0,1,2,3,P (X =0)=P (A 4∪A 8∪A 9)=P (A 4)+P (A 8)+P (A 9)=312=14,P (X =2)=P (A 2∪A 11)=P (A 2)+P (A 11)=212=16,P (X =3)=P (A 1∪A 12)=P (A 1)+P (A 12)=212=16,P (X =1)=1-P (X =0)-P (X =2)-P (X =3)=1-14-16-16=512,或P (X =1)=P (A 3∪A 5∪A 6∪A 7∪A 10)=P (A 3)+P (A 5)+P (A 6)+P (A 7)+P (A 10)=512所以X 的分布列为:X 0123P145121616故X 的数学期望E (X )=0×14+1×512+2×16+3×16=54.3.(2017·全国卷Ⅰ)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N (μ,σ2).之外的零件数,求P (X ≥1)及X 的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得x =116错误!i =9.97,s =错误!=错误!≈0.212,其中x i 为抽取的第i 个零件的尺寸,i =1,2, (16)用样本平均数x 作为μ的估计值μ^,用样本标准差s 作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查?剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z 服从正态分布N (μ,σ2),则P (μ-3σ<Z <μ+3σ)=0.9974.0.997416≈0.9592,0.008≈0.09.解:(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X ~B (16,0.0026).因此P (X ≥1)=1-P (X =0)=1-0.997416≈0.0408.X 的数学期望为EX =16×0.0026=0.0416.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小.因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x =9.97,s ≈0.212,得μ的估计值为u ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115(16×9.97-9.22)=10.02,因此μ的估计值为10.02.错误!2i =16×0.2122+16×9.972≈1591.134,剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115(1591.134-9.222-2因此σ的估计值为0.008≈0.09.4.(2017·沈阳模拟)为了探究某市高中理科生在高考志愿中报考“经济类”专业是否与性别有关,现从该市高三理科生中随机抽取50名学生进行调查,得到如下2×2列联表:(单位:人)报考“经济类”不报考“经济类”总计男62430女14620总计203050(1)据此样本,判断能否在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关?(2)若以样本中各事件的频率作为概率估计全市总体考生的报考情况,现从该市的全体考生(人数众多)中随机抽取3人,设3人中报考“经济类”专业的人数为随机变量X ,求随机变量X 的概率分布列及数学期望.附:P (K 2≥k 0)0.10.050.010.001k 02.7063.8416.63510.828K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .解:(1)由表中数据得,K 2的观测值k =50×(6×6-24×14)230×20×20×30=50×300230×20×20×30=12.5>10.828,∴能在犯错误的概率不超过0.001的前提下认为理科生报考“经济类”专业与性别有关.(2)估计该市的全体考生中任一人报考“经济类”专业的概率为P =2050=25,X 的可能取值为0,1,2,3,由题意,得X ~P (X =k )=C -k(k =0,1,2,3),∴P (X =0)=27125,P (X =2)=C 23×35=36125,P (X =3)=8125,故随机变量X 分布列为:X 0123P2712554125361258125∴随机变量X 的数学期望E (X )=3×25=65.5.(2017·昆明模拟)某火锅店为了了解气温对营业额的影响,随机记录了该店1月份其中5天的日营业额y (单位:万元)与该地当日最低气温x (单位:℃)的数据,如下表:x 258911y1.210.80.80.7(1)求y 关于x 的线性回归方程y ^=b ^x +a ^;(2)判断y 与x 之间是正相关还是负相关,若该地1月份某天的最低气温为6℃,用所求回归方程预测该店当日的营业额;(3)设该地1月份的日最低气温X ~N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2,求P (3.8<X ≤13.4).附:①回归方程y ^=b ^x +a ^中,b ^=错误!,a ^=y -b ^x .②10≈3.2, 3.2≈1.8.若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)=0.6827,P (μ-2σ<X ≤μ+2σ)=0.9545.解:(1)x =15×(2+5+8+9+11)=7,y =15×(1.2+1+0.8+0.8+0.7)=0.9.错误!2i =4+25+64+81+121=295,错误!i y i =2.4+5+6.4+7.2+7.7=28.7,∴b ^=错误!=28.7-5×7×0.9295-5×72=-2.850=-0.056,a ^=y -b ^x=0.9-(-0.056)×7=1.292.∴线性回归方程为y ^=-0.056x +1.292.(2)∵b ^=-0.056<0,∴y 与x 之间是负相关.当x =6时,y ^=-0.056×6+1.292=0.956.∴该店当日的营业额约为9560元.(3)样本方差s 2=15×(25+4+1+4+16)=10,∴最低气温X ~N (7,3.22),∴P (3.8<X ≤10.2)=0.6827,P (0.6<X ≤13.4)=0.9545,∴P (10.2<X ≤13.4)=12×(0.9545-0.6827)=0.1359.∴P (3.8<X ≤13.4)=P (3.8<X ≤10.2)+P (10.2<X ≤13.4)=0.6827+0.1359=0.8186.6.(2018届高三·张掖摸底)中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:年龄[15,25)[25,35)[35,45)[45,55)[55,65]支持“延迟退休”的人数155152817(1)由以上统计数据填2×2列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;45岁以下45岁以上总计支持不支持(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人.①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.参考数据:P(K2≥k0)0.1000.0500.0100.001k0 2.706 3.841 6.63510.828K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.解:(1)由频率分布直方图知45岁以下与45岁以上各50人,故填充2×2列联表如下:45岁以下45岁以上总计支持354580不支持15520总计5050100因为K2的观测值k=100×(35×5-45×15)250×50×80×20=6.25>3.841,所以在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异.(2)①抽到1人是45岁以下的概率为68=3 4,抽到1人是45岁以下且另一人是45岁以上的概率为C16C12C28=37,故所求概率P=3734=47.②从不支持“延迟退休”的人中抽取8人,则45岁以下的应抽6人,45岁以上的应抽2人.所以X的可能取值为0,1,2.P(X=0)=C26C28=15 28,P(X=1)=C16C12C28=1228=37,P(X=2)=C2C28=1 28 .故随机变量X的分布列为:X012P152837128所以E(X)=1×37+2×128=12.。

2018学年第二学期高二数学《离散型随机变量的分布列(二)》学案含答案

2018学年第二学期高二数学《离散型随机变量的分布列(二)》学案含答案

2.1.2 离散型随机变量的分布列(二)学习目标 1.进一步理解离散型随机变量的分布列的求法、作用(重点).2.理解两点分布和超几何分布(难点).知识点1 两点分布. 若随机变量X 的分布列为则称该分布列为两点分布列.若随机变量X 的分布列为两点分布列,则称X 服从两点分布,称p =P (X =1)为 概率. 知识点2 超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,则称分布列为超几何分布列.如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布.【预习评价】设袋中有80个红球、20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( ) A.C 480C 610C 10100 B.C 680C 410C 10100C.C 480C 620C 10100D.C 680C 420C 10100【例1】 袋中装有3个红球,2个绿球,从中摸出1个球,记X =⎩⎪⎨⎪⎧0,摸出绿球,1,摸出红球.求随机变量X 的分布列.规律方法两步法判断一个分布是否为两点分布(1)看取值:随机变量只取两个值:0和1.(2)验概率:检验P(X=0)+P(X=1)=1是否成立.如果一个分布满足以上两点,则该分布是两点分布,否则不是两点分布.【例2】某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X 的分布列.规律方法解决超几何分布问题的两个关键点(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M,N,n就可以利用公式求出X取不同k的概率P(X=k),从而求出X的分布列.【训练2】从某小组的5名女生和4名男生中任选3人去参加一项公益活动.(1)求所选3人中恰有一名男生的概率;(2)求所选3人中男生人数ξ的分布列.【例3】袋中装有标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球.用X表示取出的3个小球的最大数字.求(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的概率分布列.课堂达标1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为( ) A.C 35C 350B.C 15+C 25+C 35C 350 C.1-C 345C 350D.C 15C 25+C 25C 145C 3503.某人投篮的命中率是不命中概率的3倍,以随机变量X 表示1次投篮的命中次数,则 P (X =1)=________.4. 10名同学中有a 名女生,若从中抽取2个人作为学生代表,恰抽取1名女生的概率为1645,则a =________.5. 某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球,根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X 的分布列.课堂小结1.两点分布:两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布:超几何分布在实际生产中常用来检验产品的次品数,只要知道N ,M 和n 就可以根据公式:P (X =k )=C k M C n -k N -MC n N求出X 取不同值k 时的概率.。

2018年高考理科数学通用版三维二轮专题复习:概率、离散型随机变量及其分布列

2018年高考理科数学通用版三维二轮专题复习:概率、离散型随机变量及其分布列

寒假作业(二十) 概率、离散型随机变量及其分布列(注意命题点的区分度)一、选择题1.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则E (3X +5)=( )A .6B .9C .11D .14解析:选C 由题意得P (X =1)=P (X =2)=P (X =3)=13,所以E (X )=(1+2+3)×13=2,故E (3X +5)=3E (X )+5=11.2.设随机变量X ~N (1,52),且P (X ≤0)=P (X >a -2),则实数a 的值为( ) A .3 B .4 C .5D .6解析:选B 因为随机变量X ~N (1,52),且P (X ≤0)=P (X >a -2),所以由正态分布密度曲线的对称性(对称轴是x =1)可知,a -2=2×1,解得a =4.3.设X ~B (4,p ),其中0<p <12,且P (X =2)=827,那么P (X =1)=( )A.881B.1681C.827D.3281解析:选D 由题意,P (X =2)=C 24p 2(1-p )2=827, 即p 2(1-p )2=⎝ ⎛⎭⎪⎫132·⎝ ⎛⎭⎪⎫232,解得p =13或p =23,因为0<p <12,故p =13,故P (X =1)=C 14×13×⎝⎛⎭⎪⎫1-133=3281.4.已知袋子中装有大小相同的6个小球,其中有2个红球、4个白球.现从中随机摸出3个小球,则至少有2个白球的概率为( )A.34B.35C.45D.710 解析:选C 所求问题有两种情况:1红2白或3白,则所求概率P =C 12C 24+C 34C 36=45.5.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )A.14 B.89 C.116 D.532 解析:选D 两次数字乘积为偶数,可先考虑其反面:只需两次均出现1向上,故两次数字乘积为偶数的概率为1-⎝ ⎛⎭⎪⎫262=89;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),概率为13×16×2+16×16=536.故所求条件概率为53689=532.6.某盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( )A.35 B.59 C.110 D.25解析:选B 第一次摸出新球记为事件A ,则P (A )=35,第二次取到新球记为事件B ,则P (AB )=C 26C 210=13,∴P (B |A )=P AB P A =1335=59. 7.(2017·合肥质检)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 的方程为x 2-y =0)的点的个数的估计值为( )A .5 000B .6 667C .7 500D .7 854解析:选B 由已知及题图知S阴影=S 正方形-⎠⎜⎛01x 2d x =1-13=23,所以有23=S 阴影S 正方形=n10 000,解得n ≈6 667.8.若某科技小制作课的模型制作规则是:每位学生最多制作3次,一旦制作成功,则停止制作,否则可制作3次.设某学生一次制作成功的概率为p (p ≠0),制作次数为X ,若X 的数学期望E (X )>74,则p 的取值范围是( )A.⎝⎛⎭⎪⎫0,712 B.⎝ ⎛⎭⎪⎫712,1 C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫12,1 解析:选C 由已知条件可得P (X =1)=p ,P (X =2)=(1-p )p ,P (X =3)=(1-p )2p +(1-p )3=(1-p )2,则E (X )=P (X =1)+2P (X =2)+3P (X =3) =p +2(1-p )p +3(1-p )2=p 2-3p +3>74,解得p >52或p <12,又p ∈(0,1],可得p ∈⎝ ⎛⎭⎪⎫0,12.9.有一个公用电话亭,观察使用这个电话的人的流量时,设在某一时刻,有n 个人正在使用电话或等待使用电话的概率为P (n ),且P (n )与时刻t 无关,统计得到P (n )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12n ·P 01≤n ≤5,0,n ≥6,那么P (0)的值是( )A .0B .1 C.3263D.12解析:选C 由题意得P (1)=12P (0),P (2)=14P (0),P (3)=18P (0),P (4)=116P (0),P (5)=132P (0),P (n ≥6)=0,所以1=P (0)+P (1)+P (2)+P (3)+P (4)+P (5)+P (n ≥6)=⎝ ⎛⎭⎪⎫1+12+14+18+116+132P (0)=6332P (0),所以P (0)=3263.10.(2018届高三·合肥调研)从区间[-2,2]中随机选取一个实数a ,则函数f (x )=4x -a ·2x +1+1有零点的概率是( )A.14 B.13 C.12D.23解析:选A 令t =2x ,函数有零点就等价于方程t 2-2at +1=0有正根,进而可得⎩⎪⎨⎪⎧Δ≥0,t 1+t 2>0,t 1t 2>0,解得a ≥1,又a ∈[-2,2],所以函数有零点的实数a 应满足a ∈[1,2],故所求概率P =14,选A.11.已知袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号.若η=aX +b ,E (η)=1,D (η)=11,则a +b 的值是( )A .1或2B .0或2C .2或3D .0或3解析:选B 由题意可知,X 的所有可能取值为0,1,2,3,4,E (X )=12×0+120×1+110×2+320×3+15×4=32,D (X )=12×⎝ ⎛⎭⎪⎫0-322+120×⎝ ⎛⎭⎪⎫1-322+110×⎝ ⎛⎭⎪⎫2-322+320×⎝ ⎛⎭⎪⎫3-322+15×⎝ ⎛⎭⎪⎫4-322=114. 由D (η)=a 2D (X ),得a 2×114=11,即a =±2. 又E (η)=aE (X )+b ,所以当a =2时,由1=2×32+b ,得b =-2,此时a +b =0.当a =-2时,由1=-2×32+b ,得b =4,此时a +b =2.故选B.12.一台仪器每启动一次都随机地出现一个5位的二进制数A =(例如:若a 1=a 3=a 5=24A 的各位数中,已知a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23,记X =a 1+a 2+a 3+a 4+a 5,现在仪器启动一次,则E (X )=( )A.83 B.113 C.89D.119解析:选B 法一:X 的所有可能取值为1,2,3,4,5,P (X =1)=C 44⎝ ⎛⎭⎪⎫134⎝ ⎛⎭⎪⎫230=181, P (X =2)=C 34⎝ ⎛⎭⎪⎫133⎝ ⎛⎭⎪⎫231=881, P (X =3)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827, P (X =4)=C 14⎝ ⎛⎭⎪⎫131⎝ ⎛⎭⎪⎫233=3281, P (X =5)=C 04⎝ ⎛⎭⎪⎫130⎝ ⎛⎭⎪⎫234=1681, 所以E (X )=1×181+2×881+3×827+4×3281+5×1681=113.法二:由题意,X 的所有可能取值为1,2,3,4,5, 设Y =X -1,则Y 的所有可能取值为0,1,2,3,4,因此Y ~B ⎝ ⎛⎭⎪⎫4,23,所以E (Y )=4×23=83,从而E (X )=E (Y +1)=E (Y )+1=83+1=113.二、填空题13.若随机变量η的分布列如下表:则当P (η<x )=0.8时,实数x 的取值范围是________.解析:结合分布列易知P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.8,又P (η<x )=0.8,所以1<x ≤2.答案:(1,2]14.(2017·烟台模拟)在棱长为2的正方体ABCD ­A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD ­A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:由题意,在正方体ABCD ­A 1B 1C 1D 1内任取一点,满足几何概型,记“点P 到点O 的距离大于1”为事件A ,则事件A 发生时,点P 位于以O 为球心,以1为半径的半球外.又V 正方体ABCD ­A 1B 1C 1D 1=23=8,V半球=12·43π·13=23π,∴所求事件概率P (A )=8-23π8=1-π12.答案:1-π1215.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为________.(附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)≈0.682 7,P (μ-2σ<X ≤μ+2σ)≈0.954 5) 解析:由题意知μ=-1,σ=1,因为P (0<X ≤1)=12[P (-1-2<X ≤-1+2)-P (-1-1<X ≤-1+1)]≈12×(0.954 5-0.682 7)≈0.135 9,所以落入阴影部分的个数约为0.135 9×10 000=1 359.答案:1 35916.在一投掷竹圈套小玩具的游戏中,竹圈套住小玩具的全部记2分,竹圈只套在小玩具一部分上记1分,小玩具全部在竹圈外记0分.某人投掷100个竹圈,有50个竹圈套住小玩具的全部,25个竹圈只套在小玩具一部分上,其余小玩具全部在竹圈外,以频率估计概率,则该人两次投掷后得分ξ的数学期望是________.解析:将“竹圈套住小玩具的全部”,“竹圈只套在小玩具一部分上”,“小玩具全部在竹圈外”分别记为事件A ,B ,C ,则P (A )=50100=12,P (B )=P (C )=25100=14.某人两次投掷后得分ξ的所有可能取值为0,1,2,3,4,且P (ξ=0)=14×14=116,P (ξ=1)=2×14×14=18,P (ξ=2)=14×14+2×12×14=516,P (ξ=3)=2×14×12=14,P (ξ=4)=12×12=14.故ξ的分布列为:所以E (ξ)=0×116+1×18+2×516+3×14+4×14=52.答案:52三、解答题17.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两手所取的球不同色”, 则P (A )=1-2×3+3×3+4×39×9=23.(2)依题意,X 的可能取值为0,1,2,左手所取的两球颜色相同的概率为C 22+C 23+C 24C 29=518,右手所取的两球颜色相同的概率为C 23+C 23+C 23C 29=14.故P (X =0)=⎝ ⎛⎭⎪⎫1-518⎝ ⎛⎭⎪⎫1-14=1318×34=1324;P (X =1)=518×⎝⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-518×14=718;P (X =2)=518×14=572.∴X 的分布列为:E (X )=0×1324+1×718+2×72=36.18.某生物产品,每一个生产周期成本为20万元,此产品的产量受气候影响、价格受市场影响均具有随机性,且互不影响,其具体情况如下表:(1)设X表示1(2)连续3个生产周期,求这3个生产周期中至少有2个生产周期的利润不少于10万元的概率.解:(1)设A表示事件“产品产量为30吨”,B表示事件“产品市场价格为0.6万元/吨”,则P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X的所有值为:50×1-20=30,50×0.6-20=10,30×1-20=10,30×0.6-20=-2,则P(X=30)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=10)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=-2)=P(A)P(B)=0.5×0.4=0.2,则X的分布列为:(2)设C i表示事件“第i(i=1,2,3),则C1,C2,C3相互独立,由(1)知,P (C i )=P (X =30)+P (X =10)=0.3+0.5=0.8(i =1,2,3), 3个生产周期的利润均不少于10万元的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512,3个生产周期中有2个生产周期的利润不少于10万元的概率为P (C 1C 2C 3)+P (C 1C2C 3)+P (C 1C 2C 3)=3×0.82×0.2=0.384,∴3个生产周期中至少有2个生产周期的利润不少于10万元的概率为0.512+0.384=0.896.19.(2017·合肥质检)某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择.方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为45.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:若抛出硬币,反面朝上,员工则获得500元资金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得奖金1 000元;若未中奖,则所获得的奖金为0元.方案乙:员工连续三次抽奖,每次中奖率均为25,每次中奖均可获得奖金400元.(1)求员工选择方案甲进行抽奖所获奖金X (元)的分布列;(2)试比较员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算? 解:(1)P (X =0)=15+45×12×15=725,P (X =500)=45×12=25,P (X =1 000)=45×12×45=825,∴员工选择方案甲进行抽奖所获奖金X (元)的分布列为:(2)由(1)可知,选择方案甲进行抽奖所获奖金X 的期望E (X )=500×25+1 000×825=520(元),若选择方案乙进行抽奖,设中奖次数ξ~B ⎝ ⎛⎭⎪⎫3,25,则E (ξ)=3×25=65,抽奖所获奖金X 的期望E (X )=E (400ξ)=400E (ξ)=480(元),故选择方案甲较划算.20.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)(1)能否在犯错误的概率不超过0.025的前提下认为视觉和空间能力与性别有关? (2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率;(3)现从选择做几何题的8名女生中任意抽取2人对她们的答题情况进行全程研究,记丙、丁2名女生被抽到的人数为X ,求X 的分布列及数学期望E (X ).附表及公式:K 2=2a +bc +da +cb +d,n =a +b +c +d .解:(1)由表中数据得K 2=5022×12-8×8230×20×30×20=509≈5.556>5.024, 所以能在犯错误的概率不超过0.025的前提下认为视觉和空间能力与性别有关.(2)设甲、乙解答一道几何题的时间分别为x ,y 分钟,则⎩⎪⎨⎪⎧5≤x ≤7,6≤y ≤8,表示的平面区域如图所示.设事件A 为“乙比甲先做完此道题”则x >y ,满足的区域如图中阴影部分所示. 所以由几何概型可得P (A )=12×1×12×2=18,即乙比甲先解答完的概率为18.(3)由题可知,在选择做几何题的8名女生中任意抽取2人的方法有C 28=28种,其中丙、丁2人没有一个人被抽到的有C 26=15种;恰有一人被抽到的有C 12C 16=12种;2人都被抽到的有C 22=1种.所以X 的可能取值为0,1,2,P (X =0)=1528,P (X =1)=1228=37,P (X =2)=128,故X 的分布列为:E (X )=0×1528+1×37+2×28=2.。

专题练 第22练 随机变量及其分布

专题练 第22练 随机变量及其分布

第22练随机变量及其分布1.(2018·全国Ⅲ)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X=4)<P(X=6),则p 等于()A.0.7 B.0.6 C.0.4 D.0.3答案 B解析由题意可知,10位成员中使用移动支付的人数X服从二项分布,即X~B(10,p),所以D(X)=10p(1-p)=2.4,所以p=0.4或0.6.又因为P(X=4)<P(X=6),所以C410p4(1-p)6<C610p6(1-p)4,所以p>0.5,所以p=0.6.2.(2019·浙江)设0<a<1,则随机变量X的分布列是X 0 a 1P 131313则当a在(0,1)内增大时,() A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大答案 D解析由题意可知,E(X)=13(a+1),所以D (X )=(a +1)227+(1-2a )227+(a -2)227=6a 2-6a +627=29⎣⎡⎦⎤⎝⎛⎭⎫a -122+34,所以当a 在(0,1)内增大时,D (X )先减小后增大.3.(2021·新高考全国Ⅱ)某物理量的测量结果服从正态分布N (10,σ2),下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .σ越小,该物理量在一次测量中大于10的概率为0.5C .σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D .σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等 答案 D解析 对于A ,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在(9.9,10.0)的概率与落在(10.2,10.3)的概率不同,所以一次测量结果落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D 错误.4.(2013·湖北)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过搅拌后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125B.65C.168125D.75 答案 B解析 125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65.5.(2017·全国Ⅱ)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D (X )=________. 答案 1.96解析 由题意得X ~B (100,0.02), ∴D (X )=100×0.02×(1-0.02)=1.96.6.(2022·浙江)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则P (ξ=2)=________,E (ξ)=________. 答案1635 127解析 由题意知ξ的可能取值为1,2,3,4, P (ξ=1)=C 26C 37=1535=37,P (ξ=2)=C 12C 24+C 22C 14C 37=1635, P (ξ=3)=C 23C 37=335,P (ξ=4)=1C 37=135,所以ξ的分布列为E (ξ)=1×37+2×1635+3×335+4×135=127.7.(2022·全国甲卷)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立. (1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与均值. 解 (1)设甲在三个项目中获胜的事件依次记为A ,B ,C , 所以甲学校获得冠军的概率为P =P (ABC )+P (A BC )+P (A B C )+P (AB C )=0.5×0.4×0.8+0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2 =0.16+0.16+0.24+0.04=0.6.(2)依题可知,X 的可能取值为0,10,20,30, 所以P (X =0)=0.5×0.4×0.8=0.16,P (X =10)=0.5×0.4×0.8+0.5×0.6×0.8+0.5×0.4×0.2=0.44, P (X =20)=0.5×0.6×0.8+0.5×0.4×0.2+0.5×0.6×0.2=0.34, P (X =30)=0.5×0.6×0.2=0.06. 则X 的分布列为E (X )=0×0.16+10×0.44+20×0.34+30×0.06=13.8.(2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与均值E (X ). 解 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 可取的值为0,1,2,3,4,则 P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X 的分布列为X 0 1 2 3 4 P1425211021521142E (X )=0+1×521+2×1021+3×521+4×142=2.9.(2022·温州模拟)已知随机变量X 的分布列是X -1 0 1 Pa13b若E (X )=0,则D (X )等于( ) A .0 B.13 C.23 D .1答案 C解析 由已知可得⎩⎪⎨⎪⎧a +b +13=1,E (X )=-a +b =0,解得a =b =13,因此,D (X )=13[(-1-0)2+(0-0)2+(1-0)2]=23.10.(2022·常州模拟)俄国著名飞机设计师埃格·西科斯基设计了世界上第一架四引擎飞机和第一种投入生产的直升机,当代著名的“黑鹰”直升机就是由西科斯基公司生产的.1992年,为了在远程性和安全性上与美国波音747竞争,欧洲空中客车公司设计并制造了A340,是一种有四台发动机的远程双过道宽体客机,取代只有两台发动机的A310.假设每一架飞机的引擎在飞行中出现故障的概率为1-p ,且各引擎是否有故障相互独立.已知A340飞机至少有3个引擎正常运行,飞机就可成功飞行;A310飞机需要2个引擎全部正常运行,飞机才能成功飞行.若要使A340飞机比A310飞机更安全,则A340飞机引擎的故障率应控制的范围是( ) A.⎝⎛⎭⎫23,1B.⎝⎛⎭⎫13,1C.⎝⎛⎭⎫0,23D.⎝⎛⎭⎫0,13 答案 C解析 由题意得,飞机引擎正常运行的概率为p ,则A310飞机能成功飞行的概率为C 22p 2=p 2,A340飞机能成功飞行的概率为C 34p 3(1-p )+C 44p 4=-3p 4+4p 3, 令-3p 4+4p 3>p 2,即-3p 2+4p >1, 解得13<p <1.所以0<1-p <23,所以A340飞机引擎的故障率应控制的范围是⎝⎛⎭⎫0,23. 11.(多选)(2022·重庆质检)“杂交水稻之父”袁隆平一生致力于杂交水稻技术的研究应用与推广,发明了“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出了杰出贡献.袁老领衔的科研团队成功攻破水稻超高产育种难题,不断刷新亩产产量的纪录,目前超级稻计划亩产量已经实现1 100公斤.现有甲、乙两个试验田,根据数据统计,甲、乙试验田超级稻亩产量(分别记为ξ,η)均服从正态分布,其中ξ~N (μ1,σ21),η~N (μ2,σ22).如图,已知μ1=1 150,μ2=1 130,σ21=2 500,σ22=1 600,两正态密度曲线在直线x =μ2左侧交于点M (x 0,y 0),则下列说法正确的是( )A .P (ξ<μ1)<P (ξ<μ2)B .P (η<μ1)>P (η<μ2)C .P (ξ>x 0)<P (η>x 0)D .P (ξ>1 250)>P (η<1 050) 答案 BC解析 由图可知P (ξ<μ1)>P (ξ<μ2),故A 错误; 由图可知P (η<μ1)>P (η<μ2),故B 正确; ∵P (ξ>x 0)=1-P (ξ≤x 0),P (η>x 0)=1-P (η≤x 0), 由图可知P (ξ≤x 0)>P (η≤x 0), ∴P (ξ>x 0)<P (η>x 0),故C 正确; μ1=1 150,σ1=50,μ2=1 130,σ2=40, P (ξ>1 250)=P (ξ>μ1+2σ1), P (η<1 050)=P (η<μ2-2σ2) =P (η>μ2+2σ2),根据正态密度曲线的性质和3σ原则,应该有P (ξ>1 250)=P (η<1 050),故D 错误. 12.(多选)(2022·唐山模拟)下列说法正确的是( )A .某投掷类游戏闯关规则是参加游戏者最多投掷5次,只要有一次投中,即闯关成功,并停止投掷,已知每次投中的概率为12,则闯关成功的概率为3132B .从10名男生、5名女生中选取4人,则其中至少有1名女生的概率为C 15C 314C 415C .已知随机变量X 的分布列为P (X =i )=a i (i +1)(i =1,2,3),则P (X =2)=29D .若随机变量η~N (2,σ2),且δ=3η+1,则P (η<2)=0.5,E (δ)=6 答案 AC解析 选项A,5次都没投中的概率为⎝⎛⎭⎫125=132.所以闯关成功的概率为1-132=3132,故A 正确; 选项B ,从10名男生、5名女生中选取4人,则其中至少有1名女生分为1名女生、3名男生,2名女生、2名男生,3名女生、1名男生,4名都是女生4种情况.共有C 15C 310+C 25C 210+C 35C 110+C 45=1 155(种)情况.而C 15C 314=1 820,所以其中至少有1名女生的概率为C 15C 310+C 25C 210+C 35C 110+C 45C 415≠C 15C 314C 415,故B 不正确; 选项C ,由P (X =i )=ai (i +1)(i =1,2,3), 则a ⎝⎛⎭⎫12+16+112=1,解得a =43, 所以P (X =2)=43×12×3=29,故C 正确;选项D ,随机变量η~N (2,σ2),则P (η<2)=0.5,E (η)=2,所以E (δ)=E (3η+1)=3E (η)+1=7,故D 不正确.13.(2022·咸阳模拟)经统计,某校高三学生期末数学成绩服从正态分布,X ~N (85,σ2),且P (80<X <90)=0.3,则从该校任选一名高三学生,其成绩不低于90分的概率为________. 答案 0.35解析 ∵学生成绩X 服从正态分布X ~N (85,σ2),且P (80<X <90)=0.3, ∵P (X ≥90)=12[1-P (80<X <90)]=12(1-0.3)=0.35, ∴从该校任选一名高三学生,其成绩不低于90分的概率是0.35.14.(2022·绍兴模拟)袋子中有3个白球,2个红球,现从中有放回地随机取2个球,每次取1个,且各次取球间相互独立.设此过程中取到红球的个数为ξ,则P (ξ=1)=______,E (ξ)=______. 答案1225 45解析 有放回地取球,每次取一球, 则每次取到红球的概率为C 12C 15=25,P (ξ=1)=C 12×25×35=1225, 在此过程中取到的红球个数为ξ,ξ的可能取值为0,1,2. 则ξ~B ⎝⎛⎭⎫2,25,则E (ξ)=2×25=45. 15.(2022·武汉模拟)某校高三年级非常重视学生课余时间的管理,进入高三以来,倡导学生利用中午午休前40分钟,晚餐后30分钟各做一套试卷.小红、小明两位同学都选择做数学或物理试卷,对两位同学过去100天的安排统计如下:假设小红、小明选择科目相互独立,用频率估计概率:(1)请预测在今后的5天中小红恰有3天中午和晚上都选数学的概率;(2)记X 为两位同学在一天中选择科目的个数,求X 的分布列和均值E (X );(3)试判断小红、小明在晚上做物理试卷的条件下,哪位同学更有可能中午选择做数学试卷,并说明理由.解 (1)由表格数据知,小红中午和晚上都选数学的概率为25100=14,∴今后的5天中小红恰有3天中午和晚上都选数学的概率P =C 35×⎝⎛⎭⎫143×⎝⎛⎭⎫342=45512. (2)由表格数据知,小红选择0科的概率为110;选择数学1科的概率为14,选择物理1科的概率为110;选择2科的概率为1120;小明选择0科的概率为110;选择数学1科的概率为15,选择物理1科的概率为310;选择2科的概率为25;则X 所有可能的取值为0,1,2, ∴P (X =0)=110×110=1100,P (X =1)=110×⎝⎛⎭⎫15+310+110×⎝⎛⎭⎫14+110+14×15+110×310=33200, P (X =2)=1-P (X =0)-P (X =1)=1-1100-33200=3340,∴X 的分布列为E (X )=0×1100+1×33200+2×3340=363200.(3)记事件A 1:小红晚上做物理试卷;事件A 2:小明晚上做物理试卷; 事件B 1:小红中午做数学试卷; 事件B 2:小明中午做数学试卷; 由表格数据可得 P (A 1)=30100=310,P (A 2)=55100=1120,P (A 1B 1)=20100=15,P (A 2B 2)=25100=14;∴P (B 1|A 1)=P (A 1B 1)P (A 1)=15310=23,P (B 2|A 2)=P (A 2B 2)P (A 2)=141120=511,∵23>511,即P (B 1|A 1)>P (B 2|A 2), ∴在晚上做物理试卷的条件下,小红更有可能中午选择做数学试卷.16.(2022·桂林模拟)某农业大学的学生利用专业技能指导葡萄种植大户,对葡萄实施科学化、精细化管理,使得葡萄产量有较大提高.葡萄采摘并去掉残次品后,随机按每箱10串装箱,现从中随机抽取5箱,称得每串葡萄的质量(单位:kg),将称量结果分成5组:[1.0,1.2),[1.2,1.4),[1.4,1.6),[1.6,1.8),[1.8,2.0],并绘制出如图所示的频率分布直方图.(1)求a 的值,并估计这批葡萄每串葡萄质量的平均值x (残次品除外,同一组中的数据以这组数据所在区间中点的值代表);(2)若这批葡萄每串葡萄的质量X 服从正态分布N (μ,0,04),其中μ的近似值为每串葡萄质量的平均值x ,请估计10 000箱葡萄中质量位于(1.124,1.724)内的葡萄的串数;(3)规定这批葡萄中一串葡萄的质量超过1.8 kg 的为优等品,视频率为概率,随机打开一箱,记优等品的串数为ξ,求ξ的均值.附:若随机变量X ~N (μ,σ2),则P (μ-σ≤X ≤μ+σ)≈0.682 7,P (μ-2σ≤X ≤μ+2σ)≈0.954 5. 解 (1)由频率分布直方图可知,0.2(0.4+1.0+2a +2.0)=1,解得a =0.8. 估计这批葡萄每串葡萄质量的平均值x =1.1×0.4×0.2+1.3×1.0×0.2+1.5×2.0×0.2+1.7×0.8×0.2+1.9×0.8×0.2=1.524. (2)由题意可知,μ=1.524,σ=0.2, 所以μ-2σ=1.124,μ+2σ=1.924, μ-σ=1.324,μ+σ=1.724.所以P (1.124<X <1.724)=P (μ-2σ≤X ≤μ+σ)=12[P (μ-σ≤X ≤μ+σ)+P (μ-2σ≤X ≤μ+2σ)]≈0.818 6. 所以10 000箱葡萄中质量位于(1.124,1.724)内的葡萄的串数的估计值为 10 000×0.818 6×10=81 860.(3)在这批葡萄中随机抽取一串,葡萄的质量超过1.8 kg 的频率为0.8×0.2=0.16, 因此随机打开一箱,再从中随机抽取一串,这串葡萄为优等品的概率为P =0.16=425,依题意,ξ的所有可能取值为0,1,2,3,…,10,且ξ~B ⎝⎛⎭⎫10,425, 所以ξ的均值为E (ξ)=10×425=85.[考情分析] 高考常考内容,考查离散型随机变量的分布列、均值和方差,以及利用分布列、均值、方差进行决策或分析,多与概率结合考查综合题型,试题阅读量大,常以解答题的形式出现,难度中档偏上.一、分布列的性质及应用 核心提炼1.离散型随机变量X 的分布列为X x 1 x 2 … x n Pp 1p 2…p n离散型随机变量X 的分布列具有两个性质: (1)p i ≥0,i =1,2,…,n ; (2)∑i =1np i =1(i =1,2,3,…,n ).2.E (X )=x 1p 1+x 2p 2+…+x n p n =∑i =1nx i p i ;D (X )=(x 1-E (X ))2p 1+(x 2-E (X ))2p 2+…+(x n -E (X ))2p n =∑i =1n(x i -E (X ))2p i .3.均值、方差的性质(1)E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ). (2)X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ). (3)X 服从两点分布,则E (X )=p ,D (X )=p (1-p ). 练后反馈题目 2 4 7 9 正误错题整理:二、随机变量的分布列 核心提炼1.n 重伯努利试验与二项分布X ~B (n ,p ),P (X =k )=C k n p k (1-p )n -k,k =0,1,2,…,n . 2.超几何分布一般地,假设一批产品共有N 件,其中有M 件次品.从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -kN -MC n N,k =m ,m +1,m+2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N , m =max{0,n -N +M },r =min{n ,M }. 练后反馈题目 1 5 6 8 10 12 14 15 正误错题整理:三、正态分布 核心提炼 正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交.(2)曲线是单峰的,它关于直线x =μ对称,曲线在x =μ处达到峰值1σ2π.(3)曲线与x 轴之间的区域的面积总为1.(4)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移.(5)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. 练后反馈题目 3 11 13 16 正误错题整理:1.[T2补偿](2022·金华模拟)随机变量ξ的分布列如下表:ξ 1 a 9 Pb1-2bb其中1<a <9,0<b <12,则下列说法正确的是( )A .若a =5,则当0<b <12时,E (ξ)随b 的增大而增大B .若a =5,则当0<b <12时,E (ξ)随b 的增大而减小C .若b =13,则当a =5时,D (ξ)有最小值D .若b =13,则当a =5时,D (ξ)有最大值答案 C解析 若a =5,则E (ξ)=1×b +5×(1-2b )+9b =5,故A ,B 均错误; 若b =13,则E (ξ)=1×13+a ×13+9×13=a +103,D (ξ)=13×⎝ ⎛⎭⎪⎫1-a +1032+13×⎝ ⎛⎭⎪⎫a -a +1032+13×⎝ ⎛⎭⎪⎫9-a +1032=127(6a 2-60a +438), 其对称轴为直线a =6012=5,则a =5时,D (ξ)有最小值,故C 正确,D 错误.2.[T12补偿]某公司采用网络远程面试招聘新员工,其面试方案为:应聘者从6道备选题中一次性随机抽取3道题,按照题目要求独立完成.规定:至少正确完成其中2道题的应聘者才可通过面试.已知应聘者小王在6道备选题中有4道题能正确完成,2道题不能完成,则小王正确完成面试题数的均值为( ) A .1 B .2 C .3 D .4 答案 B解析 设小王正确完成的面试题数为X ,则X 的可能取值为1,2,3. P (X =1)=C 22·C 14C 36=420=15;P (X =2)=C 12·C 24C 36=1220=35;P (X =3)=C 02·C 34C 36=420=15.∴E (X )=1×15+2×35+3×15=2.3.[T10补偿](2022·重庆模拟)通过核酸检测可以初步判定被检测者是否感染新冠病毒,检测方式分为单检和混检.单检是将一个人的采集拭子放入一个采样管中单独检测;混检是将多个人的采集拭子放入一个采样管中合为一个样本进行检测,若检测结果呈阳性,再对这多个人重新采集单管拭子,逐一进行检测,以确定当中的阳性样本.混检按一个采样管中放入的采集拭子个数可具体分为“3合1”混检,“5合1”混检,“10合1”混检等.调查研究显示,在群体总阳性率较低(低于0.1%)时,混检能较大幅度地提高检测效力、降低检测成本.根据流行病学调查结果显示,某城市居民感染新冠病毒的概率为0.000 5.若对该城市全体居民进行核酸检测,记采用“10合1”混检方式共需检测X 次,采用“5合1”混检方式共需检测Y 次,已知当0<p <0.001时,(1-p )n ≈1-np (n ∈N *),据此计算E (X )∶E (Y )的近似值为( ) A.12 B.1427 C.611 D.59 答案 B解析 由于一个城市的总人口数很大,而总体阳性率较低,所以我们可以认为阳性个体均匀分布,若进行“10合1”混检,对任意一个10人组进行检测,总检测次数有两种结果:1次和11次, 概率分别为(1-p )10和1-(1-p )10,故10人组检测次数的均值为11-10(1-p )10,相当于每个个体平均检测[1.1-(1-p )10]次, 同理,采用“5合1”混检,每个个体平均检测 [1.2-(1-p )5]次,∴E (X )∶E (Y )=1.1-(1-p )101.2-(1-p )5≈1.1-(1-10p )1.2-(1-5p )=0.1+10p 0.2+5p =0.1+0.0050.2+0.002 5=1427.4.[T6补偿]盒中有4个球,其中1个红球,1个绿球,2个黄球.从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P (ξ=0)=________,E (ξ)=________. 答案 131解析 当ξ=0时,有两种情况: 第一种为第一次拿到红球,第二种为第一次拿到绿球,第二次拿到红球, 故P (ξ=0)=14+14×13=13.当ξ=1时,有三种情况,即黄红、绿黄红、黄绿红, 故P (ξ=1)=24×13+14×23×12+24×13×12=13.当ξ=2时,有四种情况,即黄黄红、黄绿黄红、绿黄黄红、黄黄绿红, 故P (ξ=2)=24×13×12+24×13×12+14×23×12+24×13×12=13.所以E (ξ)=0×13+1×13+2×13=1.5.[T8补偿]某电台举办有奖知识竞答比赛,选手答题规则相同.甲每道题自己有把握独立答对的概率为12,若甲自己没有把握答对,则在规定时间内连线亲友团寻求帮助,其亲友团每道题能答对的概率为p ,假设每道题答对与否互不影响. (1)当p =15时,①若甲答对了某道题,求该题是甲自己答对的概率;②甲答了4道题,记甲答对题目的个数为随机变量X ,求X 的分布列和均值;(2)乙答对每道题的概率为23(含亲友团),现甲、乙两人各答2道题,若甲答对题目的个数比乙答对题目的个数多的概率不低于1536,求甲的亲友团每道题答对的概率p (0<p <1)的最小值.解 (1)①记事件A 为“甲答对了某道题”,事件B 为“甲自己答对”, 则P (A )=12+12×15=35,P (AB )=12,所以P (B |A )=P (AB )P (A )=1235=56.②根据题意得,X 的可能取值为0,1,2,3,4, 甲答对某道题的概率P (A )=12+12×15=35,则X ~B ⎝⎛⎭⎫4,35, P (X =k )=C k 4×⎝⎛⎭⎫35k ×⎝⎛⎭⎫254-k (k =0,1,2,3,4), 故随机变量X 的分布列为E (X )=4×35=125.(2)记事件A i 为“甲答对了i (i =0,1,2)道题”, 事件B i 为“乙答对了i (i =0,1,2)道题”, 其中甲答对某道题的概率为12+12p =12(1+p ),答错某道题的概率为1-12(1+p )=12(1-p ),则P (A 1)=C 12×12(1+p )×12(1-p ) =12(1-p 2), P (A 2)=⎣⎡⎦⎤12(1+p )2=14(1+p )2, P (B 0)=⎝⎛⎭⎫132=19, P (B 1)=C 12×23×13=49, 所以P (A 1B 0∪A 2B 1∪A 2B 0)=12(1-p 2)×19+14(1+p )2×49+14(1+p )2×19=136×(3p 2+10p +7)≥1536, 又0<p <1,所以23≤p <1,则p 的最小值为23.。

2018年高考数学(理)二轮复习 :规范答题示例10 离散型随机变量的分布列(含答案解析)

2018年高考数学(理)二轮复习 :规范答题示例10 离散型随机变量的分布列(含答案解析)

规范答题示例10 离散型随机变量的分布列典例10 (12分)2015年,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法.目前,国内青蒿人工种植发展迅速.调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x,y,z,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标ω=x +y+z的值评定人工种植的青蒿的长势等级:若ω≥4,则长势为一级;若2≤ω≤3,则长势为二级;若0≤ω≤1,则长势为三级.为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果:(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z相同的概率;(2)从长势等级是一级的人工种植地中任取一块,其综合指标为m,从长势等级不是一级的人工种植地中任取一块,其综合指标为n,记随机变量X=m-n,求X的分布列及其期望.审题路线图(1)对事件进行分解―→求出从10块地中任取两块的方法总数―→求出空气湿度指标相同的方法总数―→利用古典概型求概率(2)确定随机变量X的所有取值―→计算X取各个值的概率―→写分布列―→求期望评分细则 (1)第(1)问中,列出空气湿度相同的情况给2分;计算概率只要式子正确给2分;(2)第(2)问中,列出长势等级的给2分,只要结果正确无过程不扣分;计算概率的式子给3分;分布列正确写出给1分.跟踪演练10 (2017·山东)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示,通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用.现有6名男志愿者A 1,A 2,A 3,A 4,A 5,A 6和4名女志愿者B 1,B 2,B 3,B 4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A 1但不包含B 1的概率;(2)用X 表示接受乙种心理暗示的女志愿者人数,求X 的分布列与期望E (X ). 解 (1)记接受甲种心理暗示的志愿者中包含A 1但不包含B 1的事件为M , 则P (M )=C 48C 510=518.(2)由题意知X 的可能取值为0,1,2,3,4,则 P (X =0)=C 56C 510=142,P (X =1)=C 46C 14C 510=521,P (X =2)=C 36C 24C 510=1021,P (X =3)=C 26C 34C 510=521,P (X =4)=C 16C 44C 510=142.因此X的分布列为所以X的期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0+1×521+2×1021+3×521+4×142=2.。

新课标2018届高考数学二轮复习专题七概率与统计专题能力训练21随机变量及其分布理

新课标2018届高考数学二轮复习专题七概率与统计专题能力训练21随机变量及其分布理

专题能力训练21 随机变量及其分布能力突破训练1.甲射击命中目标的概率是,乙命中目标的概率是,丙命中目标的概率是.现在三人同时射击目标,则目标被击中的概率为()A. B.C. D.2.(2017浙江,8)已知随机变量ξ满足P(ξi=1)=p i,P(ξi=0)=1-p i,i=1,2,若0<p1<p2<,则()A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)3.一袋中有5个白球,3个红球,现从袋中往外取球(除颜色外其他完全相同),每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于()A.B.C.D.4.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),则从中随机取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ<μ+σ)≈68.27%,P(μ-2σ<ξ<μ+2σ)≈95.45%.)A.4.56%B.13.59%C.27.18%D.31.74%5.如图所示,A,B两点5条连线并联,它们在单位时间内能通过的最大信息量依次为2,3,4,3,2.记从中任取三条线且在单位时间内通过的最大信息总量为X,则P(X≥8)=.6.设离散型随机变量X的分布列为若随机变量Y=|X-2|,则P(Y=2)=.7.已知随机变量X服从二项分布B(n,p).若E(X)=30,D(X)=20,则p=.8.A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间相互独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a=25,求甲的康复时间比乙的康复时间长的概率;(3)当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)9.(2017山东,理18)在心理学研究中,常采用对比试验的方法评价不同心理暗示对人的影响,具体方法如下:将参加试验的志愿者随机分成两组,一组接受甲种心理暗示,另一组接受乙种心理暗示.通过对比这两组志愿者接受心理暗示后的结果来评价两种心理暗示的作用,现有6名男志愿者A1,A2,A3,A4,A5,A6和4名女志愿者B1,B2,B3,B4,从中随机抽取5人接受甲种心理暗示,另5人接受乙种心理暗示.(1)求接受甲种心理暗示的志愿者中包含A1但不包含B1的概率.(2)用X表示接受乙种心理暗示的女志愿者人数,求X的分布列与数学期望E(X).10.某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一.小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.11.若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X的分布列和数学期望E(X).思维提升训练12.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()A.2 386B.2 718C.3 414D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)≈0.682 7,P(μ-2σ<X≤μ+2σ)≈0.954 5.13.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X表示这10个村庄中交通不方便的村庄数,下列概率中等于的是()A.P(X=2)B.P(X≤2)C.P(X=4)D.P(X≤4)14.某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数.(1)求X 的分布列;(2)若要求P (X ≤n )≥0.5,确定n 的最小值;(3)以购买易损零件所需费用的均值为决策依据,在n=19与n=20之中选其一,应选用哪个?15.某家电产品受在保修期内维修费等因素的影响,企业生产每件的利润(单位:百元)与该产品首次出现故障的时间(单位:年)有关.某厂家生产甲、乙两种品牌,保修期均为2年.现从该厂已售出的两种品牌家电中各随机抽取50件,统计数据如下:将频率视为概率,解答下列问题:(1)从该厂生产的甲、乙品牌产品中随机各抽取一件,求其至少有一件首次出现故障发生在保修期内的概率;(2)若该厂生产的家电均能售出,记生产一件甲品牌家电的利润为X1,生产一件乙品牌家电的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌家电销量相当,由于资金限制,只能生产其中一种品牌的家电.若从经济效益的角度考虑,你认为应生产哪种品牌的家电?说明理由.16.(2017江苏,23)已知一个口袋中有m个白球,n个黑球(m,n∈N*,n≥2),这些球除颜色外完全相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).1 2 3…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明:E(X)<.参考答案专题能力训练21随机变量及其分布能力突破训练1.A解析设甲命中目标为事件A,乙命中目标为事件B,丙命中目标为事件C,则击中目标表示事件A,B,C中至少有一个发生.∵P()=P()·P()·P()=[1-P(A)]·[1-P(B)]·[1-P(C)]=击中的概率P=1-P()=2.A解析∵E(ξ1)=p1,E(ξ2)=p2,∴E(ξ1)<E(ξ2).∵D(ξ1)=p1(1-p1),D(ξ2)=p2(1-p2),∴D(ξ1)-D(ξ2)=(p1-p2)(1-p1-p2)<0,故选A.3.D解析由题意知第12次取到红球,前11次中恰有9次红球2次白球,因为每次取到红球的概率为,所以P(X=12)=4.B解析由正态分布N(0,32)可知,ξ落在(3,6)内的概率为=13.59%.5解析由已知得,X的可能取值为7,8,9,10,则P(X≥8)与P(X=7)是对立事件,故P(X≥8)=1-P(X=7)=1-6.0.5解析由分布列的性质,知0.2+0.1+0.1+0.3+m=1,则m=0.3.由Y=2,即|X-2|=2,得X=4或X=0,故P(Y=2)=P(X=4或X=0)=P(X=4)+P(X=0)=0.3+0.2=0.5.7解析根据二项分布的均值、方差公式,得解得p=8.解设事件A i为“甲是A组的第i个人”,事件B i为“乙是B组的第i个人”,i=1,2, (7)由题意可知P(A i)=P(B i)=,i=1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=(2)设事件C为“甲的康复时间比乙的康复时间长”,由题意知,C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6.因此P(C)=P(A4B1)+P(A5B1)+P(A6B1)+P(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=(3)a=11或a=18.9.解(1)记接受甲种心理暗示的志愿者中包含A1但不包含B1的事件为M,则P(M)=(2)由题意知X可取的值为:0,1,2,3,4,则P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=因此X的分布列为X的数学期望是E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X=3)+4×P(X=4)=0+1+2+3+4=2.10.解(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=,P(X=2)=,P(X=3)=1=,所以X的分布列为所以E(X)=1+2+311.解(1)个位数是5的“三位递增数”有125,135,145,235,245,345;(2)由题意知,全部“三位递增数”的个数为=84,随机变量X的取值为:0,-1,1,因此P(X=0)=,P(X=-1)=,P(X=1)=1-所以X的分布列为则E(X)=0+(-1)+1思维提升训练12.C解析因为曲线C为正态分布N(0,1)的密度曲线,所以P(-1<X≤1)≈0.6827,由正态分布密度曲线的对称性知P(0<X≤1)=0.34135,即图中阴影部分的面积为0.34135.由几何概型知点落入阴影部分的概率P==0.34135.因此,落入阴影部分的点的个数的估计值为10000×0.34135≈3414.故选C.13.C解析X服从超几何分布P(X=k)=,故k=4.14.解(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.所以X的分布列为(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n=19时所需费用的均值小于n=20时所需费用的均值,故应选n=19.15.解(1)设“甲、乙品牌家电至少有一件首次出现故障发生在保修期内”为事件A,则P(A)=1-(2)依题意得,X1的分布列为X2的分布列为X21.8 2.9P(3)由(2)得E(X1)=1+2+3=2.86(百元),E(X2)=1.8+2.9=2.79(百元).因为E(X1)>E(X2),所以应生产甲品牌家电.16.解(1)编号为2的抽屉内放的是黑球的概率p为p=(2)随机变量X的概率分布为随机变量X的期望为E(X)=所以E(X)<=(1++…+)=+…+) =+…+) =…=)=,即E(X)<。

2018届高考数学二轮计数原理,概率,随机变量及其分布测试题专题卷(浙江专用)

2018届高考数学二轮计数原理,概率,随机变量及其分布测试题专题卷(浙江专用)

第十章 计数原理,概率,随机变量及其分布测试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【2018届广西贺州市桂梧高中高三上学期第四次联考】()713x -的展开式的第4项的系数为( )A. 3727C -B. 4781C -C. 3727CD. 4781C【答案】A【解析】由题意可得()713x -的展开式的第4项为()33733331771327T C x C x -+=⨯⨯-=-,选A.2.同时抛掷三枚质地均匀的硬币,出现一枚正面、二枚反面的概率等于 ( ) A.14 B. 13 C. 23 D. 12【答案】C3.【2017广西玉林一模】有两张卡片,一张的正反面分别画着老鼠和小鸡,另一张的正反面分别画着老鹰和蛇,现在有两个小孩随机地将两张卡片排在一起放在桌面上,不考虑顺序,则向上的图案是老鹰和小鸡的概率是( ) A.12 B. 13 C. 14 D. 16【答案】C【解析】将两张卡片排在一起,向上的一面组成的图案共4种,分别为:(老鼠,老鹰),(老鼠,蛇),(小鸡,老鹰),(小鸡,蛇),所以由古典概型概率公式可得组成的图案是老鹰和小鸡的概率14P =。

选C 。

4.在1,3,4,5,8路公共汽车都要停靠的一个站(假定这个站一次只能停靠一辆汽车),有一位乘客等候4路或8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于( ) A.12 B. 23 C. 35 D. 25【答案】D【解析】由题意知,在该问题中基本事件总数为5,这位乘客等候的汽车首先到站这个事件包含的基本事件个数为2,故所求概率为25。

选D 。

5.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( ) A. 0.95 B. 0.7 C. 0.35 D. 0.05 【答案】D【解析】“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05. 故答案为D.6.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( ) A.19 B. 29 C. 49 D. 89【答案】D7.【2018届浙江省嘉兴市第一中学上学期高三期中】某校的A 、B 、C 、D 四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B 不选修同一门课,则不同的选法有( ) A. 36种 B. 72种 C. 30种 D. 66种 【答案】C【解析】先从4人中选出2人作为1个整体有246C =种选法,减去A B 、在同一组还有5种选法,再选3门课程有33A 种选法,利用分步计数原理有33530A =种不同选法.选C.8.从5名男生中挑选3人,4名女生中挑选2人,组成一个小组,不同的挑选方法共有( )A. 3254C C 种B. 3254C C 55A 种C. 3254A A 种D. 3254A A 55A 种 【答案】A【解析】男生组合数为35C 种,女生的组合数为24C ,故不同的选取方法共有3254C C 种,故选A.9.【2018届云南省昆明市高新技术开发区高考适应性月考】()522131x x ⎛⎫+- ⎪⎝⎭的展开式的常数项是( )A. -3B. -2C. 2D. 3 【答案】C10.已知随机变量X 的分布列为()13P X k ==, 1,2,3k =,则()35D X +等于( ) A. 6 B. 9 C. 3 D. 4 【答案】A【解析】由题意, ()()112323E X =++⨯=, ()()()()2221212223233D X ⎡⎤∴=-+-+-⨯=⎣⎦,()()2359963D X D X ∴+==⨯=,故选A. 11.生产过程中有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两名工人中安排一人,第四道工序只能从甲、丙两名工人中安排一人,则不同的安排方案共有 ( ) A. 24种 B. 36种 C. 48种 D. 72种 【答案】B【解析】第一道工序安排甲则第四道工序安排丙,从剩下4选两人照看剩下两道工序有24A 方案 第一道工序安排乙则第四道工序有两种方案,再从剩下4选两人照看剩下两道工序有24A 方案,因此共有2244236A A +=,选B.12.若离散型随机变量ξ的取值分别为,m n ,且()P m n ξ==, ()P n m ξ==, 38E ξ=,则22m n +的值为( ) A.14 B. 516 C. 58 D. 1316【答案】C【解析】因为31,28m n E nm mn mn ξ+==+==,所以()222352188m n m n mn +=+-=-=, 应选答案C.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【2018届浙江省嘉兴市第一中学上学期高三期中】二项式()512x +中,所有的二项式系数之和为___________;系数最大的项为_________. 【答案】 32 3480,80x x【解析】所有的二项式系数之和为0155555......232C C C +++==,展开式为234512*********x x x x x +++++,系数最大的项为380x 和480x .14.一个家庭中有两个小孩,若生男还是生女是等可能的,则此家庭中两小孩均为女孩的概率为_____. 【答案】14【解析】由题意得一个家庭中两个小孩的性别的所有的基本事件有:(男,男),(男,女),(女,男),(女,女),共4种,其中均为女孩的基本事件只有1个,故此家庭中两个均为女孩的概率为14. 15.【2017届浙江省ZDB 联盟高三一模】教育装备中心新到7台同型号的电脑,共有5所学校提出申请,鉴于甲、乙两校原来电脑较少,决定给这两校每家至少2台,其余学校协商确定,允许有的学校1台都没有,则不同的分配方案有__________种(用数字作答). 【答案】3516.【2018届浙江省“七彩阳光”联盟高三上学期期初】某人喜欢玩有三个关卡的通关游戏,根据他的游戏经验,每次开启一个新的游戏,这三个关卡他能够通关的概率分别为111,,234(这个游戏的游戏规则是:如果玩者没有通过上一个关卡,他照样可以玩下一个关卡,但玩该游戏的得分会有影响),则此人在开启一个这种新的游戏时,他能够通过两个关卡的概率为__________,设X 表示他能够通过此游戏的关卡的个数,则随机变量X 的数学期望为__________. 【答案】14 1312.所以,随机变量X的分布列为随机变量X的数学期望()1111113 012342442412E X=⨯+⨯+⨯+⨯=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2017届重庆市第一中学高三上学期一诊】已知的展开式中各项的二项式系数和为,第二项的系数为.(1)求,(2)求数列的前项和.【答案】(1);(2).【解析】试题分析:(1)利用二项式系数的定义可得根据二项式定理可得第二项为,从而可得系数为;(2)由(1)可知知根据错位相减法可得结果.试题解析:(1);(2)由(1)知所以 ①,②②-①可得,可得.18.【2018届河南省郑州市第一中学高三上学期期中】某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品.(1)随机选取1件产品,求能够通过检测的概率;(2)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列及数学期望.. 【答案】(1)1315;(2)见解析.试题解析:(1)设随机选取一件产品,能够通过检测的事件为A 事件A 等于事件“选取一等品都通过检测或者是选取二等品通过检测”()642131010315p A =+⨯= (2)由题可知X 可能取值为0,1,2,3.()30463101030C C P X C ===, ()21463103110C C P X C ===, ()1246310122C C P X C ===, ()0346310136C C P X C ===.分布列:∴311912310265EX =⨯+⨯+⨯= 19.【2018届江苏省南京市高三上期初】袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(Ⅰ)若两个球颜色不同,求不同取法的种数;(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.【答案】(1)96(2)E(X)=5 4试题解析:解:(1)两个球颜色不同的情况共有24C 42=96(种). (2)随机变量X所有可能的值为0,1,2,3.P(X=0)=2441964C==,P(X=1)=114333 968 C C=,P(X=2)=114321 964C C=,P(X=3)=11431 968 C C=所以随机变量X的概率分布列为:所以E(X)=014⨯+1⨯38+2⨯14+3⨯18=54.20.【2017届广西柳州市、钦州市高三一模】某市公租房的房源位于四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙、丙三位申请人中:(1)求恰有1人申请片区房源的概率;(2)用表示选择片区的人数,求的分布列和数学期望.【答案】(1);(2)详见解析.【解析】试题分析:(1)基本事件总数为种,区有人,方法数有种,剩余人从剩下个中任选,方法数有,根据分步计数原理,符合题意的方法数有种,故概率为.(2)选的人数可能有个,个人,每个人选到的概率为,故为二项分布,利用二项分布的公式可求得期望和方差. 试题解析:(1)本题是一个等可能事件的概率,实验发生包含的事件是3位申请人中,每一个有四种选择,共有种结果.满足条件的事件恰有1人申请片区房源有,根据等可能事件的概率.(2)的所有可能结果为0,1,2,3,依题意,,,,,∴的分布列为:∴的数学期望:.法2:每个片区被申请的概率均为,没被选中的概率均为,的所有可能结果为0,1,2,3,且,,,,,∴的分布列为:∴的数学期望:.21.【2017届江西师范大学附属中学高三3月月考】已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》.活动共有四关,若四关都闯过,则闯关成功,否则落水失败.设男生闯过一至四关的概率依次是5432,,,6543,女生闯过一至四关的概率依次是4321,,,5432. (Ⅰ)求男生甲闯关失败的概率;(Ⅱ)设X 表示四人冲关小组闯关成功的人数,求随机变量X 的分布列和期望. 【答案】(Ⅰ)23;(Ⅱ)见解析.∴()()543212111654333P A P A =-=-⨯⨯⨯=-=. (Ⅱ)记“一位女生闯关成功”为事件B ,则()4321154325P B =⨯⨯⨯=, 随机变量X 的所有可能取值为0,1,2,3,4.()222464035225P ⎛⎫⎛⎫X ==⨯=⎪ ⎪⎝⎭⎝⎭, ()221122124142961335553225P C C ⎛⎫⎛⎫X ==⋅⋅⋅+⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭, ()221122121141123335553225P C C ⎛⎫⎛⎫X ==⋅⋅⋅+⋅⋅⋅=⎪ ⎪⎝⎭⎝⎭,()22111435225P ⎛⎫⎛⎫X ==⨯=⎪ ⎪⎝⎭⎝⎭, ()64961215221225225P +++X ==-=. ∴X 的分布列为:∴()6496521211601234.22522522522522515E X =⨯+⨯+⨯+⨯+⨯= 22.【2017届河南省洛阳市高三3月统考】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为13. (1)若出现故障的机器台数为X ,求X 的分布列;(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值. 【答案】(1) 3;(2)140881.件A 的概率为13,该厂有4台机器就相当于4次独立重复试验,因出现故障的机器台数为X ,故1~4,3X B ⎛⎫ ⎪⎝⎭,()4042160381P X C ⎛⎫=== ⎪⎝⎭, ()30412*******P X C ⎛⎫==⋅⋅= ⎪⎝⎭,11 ()2204122423381P X C ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭, ()30412833381P X C ⎛⎫==⋅⋅= ⎪⎝⎭ 即X 的分布列为:(2)设该厂有n 名工人,则“每台机器在任何时刻同时出现故障及时进行维修”为x n ≤,即0x =, 1x =, ⋅⋅⋅, x n =,这1n +个互斥事件的和事件,则729081≤ %8081≤, ∴至少要3名工人,才能保证每台机器在任何时刻同时出现故障能及时进行维修的概率不少于90%.(3)设该厂获利为Y 万元,则Y 的所有可能取值为: 18,13,8()()()()721801281P Y P X P X P X ===+=+==, ()()813381P Y P X ====, ()()18481P Y P X ====, 即Y 的分布列为:则()728114081813881818181E Y =⨯+⨯+⨯=, 故该厂获利的均值为140881.。

离散型随机变量及其分布列测试题(含答案)

离散型随机变量及其分布列测试题(含答案)

离散型随机变量及其分布列测试题一、选择题:1、如果X 是一个离散型随机变量,则假命题是( )A.X 取每一个可能值的概率都是非负数;B.X 取所有可能值的概率之和为1;C.X 取某几个值的概率等于分别取其中每个值的概率之和;D.X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和2①某寻呼台一小时内收到的寻呼次数X ;②在(0,1)区间内随机的取一个数X ;③某超市一天中的顾客量X 其中的X 是离散型随机变量的是( ) A .①; B .②; C .③; D .①③3、设离散型随机变量ξ的概率分布如下,则a 的值为( )X1 2 3 4P16 13 16aA .12 B .16 C .13 D .144、设随机变量X 的分布列为()()1,2,3,,,k P X k k n λ===⋯⋯,则λ的值为( )A .1;B .12; C .13; D .145.给出下列四个命题:①15秒内,通过某十字路口的汽车的数量是随机变量; ②在一段时间内,某侯车室内侯车的旅客人数是随机变量; ③一条河流每年的最大流量是随机变量;④一个剧场共有三个出口,散场后某一出口退场的人数是随机变量. 其中正确的个数是( D )A.1 B.2 C.3 D.46、设随机变量X 等可能取1、2、3...n 值,如果(4)0.4p X ≤=,则n 值为( )A. 4B. 6C. 10D. 无法确定7、投掷两枚骰子,所得点数之和记为X ,那么4X =表示的随机实验结果是( )A. 一枚是3点,一枚是1点B. 两枚都是2点C. 两枚都是4点D. 一枚是3点,一枚是1点或两枚都是2点8.盒中有10只螺丝钉,其中有3只是坏的,现从盒中随机地抽取4个,那么概率是310的事件为( )A .恰有1只是坏的B .4只全是好的C .恰有2只是好的D .至多有2只是坏的9.(2007年湖北卷第1题)如果nx x ⎪⎭⎫ ⎝⎛-3223 的展开式中含有非零常数项,则正整数n 的最小值为A.3B.5C.6D.1010.(2007年湖北卷第9题)连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则⎥⎦⎤ ⎝⎛π∈θ20,的概率是A.125 B.21 C.127 D.65 11.(2007年北京卷第5题)记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一行,2位老人相邻但不排在两端,不同的排法共有A .1440种 B.960种 C .720种 D.480种12.(2007年全国卷Ⅱ第10题)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有 (A)40种 (B) 60种 (C) 100种 (D) 120种 二、填空题:13、下列表中能成为随机变量X 的分布列的是(把全部正确的答案序号填上)()2,1,2,3,,21n P X k k n ===-14、已知2Y X =为离散型随机变量,Y 的取值为1,2,3,,10,则X 的取值为15、一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数X 可能取值为16.(2007年重庆卷第4题)若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为_____三、解答题:17、某城市出租汽车的起步价为10元,行驶路程不超出4km ,则按10元的标准收租车费若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足1km 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费可也是一个随机变量 (1)求租车费η关于行车路程ξ的关系式; (2)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?18、一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数X 的分布列.分析:欲写出ξ的分布列,要先求出ξ的所有取值,以及ξ取每一值时的概率. 19.(2007年重庆卷第6题)从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率20.(2007年辽宁卷)一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余的是黑球. 若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率为多少21、一个类似于细胞分裂的物体,一次分裂为二,两次分裂为四,如此继续分裂有限多次,而随机终止.设分裂n 次终止的概率是n21(n =1,2,3,…).记X 为原物体在分裂终止后所生成的子块数目,求(10)P X ≤.22.(本题满分12分)(2010·浙江杭州高二检测)甲、乙等五名奥运志愿者被随机地分到A ,B ,C ,D 四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A 岗位服务的概率;X -1 0 1 p0.3 0.4 0.4X 1 2 3 p0.4 0.7 -0.1X 5 0 -5 p0.3 0.6 0.1②()1,2,3,4,5,P X k k k===④ ⑤(2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X 为这五名志愿者中参加A 岗位服务的人数,求X 的分布列.高中数学系列2—3单元测试题(2.1)参考答案一、选择题:1、D2、D3、C4、B5、D6、C7、D8、C9、B 10、C 11、B 12、B 二、填空题: 13、 ③④14、13579,1,,2,,3,,4,,52222215、 3,4,5 16、 20三、解答题:17、解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2 (2)由38=2ξ+2,得ξ=18,5×(18-15)=15. 所以,出租车在途中因故停车累计最多15分钟. 18、解:设黄球的个数为n ,由题意知绿球个数为2n ,红球个数为4n ,盒中的总数为7n .∴44(1)77n P X n ===,1(0)77n P X n ===,22(1)77n P X n =-==. 所以从该盒中随机取出一球所得分数X 的分布列为X 10 -1 P74 71 72 19、解从总数为10的门票中任取3张,总的基本事件数是C 310=120,而“至少有2张价格相同”则包括了“恰有2张价格相同”和“恰有3张价格相同”,即C 25+C 9033351822172315=++⋅+⋅⋅C C C C C C (种).所以,所求概率为.4312090= 20解P (A )=112211122232562122326=⨯⨯-⨯=-C C C .21、解:依题意,原物体在分裂终止后所生成的数目X 的分布列为X2 4 8 16 ...n 2 ... P21 41 81 161 ... n21 ...∴(10)(2)(4)(8)P X P X P X P X ≤==+=+==8842=++.22.[解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A 33C 25A 44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E ,那么P (E )=A 44C 25A 44=110.所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C 25A 33C 25A 44=14.所以P (X =1)=1-P (X =2)=34,X 的分布列为:。

2018届高考数学专题10.2概率与离散型随机变量及其分布列同步单元双基双测(A卷)理

2018届高考数学专题10.2概率与离散型随机变量及其分布列同步单元双基双测(A卷)理

专题10.2 概率与离散型随机变量及其分布列(测试时间:120分钟 满分:150分)一、选择题(共12小题,每题5分,共60分)1. 设X 为随机变量,若~X 1(6,)2N ,当(2)(5)P X a P X <-=>时,a 的值为( ) A .3 B .5 C .7 D .9 【答案】D 【解析】试题分析:∵随机变量X 服从正态分布1(6,)2N ,∵(2)(5)P X a P X <-=>,∴2512a -+=,∴9a =.考点:正态分布曲线的特点及曲线所表示的意义.2. 【2018江西宜春联考】五个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币. 若硬币正面朝上, 则这个人站起来; 若硬币正面朝下, 则这个人继续坐着. 那么, 没有相邻的两个人站起来的概率为 A.12 B. 1532 C. 1132 D. 516【答案】C故答案选C3. 投篮测试中,每人投3次,至少投中2次才能通过测试。

已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( ) (A )0.648 (B )0.432 (C )0.36 (D )0.312【答案】A【解析】根据独立重复试验公式得,该同学通过测试的概率为22330.60.40.6C ⨯+=0.648,故选A.【考点定位】本题主要考查独立重复试验的概率公式与互斥事件和概率公式4. 某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人,从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为( )A .815 B .49 C .35 D .19【答案】C 【解析】考点:茎叶图;古典概型.5. 如图,ABC ∆中的阴影部分是由曲线2y x =与直线20x y -+=所围成,向ABC ∆内随机投掷一点,则该点落在阴影部分的概率为( )A .732 B .932 C .716 D .916【答案】D 【解析】试题分析:所求概率2219(2)921816442x x dx P -+-===⨯⨯⎰,故选D .考点:1、古典概型;2、定积分.6. 【2018广东香山中学一模】某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布()21000,50N ,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为( )A.15 B. 12 C. 35 D. 38【答案】D本题选择D 选项.7. 如果袋中有六个红球,四个白球,从中任取一球,确认颜色后放回,重复摸取四次,设X 为取得红球的次数,那么X 的均值为( ) A .34 B .125 C .197 D .13【答案】B 【解析】试题分析:采用有放回的取球,每次取得红球的概率都相等,均为35,取得红球次数X 可能取的值为0,1,2,3,4,由以上分析,知随机变量ξ服从二项分布ξ~3(4,)5B ,∴312()455E ξ=⨯=,则X 的均值为125,故选:B .考点:离散型随机变量的期望与方差.8. 【2018东北名校联考】据统计2016年“十一”黄金周哈尔滨太阳岛每天的游客人数服从正态分布()22000,100N ,则在此期间的某一天,太阳岛的人数不超过2300的概率为( )附;若()2,X N μσ~()0.6826(22)0.9544(33)0.9974P x P x P x μσμσμσμσμσμσ-<≤+=-<≤+=-<≤+= A. 0.4987 B. 0.8413 C. 0.9772 D. 0.9987 【答案】D【解析】游客人数服从正态分布()22000,100N ,则由(33)0.9974P x μσμσ-<≤+=则(17002300)0.9974P x <≤=,可得()1(2300)10.99740.00132P x >=-=,所以()230010.00130.9987P x ≤=-=.故本题答案选D .9.一个三位自然数百位,十位,个位上的数字依次为,,a b c ,当且仅当,a b b c ><时称为“凹数”(如213,312等),若,,{1,2,3,4}a b c ∈,且,,a b c 互不相同,则这个三位数为“凹数”的概率为( ) A. 16 B. 524 C. 13 D. 724【答案】C 【解析】试题分析:由于,,{1,2,3,4}a b c ∈,且,,a b c 互不相同,故可得43224⨯⨯=个三位数.若1b =,则“凹数”有:.213,214,312,314,412,413共6个;若2b =,则“凹数”有:.324,423共2个.所以这个三位数为“凹数”的概率为有81243p ==. 考点:古典概型.10. 【2018黑龙江海林朝鲜中学一模】已知P 是ABC ∆所在平面内一点,且20PB PC PA ++=,现将一粒黄豆随机撒在ABC ∆内,则黄豆落在PBC ∆内的概率是( ) A.14 B. 13 C. 12 D. 23【答案】C【解析】将一粒黄豆随机撒在△ABC 内,黄豆落在△PBC 内的概率为P=PBC abc S S =12故选C11. 已知随机变量X 的分布列如右图所示,则(68)E X +=( )A .13.2B .21.2C .20.2D .22.2【答案】B 【解析】 试题分析:首先()10.220.430.4 2.2E X =⨯+⨯+⨯=,所以(68)6()86 2.2821.2E X E X +=+=⨯+=,故选择B. 考点:随机变量的概率分布.12. 已知01a <<,01b <<,则函数2()log 2log 8a b f x x b x a =++的图象恒在x 轴上方的概率为( ) A .14 B .34 C .13 D .23【答案】D 【解析】考点:1、几何概型;2、定积分的几何意义;3、函数的图象. 二.填空题(共4小题,每小题5分,共20分) 13.某一批花生种子,如果每1粒发芽的概率为45,那么播下4粒种子至少有2粒发芽的概率是 . (请用分数表示结果) 【答案】608625【解析】试题分析:由对立事件可知所求概率为0413014444446081115555625P C C ⎛⎫⎛⎫⎛⎫⎛⎫=----=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭考点:独立重复试验14. 现有红心1,2,3和黑桃4,5共五张牌,从这五张牌中随机取2张牌,则所取2张牌均为红心的概率为 . 【答案】310【解析】试题分析:从5张中取2张共有基本事件10种(用列举法),其中2张均为红心有3种,则它的概率为310. 考点:古典概率模型15. 已知随机变量ξ服从正态分布)4,1(N ,若a p =>)4(ξ,则=≤≤-)42(ξp ________. 【答案】a 21- 【解析】试题分析:根据正态分布密度曲线图的对称性知,其图像关于直线1=x 对称,所以=≤≤-)42(ξp 1-2a .考点:考查正态分布图像的对称性及利用该性质求相关概率问题.16. 四面体的顶点和各棱的中点共计10个点,在其中取4个点,则这四个点不共面的概率为______. 【答案】4770【解析】试题分析:从10个点中取4个点的取法为410210=C 种,只要求出共面的就可以了.共面的分三种情况:①四个点都在四面体的某一个面上,每个面6个点,有4615=C 种,四个面共有41560⨯=情况;②其中三点共线,另一个点与此三点不在四面体的某一个面上,而在与此三点所在直线异面的那条直线的中点,显然只有6种情况(因为四面体只有6条边);③其中两点所在直线与另两点所在直线平行,且这四个点也不在四面体的某一个面上,画图可得出只有3种情况;因此,取4个不共面的点的不同取法共有:2106063141---=,所以这四个点不共面的概率为1414721070=.故答案应填:4770. 考点:古典概型及其概率计算公式.【思路点睛】先利用组合求出10个点中取4个点的所有的基本事件个数;利用分类讨论的方法求出取出的四点在一个平面上的所有的基本事件个数;利用对立事件求出不共面的所有的基本的事件个数;利用古典概型概率公式求出这四个点不共面的概率.本题考查利用排列、组合求完成事件的方法数、考查分类讨论的数学思想方法、考查对立事件的概率的求法. 三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17. 一个盒子中装有大量..形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[]5,15,(]15,25,(]25,35,(]35,45,由此得到样本的重量频率分布直方图(如图).(Ⅰ)求a 的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(Ⅱ)从盒子中随机抽取3个小球,其中重量在[]5,15内的小球个数为X ,求X 的分布列和数学期望. (以直方图中的频率作为概率).【答案】(Ⅰ).003a =,众数20,平均数24.6;(Ⅱ)分布列见解析,期望为35. 【解析】试题解析:(Ⅰ)由题意,得()0.020.0320.018101a +++⨯=,解得0.03a =;又由最高矩形中点的的横坐标为20,可估计盒子中小球重量的众数约为20(克) 而50个样本小球重量的平均值为:0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克)故由样本估计总体,可估计盒子中小球重量的平均值约为24.6克; (Ⅱ)利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2 则1(3,)5X B ~.X 的可能取值为0、1、2、3,()03031464055125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()2131448155125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3033141355125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. X ∴的分布列为:6448121301231251251251255EX ∴=⨯+⨯+⨯+⨯=.(或者13355EX =⨯=)考点:频率分布直方图,用样本估计总体,随机变量分布列,数学期望.18. 【2018辽宁凌源两校联考】虽然吸烟有害健康,但是由于历史以及社会的原因,吸烟也是部分公民交际的重要媒介.世界卫生组织1987年11月建议把每年的4月7日定为世界无烟日,且从1989年开始,世界无烟日改为每年的5月31日.某报社记者专门对吸烟的市民做了戒烟方面的调查,经抽样只有25%的烟民表示愿意戒烟,将频率视为概率. (1)从该市吸烟的市民中随机抽取3位,求至少有一位烟民愿意戒烟的概率;(2)从该市吸烟的市民中随机抽取4位, ξ表示愿意戒烟的人数,求ξ的分布列及数学期望. 【答案】(1)3764(2)分布列见解析, 1E ξ=试题解析:(1)依题意,得任意抽取一位吸烟的市民愿意戒烟的概率为14, 从而任意抽取一位吸烟的市民不愿意戒烟的概率为34, 设“至少有一位烟民愿意戒烟”为事件A ,则()3327371146464P A ⎛⎫=-=-=⎪⎝⎭, 故至少有一位烟民愿意戒烟的概率3764. (2)ξ的所有可能取值为0,1,2,3,4.()40438104256P C ξ⎛⎫=== ⎪⎝⎭,()314311082714425664P C ξ⎛⎫==⨯⨯== ⎪⎝⎭,()2224315427244256128P C ξ⎛⎫⎛⎫==⨯⨯== ⎪ ⎪⎝⎭⎝⎭, ()3343112334425664P C ξ⎛⎫⎛⎫==⨯⨯==⎪ ⎪⎝⎭⎝⎭, ()41144256P ξ⎛⎫===⎪⎝⎭. 所以ξ的分布列为812727310123412566412864256E ξ=⨯+⨯+⨯+⨯+⨯=. 19. 【2018福建四校联考】某学校为倡导全体学生为特困学生捐款,举行“一元钱,一片心,诚信用水”活动,学生在购水处每领取一瓶矿泉水,便自觉向捐款箱中至少投入一元钱。

2018届高考数学(理)二轮复习命题热点课件 专题 7.3 随机变量及其分布

2018届高考数学(理)二轮复习命题热点课件 专题 7.3 随机变量及其分布

C2 5
=
4 10
,P(AB)= = .
4 1
C2 2 C2 5
=
1 10
.由条件概率计算公式,得
关闭
P(B|A)= = ������ (������) B
������ (������������ )
1 10 4 10
解析
答案
高频考点 命题热点一 命题热点二 命题热点三 命题热点四
-10-
(2)甲、乙两个实习生每人加工一个零件,加工的零件为一等品的 2 3 概率分别为 3 和 4 ,加工的两个零件是否为一等品相互独立,则这两 个零件中恰有一个一等品的概率为 .
选 择 题 填 空 题 解 答 题
高频考点 命题热点一 命题热点二 命题热点三 命题热点四
-3-
条件概率与相互独立事件的概率 【思考】 如何求事件的条件概率?判断相互独立事件的常用方 法有哪些? 例1某公司为了解用户对其产品的满意度,从A,B两地区分别随 机调查了20个用户,得到用户对产品的满意度评分如下: A地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89 B地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79
������(������������) P(B|A)= . ������(������)
2.判断相互独立事件的三种常用方法: (1)利用定义,事件A,B相互独立⇔P(AB)=P(A)· P (B ). (2)利用性质,A 与 B 相互独立,则 A 与������, ������与 B,������与������也都相互独立. (3)具体背景下,①有放回地摸球,每次摸球的结果是相互独立的. ②当产品数量很大时,不放回抽样也可近似看作独立重复试验.

2018届高考数学二轮复习层级二保分专题十概率与统计随机变量及其分布列课件理

2018届高考数学二轮复习层级二保分专题十概率与统计随机变量及其分布列课件理

命题分析
1.概率、随机变量及其分布列是高考命题的热点之 一,命题形式为“一小一大”,即一道选择或填空题和一 道解答题.
2.选择或填空题常出现在第4~10题或第13~15题的 位置,主要考查随机事件的概率、古典概型、几何概型, 难度一般.
3.概率、统计的解答题多在第18或19题的位置,多 以交汇性的形式考查,交汇点主要有两种:(频率分布直方 图与茎叶图)择一与随机变量的分布列、数学期望、方差相 交汇来考查;(频率分布直方图与茎叶图)择一与线性回归 或独立性检验相交汇来考查,难度中等.
往往也用这种方法求解.
[即学即用·练通] 1.(2017·广西三市第一次联考)某机械研究所对新研发的某批次
机械元件进行寿命追踪调查,随机抽查的 200 个机械元件情
况如下: 使用时间 10~ 21~ 31~ 41~ 51~
/天
20 30 40 50 60
个数 10 40 80 50 20
若以频率为概率,现从该批次机械元件中随机抽取 3 个,
列,由期望公式求出期望;
求随机变量 X 的分布列和数学期望;
(2)若有2辆车独立地从甲地到乙地,

求这 2 辆车共遇到 1 个红灯的概率.
(二)建桥——寻关键点
有什么
想到什么
注意什么
信息①:工作相 互独立,各路口 遇到红灯的概率
在三个路口遇到 不是红灯的概率
(1)准确理解随机变量表 示的意义,写出所有随 机变量的取值
保分专题(十) 概率与统计、随机变量及其分布列
[全国卷 3 年考情分析]
年份 卷别
考查内容及考题位置
2017 2016 2015
卷Ⅰ
卷Ⅱ 卷Ⅲ 卷Ⅰ
卷Ⅱ 卷Ⅲ 卷Ⅰ 卷Ⅱ

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考数学统计与概率专题(附答案解析)

2018全国高考真题数学统计与概率专题(附答案解析)1.(全国卷I,文数、理数第3题.5分)某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半答案:A2.(全国卷I,文数19题.12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,[)0.60.7,频数 1 3 2 4 9 26 5使用了节水龙头50天的日用水量频数分布表日用水量[)00.1,[)0.10.2,[)0.20.3,[)0.30.4,[)0.40.5,[)0.50.6,频数 1 5 13 10 16 5 (1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案解析】解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m 3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为11(0.0510.1530.2520.3540.4590.55260.655)0.4850x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=. 该家庭使用了节水龙头后50天日用水量的平均数为21(0.0510.1550.25130.35100.45160.555)0.3550x =⨯+⨯+⨯+⨯+⨯+⨯=. 估计使用节水龙头后,一年可节省水3(0.480.35)36547.45(m )-⨯=. 3.(全国卷I ,理数20题12分)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品,检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为()01p p <<,且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为()f p ,求()f p 的最大值点0p ; (2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的0p 作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i )若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X ,求EX ;(ii )以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案解析】(1)20件产品中恰有2件不合格品的概率为221820()C (1)f p p p =-.因此 2182172172020()C [2(1)18(1)]2C (1)(110)f p p p p p p p p '=---=--.令()0f p '=,得0.1p =.当(0,0.1)p ∈时,()0f p '>;当(0.1,1)p ∈时,()0f p '<. 所以()f p 的最大值点为00.1p =. (2)由(1)知,0.1p =.(i )令Y 表示余下的180件产品中的不合格品件数,依题意知(180,0.1)YB ,=+.X Y=⨯+,即402520225X Y所以(4025)4025490=+=+=.EX E Y EY(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于400EX>,故应该对余下的产品作检验.4.(全国卷Ⅱ,文数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5C.0.4D.0.3【答案】D5.(全国卷Ⅱ,文数、理数18题.12分)下图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,,17)建立模型①:ˆ30.413.5y t=-+;根据2010年至2016年的数据(时间变量t的值依次为1,2,,7)建立模型②:ˆ9917.5=+.y t(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案解析】解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为y=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.6.(全国卷Ⅱ,理数5题.5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中2人都是女同学的概率为A.0.6 B.0.5 C.0.4 D.0.3【答案】A7.(全国卷Ⅲ,文数5题.5分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A.0.3 B.0.4 C.0.6 D.0.7【答案】B8.(全国卷Ⅲ,文数、理数18题.12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m 和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++,2()0.0500.0100.0013.8416.63510.828P K kk≥.【答案解析】解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.学科%网以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:超过m 不超过m第一种生产方式 15 5 第二种生产方式515(3)由于2240(151555)10 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.9.(北京卷,文数17题,13分)电影公司随机收集了电影的有关数据,经分类整理得到下表: 电影类型 第一类 第二类 第三类 第四类 第五类 第六类 电影部数 140 50 300 200 800 510 好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;学科*网(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)【答案解析】(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000. 第四类电影中获得好评的电影部数是200×0.25=50, 故所求概率为500.0252000=. (Ⅱ)方法一:由题意知,样本中获得好评的电影部数是 140×0.4+50×0.2+300×0.15+200×0.25+800×0.2+510×0.1 =56+10+45+50+160+51=372.故所求概率估计为37210.8142000-=. 方法二:设“随机选取1部电影,这部电影没有获得好评”为事件B .没有获得好评的电影共有140×0.6+50×0.8+300×0.85+200×0.75+800×0.8+510×0.9=1628部.由古典概型概率公式得16280.8142)00(0P B ==. (Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率. 10.(北京卷,理数17题,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系.【答案解析】解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (Ⅱ)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB )=P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知:P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (Ⅲ)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ. 11.(天津卷,文数,15题,13分)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i )试用所给字母列举出所有可能的抽取结果;(ii )设M 为事件“抽取的2名同学来自同一年级”,求事件M 发生的概率.【答案解析】本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.满分13分. (Ⅰ)解:由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i )解:从抽出的7名同学中随机抽取2名同学的所有可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G },共21种.(ii )解:由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种. 所以,事件M 发生的概率为P (M )=521. 12.(天津卷,理数,16题,13分)已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I )应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.【答案解析】本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.学.科网(Ⅰ)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)解:随机变量X的所有可能取值为0,1,2,3.P(X=k)=34337C CCk k-⋅(k=0,1,2,3).所以,随机变量X的分布列为随机变量X的数学期望11218412 ()0123353535357E X=⨯+⨯+⨯+⨯=.(ii)解:设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=67.所以,事件A发生的概率为67.13.(江苏卷,3题,5分)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为__________.【答案解析】答案:90解析:8989909191905++++=14.(浙江卷,7题,4分)设0<p<1,随机变量ξ的分布列是ξ0 1 2P12p-122p 则当p在(0,1)内增大时,A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小【答案】D第11 页共11 页。

2018届高考数学人教A版(理)二轮复习第十一篇 第6讲 离散型随机变量的分布列

2018届高考数学人教A版(理)二轮复习第十一篇 第6讲 离散型随机变量的分布列

第6讲 离散型随机变量的分布列A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1* 如果X 是一个离散型随机变量,那么下列命题中假命题是( )**X 取每个可能值的概率是非负实数 *X 取所有可能值的概率之和为1*X 取某2个可能值的概率等于分别取其中每个值的概率之和 *X 在某一范围内取值的概率大于它取这个范围内各个值的概率之和解析 由离散型随机变量的性质,得p i ≥0,i =1,2,…n ,且 i =1np i =1*答案 D2* 已知随机变量X 的分布列为P (X =i )=i2a (i =1,2,3),则P (X =2)等于 ( )*A * 19B * 16C * 13D * 14解析 ∵12a +22a +32a =1,∴a =3,P (X =2)=22×3=13*答案 C3* 若随机变量X 的概率分布列为且p 1=12p 2,则p 1等于( )*A * 12B * 13C * 14 D * 16解析 由p 1+p 2=1且p 2=2p 1可解得p 1=13* 答案 B4* 已知随机变量X 的分布列为:P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( )* A * 316B * 14C * 116D * 516解析 P (2<X ≤4)=P (X =3)+P (X =4)=123+124=316* 答案 A二、填空题(每小题5分,共10分)5* (·上海虹口3月模拟)已知某一随机变量ξ的概率分布列如下,且E (ξ)=6* 3,则a =________*解析 * * * 4* ∴E (ξ)=4×0* 5+a ×0* 1+9×0* 4=6* 3* ∴a =7* 答案 76* (·泉州模拟)在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为________*解析 η的所有可能值为0,1,2* P (η=0)=C 12C 12C 14C 14=14,P (η=1)=2C 12C 12C 14C 14=12,P (η=2)=C 12C 12C 14C 14=14*∴η的分布列为答案三、解答题(共25分)7* (12分)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖* 某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列*解 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率P =C 14C 16+C 24C 210=3045=23*⎝ ⎛⎭⎪⎫或用间接法,即P =1-C 26C 210=1-1545=23. (2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且P (X =0)=C 04C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115*所以X 的分布列为:8* (13分)(·江苏)设条棱中任取两条,当两条棱相交时,ξ=0 ;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1* (1)求概率P (ξ=0);(2)求ξ的分布列,并求其数学期望E (ξ)*解 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C 23对相交棱,因此P (ξ=0)=8C 23C 212=8×366=411*(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P (ξ=2)=6C 212=111,于是P (ξ=1)=1-P (ξ=0)-P (ξ=2)=1-411-111=611, 所以随机变量ξ的分布列是因此E (ξ)=1×611+2B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1* (·长沙二模)若离散型随机变量X 的分布列为:则常数c 的值为( )*A * 23或13B * 23 C * 13D * 1解析⎩⎨⎧9c 2-c ≥0,3-8c ≥0,9c 2-c +3-8c =1,∴c =13*答案 C2* 一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )*A * C 1012⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582B *C 912⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫58238 C * C 911⎝ ⎛⎭⎪⎫589⎝ ⎛⎭⎪⎫382D * C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P (X =12)=38C 911⎝ ⎛⎭⎪⎫389⎝ ⎛⎭⎪⎫582=C 911⎝ ⎛⎭⎪⎫3810⎝ ⎛⎭⎪⎫582*答案 D二、填空题(每小题5分,共10分) 3* (·郑州调研)设随机变量X 的概率分布列为则P (|X -3|=* 解析 由13+m +14+16=1,解得m =14,P (|X -3|=1)=P (X =2)+P (X =4)=14+16=512* 答案 5124* 甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分)* 若X 是甲队在该轮比赛获胜时的得分(分数高者胜),则X 的所有可能取值是________*解析 X =-1,甲抢到一题但答错了,或抢到三题只答对一题;X =0,甲没抢到题,或甲抢到2题,但答时一对一错;X =1时,甲抢到1题且答对或甲抢到3题,且一错两对;X =2时,甲抢到2题均答对;X =3时,甲抢到3题均答对*答案 -1,0,1,2,3 三、解答题(共25分)5* (12分)(·大连质检)某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23*(1)求该高中获得冠军个数X 的分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列*解 (1)∵X 的可能取值为0,1,2,3,取相应值的概率分别为P (X =0)=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-23=19,P (X =1)=12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×23=718, P (X =2)=12×13×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-12×13×23+12×⎝ ⎛⎭⎪⎫1-13×23=718,P (X =3)=12×13×23=19* ∴X 的分布列为(2)∵得分η=5X +∵X 的可能取值为0,1,2,3*∴η的可能取值为6,9,12,15,取相应值的概率分别为 P (η=6)=P (X =0)=19,P (η=9)=P (X =1)=718, P (η=12)=P (X =2)=718,P (η=15)=P (X =3)=19* ∴得分η的分布列为6* (13分)4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止* 如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0* 6,0* 7,0* 8,0* 9* 求在一年内李明参加驾照考试次数X 的分布列,并求李明在一年内领到驾照的概率* 解 X 的取值分别为1,2,3,4*X =1,表明李明第一次参加驾照考试就通过了, 故P (X =1)=0* 6*X =2,表明李明在第一次考试未通过,第二次通过了,故P(X=2)=(1-0×0* 7=0* 28** 6)X=3,表明李明在第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0×(1-0* 7)×0* 8=0* 096** 6)X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0×(1-0* 7)×(1-0* 8)=0* 024** 6)∴李明实际参加考试次数X的分布列为1-(1-0* 6)(1-0* 7)(1-0* 8)(1-0* 9)=0* 997 6*。

2018大二轮高考总复习理数文档:解答题3 概率、随机变

2018大二轮高考总复习理数文档:解答题3 概率、随机变

第一单元高考中档大题突破解答题03:概率、随机变量及其分布列基本考点——相互独立事件与独立重复试验的概率、统计、统计案例考向01:相互独立事件、独立重复试验的概率1.相互独立事件同时发生的概率P(AB)=P(A)P(B).2.独立重复试验如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为P n(k)=C k n p k(1-p)n-k,k=0,1,2,…,n.3.互斥事件的概率加法公式(1)如果事件A与B互斥,那么P(A∪B)=P(A)+P(B);(2)一般地,如果事件A1,A2,…,A n彼此互斥,那么P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).4.对立事件及其概率公式若事件B与事件A互为对立事件,则P(A)+P(B)=1,即P(A)=1-P(B).1.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).解:(1)设A1表示事件“日销售量不低于100个”,A2表示事件“日销售量低于50个”,B表示事件“在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个”,因此P(A1)=(0.006+0.004+0.002)×50=0.6,P(A2)=0.003×50=0.15,∴P(B)=0.6×0.6×0.15×2=0.108.(2)X 可能取的值为0,1,2,3,相应的概率为P (X =0) =C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216. 分布列为因为X ~B (3,0.6),所以期望E (X )=3×0.6=1.8,方差D (X )=3×0.6×(1-0.6)=0.72. 2.(2016·北京卷)A ,B ,C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C 班的学生人数;(2)从A 班和C 班抽出的学生中,各随机选取1人,A 班选出的人记为甲,C 班选出的人记为乙. 假设所有学生的锻炼时间相互独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(3)再从A ,B ,C 三个班中各任取一名学生,他们该周的锻炼时间分别是7,9,8.25(单位:小时).这3个新数据与表格中的数据构成的新样本的平均数记为μ1,表格中数据的平均数记为μ0,试判断μ0和μ1的大小(结论不要求证明).解:(1)C 班学生人数约为100×85+7+8=100×820=40(人).(2)设事件A i 为“甲是现有样本中A 班的第i 个人”,i =1,2,…,5. 事件C j 为“乙是现有样本中C 班的第j 个人”,j =1,2,…,8. 由题意可知P (A i )=15,i =1,2, (5)P (C j )=18,j =1,2, (8)P (A i C j )=P (A i )P (C j )=15×18=140,i =1,2,...,5,j =1,2, (8)设事件E 为“该周甲的锻炼时间比乙的锻炼时间长”,由题意知,E =A 1C 1∪A 1C 2∪A 2C 1∪A 2C 2∪A 2C 3∪A 3C 1∪A 3C 2∪A 3C 3∪A 4C 1∪A 4C 2∪A 4C 3∪A 5C 1∪A 5C 2∪A 5C 3∪A 5C 4.因此P (E )=P (A 1C 1)+P (A 1C 2)+P (A 2C 1)+P (A 2C 2)+P (A 2C 3)+P (A 3C 1)+P (A 3C 2)+P (A 3C 3)+P (A 4C 1)+P (A 4C 2)+P (A 4C 3)+P (A 5C 1)+P (A 5C 2)+P (A 5C 3)+P (A 5C 4)=15×140=38.(3)μ1<μ0.考向02:用样本估计总体1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1.3.利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者的含义:(1)最高的小长方形底边中点的横坐标即是众数; (2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和1.1.(2017·潍坊模拟)某高中为了解全校学生每周参与体育运动的情况,随机从全校学生中抽取100名学生,统计他们每周参与体育运动的时间如下:(1)作出样本的频率分布直方图;(2)①估计该校学生每周参与体育运动的时间的中位数及平均数;②若该校有学生3 000人,根据以上抽样调查数据,估计该校学生每周参与体育运动的时间不低于8小时的人数.解:(1)频率分布直方图如图所示:(2)①由数据估计中位数为4+2640×4=6.6,估计平均数为2×0.24+6×0.4+10×0.28+14×0.06+18×0.02=6.88. ②将频率看作概率知P (t ≥8)=0.36, ∴3 000×0.36=1 080.即该校每周参与体育运动的时间不低于8小时的人数为1 080人.2.(2017·合肥模拟)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解:(1)设A 药观测数据的平均数为x ,B 药观测数据的平均数为y -,由观测结果可得 x -=120(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5)=2.3,y -=120(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)=1.6.由以上计算结果可得x ->y -,因此可看出A 药的疗效更好. (2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有710的叶集中在茎2.,3.上,而B 药疗效的试验结果有710的叶集中在茎0.,1.上,由此可看出A 药的疗效更好.考向03:统计案例1.回归分析方程y ^=b ^x +a ^称为线性回归方程,其中b ^=Σni =1x i y i -n x -y -Σni =1x 2i -n x -2,a ^=y --b ^x -;(x -,y -)称为样本点的中心. 2.独立性检验K 2=(a +b +c +d )(ad -bc )2(a +b )(c +d )(a +c )(b +d ),若k 0>3.841,则有95%的把握认为两个事件有关; 若k 0>6.635,则有99%的把握认为两个事件有关.1.某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y ^=b ^x +a ^; (2)利用(1)中所求出的回归直线方程预测该地2018年的粮食需求量.解:(1)由所给数据看出,年需求量与年份之间是近似直线上升,下面来配回归直线方程,为此对数据预处理如下:对预处理后的数据,容易算得,x -=0,y -=3.2, b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×29-5×0×3.2(-4)2+(-2)2+22+42-5×02=26040=6.5,a ^=y --b ^x -=3.2.由上述计算结果知,所求回归直线方程为 y ^-257=b ^(x -2 012)+a ^=6.5(x -2 012)+3.2, 即y ^=6.5×(x -2 012)+260.2.(2)利用(1)中所求回归直线方程,可预测2018年的粮食需求量为6.5×(2 018-2 012)+260.2=6.5×6+260.2=299.2(万吨).2.(2017·九江模拟)某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在40分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生的成绩分为6组,得到如下所示的频数分布表.(1)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,数学成绩与性别是否有关;(2)规定80分以上为优分(含80分),请你根据已知条件作出2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”.附表及公式:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解:(1)x -男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5, x -女=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5, 从男、女生各自的平均分来看,并不能判断数学成绩与性别有关.(2)由频数分布表可知,在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得2×2列联表如下:可得K 2=100×(15×25-15×45)260×40×30×70≈1.79,因为1.79<2.706,所以没有90%以上的把握认为“数学成绩与性别有关”.常考热点——离散型随机变量的分布列概率模型多考查独立重复试验、相互独立事件、互斥事件及对立事件等;对离散型随机变量的分布列及期望的考查是重点中的“热点”,多在解答题的前三题的位置呈现,常考查独立事件的概率,超几何分布和二项分布的期望等.(2017·天津卷)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.阿凡题1083960(1)记X 表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X 的分布列和数学期望; (2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率. 【解】 (1)随机变量X 的所有可能取值为0,1,2,3. P (X =0)=1-12×1-13×1-14=14,P (X =1)=12×1-13×1-14+1-12×13×1-14+1-12×1-13×14=1124,P (X =2)=1-12×13×14+12×1-13×14+12×13×1-14=14,P (X =3)=12×13×14=124.所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×14+1×1124+2×14+3×124=1312.(2)设Y 表示第一辆车遇到红灯的个数,Z 表示第二辆车遇到红灯的个数,则所求事件的概率为P (Y +Z =1)=P (Y =0,Z =1)+P (Y =1,Z =0)=P (Y =0)P (Z =1)+P (Y =1)P (Z =0)=14×1124+1124×14=1148. 所以这2辆车共遇到1个红灯的概率为1148.求相互独立事件和独立重复试验的概率的方法(1)直接法:正确分析复杂事件的构成,将复杂事件转化为几个彼此互斥的事件的和事件或几个相互独立事件同时发生的积事件或独立重复试验问题,然后用相应概率公式求解.(2)间接法:当复杂事件正面情况比较多,反面情况较少,则可利用其对立事件进行求解.对于“至少”“至多”等问题往往也用这种方法求解.(2016·山东高考)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.阿凡题1083961(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X ,求X ≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?【解】 法一:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A ,则事件A 的对立事件为“X =5”,因为P (X =5)=23×25=415,所以P (A )=1-P (X =5)=1115, 即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲抽奖中奖次数为X 1,都选择方案乙抽奖中奖次数为X 2,则这两人选择方案甲抽奖累计得分的数学期望为E (2X 1),选择方案乙抽奖累计得分的数学期望为E (3X 2).由已知可得,X 1~B (2, 23),X 2~B (2, 25),所以E (X 1)=2×23=43,E (X 2)=2×25=45,因此E (2X 1)=2E (X 1)=83,E (3X 2)=3E (X 2)=125.因为E (2X 1)>E (3X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大. 法二:(1)由已知得,小明中奖的概率为23,小红中奖的概率为25,且两人中奖与否互不影响.记“这两人的累计得分X ≤3”的事件为A ,则事件A 包含有“X =0”,“X =2”,“X =3”三个两两互斥的事件,因为P (X =0)=(1-23)×(1-25)=15,P (X =2)=23×(1-25)=25,P (X =3)=(1-23)×25=215,所以P (A )=P (X =0)+P (X =2)+P (X =3)=1115,即这两人的累计得分X ≤3的概率为1115.(2)设小明、小红都选择方案甲所获得的累计得分为X 1,都选择方案乙所获得的累计得分为X 2,则X 1,X 2的分布列如下:所以E (X 1)=0×19+2×49+4×49=83,E (X 2)=0×925+3×1225+6×425=125.因为E (X 1)>E (X 2),所以他们都选择方案甲进行抽奖时,累计得分的数学期望较大.对于实际问题中的随机变量X ,如果能够断定它服从二项分布B (n ,p ),则其概率、期望与方差可直接利用公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ),E (X )=np ,D (X )=np (1-p )求得,因此,熟记二项分布的相关公式,可以避免繁琐的运算过程,提高运算速度和准确度.(2017·合肥二模)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A 为事件“选出的4人中恰有2 名种子选手,且这2名种子选手来自同一个协会”,求事件A 发生的概率;(2)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.【解】 (1)由已知,有P (A )=C 22C 23+C 23C 23C 48=635. 所以,事件A 发生的概率为635. (2)随机变量X 的所有可能取值为1,2,3,4.P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4). 所以随机变量X 的分布列为随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.抽取的4人中,运动员可能为种子选手或一般运动员,并且只能是这两种情况之一,符合超几何概型的特征,故可利用超几何分布求概率.1.(2017·大庆二模)某市随机抽取部分企业调查年上缴税收情况(单位:万元),将所得数据绘制成频率分布直方图(如图),年上缴税收范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值;(2)如果年上缴税收不少于60万元的企业可申请政策优惠,若共抽取企业1200个,试估计有多少企业可以申请政策优惠;(3)从企业中任选4个,这4个企业年上缴税收少于20万元的个数记为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)解:(1)由直方图可得:20×(x +0.025+0.0065+0.003×2)=1, 解得x =0.0125.(2)企业缴税收不少于60万元的频率=0.003×2×20=0.12, ∴1200×0.12=144.∴1200个企业中有144个企业可以申请政策优惠. (3)X 的可能取值为0,1,2,3,4.由(1)可得:某个企业缴税少于20万元的概率=0.0125×20=0.25=14.因此X ~B (4,14),∴分布列为P (X =k )=C k 4⎝⎛⎭⎫14k ⎝⎛⎭⎫344-k ,(k =0,1,2,3,4), ∴E (X )=4×14=1.2.(2017·长春三模)据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05. (1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.解:(1)∵抽到持“应该保留”态度的人的概率为0.05, ∴120+x3 600=0.05,解得x =60. ∴持“无所谓”态度的人数共有3 600-2 100-120-600-60=720. ∴应在“无所谓”态度抽取720×3603 600=72人.(2)由(1)知持“应该保留”态度的一共有180人,∴在所抽取的6人中,在校学生为120180×6=4人,社会人士为60180×6=2人,于是第一组在校学生人数ξ=1,2,3,P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 02C 36=15,即ξ的分布列为:∴E (ξ)=1×15+2×35+3×15=2.3.(2016·全国甲卷)某险种的基本保费为a (单元:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A 表示事件“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=1-(0.30+0.15)=0.55.(2)设B 表示事件“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.1+0.05=0.15.又P (AB )=P (B ), 故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311. 因此所求概率为311.(3)记续保人本年度的保费为X ,则X 的分布列为E (X )=0.85a ×0.30+a ×0.15+1.25a ×0.20+1.5a ×0.20+1.75a ×0.10+2a ×0.05=1.23a .因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元),当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值?解:(1)由题意知,X 所有可能取值为200,300,500,由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4,P (X =500)=25+7+490=0.4.因此X 的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n ≤500.当300≤n ≤500时,若最高气温不低于25,则Y =6n -4n =2n ;若最高气温位于区间[20,25),则Y =6×300+2(n -300)-4n =1 200-2n ; 若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n . 因此E (Y )=2n ×0.4+(1 200-2n )×0.4+(800-2n )×0.2=640-0.4n . 当200≤n <300时,若最高气温不低于20,则Y =6n -4n =2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n , 因此E (Y )=2n ×(0.4+0.4)+(800-2n )×0.2=160+1.2n . 所以n =300时,Y 的数学期望达到最大值,最大值为520元.5.(2017·开封二模)为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效地改良玉米品种,为农民提供技术支援.现对已选出的一组玉米的茎高进行统计,获得茎叶图如图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.(1)完成2×2列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?(2)(i)按照分层抽样的方式,在上述样本中,从易倒伏和抗倒伏两组中抽出9株玉米,设取出的易倒伏矮茎玉米株数为X ,求X 的分布列(概率用组合数算式表示).(ii)若将频率视为概率,从抗倒伏的玉米试验田中再随机取出50株,求取出的高茎玉米株数的数学期望和方差.(K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d )解:(1)根据统计数据做出2×2列联表如下:经计算K 2≈7.287>6.635,因此可以在犯错误概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关.(2)(i)按照分层抽样的方式抽到的易倒伏玉米共4株,则X 的可能取值为0,1,2,3,4.P (X =0)=C 416C 420,P (X =1)=C 14·C 316C 420,P (X =2)=C 24·C 216C 420,P (X =3)=C 34C 116C 420,P (X =4)=C 44C 420即X 的分布列为:(ii)在抗倒伏的玉米样本中,高茎玉米有10株,占25,即每次取出高茎玉米的概率均为25,设取出高茎玉米的株数为ξ,则ξ~B (50,25),即E (ξ)=np =50×25=20,Dξ=np (1-p )=50×25×35=12.6.(2017·全国卷Ⅱ)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)设两种养殖方法的箱产量相互独立,记A 表示事件“旧养殖法的箱产量低于50 kg ,新养殖法的箱产量不低于50 kg ”,估计A 的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01). 附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).(1)解:记B 表示事件“旧养殖法的箱产量低于50 kg ”,C 表示事件“新养殖法的箱产量不低于50 kg ”.由题意知P (A )=P (BC )=P (B )P (C ). 旧养殖法的箱产量低于50 kg 的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62, 故P (B )的估计值为0.62.新养殖法的箱产量不低于50 kg 的频率为 (0.068+0.046+0.010+0.008)×5=0.66, 故P (C )的估计值为0.66.因此,事件A 的概率估计值为0.62×0.66=0.409 2. (2)解:根据箱产量的频率分布直方图得列联表K 2=200×(62×66-34×38)2100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)解:因为新养殖法的箱产量频率分布直方图中,箱产量低于50 kg 的直方图面积为 (0.004+0.020+0.044)×5=0.34<0.5, 箱产量低于55 kg 的直方图面积为(0.004+0.020+0.044+0.068)×5=0.68>0.5, 故新养殖法产量的中位数的估计值为 50+0.5-0.340.068≈52.35(kg).。

2018年4月2018届高三第二次全国大联考(新课标Ⅲ卷)理数卷(考试版)

2018年4月2018届高三第二次全国大联考(新课标Ⅲ卷)理数卷(考试版)

………………○………………内………………○………………装………………○………………订………………○………………线………………○………………
绝密★启用前|学科网试题命制中心
2018 年第二次全国大联考【新课标Ⅲ卷】
理科数学
(考试时间:120 分钟 试卷满分:150 分) 注意事项:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务必将自己的姓名、准考 证号填写在答题卡上。
………………○………………外………………○………………装………………○………………订………………○………………线………………○………………

学 校 : ______________姓 名 : _____________班 级 : _______________考 号 : ______________________
2.回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需改动, 用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。 4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目 要求的)
1
A.
4 7
C.
8
3
B.
4 8
D.
125
5.函数 f (x) x2 sin x 在[, ] 上的图象大致是
6.已知在 (x 3 )n 的展开式中,各项系数和与二项式系数和的比值为 64,则 (x2 3 )n 的展开式中含
x
xx
x5 的项的系数是
A. 540 C.135

2018高三数学全国二模汇编(理科)专题09概率与统计

2018高三数学全国二模汇编(理科)专题09概率与统计

【2018高三数学各地优质二模试题分项精品】一、单选题1.【2018湖南衡阳高三二模】“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐。

问水深、葭长各几何?”其意思是:有一个正方形的池塘,池塘的边长为一丈,有一颗芦苇生长在池塘的正中央.露出水面一尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深,芦苇有多长?其中一丈为十尺。

若从该芦苇上随机取一点,则该点取自水上的概率为( )A.1213 B. 113 C 。

314 D 。

213【答案】B2.【2018陕西高三二模】在由不等式组2140,{3,2,x y x y -+≥≤-≥所确定的三角形区域内随机取一点,则该点到此三角形的三个顶点的距离均不小于1的概率是( ) A. 92π-B. 9π-C. 19π-D. 118π- 【答案】D【解析】画出关于x y ,的不等式组2140,{3, 2,x y x y -+≥≤-≥所构成的三角形区域,如图所示. ABC 的面积为113692S =⨯⨯=,离三个顶点距离都不大于1的地方的面积为212S π=, ∴其恰在离三个顶点距离都不小于1的地方的概率为121918P ππ-==-. 故选C .3.【2018新疆维吾尔自治区高三二模】参加2018年自治区第一次诊断性测试的10万名理科考生的数学成绩ξ近似地服从正态分布()70,25N ,估计这些考生成绩落在(]75,80的人数为( )(附: ()2,Z N μσ~,则()0.6826P Z μσμσ-<≤+= (22)0.9544P Z μσμσ-<≤+=) A. 311740 B. 27180 C 。

13590 D. 4560 【答案】C4.【2018内蒙古呼和浩特高三一调】如图为某班35名学生的投篮成绩(每人投一次)的条形统计图,其中上面部分数据破损导致数据不完全.已知该班学生投篮成绩的中位数是5,则根据统计图,无法确定下列哪一选项中的数值( )A。

2018年高考理科数学通用版三维二轮专题复习专题检测(十八) 概率与统计、随机变量及其分布列 Word版含解析

2018年高考理科数学通用版三维二轮专题复习专题检测(十八) 概率与统计、随机变量及其分布列 Word版含解析

专题检测(十八)概率与统计、随机变量及其分布列卷——夯基保分专练一、选择题.已知某一随机变量ξ的分布列如下表所示,若(ξ)=,则的值为( )....解析:选根据随机变量ξ的分布列可知++=,所以=.又(ξ)=×+×+×=,所以=..投篮测试中,每人投次,至少投中次才能通过测试.已知某同学每次投篮投中的概率为,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )....解析:选次投篮投中次的概率为(=)=××(-),投中次的概率为(=)=,所以通过测试的概率为(=)+(=)=××(-)+=..(·武汉调研)小赵、小钱、小孙、小李到个景点旅游,每人只去一个景点,设事件=“个人去的景点不相同”,事件=“小赵独自去一个景点”,则()=( )解析:选小赵独自去一个景点共有×××=种可能性,个人去的景点不同的可能性有=×××=种,∴()==..(·惠州三调)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中各随机选一匹进行一场比赛,则田忌获胜的概率为( )解析:选设田忌的上、中、下三个等次的马分别为,,,齐王的上、中、下三个等次的马分别为,,,从双方的马匹中各随机选一匹进行一场比赛的所有可能结果有,,,,,,,,,共种,田忌获胜有,,,共种,所以田忌获胜的概率为. .(·西安八校联考)在平面区域{(,)≤≤,≤≤}内随机投入一点,则点的坐标(,)满足≤的概率为( )解析:选不等式组(\\(≤≤,≤≤))表示的平面区域的面积为×=,不等式组(\\(≤≤,≤≤,≤))表示的平面区域的面积为==,因此所求的概率==..甲、乙两人进行围棋比赛,约定先连胜局者直接赢得比赛,若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.记为比赛决出胜负时的总局数,则的数学期望是( )解析:选用表示“第局甲获胜”,表示“第局乙获胜”,则()=,()=,=.的所有可能取值为,且(=)=()+()=()()+()()=,(=)=()+()=()()·()+()()()=,(=)=()+()=()·()()()+()()()()=,(=)=-(=)-(=)-(=)=.故的分布列为:()=×+×+×+×=.二、填空题.(·江苏高考)记函数()=的定义域为.在区间[-]上随机取一个数,则∈的概率是.解析:由+-≥,解得-≤≤,则=[-],则所求概率==.答案:.某车间共有名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间名工人中,任取人,则至少有名优秀工人的概率为.解析:由茎叶图可知名工人加工零件数分别为,平均值为×(+++++)=,则优秀工人有名,从该车间名工人中,任取人共有=种取法,其中至少有名优秀工人的共有+=种取法,由概率公式可得==.答案:.某商场在儿童节举行回馈顾客活动,凡在商场消费满元者即可参加射击赢玩具活动,具体规则如下:每人最多可射击次,一旦击中,则可获奖且不再继续射击,否则一直射满次为止.设甲每次击中的概率为(≠),射击次数为η,若η的均值(η)>,则的取值范围是.解析:由已知得(η=)=,(η=)=(-),(η=)=(-),。

离散型随机变量及其分布列、均值与方差-每日一题2018年高考数学(理)二轮复习

离散型随机变量及其分布列、均值与方差-每日一题2018年高考数学(理)二轮复习

离散型随机变量及其分布列、均值与方差高考频度:★★★★★ 难易程度:★★★☆☆交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a 元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如下表:学交强险浮动因素和浮动费率比率表浮动因素浮动比率 1A 上一个年度未发生有责任道路交通事故下浮10%2A上两个年度未发生有责任道路交通事故 下浮20%3A上三个及以上年度未发生有责任道路交通事故 下浮30%4A 上一个年度发生一次有责任不涉及死亡的道路交通事故0%5A 上一个年度发生两次及两次以上有责任道路交通事故 上浮10%6A上一个年度发生有责任道路交通死亡事故 上浮30%某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:类型 1A2A3A4A5A6A数量20101020155以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,950a .某同学家里有一辆该品牌车且车龄刚满三年,记X 为该品牌车在第四年续保时的费用,求X 的分布列与数学期望;(数学期望值保留到个位数字)学-(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元.①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率; ②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值. 【参考答案】(1)见解析;(2)①2732;②见解析.(2)①由统计数据可知任意一辆该品牌车龄已满三年的二手车为事故车的概率为14,则三辆车中至多有一辆事故车的概率为3213311127C 1C 144432P ⎛⎫⎛⎫=⋅-+⋅⋅-= ⎪ ⎪⎝⎭⎝⎭. ②设Y 为该销售商购进并销售一辆二手车的利润,则Y 的可能取值为−4000,8000. 所以Y 的分布列为:Y−4000 8000P14 34所以()1340008000500044E Y =-⨯+⨯=, 所以()100500000E Y =,所以该销售商一次购进100辆该品牌车龄已满三年的二手车获得利润的期望为50万元.【思路点拨】(1)根据题意得到X 的所有取值,然后利用统计数据求得每个X 值的概率,从而可得分布列和期望.(2)①由题意得到任意一辆该品牌车龄已满三年的二手车为事故车的概率为14,然后根据独立重复事件的概率可得所求;②设Y 为该销售商购进并销售一辆二手车的利润,根据题意求得Y 的可能取值和对应的概率后,可得Y 的分布列和期望()E Y ,最后可得购进100辆车获得利润的期望值()100E Y 为.1.已知102a <<,随机变量ξ的分布列如下:学 ξ−1 0 1Pa12a - 12当a 增大时,则A .()E ξ增大,()D ξ增大B .()E ξ减小,()D ξ增大C .()E ξ增大,()D ξ减小 D .()E ξ减小,()D ξ减小2.第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,这是2017年我国重要的主场外交活动,对推动国际和地区合作具有重要意义.某高中政教处为了调查学生对“一带一路”的关注情况,在全校组织了“一带一路知多少”的知识问卷测试,并从中随机抽取了12份问卷,得到其测试成绩(百分制)如茎叶图所示.(1)写出该样本的众数、中位数,若该校共有3000名学生,试估计该校测试成绩在70分以上的人数; (2)从所抽取的70分以上的学生中再随机选取4人. ①记X 表示选取4人的成绩的平均数,求()87P X ≥;②记ξ表示测试成绩在80分以上的人数,求ξ的分布列和数学期望. 1.【答案】B【解析】由题意得,1 ()2E aξ=-+,22211111()(1)()()(1)22222D a a a a aξ=-++⨯+-+-+-+-⨯2124a a=-++,又∵12a<<,∴故当a增大时,()Eξ减小,()Dξ增大,故选B.(2)①由题意知70分以上的有72,76,76,76,82,88,93,94.当所选取的四个人的成绩的平均分大于87分时,有两类:一类是82,88,93,94,共1种情况;另一类是76,88,93,94,共3种情况.所以4842(87)C35P X≥==.②由题意可得,ξ的可能取值为0,1,2,3,4,()044448C C1C70Pξ===,()134448C C1681C7035Pξ====,()224448C C36182C7035Pξ====,()314448C C1683C7035Pξ====,()404448C C 14C 70P ξ===. 所以ξ的分别列为:学ξ0 1 2 3 4P170 835 1835 835 170()0123427035353570E ξ∴=⨯+⨯+⨯+⨯+⨯=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

寒假作业(二十) 概率、离散型随机变量及其分布列(注意命题点的区分度)一、选择题1.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则E (3X +5)=( )A .6B .9C .11D .14解析:选C 由题意得P (X =1)=P (X =2)=P (X =3)=13,所以E (X )=(1+2+3)×13=2,故E (3X +5)=3E (X )+5=11.2.设随机变量X ~N (1,52),且P (X ≤0)=P (X >a -2),则实数a 的值为( ) A .3 B .4 C .5D .6解析:选B 因为随机变量X ~N (1,52),且P (X ≤0)=P (X >a -2),所以由正态分布密度曲线的对称性(对称轴是x =1)可知,a -2=2×1,解得a =4.3.设X ~B (4,p ),其中0<p <12,且P (X =2)=827,那么P (X =1)=( )A.881 B.1681 C.827D.3281解析:选D 由题意,P (X =2)=C 24p 2(1-p )2=827, 即p 2(1-p )2=⎝⎛⎭⎫132·⎝⎛⎭⎫232,解得p =13或p =23,因为0<p <12,故p =13, 故P (X =1)=C 14×13×⎝⎛⎭⎫1-133=3281. 4.已知袋子中装有大小相同的6个小球,其中有2个红球、4个白球.现从中随机摸出3个小球,则至少有2个白球的概率为( )A.34 B.35 C.45D.710解析:选C 所求问题有两种情况:1红2白或3白,则所求概率P =C 12C 24+C 34C 36=45. 5.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( )A.14B.89C.116D.532解析:选D 两次数字乘积为偶数,可先考虑其反面:只需两次均出现1向上,故两次数字乘积为偶数的概率为1-⎝⎛⎭⎫262=89;若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),概率为13×16×2+16×16=536.故所求条件概率为53689=532.6.某盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次摸出2个球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( )A.35B.59C.110D.25解析:选B 第一次摸出新球记为事件A ,则P (A )=35,第二次取到新球记为事件B ,则P (AB )=C 26C 210=13,∴P (B |A )=P (AB )P (A )=1335=59.7.(2017·合肥质检)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 的方程为x 2-y =0)的点的个数的估计值为( )A .5 000B .6 667C .7 500D .7 854解析:选B 由已知及题图知S 阴影=S 正方形-⎠⎛01x 2d x =1-13=23,所以有23=S 阴影S 正方形=n 10 000,解得n ≈6 667.8.若某科技小制作课的模型制作规则是:每位学生最多制作3次,一旦制作成功,则停止制作,否则可制作3次.设某学生一次制作成功的概率为p (p ≠0),制作次数为X ,若X 的数学期望E (X )>74,则p 的取值范围是( )A.⎝⎛⎭⎫0,712B.⎝⎛⎭⎫712,1C.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫12,1解析:选C 由已知条件可得P (X =1)=p , P (X =2)=(1-p )p ,P (X =3)=(1-p )2p +(1-p )3=(1-p )2, 则E (X )=P (X =1)+2P (X =2)+3P (X =3) =p +2(1-p )p +3(1-p )2 =p 2-3p +3>74,解得p >52或p <12,又p ∈(0,1],可得p ∈⎝⎛⎭⎫0,12. 9.有一个公用电话亭,观察使用这个电话的人的流量时,设在某一时刻,有n 个人正在使用电话或等待使用电话的概率为P (n ),且P (n )与时刻t 无关,统计得到P (n )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12n ·P (0),1≤n ≤5,0,n ≥6,那么P (0)的值是( ) A .0 B .1 C.3263D.12解析:选C 由题意得P (1)=12P (0),P (2)=14P (0),P (3)=18P (0),P (4)=116P (0),P (5)=132P (0),P (n ≥6)=0,所以1=P (0)+P (1)+P (2)+P (3)+P (4)+P (5)+P (n ≥6)=⎝⎛⎭⎫1+12+14+18+116+132P (0)=6332P (0),所以P (0)=3263. 10.(2018届高三·合肥调研)从区间[-2,2]中随机选取一个实数a ,则函数f (x )=4x -a ·2x+1+1有零点的概率是( ) A.14 B.13 C.12D.23解析:选A 令t =2x ,函数有零点就等价于方程t 2-2at +1=0有正根,进而可得⎩⎪⎨⎪⎧Δ≥0,t 1+t 2>0,t 1t 2>0,解得a ≥1,又a ∈[-2,2],所以函数有零点的实数a 应满足a ∈[1,2],故所求概率P =14,选A.11.已知袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号.若η=aX +b ,E (η)=1,D (η)=11,则a +b 的值是( )A .1或2B .0或2C .2或3D .0或3解析:选B 由题意可知,X 的所有可能取值为0,1,2,3,4,E (X )=12×0+120×1+110×2+320×3+15×4=32,D (X )=12×⎝⎛⎭⎫0-322+120×⎝⎛⎭⎫1-322+110×⎝⎛⎭⎫2-322+320×⎝⎛⎭⎫3-322+15×⎝⎛⎭⎫4-322=114. 由D (η)=a 2D (X ),得a 2×114=11,即a =±2.又E (η)=aE (X )+b ,所以当a =2时,由1=2×32+b ,得b =-2,此时a +b =0.当a =-2时,由1=-2×32+b ,得b =4,此时a +b =2.故选B.12.一台仪器每启动一次都随机地出现一个5位的二进制数A =(例如:若a 1=a 3=a 5=124A 的各位数中,已知a 1=1,a k (k =2,3,4,5)出现0的概率为13,出现1的概率为23,记X =a 1+a 2+a 3+a 4+a 5,现在仪器启动一次,则E (X )=( )A.83 B.113 C.89D.119解析:选B 法一:X 的所有可能取值为1,2,3,4,5,P (X =1)=C 44⎝⎛⎭⎫134⎝⎛⎭⎫230=181, P (X =2)=C 34⎝⎛⎭⎫133⎝⎛⎭⎫231=881, P (X =3)=C 24⎝⎛⎭⎫132⎝⎛⎭⎫232=827, P (X =4)=C 14⎝⎛⎭⎫131⎝⎛⎭⎫233=3281, P (X =5)=C 04⎝⎛⎭⎫130⎝⎛⎭⎫234=1681, 所以E (X )=1×181+2×881+3×827+4×3281+5×1681=113. 法二:由题意,X 的所有可能取值为1,2,3,4,5, 设Y =X -1,则Y 的所有可能取值为0,1,2,3,4, 因此Y ~B ⎝⎛⎭⎫4,23,所以E (Y )=4×23=83,从而E (X )=E (Y +1)=E (Y )+1=83+1=113.二、填空题13.若随机变量η的分布列如下表:则当P (η<x )=0.8时,实数x 的取值范围是________.解析:结合分布列易知P (η=-2)+P (η=-1)+P (η=0)+P (η=1)=0.8,又P (η<x )=0.8,所以1<x ≤2.答案:(1,2]14.(2017·烟台模拟)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.解析:由题意,在正方体ABCD -A 1B 1C 1D 1内任取一点,满足几何概型,记“点P 到点O 的距离大于1”为事件A ,则事件A 发生时,点P 位于以O 为球心,以1为半径的半球外.又V 正方体ABCD -A 1B 1C 1D 1=23=8,V 半球=12·43π·13=23π,∴所求事件概率P (A )=8-23π8=1-π12.答案:1-π1215.在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (-1,1)的密度曲线)的点的个数的估计值为________.(附:若X ~N (μ,σ2),则P (μ-σ<X ≤μ+σ)≈0.682 7,P (μ-2σ<X ≤μ+2σ)≈0.954 5)解析:由题意知μ=-1,σ=1,因为P (0<X ≤1)=12[P (-1-2<X ≤-1+2)-P (-1-1<X ≤-1+1)]≈12×(0.954 5-0.682 7)≈0.135 9,所以落入阴影部分的个数约为0.135 9×10 000=1 359.答案:1 35916.在一投掷竹圈套小玩具的游戏中,竹圈套住小玩具的全部记2分,竹圈只套在小玩具一部分上记1分,小玩具全部在竹圈外记0分.某人投掷100个竹圈,有50个竹圈套住小玩具的全部,25个竹圈只套在小玩具一部分上,其余小玩具全部在竹圈外,以频率估计概率,则该人两次投掷后得分ξ的数学期望是________.解析:将“竹圈套住小玩具的全部”,“竹圈只套在小玩具一部分上”,“小玩具全部在竹圈外”分别记为事件A ,B ,C ,则P (A )=50100=12,P (B )=P (C )=25100=14.某人两次投掷后得分ξ的所有可能取值为0,1,2,3,4,且P (ξ=0)=14×14=116,P (ξ=1)=2×14×14=18,P (ξ=2)=14×14+2×12×14=516,P (ξ=3)=2×14×12=14,P (ξ=4)=12×12=14.故ξ的分布列为:所以E (ξ)=0×116+1×18+2×516+3×14+4×14=52. 答案:52三、解答题17.甲、乙两袋中各装有大小相同的小球9个,其中甲袋中红色、黑色、白色小球的个数分别为2,3,4,乙袋中红色、黑色、白色小球的个数均为3,某人用左右手分别从甲、乙两袋中取球.(1)若左右手各取一球,求两只手中所取的球颜色不同的概率;(2)若左右手依次各取两球,称同一手中两球颜色相同的取法为成功取法,记两次取球的成功取法次数为随机变量X ,求X 的分布列和数学期望.解:(1)设事件A 为“两手所取的球不同色”, 则P (A )=1-2×3+3×3+4×39×9=23.(2)依题意,X 的可能取值为0,1,2,左手所取的两球颜色相同的概率为C 22+C 23+C 24C 29=518, 右手所取的两球颜色相同的概率为C 23+C 23+C 23C 29=14. 故P (X =0)=⎝⎛⎭⎫1-518⎝⎛⎭⎫1-14=1318×34=1324;P (X =1)=518×⎝⎛⎭⎫1-14+⎝⎛⎭⎫1-518×14=718; P (X =2)=518×14=572.∴X 的分布列为:E (X )=0×1324+1×718+2×572=1936.18.某生物产品,每一个生产周期成本为20万元,此产品的产量受气候影响、价格受市场影响均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示1(2)连续3个生产周期,求这3个生产周期中至少有2个生产周期的利润不少于10万元的概率.解:(1)设A 表示事件“产品产量为30吨”,B 表示事件“产品市场价格为0.6万元/吨”,则P (A )=0.5,P (B )=0.4, ∵利润=产量×市场价格-成本, ∴X 的所有值为:50×1-20=30,50×0.6-20=10, 30×1-20=10,30×0.6-20=-2,则P (X =30)=P (A )P (B )=(1-0.5)×(1-0.4)=0.3,P (X =10)=P (A )P (B )+P (A )P (B )=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =-2)=P (A )P (B )=0.5×0.4=0.2, 则X 的分布列为:(2)设C i 表示事件“第i ”(i =1,2,3),则C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =30)+P (X =10)=0.3+0.5=0.8(i =1,2,3), 3个生产周期的利润均不少于10万元的概率为 P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512,3个生产周期中有2个生产周期的利润不少于10万元的概率为P (C 1C 2C 3)+P (C 1C2C 3)+P (C 1C 2C 3)=3×0.82×0.2=0.384,∴3个生产周期中至少有2个生产周期的利润不少于10万元的概率为0.512+0.384=0.896.19.(2017·合肥质检)某公司在迎新年晚会上举行抽奖活动,有甲、乙两个抽奖方案供员工选择.方案甲:员工最多有两次抽奖机会,每次抽奖的中奖率均为45.第一次抽奖,若未中奖,则抽奖结束.若中奖,则通过抛一枚质地均匀的硬币,决定是否继续进行第二次抽奖.规定:若抛出硬币,反面朝上,员工则获得500元资金,不进行第二次抽奖;若正面朝上,员工则须进行第二次抽奖,且在第二次抽奖中,若中奖,则获得奖金1 000元;若未中奖,则所获得的奖金为0元.方案乙:员工连续三次抽奖,每次中奖率均为25,每次中奖均可获得奖金400元.(1)求员工选择方案甲进行抽奖所获奖金X (元)的分布列;(2)试比较员工选择方案乙与选择方案甲进行抽奖,哪个方案更划算? 解:(1)P (X =0)=15+45×12×15=725,P (X =500)=45×12=25,P (X =1 000)=45×12×45=825,∴员工选择方案甲进行抽奖所获奖金X (元)的分布列为:(2)由(1)可知,选择方案甲进行抽奖所获奖金X 的期望E (X )=500×25+1 000×825=520(元),若选择方案乙进行抽奖,设中奖次数ξ~B ⎝⎛⎭⎫3,25,则E (ξ)=3×25=65,抽奖所获奖金X 的期望E (X )=E (400ξ)=400E (ξ)=480(元),故选择方案甲较划算.20.心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30,女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)(1)能否在犯错误的概率不超过0.025的前提下认为视觉和空间能力与性别有关? (2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率;(3)现从选择做几何题的8名女生中任意抽取2人对她们的答题情况进行全程研究,记丙、丁2名女生被抽到的人数为X ,求X 的分布列及数学期望E (X ).附表及公式:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d .解:(1)由表中数据得K 2=50×(22×12-8×8)230×20×30×20=509≈5.556>5.024,所以能在犯错误的概率不超过0.025的前提下认为视觉和空间能力与性别有关.(2)设甲、乙解答一道几何题的时间分别为x ,y 分钟,则⎩⎪⎨⎪⎧5≤x ≤7,6≤y ≤8,表示的平面区域如图所示.设事件A 为“乙比甲先做完此道题”则x >y ,满足的区域如图中阴影部分所示. 所以由几何概型可得P (A )=12×1×12×2=18,即乙比甲先解答完的概率为18.(3)由题可知,在选择做几何题的8名女生中任意抽取2人的方法有C 28=28种,其中丙、丁2人没有一个人被抽到的有C 26=15种;恰有一人被抽到的有C 12C 16=12种;2人都被抽到的有C 22=1种.所以X 的可能取值为0,1,2,P (X =0)=1528,P (X =1)=1228=37,P (X =2)=128,故X 的分布列为:E (X )=0×1528+1×37+2×128=12.。

相关文档
最新文档