河南省洛阳市2015届高三第二次统一考试数学(理)试题(扫描版).doc
洛阳市2015届高三一练word答案数学理
参考答案(理)一、选择题CBABDCACDAAA二、填空题13.0.214.2(3-槡5)π15.116.槡36三、解答题17.(1)∵A,B,C三点共线,∴λ∈R,使→AC=λ→AB,→OC-→OA=λ(→OB-→OA),即→OC=(1-λ)→OA+λ→OB.由平面向量基本定理,1-λ=a3,λ=a15{.消去λ,得a3+a15=1.……3分又a3+a15=a1+a17,所以S17=17(a1+a17)2=172.即存在n=17时,S17为定值172.……5分(2)由于anbn=a1+a2n-1b1+b2n-1=S2n-1T2n-1=31n+35n+1……7分=31+4n+1.……8分依题意,n+1的可能取值为2,4,所以n的取值为1或3,即使anbn为整数的正整数n的集合为{1,3}.……10分18.(1)在△CDE中,CD=CE2+ED2-2CE²ED²cos∠槡CED=3+1-2²槡3²1²槡cos30°=1.……2分∴△EDC为等腰三角形,∠ADB=60°,AD=2,AE=1,……4分S△ACE=12²AE²CE²sin∠AEC=12²1²槡3²sin150°=槡34.……6分(2)设CD=a,在△ACE中,CEsin∠CAE=AEsin∠ACE∴CE=2asin15°sin30°=(槡6-槡2)a.……8分学试卷参考答案(理)一、选择题CBABDCACDAAA二、填空题13.0.214.2(3-槡5)π15.116.槡36三、解答题17.(1)∵A,B,C三点共线,∴λ∈R,使→AC=λ→AB,→OC-→OA=λ(→OB-→OA),即→OC=(1-λ)→OA+λ→OB.由平面向量基本定理,1-λ=a3,λ=a15{.消去λ,得a3+a15=1.……3分又a3+a15=a1+a17,所以S17=17(a1+a17)2=172.即存在n=17时,S17为定值172.……5分(2)由于anbn=a1+a2n-1b1+b2n-1=S2n-1T2n-1=31n+35n+1……7分=31+4n+1.……8分依题意,n+1的可能取值为2,4,所以n的取值为1或3,即使anbn为整数的正整数n的集合为{1,3}.……10分18.(1)在△CDE中,CD=CE2+ED2-2CE²ED²cos∠槡CED=3+1-2²槡3²1²槡cos30°=1.……2分∴△EDC为等腰三角形,∠ADB=60°,AD=2,AE=1,……4分S△ACE=12²AE²CE²sin∠AEC=12²1²槡3²sin150°=槡34.……6分(2)设CD=a,在△ACE中,CEsin∠CAE=AEsin∠ACE∴CE=2asin15°sin30°=(槡6-槡2)a.……8分在cos∠DAB=cos(∠CDE-90°)=sin∠CDE=槡3-1.……12分19.(1)线段AB的中垂线方程:y=x,2x-y-4=0,y=x{.x=4,y=4{.即S(4,4).……3分圆S半径|SA|=5,……4分则圆S的方程为:(x-4)2+(y-4)2=25.……6分(2)由x+y-m=0变形得y=-x+m,代入圆S的方程,消去x并整理得2x2-2mx+m2-8m+7=0.令△ =(2m)2-8(m2-8m+7)>0,得8-槡52<m<8+槡52,……8分设点C,D的横坐标分别为x1,x2,则x1+x2=m,x1x2=m2-8m+72.依题意,得→OC²→OD<0,即x1x2+(-x1+m)(-x2+m)<0.m2-8m+7<0,解得1<m<7.……11分故实数m的取值范围{m|8-槡52<m<8+槡52}∩{m|1<m<7}={m|1<m<7}.……12分20.(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立空间直角坐标系,则A(0,1,0),B(0,0,0),C(2,0,0),D1(2,2,2).若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2.……2分→EF=(-2,y-1,z-1),→AC=(2,-1,0),CD→1=(0,2,2),∵EF⊥平面ACD1,∴→EF⊥→AC,→EF⊥AD→1.则→EF²→AC=0,→EF²AD→1=0,即-4-(y-1)=0,2(y-1)+2(z-1)=0{.y=-3,z=5{.……4分与0≤y≤1,0≤z≤2矛盾,所以不存在满足条件的点F.……6分(2)设|DD1|=2k(k>0),则K(0,0,k),→AK=(0,-1,k).设平面ACK的法向量m→=(x,y,z),则-y+kz=0,2x-y=0{.取一个m→=(k,2k,2),同样的,可求得平面ACD1的一个法向量n→=(-k,-2k,2).……8分依题意得|m→²n→|m→||n→||=12,即|-k2-4k2+45k2+槡4² 5k2+槡4|=12,……10分解得:k=±槡21515或±槡2155(负值舍去),即DD1的长为槡41515或槡4155.……12分21.(1)设A(x1,y1),B(x2,y2),直线l的方程为x=my+p2,由x=my+p2,y2=2px烅烄烆.消去x得y2-2pmy-p2=0.所以y1+y2=2pm,y1y2=-p2.∵→OA²→OB=-3,∴x1x2+y1y2=-3,x1x2=y122p²y222p=p24,所以p24-p2=-3,p2=4.∵p>0,∴p=2.……4分(2)由抛物线定义,|AM|=x1+p2=x1+1,|BM|=x2+p2=x2+1.……6分∴|AM|+4|BM|=x1+4x2+5≥24x1x槡2+5=9.当且仅当x1=4x2时取等号.……8分将x1=4x2代入x1x2=p24=1中,得x2=±12(负值舍去).x2=12代入y2=4x中,得y2=±槡2,即点B的坐标为(12,±槡2).……10分将B的坐标代入x=my+1,得m=±槡24.∴l的方程为:x=±槡24y+1,即4x±槡2y-4=0.……12分22.(1)∵f(x)=mln(1+x)-x,∴f′(x)=m1+x-1.∵f(x)在(0,+∞)上为单调函数,∴f′(x)≥0恒成立,或f′(x)≤0恒成立.……2分即m1+x≥1恒成立,或m1+x≤1恒成立.∵x∈(0,+∞),∴m≥1+x不能恒成立.而1+x>1,∴m≤1时f(x)为单调递减函数.综上,m≤1.……4分(2)由(1)知,m=1时,f(x)在(0,+∞)上为减函数,∴f(x)<f(0),即ln(x+1)<x,x∈(0,+∞).……6分∵sin1,sin122,…sin1n2>0,∴ln(1+sin1)<sin1,ln(1+sin122)<sin122,……ln(1+sin1n2)<sin1n2.……8分令g(x)=sinx-x,x∈ (0,π2),则g′(x)=cosx-1<0,∴g(x)在(0,π2)上为减函数.∴g(x)<g(0),即sinx<x,x∈(0,π2).∴sin1<1,sin122<122,…,sin1n2<1n2.……10分∴ln(1+sin1)+ln(1+sin122)+…+ln(1+sin1n2)<sin1+sin122+…+sin1n2<1+122+…+1n2<1+11³2+12³3+…+1(n-1)n=1+(1-12)+(12-13)+…+(1n-1-1n)=2-1n<2.即ln[(1+sin1)(1+sin122)…(1+sin1n2)]<2.∴(1+sin1)(1+sin122)…(1+sin1n2)<e2.……12分。
河南省洛阳市2015—2016学年高三年级第二次统一考试——数学(理)剖析
洛阳市2015——2016学年高三年级第二次统一考试数学试卷(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名,考号填写在答题卡上. 2.考试结束,将答题卡交回.一、选择题:本大题共12小题,每小题5分.共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数z 满足(z -1)(1+i )=2(i 为虚数单位),则|z |=A .1B .5CD 2.若命题p :x ∀∈(0,+∞),21log ()x x+≥1,命题q :0x ∃∈R ,20x -0x +1≤0,则下列命题为真命题的是A .p ∨qB .p ∧qC .(p ⌝)∨qD .(p ⌝)∧(q ⌝) 3.若f (x )=xae--xe 为奇函数,则f (x -1)<e -1e的解集为 A .(-∞,0) B .(-∞,2)C .(2,+∞)D .(0,+∞)4.执行如图所示的程序框图,则输出i 的值为 A .4 B .5 C .6 D .555.已知f (x )sin (ωx +ϕ)(ω>0,|ϕ|<2π) 满足f (x )=-f (x +2π),f (0)=12,则g (x )=2cos (ωx +ϕ)在区间[0,2π]上的最大值为A .2BC .1D .-26.在矩形ABCD 中,AB =3,BCBE =2EC ,点F 在边CD 上,若AB ·AF =3,则AE uu u r ·BF uu u r的值为A .4 BC .0D .-4 7.设D 为不等式组0,0,230,x x y x y ⎧⎪⎨⎪⎩≥-≤+-≤表示的平面区域,圆C :22(5)x y -+=1上的点与区域D 上的点之间的距离的取值范围是 A .11) B .-11] C .D .-11] 8.如图所示是某几何体的三视图,则该几何体的表面积为A .57+24πB .57+15πC .48+15πD .48+24π9.已知双曲线C :2218y x -=的左右焦点分别为 F 1,F 2,过F 2的直线l 与C 的左右两支分别交于 A ,B 两点,且|AF 1|=|BF 1|,则|AB |=A .B .3C .4D .110.设等比数列{n a }的公比为q ,其前n 项之积为n T ,并且满足条件:a 1>1,a 2015a 2016>1,2015201611a a --<0.给出下列结论:(1)0<q <1;(2)a 20l5a 2017-1>0;(3)T 2016的值是n T 中最大的;(4)使n T >1成立的最大自然数n 等于4030.其中正确的结论为 A .(1),(3) B .(2),(3) C .(1),(4) D .(2),(4)11.已知正四面体S -ABC 的外接球O 过AB 中点E 作球O 的截面,则截面面积的最小值为A .4πB .6πC .163π D .43π12.若函数f (x )=xe ·(2x +ax +b )有极值点x 1,x 2(x 1<x 2),且f (x 1)=x 1,则关于x 的方程2()f x +(2+a )f (x )+a +b =0的不同实根个数为 A .0 B .3 C .4 D .5第Ⅱ卷(非选择题,共90分)二、填空题:本题共4个小题。
河南省洛阳市2015届高三第二次统一考试数学理试题Word版含答案
2014—一2015学年高中三年级第二次统一考试数学试卷(理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名,考号填写在答题卷上.2.考试结束,将答题卷交回.一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.已知i 是虚数单位,若复数z 满足zi =1+i ,则复数z 的实部与虚部之和为A .0B .1C .D .42.集合A ={x |x <0},B ={x |y =lg[x (x +1)]},若A -B ={x |x ∈A ,且x B},则 A -B =A .{x |x <-1}B .{x |-1≤x <0}C .{x |-1<x <0}D .{x |x ≤-1}3.若函数y =f (2x +1)是偶函数,则函数y =f (x )的图象的对称轴方程是A .x =1B .x =-1C .x =2D .x =-24.设等比数列{n a }的公比为q ,则“0<q <1”是“{n a }是递减数列”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知函数f (x )=2x ,g (x )=lgx ,若有f (a )=g (b ),则b 的取值范围是A .[0,+∞)B .(0,+∞)C .[1,+∞)D .(1,+∞)6.在△ABC 中,三内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,若S +2a =2()b c +, 则cosA 等于A .45B .-45C .1517D .-15177.6(1)(2)x x +-的展开式中4x 的系数为 A .-100 B .-15 C .35 D .2208.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为A .115B .15C .14D .129.已知双曲线C :2221x a b2y -=(a >0,b >0),斜率为1的直线过双曲线C 的左焦点且与该曲线交于A ,B 两点,若OA uu r +OB uu u r 与向量n r =(-3,-1)共线,则双曲线C 的离心率为ABC .43D .3 10.设函数f (x )=x |x -a |,若对1x ,2x ∈[3,+∞),1x ≠2x ,不等式1212()()f x f x x x -->0恒成立,则实数a 的取值范围是A .(-∞,-3]B .[-3,0)C .(-∞,3]D .(0,3]11.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该几何体的各个面中最大面的面积为A .1 B.2CD .12.已知点A 、B 、C 、D 均在球O 上,AB =BC,AC =3,若三棱锥D -ABCO 的表面积为A .36πB .16πC .12πD .163π 第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.执行下面的程序,若输入的x =2,则输出的所有x 的值的和为________________.14.已知tan α,tan β分别是2lg(652)x x -+=0的两个实根,则tan (α+β)=_________. 15.已知向量a r ,满足|a r |=2,|b r |=1,且对一切实数x ,|a r +xb r |≥|a r +b r |恒成立,则a r ,b r 的夹角的大小为________________.16.已知F 1,F 2分别是双曲线22233x y a -=(a >0)的左,右焦点,P 是抛物线28y ax =与双曲线的一个交点,若|PF 1|+|PF 2|=12,则抛物线的准线方程为_____________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知正项数列{n a }的前n 项和为n S ,对n ∈N ﹡有2n S =2n n a a +.(1)求数列{n a }的通项公式;。
2015洛阳二模 河南省洛阳市2015届高三第二次统一考试理综试题 Word版含答案
2014——2015学年高中三年级第二次统一考试理科综合试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
其中第Ⅱ卷33~40题为选考题,其它题为必考题。
考生作答时,将答案答在答题卷上,在本试卷上答题无效。
第Ⅰ卷(选择题,共126分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考试科自填写在答题卷上。
2.选择题每小题选出答案后,用2B铅笔将答题卷上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
答在试题巷上无效。
3.非选择题用0.5毫米黑色墨水签字笔直接写在答题卷上每题对应的答题区域内,答在试题卷上无效。
4.考试结束后,请将答题卷上交。
可能用到相对原子质量:H-1 Li-7 C-12 N-14 O-16 Na-23 Mg-24Ca-40 Cr-52 Cu-64 Au-197一、选择题(每小题给出的4个选项中只有一个选项符合题意,共13小题,每小题6分。
)1.有关人体成熟红细胞的叙述中,正确的是A.细胞中无染色体,只进行无丝分裂B.细胞中无线粒体,只进行被动运输C.细胞中有血红蛋白,只运输却不消耗氧D.细胞中无遗传物质,只转录却不复制2.下列生命系统的活动中,不是单向进行的是A.植物细胞发生质壁分离过程中,水分子的运动B.蛋白质合成过程中,核糖体在mRNA上的移动C.食物链和食物网中,能量和物质的流动D.两个神经元之间,兴奋的传递3.用32p标记了果蝇精原绍胞DNA分子的双链,再将这些细胞置于只含31p的培养液中培养,发生了如下图A→D和D→H的两个细胞分裂过程。
相关叙述正确的是A.BC段细胞中一定有2条Y染色体B.EF段细胞中可能有2条Y染色体C.EF段细胞中含32p的染色体一定有8条D.FG段细胞中含32p的染色体可能有8条4.Ⅰ型糖尿病可能因人的第六号染色体短臂上的HLA—D基因损伤引起。
该损伤基因的表达使胰岛B细胞表面出现异常的HLA-D抗原,T淋巴细胞被其刺激并激活,最终攻击并使胰岛B细胞裂解死亡。
河南省洛阳市2015届高三第二次统一考试数学文试卷 Word版含答案
2014—2015学年高中三年级第二次统一考试 数学试卷(文) 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 第Ⅰ卷(选择题,共60分) 注意事项: 1.答卷前,考生务必将自己的姓名,考号填写在答题卷上. 2.考试结束,将答题卷交回. 一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中.只有一项是符合题目要求的. 1.已知i是虚数单位,若复数z满足zi=1+i,则复数z的实部与虚部之和为 A.0 B.1 C.2 D.4 2.已知集合A={1,+1},B={2,4},则“m=”是“A∩B={4}”的 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.若α∈[0,2π),则满足=sinα+cosα的α的取值范围是 A.[0,] B.[0,π] C.[0,] D.[0,]∪[,2π) 4.曲线f(x)=在点(1,f(1))处切线的倾斜角为,则实数a= A.1 B.-1 C.7 D.-7 5.过抛物线的焦点F的直线交抛物线于A,B两点,若|AF|=5,则|BF|= A. B.1 C. D.2 6.已知圆C:,若点P(,)在圆C外,则直线l: 与圆C的位置关系为 A.相离 B.相切 C.相交 D.不能确定 7.执行下面的程序,若输入的x=2,则输出的所有x的值的和为 A.6 B.21 C.101 D.126 8.已知不等式表示的平面区域的面积为2,则的最小值为 A. B. C.2 D.4 9.若函数y=f(2x+1)是偶函数,则函数y=f(2x)的图象的对称轴方程是 A.x=-1 B.x=- C.x= D.x=1 10.已知P是△ABC所在平面内一点,若=-,则△PBC与△ABC的面积的比为 A. B. C. D. 11.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体 的三视图,则该几何体的各个面中最大面的面积为 A.1 B. C. D.2 12.已知函数f(x)=若方程f(x)-kx=1有两个不同实根,则实数k的取值范围为 A.(,e) B.(,1)∪(1,e-1] C.(,1)∪(1,e) D.(,e-1] 第Ⅱ卷(非选择题,共90分) 二、填空题:本大题共4小题,每小题5分,共20分. 13.双曲线(b>0)的离心率为,则此双曲线的焦点到渐近线的距离为__________。
2015高考数学全国2卷试题及答案(清晰版)
2015年普通高等学校招生全国统一考试试题及答案理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3.全部答案在答题卡上完成,答在本试题上无效。
4.考试结束后,将本试题和答题卡一并交回。
第Ⅰ卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合{}21012,,,,--=A ,()(){}021<+-=x x x B ,则=B A A、{}0,1-B、{}1,0C、{}101,,-D、{}210,,2、若a 为实数,且()()i i a ai 422-=-+,则=a A、-1B、0C、1D、23、根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是A、逐年比较,2008年减少二氧化硫排放量的效果最明显B、2007年我国治理二氧化硫排放显现成效C、2006年以来我国二氧化硫年排放量呈减少趋势D、2006年以来我国二氧化硫年排放量与年份正相关4、已知等比数列{}n a 满足31=a ,21531=++a a a ,则=++753a a aA、21B、42C、63D、845、设函数()()⎩⎨⎧-+=-1222log 1x x x f ,11≥<x x ,则()()=+-12log 22f f A、3B、6C、9D、126、一个正方体被一个平面截去一部分后,剩余部分的三视图如图所示,则截去部分体积与所剩部分体积的比值为A、81B、71C、61D、517、过三点()31,A ,()24,B ,()7,1-C 的圆与y 轴交于M 、N 两点,则=MN A、62B、8C、64D、108、右边程序框图的算法思路源于我国古代算术名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的a ,b 分别为14,18,则输出的=a A、0B、2C、4D、149、已知A ,B 是球O 的球面上两点, 90=∠AOB ,C 为该球面上的动点。
河南省洛阳市2015届高三数学一模试卷(理科) Word版含解析
河南省洛阳市2015届高考数学一模试卷(理科) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合 A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为( ) A.3 B.11 C.8 D.12 2.已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为( ) A.{a|a<﹣6} B.{a|﹣6<a<} C.{a|a<} D.{a|a<﹣6或a>} 3.已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,则sinθ﹣cosθ的等于( ) A.B.C.D.﹣ 4.下面四个推导过程符合演绎推理三段论形式且推理正确的是( ) A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数 B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数 C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数 D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数 5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为( ) A.B.8﹣2πC.πD.8﹣π 6.已知 f(x)是定义域在R上的偶函数,且 f(x)在(﹣∞,0]上单调递增,设a=f(sinπ),b=f(cosπ),c=f(tanπ),则a,b,c的大小关系是,( ) A.a<b<c B.b<a<c C.c<a<b D.a<c<b 7.执行如图的程序,则输出的结果等于( ) A.B.C.D. 8.在△ABC中,D为AC的中点,=3,BD与AE交于点F,若=,则实数λ的值为( ) A.B.C.D. 9.设 F1F2分别为双曲线x2﹣y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF2为直角,则sin∠PF1F2的所有可能取值之和为( ) A.B.2 C.D. 10.曲线 y=(x>0)在点 P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB的 周长的最小值为( ) A.4+2 B.2 C.2 D.5+2 11.若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则实数λ的取值范围是( ) A.(﹣∞,﹣)∪(9,+∞)B.,(﹣,1)∪(9,+∞)C.(1,9)D.(﹣∞,﹣) 12.在平面直角坐标系中,点P是直线 l:x=﹣上一动点,点 F(,0),点Q为PF的中点,点M满足MQ⊥PF,且=λ(λ∈R).过点M作圆(x﹣3)2+y2=2的切线,切点分别为S,T,则|ST|的最小值为( ) A.B.C.D. 二、填空题:本大题共4小题,每小题5分,共20分. 13.设随机变量ξ~N(μ,σ2),且 P(ξ<﹣1)=P(ξ>1),P(ξ>2)=0.3,则P(﹣2<ξ<0)=__________. 14.若正四梭锥P﹣ABCD的底面边长及高均为2,刚此四棱锥内切球的表面积为__________. 15.将函数 y=sin(x)sin(X+)的图象向右平移个单位,所得图象关于y轴对称,则正数ω的最小值为__________. 16.在△ABC中,角A,B,C的对边分别是a,b,c,若b=1,a=2c,则当C取最大值时,△ABC的面积为__________. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知{an},{bn} 均为等差数列,前n项和分别为Sn,Tn. (1)若平面内三个不共线向量,,满足=a3+a15,且A,B,C三点共线.是否存在正整数n,使Sn为定值?若存在,请求出此定值;若不存在,请说明理由; (2)若对 n∈N+,有=,求使为整数的正整数n的集合. 18.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上. (l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积; (2)若 AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值. 19.已知圆S经过点A(7,8)和点B(8,7),圆心S在直线2x﹣y﹣4=0上. (1)求圆S的方程 (2)若直线x+y﹣m=0与圆S相交于C,D两点,若∠COD为钝角(O为坐标原点),求实数m的取值范围. 20.如图,直四棱柱ABCD﹣A1B1C1D1,底面ABCD为梯形AB∥CD,ABC=90°,BC=CD=2AB=2. (1)若CC1=2,E为CD1的中点,在侧面ABB1A1内是否存在点F,使EF⊥平面ACD1,若存在,请确定点F的位置;若不存在,请说明理由; (2)令点K为BB1的中点,平面D1AC与平面ACK所成锐二面角为60°,求DD1的长. 21.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且?=﹣3,其中O为坐标原点. (1)求p的值; (2)当|AM|+4|BM|最小时,求直线l的方程. 22.已知函数f(x)=ln(1+x)m﹣x (1)若函数f(x)为(0,+∞)上的单调函数,求实数m的取值范围; (2)求证:(1+sin1)(1+sin)(1+sin)…(1+sin)<e2. 河南省洛阳市2015届高考数学一模试卷(理科) 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合 A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B},则集合C中的元素个数为( ) A.3 B.11 C.8 D.12 考点:集合的表示法. 专题:集合. 分析:根据题意和z=xy,x∈A且y∈B,利用列举法求出集合C,再求出集合C中的元素个数. 解答:解:由题意得,A={1,2,3,4,5},B={1,2,3},C={z|z=xy,x∈A且y∈B}, 当x=1时,z=1或2或3;当x=2时,z=2或4或6;当x=3时,z=3或6或9; 当x=4时,z=4或8或12;当x=5时,z=5或10或15; 所以C={1,2,3,4,6,8,9,12,5,10,15}中的元素个数为11, 故选:B. 点评:本题考查集合元素的三要素中的互异性,注意集合中元素的性质,属于基础题. 2.已知i为虚数单位,复数z1=3﹣ai,z2=1+2i,若复平面内对应的点在第四象限,则实数a的取值范围为( ) A.{a|a<﹣6} B.{a|﹣6<a<} C.{a|a<} D.{a|a<﹣6或a>} 考点:复数的代数表示法及其几何意义. 专题:数系的扩充和复数. 分析:求出复数的表达式,根据题意列出不等式组,求出a的取值范围. 解答:解:∵复数z1=3﹣ai,z2=1+2i, ∴===﹣i; ∴, 解得﹣6<a<, ∴实数a的取值范围{a|﹣6<a<}. 故选:B. 点评:本题考查了复数的代数运算问题,解题时应注意虚数单位i2=﹣1,是基础题. 3.已知θ为第二象限角,sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根,则sinθ﹣cosθ的等于( ) A.B.C.D.﹣ 考点:同角三角函数基本关系的运用. 专题:三角函数的求值. 分析:利用根与系数的关系表示出sinθ+cosθ=,sinθcosθ=,利用完全平方公式及同角三角函数间基本关系整理求出m的值,再利用完全平方公式求出sinθ﹣cosθ的值即可. 解答:解:∵sinθ,cosθ是关于x的方程2x2+(x+m=0(m∈R)的两根, ∴sinθ+cosθ=,sinθcosθ=, 可得(sinθ+cosθ)2=1+2sinθcosθ,即=1+m,即m=﹣, ∵θ为第二象限角,∴sinθ>0,cosθ<0,即sinθ﹣cosθ>0, ∵(sinθ﹣cosθ)2=(sinθ+cosθ)2﹣4sinθcosθ=﹣2m=1﹣+=, ∴sinθ﹣cosθ==. 故选:A. 点评:此题考查了同角三角函数间基本关系的运用,熟练掌握基本关系是解本题的关键. 4.下面四个推导过程符合演绎推理三段论形式且推理正确的是( ) A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数 B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数 C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数 D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数 考点:演绎推理的意义. 专题:推理和证明. 分析:根据三段论推理的标准形式,逐一分析四个答案中的推导过程,可得出结论. 解答:解:对于A,小前提与大前提间逻辑错误,不符合演绎推理三段论形式; 对于B,符合演绎推理三段论形式且推理正确; 对于C,大小前提颠倒,不符合演绎推理三段论形式; 对于D,大小前提及结论颠倒,不符合演绎推理三段论形式; 故选:B 点评:本题主要考查推理和证明,三段论推理的标准形式,属于基础题. 5.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的体积为( ) A.B.8﹣2πC.πD.8﹣π 考点:由三视图求面积、体积. 专题:计算题;空间位置关系与距离. 分析:根据三视图可判断正方体的内部挖空了一个圆锥,该几何体的体积为23﹣×π×12×2运用体积计算即可. 解答:解:∵几何体的三视图可得出:三个正方形的边长均为2, ∴正方体的内部挖空了一个圆锥, ∴该几何体的体积为23﹣×π×12×2=8, 故选:D 点评:本题考查了空间几何体的三视图,运用求解几何体的体积问题,关键是求解几何体的有关的线段长度. 6.已知 f(x)是定义域在R上的偶函数,且 f(x)在(﹣∞,0]上单调递增,设a=f(sinπ),b=f(cosπ),c=f(tanπ),则a,b,c的大小关系是,( ) A.a<b<c B.b<a<c C.c<a<b D.a<c<b 考点:奇偶性与单调性的综合. 专题:函数的性质及应用. 分析:根据函数奇偶性和单调性之间的关系,即可得到结论. 解答:解:∵f(x)是定义域在R上的偶函数,且 f(x)在(﹣∞,0]上单调递增, ∴f(x)在[0,+∞)上单调递减, 则tanπ<﹣1,<sinπ,<cosπ<0, 则tanπ<﹣sinπ<cosπ, 则f(tanπ)<f(﹣sinπ)<f(cosπ), 即f(tanπ)<f(sinπ)<f(cosπ), 故c<a<b, 故选:C 点评:本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键. 7.执行如图的程序,则输出的结果等于( ) A.B.C.D. 考点:程序框图. 专题:计算题;点列、递归数列与数学归纳法;算法和程序框图. 分析:执行程序框图,依次写出每次循环得到的S,T的值,当i=100,退出循环,输出T 的值. 解答:解:执行程序框图,有 i=1,s=0,t=0 第1次执行循环,有s=1,T=1 第2次执行循环,有i=2,s=1+2=3,T=1+ 第3次执行循环,有i=3,s=1+2+3=6,T=1++ 第4次执行循环,有i=4,s=1+2+3+4=10,T=1++ … 第99次执行循环,有i=99,s=1+2+3+..+99,T=1+++…+ 此时有i=100,退出循环,输出T的值. ∵T=1+++…+,则通项an===, ∴T=1+(1﹣)+(﹣)+()+()+…+()=2=. ∴输出的结果等于. 故选:A. 点评:本题主要考察了程序框图和算法,考察了数列的求和,属于基本知识的考查. 8.在△ABC中,D为AC的中点,=3,BD与AE交于点F,若=,则实数λ的值为( ) A.B.C.D. 考点:平面向量的基本定理及其意义. 专题:平面向量及应用. 分析:根据已知条件,,能够分别用表示为:,k∈R,,所以带入便可得到,=,所以根据平面向量基本定理即可得到,解不等式组即得λ的值. 解答:解:如图,B,F,D三点共线,∴存在实数k使,; ∴==;=; ∵; ∴; ∴,解得. 故选C. 点评:考查向量加法运算及向量加法的平行四边形法则,共面向量基本定理,以及平面向量基本定理. 9.设 F1F2分别为双曲线x2﹣y2=1的左,右焦点,P是双曲线上在x轴上方的点,∠F1PF2为直角,则sin∠PF1F2的所有可能取值之和为( ) A.B.2 C.D. 考点:双曲线的简单性质. 专题:圆锥曲线的定义、性质与方程. 分析:由题意,不妨设|F1P|>|F2P|,a=b=1,c=;|F1P|﹣|F2P|=2,|F1P|2+|F2P|2=8;从而求出|F1P|=+1,|F2P|=﹣1;再出和即可. 解答:解:由题意,不妨设|F1P|>|F2P|, a=b=1,c=; |F1P|﹣|F2P|=2, |F1P|2+|F2P|2=8; 故(|F1P|+|F2P|)2=2(|F1P|2+|F2P|2)﹣(|F1P|﹣|F2P|)2=2×8﹣4=12; 故|F1P|+|F2P|=2; 则|F1P|=+1,|F2P|=﹣1; 故则sin∠PF1F2的所有可能取值之和为 +==; 故选D. 点评:本题考查了圆锥曲线的应用,考查了圆锥曲线的定义,属于基础题. 10.曲线 y=(x>0)在点 P(x0,y0)处的切线为l.若直线l与x,y轴的交点分别为A,B,则△OAB的 周长的最小值为( ) A.4+2 B.2 C.2 D.5+2 考点:利用导数研究曲线上某点切线方程. 专题:导数的综合应用. 分析:利用导数求出函数y=(x>0)在点 P(x0,y0)处的切线方程,得到直线在两坐标轴上的截距,由勾股定理求得第三边,作和后利用基本不等式求最值. 解答:解:由y=,得, 则, ∴曲线 y=(x>0)在点 P(x0,y0)处的切线方程为:y﹣=﹣(x﹣x0). 整理得:. 取y=0,得:x=2x0,取x=0,得. ∴|AB|==2. ∴△OAB的周长为=(x0>0) . 当且仅当x0=1时上式等号成立. 故选:A. 点评:本题考查了利用导数研究过曲线上某点的切线方程,考查了利用基本不等式求最值,是中档题. 11.若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点,则实数λ的取值范围是( ) A.(﹣∞,﹣)∪(9,+∞)B.,(﹣,1)∪(9,+∞)C.(1,9)D.(﹣∞,﹣) 考点:简单线性规划. 专题:不等式的解法及应用. 分析:作出不等式组对应的平面区域,利用线性规划的知识即可得到结论. 解答:解:(3λ+1)x+(1﹣λ)y+6﹣6λ=0等价为λ(3x﹣y﹣6)+(x+y+6)=0, 则,解得,即直线过定点D(0,﹣6) 作出不等式组对应的平面区域如图:其中A(2,1),B(5,2), 此时AD的斜率k==,BD的斜率k==, 当直线过A时,λ=9, 当直线过B时,λ=﹣, 则若直线(3λ+1)x+(1﹣λ)y+6﹣6λ=0与不等式组表示的平面区域有公共点, 则满足直线的斜率≤≤, 解得λ∈(﹣∞,﹣)∪(9,+∞), 故选:A 点评:本题主要考查线性规划的应用,利用数形结合是解决本题的关键.综合性较强,运算量较大. 12.在平面直角坐标系中,点P是直线 l:x=﹣上一动点,点 F(,0),点Q为PF的中点,点M满足MQ⊥PF,且=λ(λ∈R).过点M作圆(x﹣3)2+y2=2的切线,切点分别为S,T,则|ST|的最小值为( ) A.B.C.D. 考点:圆的切线方程. 专题:直线与圆. 分析:由题意首先求出M的轨迹方程,然后在M满足的曲线上设点,只要求曲线上到圆心的距离的最小值,即可得到|ST|的最小值. 解答:解:设M坐标为M(x,y),由MP⊥l知P(﹣,y);由“点Q为PF的中点”知Q(0,); 又因为QM⊥PF,QM、PF斜率乘积为﹣1,即, 解得:y2=2x, 所以M的轨迹是抛物线, 设M(y2,y),到圆心(3,0)的距离为d,d2=(y2﹣3)2+2y2=y4﹣4y2+9=(y2﹣2)2+5, ∴y2=2时,dmln=,此时的切线长为,所以切点距离为2=; ∴|ST|的最小值为; 故选A. 点评:本题考查了抛物线轨迹方程的求法以及与圆相关的距离的最小值求法,属于中档题. 二、填空题:本大题共4小题,每小题5分,共20分. 13.设随机变量ξ~N(μ,σ2),且 P(ξ<﹣1)=P(ξ>1),P(ξ>2)=0.3,则P(﹣2<ξ<0)=0.2. 考点:正态分布曲线的特点及曲线所表示的意义. 专题:计算题;概率与统计. 分析:根据正态分布的性质求解. 解答:解:因为P(ξ<﹣1)=P(ξ>1),所以正态分布曲线关于y轴对称, 又因为P(ξ>2)=0.3,所以P(﹣2<ξ<0)=故答案为:0.2. 点评:一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似的服从正态分布,正态分布在概率和统计中具有重要地位. 14.若正四梭锥P﹣ABCD的底面边长及高均为2,刚此四棱锥内切球的表面积为(6﹣2)π. 考点:球内接多面体. 专题:计算题;空间位置关系与距离. 分析:运用分割思想,连接OP,OA,OB,OC,OD,得到四个三棱锥和一个四棱锥,由大的四棱锥的体积等于四个三棱锥的体积和一个小的四棱锥的体积之和,根据正四棱锥的性质,求出斜高,即可求出球的半径r,从而得到球的表面积. 解答:解:设球的半径为r,连接OP,OA,OB,OC,OD,得到四个三棱锥和一个四棱锥 它们的高均为r, 则VP﹣ABCD=VO﹣PAB+VO﹣PAD+VO﹣PBC+VO﹣PCD+VO﹣ABCD 即×2×22=r(4×S△PBC+4), 由四棱锥的高和斜高,及斜高在底面的射影构成的直角三角形得到, 斜高为, ∴S△PBC=×2×=, ∴r=, 则球的表面积为4π×()2=(6﹣2)π. 故答案为:(6﹣2)π. 点评:本题主要考查球与正四棱锥的关系,通过分割,运用体积转换的思想,是解决本题的关键. 15.将函数 y=sin(x)sin(X+)的图象向右平移个单位,所得图象关于y轴对称,则正数ω的最小值为2. 考点:函数y=Asin(ωx+φ)的图象变换. 专题:三角函数的求值;三角函数的图像与性质. 分析:化简可得y=sin(ωx﹣)+将函数的图象向右平移个单位,所得解析式为:y=sin(ωx﹣ω﹣)+,所得图象关于y轴对称,可得﹣ω﹣=k,k∈Z,从而可解得正数ω的最小值. 解答:解:∵y=sin(x)sin(X+)=sin2+sinωx==sin(ωx﹣)+, ∴将函数的图象向右平移个单位,所得解析式为:y=sin[ω(x﹣)﹣]+=sin(ωx﹣ω﹣)+, ∵所得图象关于y轴对称, ∴﹣ω﹣=k,k∈Z, ∴可解得:ω=﹣6k﹣4,k∈Z, ∴k=﹣1时,正数ω的最小值为2, 故答案为:2. 点评:本题主要考查了函数y=Asin(ωx+φ)的图象变换,三角函数的图象与性质,属于基本知识的考查. 16.在△ABC中,角A,B,C的对边分别是a,b,c,若b=1,a=2c,则当C取最大值时,△ABC的面积为. 考点:余弦定理;正弦定理. 专题:计算题;解三角形;不等式的解法及应用. 分析:运用余弦定理和基本不等式,求出最小值,注意等号成立的条件,再由面积公式,即可得到. 解答:解:由于b=1,a=2c, 由余弦定理,可得, cosC====(3c+)≥=, 当且仅当c=,cosC取得最小值, 即有C取最大值,此时a=, 则面积为absinC==. 故答案为:. 点评:本题考查余弦定理和三角形面积公式的运用,考查基本不等式的运用:求最值,考查运算能力,属于中档题. 三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知{an},{bn} 均为等差数列,前n项和分别为Sn,Tn. (1)若平面内三个不共线向量,,满足=a3+a15,且A,B,C三点共线.是否存在正整数n,使Sn为定值?若存在,请求出此定值;若不存在,请说明理由; (2)若对 n∈N+,有=,求使为整数的正整数n的集合. 考点:数列与向量的综合;数列的求和. 专题:等差数列与等比数列;平面向量及应用. 分析:(1)根据平面向量的基本定理和A,B,C三点共线,以及等差数列的性质和求和公式,即可求出定值; (2)根据等差数列的求和公式得到====31+,继而求出正整数n的集合. 解答:解:(1)∵A,B,C三点共线. ∴?λ∈R,使=λ,=λ(), 即=(1﹣λ)+λ, 又平面向量的基本定理得,,消去λ得到a3+a15=1, ∵a3+a15=a1+a17=1, ∴S17=×17×(a1+a17)=即存在n=17时,S17为定值. (2)由于====31+ 根据题意n+1的可能取值为2,4, 所以n的取值为1或3, 即使为整数的正整数n的集合为{1,3} 点评:本题主要考查了向量以及等差数列的通项公式和求和公式的应用.考查了学生创造性解决问题的能力,属于中档题 18.如图,△ABC中,∠ABC=90°,点D在BC边上,点E在AD上. (l)若点D是CB的中点,∠CED=30°,DE=1,CE=求△ACE的面积; (2)若 AE=2CD,∠CAE=15°,∠CED=45°,求∠DAB的余弦值. 考点:三角形中的几何计算. 专题:计算题;解三角形. 分析:(1)运用余弦定理,解出CD=1,再解直角三角形ADB,得到AE=1,再由面积公式,即可得到△ACE的面积; (2)在△ACE和△CDE中,分别运用正弦定理,求出CE,及sin∠CDE,再由诱导公式,即可得到∠DAB的余弦值. 解答:解:(1)在△CDE中,CD==, 解得CD=1, 在直角三角形ABD中,∠ADB=60°,AD=2,AE=1, S△ACE===; (2)设CD=a,在△ACE中,=, CE==()a, 在△CED中,=,sin∠CDE===﹣1, 则cos∠DAB=cos(∠CDE﹣90°)=sin∠CDE=﹣1. 点评:本题考查解三角形的运用,考查正弦定理和余弦定理,及面积公式的运用,考查运算能力,属于基础题. 19.已知圆S经过点A(7,8)和点B(8,7),圆心S在直线2x﹣y﹣4=0上. (1)求圆S的方程 (2)若直线x+y﹣m=0与圆S相交于C,D两点,若∠COD为钝角(O为坐标原点),求实数m的取值范围. 考点:直线与圆的位置关系;圆的标准方程. 专题:直线与圆. 分析:(1)线段AB的中垂线方程:y=x,联立,得S(4,4),由此能求出圆S的半径|SA|. (2)由x+y﹣m=0,变形得y=﹣x+m,代入圆S的方程,得2x2﹣2mx+m2﹣8m+7=0,由此利用根的判别式和韦达定理结合已知条件能求出实数m的取值范围. 解答:解:(1)线段AB的中垂线方程:y=x, 联立,得S(4,4), ∵A(7,8), ∴圆S的半径|SA|==5. ∴圆S的方程为(x﹣4)2+(y﹣4)2=25. (2)由x+y﹣m=0,变形得y=﹣x+m, 代入圆S的方程,得2x2﹣2mx+m2﹣8m+7=0, 令△=(2m)2﹣8(m2﹣8m+7)>0, 得, 设点C,D上的横坐标分别为x1,x2, 则x1+x2=m,, 依题意,得<0, ∴x1x2+(﹣x1+m)(﹣x2+m)<0, m2﹣8m+7<0, 解得1<m<7. ∴实数m的取值范围是(1,7). 点评:本题考查圆的半径的求法,考查实数的取值范围的求法,解题时要注意根的判别式和韦达定理的合理运用. 20.如图,直四棱柱ABCD﹣A1B1C1D1,底面ABCD为梯形AB∥CD,ABC=90°,BC=CD=2AB=2. (1)若CC1=2,E为CD1的中点,在侧面ABB1A1内是否存在点F,使EF⊥平面ACD1,若存在,请确定点F的位置;若不存在,请说明理由; (2)令点K为BB1的中点,平面D1AC与平面ACK所成锐二面角为60°,求DD1的长. 考点:点、线、面间的距离计算;直线与平面垂直的判定. 专题:综合题;空间位置关系与距离;空间角. 分析:(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立坐标系,若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2,利用EF⊥平面ACD1,求出y=﹣3,z=5,与0≤y≤1,0≤z≤2矛盾,即可得出结论; (2)设|DD1|=2k(k>0),求出平面ACK的法向量、平面ACD1的法向量,利用向量的夹角公式,结合平面D1AC与平面ACK所成锐二面角为60°,求出k,即可求DD1的长. 解答:解:(1)以B为原点,BC,BA,BB1分别为x,y,z轴,建立坐标系, 则A(0,1,0),B(0,0,0),C(2,0,0),D1(2,2,2), 若存在这样的点F,则可设F(0,y,z),其中0≤y≤1,0≤z≤2,=(﹣2,y﹣1,z﹣1),=(2,﹣1,0),=(0,2,2), ∵EF⊥平面ACD1, ∴,∴y=﹣3,z=5, 与0≤y≤1,0≤z≤2矛盾, ∴不存在满足条件的点F; (2)设|DD1|=2k(k>0),则K(0,0,k),D1(2,2,2k),=(0,﹣1,k),=(2,1,2k), 设平面ACK的法向量为=(x,y,z),则, 取=(k,2k,2), 同理平面ACD1的法向量为=(﹣k,﹣2k,2), 则=∴k=±或(负值舍去), ∴DD1的长为或. 点评:本题考查直线与平面垂直的判定,考查向量知识的运用,正确求出平面的法向量是关键. 21.已知过点M(,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且?=﹣3,其中O为坐标原点. (1)求p的值; (2)当|AM|+4|BM|最小时,求直线l的方程. 考点:直线与圆锥曲线的关系. 专题:计算题;平面向量及应用;直线与圆;圆锥曲线的定义、性质与方程. 分析:(1)设A(x1,y1),Bx2,y2),直线l:x=my+,代入抛物线方程,运用韦达定理,及平面向量的数量积的坐标表示,即可得到p=2; (2)运用抛物线的定义,及均值不等式,即可得到最小值9,注意等号成立的条件,求得B的坐标,代入直线方程,求得m,即可得到直线l的方程. 解答:解:(1)设A(x1,y1),Bx2,y2),直线l:x=my+, 代入抛物线方程,消去x,得,y2﹣2pmy﹣p2=0, y1+y2=2pm,y1y2=﹣p2, 由于?=﹣3,即x1x2+y1y2=﹣3, x1x2==, 即有﹣p2=﹣3,解得,p=2; (2)由抛物线的定义,可得,|AM|=x1+1,|BM|=x2+1, 则|AM|+4|BM|=x1+4x2+5+5=9, 当且仅当x1=4x2时取得最小值9. 由于x1x2=1,则解得,x2=(负的舍去), 代入抛物线方程y2=4x,解得,y2=,即有B(), 将B的坐标代入直线x=my+1,得m=. 则直线l:x=y+1,即有4x+y﹣4=0或4x﹣y﹣4=0. 点评:本题考查抛物线的定义、方程和性质,考查直线方程和抛物线方程联立,消去未知数,运用韦达定理,考查基本不等式的运用:求最值,考查运算能力,属于中档题. 22.已知函数f(x)=ln(1+x)m﹣x (1)若函数f(x)为(0,+∞)上的单调函数,求实数m的取值范围; (2)求证:(1+sin1)(1+sin)(1+sin)…(1+sin)<e2. 考点:利用导数研究函数的单调性;导数在最大值、最小值问题中的应用. 专题:导数的综合应用. 分析:(1)先求出函数的导数,通过f′(x)≥0恒成立,或f′(x)≤0恒成立,得到m的范围; (2)由题意得:ln(x+1)<x,令g(x)=sinx﹣x,通过函数的单调性得sin1<1,sin<,…,sin<,从而ln[(1+sin1)(1+sin)…(1+sin)]<2,进而证出结论. 解答:解:(1)∵f(x)=mln(1+x)﹣x,∴f′(x)=﹣1, ∵函数f(x)为(0,+∞)上的单调函数, ∴f′(x)≥0恒成立,或f′(x)≤0恒成立, ∵x∈(0,+∞),∴m≥1+x不能恒成立, 而1+x>1,∴m≤1时,f(x)为单调递减函数, 综上:m≤1; (2)由(1)得m=1时,f(x)在(0,+∞)上是减函数, ∴f(x)<f(0),即ln(x+1)<x,x∈(0,+∞), ∵sin1?sin…sin>0, ∴ln(1+sin1)<sin1,…,ln(1+sin)<sin, 令g(x)=sinx﹣x,x∈(0,),则g′(x)=cosx﹣1<0, ∴g(x)在(0,)上是减函数, ∴g(x)<g(0),即sinx<x,x∈(0,), ∴sin1<1,sin<,…,sin<, ∴ln(1+sin1)+ln(1+sin)+…+ln(1+sin) <sin1+sin+…+sin <1++…+ <1+++…+=1+(1﹣)+(﹣)+…+(﹣)=2﹣<2, 即ln[(1+sin1)(1+sin)…(1+sin)]<2, ∴(1+sin1)(1+sin)(1+sin)…(1+sin)<e2. 点评:本题考查了函数的单调性问题,导数的应用,考查了不等式的证明问题,考查转化思想,有一定的难度.。
河南省洛阳市2015届高三上学期期末考试数学(理)试题 Word版含答案
洛阳市2014-2015学年高中三年级期末考试数 学 试 卷(理A )一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、已知集合{}24120x x x A =--<,{}2x x B =<,则()RAB =ð( )A .{}6x x <B .{}22x x -<<C .{}2x x >-D .{}26x x ≤< 2、设i 为虚数单位,复数212ii+-的共轭复数是( ) A .35i B .35i - C .i D .i - 3、已知双曲线C :22221x y a b-=(0a >,0b >)的焦距为10,点()2,1P 在C 的渐近线上,则C 的方程为( )A .221205x y -= B .221520x y -= C .2218020x y -= D .2212080x y -=4、若程序框图如图所示,则该程序运行后输出k 的值是( ) A .4 B .5 C .6 D .75、已知命题:p 0R x ∃∈,使0sin x =:q R x ∀∈,都有210x x ++>.给出下列结论:①命题“p q ∧”是真命题;②命题“()p q ∧⌝”是假命题; ③命题“()p q ⌝∨”是真命题;④命题“()()p q ⌝∨⌝是假命题. 其中正确的命题是( )A .②③B .②④C .③④D .①②③6、已知角α的终边经过点()a A ,若点A 在抛物线214y x =-的准线上,则sin α=( )A .BC .12-D .127、在平面直角坐标系内,若曲线C :22224540x y ax ay a ++-+-=上所有的点均在第四象限内,则实数a 的取值范围为( )A .(),2-∞-B .(),1-∞-C .()1,+∞D .()2,+∞ 8、已知直线:m 230x y +-=,函数3cos y x x =+的图象与直线l 相切于P 点,若l m ⊥,则P 点的坐标可能是( )A .3,22ππ⎛⎫--⎪⎝⎭ B .3,22ππ⎛⎫ ⎪⎝⎭ C .3,22ππ⎛⎫⎪⎝⎭D .3,22ππ⎛⎫-- ⎪⎝⎭9、把函数sin 6y x π⎛⎫=+ ⎪⎝⎭图象上各点的横坐标缩小到原来的12(纵坐标不变),再将图象向右平移3π个单位,那么所得图象的一条对称轴方程为( ) A .2x π=-B .4x π=-C .8x π=D .4x π=10、在平面直角坐标系x y O 中,点A 与B 关于y 轴对称.若向量()1,a k =,则满足不等式20a OA +⋅AB ≤的点(),x y A 的集合为( )A .()(){}22,11x y x y ++≤ B .(){}222,x y x y k +≤C .()(){}22,11x y x y -+≤ D .()(){}222,1x y x y k ++≤11、如图是某几何体的三视图,则该几何体的外接球的表面积为( )A .200πB .150πC .100πD .50π 12、设二次函数()2f x ax bx c =++的导函数为()f x '.对R x ∀∈,不等式()()f x f x '≥恒成立,则2222b a c +的最大值为( )A 2B 2C .2D .2 二、填空题(本大题共4小题,每小题5分,共20分.)13、在62x ⎫⎪⎭的展开式中,常数项是 .14、函数()1,10,01x x x f x e x +-≤<⎧=⎨≤≤⎩的图象与直线1x =及x 轴所围成的封闭图形的面积为 .15、将5名实习老师分配到4个班级任课,每班至少1人,则不同的分配方法数是 (用数字作答). 16、如图,在C ∆AB中,C sin2∠AB =,2AB =,点D 在线段C A 上,且D 2DC A =,D B =,则cosC = . 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17、(本小题满分12分)设数列{}n a 的前n 项和为n S ,对任意正整数n 都有612n n S a =-.()1求数列{}n a 的通项公式; ()2设12log n n b a =,求22212111111n n b b b T =++⋅⋅⋅+---.18、(本小题满分12分)在某学校的一次选拔性考试中,随机抽取了100名考生的成绩(单位:分),并把所得数据列成了如下表所示的频数分布表:()1求抽取的样本平均数x 和样本方差2s (同一组中的数据用该组区间的中点值作代表);()2已知这次考试共有2000名考生参加,如果近似地认为这次成绩z 服从正态分布()2,μσN (其中μ近似为样本平均数x ,2σ近似为样本方差2s ),且规定82.7分是复试线,那么在这200012.7≈,若()2,z μσN ,则()0.6826z μσμσP -<<+=,()220.9544z μσμσP -<<+=)()3已知样本中成绩在[]90,100中的6名考生中,有4名男生,2名女生,现从中选3人进行回访,记选出的男生人数为ξ,求ξ的分布列与期望()ξE .19、(本小题满分12分)如图,在四棱锥CD P -AB 中,底面CD AB 是直角梯形,D//C A B ,DC 90∠A =,平面D PA ⊥底面CD AB ,Q 为D A 的中点,D 2PA =P =,1C D 12B =A =,CD =. ()1求证:平面Q PB ⊥平面D PA ;()2在棱C P 上是否存在一点M ,使二面角Q C M -B -为30?若存在,确定M 的位置;若不存在,请说明理由.20、(本小题满分12分)已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,一个焦点与抛物线24y x =的焦点重合,直线:l y kx m =+与椭圆C 相交于A ,B 两点. ()1求椭圆C 的标准方程;()2设O 为坐标原点,22b k k aOA OB⋅=-,判断∆AOB 的面积是否为定值?若是,求出定值;若不是,说明理由. 21、(本小题满分12分)设函数()()2ln 12f x x ax a x =---(0a >).()1若0x ∃>,使得不等式()264f x a a >-成立,求实数a 的取值范围;()2设函数()y f x =图象上任意不同的两点为()11,x y A 、()22,x y B ,线段AB 的中点为()00C ,x y ,记直线AB 的斜率为k ,证明:()0k f x '>.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分. 22、(本小题满分10分)选修4-1:几何证明选讲如图,AB 是O 的切线,B 为切点,D A E 是O 的割线,C 是O 外一点,且C AB =A ,连接D B ,BE ,CD ,C E ,CD 交O 于F ,C E 交O 于G . ()1求证:CD D C BE⋅=B ⋅E ;()2求证:FG//C A .23、(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系x y O 中,过点()2,0P 的直线l 的参数方程为2x y t⎧=-⎪⎨=⎪⎩(t 为参数),圆C 的方程为229x y +=.以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.()1求直线l 和圆C 的极坐标方程;()2设直线l 与圆C 相交于A ,B 两点,求PA ⋅PB 的值.24、(本小题满分10分)选修4-5:不等式选讲()1设函数()52f x x x a =-+-,R x ∈,若关于x 的不等式()f x a ≥在R 上恒成立,求实数a 的最大值;()2已知正数x ,y ,z 满足231x y z ++=,求321x y z++的最小值.洛阳市2014-2015学年高中三年级期末考试数 学 试 卷(理A )参考答案一、选择题:13、60 14、12e 15、24016、79三、解答题。
河南省六市2015届高考数学二模试卷(理科)
河南省六市2015届高考数学二模试卷(理科)一.选择题:本大题共12小题,每小题5分,满分60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2+2x﹣3<0},B={x|﹣<x<1},则A∩B等于()A.ΦB.{x|﹣3<x<1} C.{x|﹣<x<1} D.{x|x2+2x﹣3<0}2.(5分)若复数z满足z(1+i)=4﹣2i(i为虚数单位),则|z|=()A.B.C.D.3.(5分)2014-2015学年高二年级某研究性学习小组为了了解本校2014-2015学年高一学生课外阅读状况,分成了两个调查小组分别对2014-2015学年高一学生进行抽样调查.假设这两组同学抽取的样本容量相同且抽样方法合理,则下列结论正确的是()A.两组同学制作的样本频率分布直方图一定相同B.两组同学的样本平均数一定相等C.两组同学的样本标准差一定相等D.该校2014-2015学年高一年级每位同学被抽到的可能性一定相同4.(5分)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为()A.10 B.20 C.100 D.2005.(5分)若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm36.(5分)从抛物线y2=4x图象上一点P引抛物线准线的垂线,垂足为M,且|PM|=3,设抛物线焦点为F,则△MPF周长为()A.6+3B.5+2C.8D.6+27.(5分)有一个7人学习合作小组,从中选取4人发言,要求其中组长和副组长至少有一人参加,若组长和副组长同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有()A.720种B.600种C.360种D.300种8.(5分)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=3 B.a=4 C.a=5 D.a=69.(5分)设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()A.﹣13 B.6C.79 D.3710.(5分)为得到函数y=sin(x+)的图象,可将函数y=sinx的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数,则|m﹣n|的最小值是()A.B.C.πD.2π11.(5分)如图,已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P、Q,若∠PAQ=60°且=3,则双曲线C的离心率为()A.B.C.D.12.(5分)若方程(x﹣1)4+mx﹣m﹣2=0各个实根x1,x2,…,x k(k≤4,k∈N*)所对应的点,(i=1,2,…,k)均在直线y=x的同侧,则实数m的取值范围是()A.(﹣1,7)B.(﹣∞,﹣7)∪(﹣1,+∞)C.(﹣7,1)D.(﹣∞,1)∪(7,+∞)二.填空题:本大题共四个小题,每小题5分,满分20分.把正确答案填在题中横线上. 13.(5分)在直角三角形ABC中,∠C=90°,AB=2,AC=1,若,则=.14.(5分)曲线C1:﹣=1与曲线C2:+=1所围成图形的面积为.15.(5分)已知数列{a n}的首项为a1=1,a2=3,且满足对任意的n∈N•,都有a n+1﹣a n≤2n,a n+2﹣a n≥3×2n成立,则a2015=.16.(5分)三棱锥P﹣ABC内接于球O,球O的表面积是24π,∠BAC=,BC=4,则三棱锥P﹣ABC的最大体积是.三.解答题:本大题共5小题,满分60分.解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知函数f(x)=cosxcosx(x+).(Ⅰ)求f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(c)=﹣,a=2,且△ABC 的面积为2,求边长c的值.18.(12分)某公司举办一次募捐爱心演出,有1000人参加,每人一张门票,每张100元.在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个实数x,y(x,y∈[0,4]),若满足y≥x,电脑显示“中奖”,则抽奖者再次获得特等奖奖金;否则电脑显示“谢谢”,则不中特等奖奖金.(Ⅰ)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;(Ⅱ)设特等奖奖金为a元,求小李参加此次活动收益的期望,若该公司在此次活动中收益的期望值是至少获利70000元,求a的最大值.19.(12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=2.在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.(Ⅰ)求证:BC⊥AF;(Ⅱ)若二面角D﹣AF﹣C为45°,求CE的长.20.(12分)在平面直角坐标系xOy中,已知点A(﹣1,0)、B(1,0),动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线了.(Ⅰ)求曲线T的方程;(Ⅱ)已知点M(,0),N(0,1),是否存在经过点(0,)且斜率为k的直线l与曲线T有两个不同的交点P和Q,使得向量+与共线?如果存在,求出k的值;如果不存在,请说明理由.21.(12分)已知函数f(x)=(其中k∈R,e=2.71828…是自然数的底数),f′(x)为f(x)的导函数.(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若x∈(0,1]时,f′(x)=0都有解,求k的取值范围;(3)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.四.选做题.【选修4-1:几何证明选讲】22.(10分)如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.(1)求证:AB2=DE•BC;(2)若BD=9,AB=6,BC=9,求切线PC的长.【选修4-4:坐标系与参数方程】23.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),以O为极点,x轴的非负半轴为为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程式2ρsin(θ+)=3,射线OM:θ=与圆心C的交点为O、P,与直线l的交点为Q,求线段PQ的长.【选修4-5:不等式选讲】24.设函数f(x)=|x+1|+|x|(x∈R)的最小值为a.(Ⅰ)求a;(Ⅱ)已知两个正数m,n满足m2+n2=a,求+的最小值.河南省六市2015届高考数学二模试卷(理科)参考答案与试题解析一.选择题:本大题共12小题,每小题5分,满分60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x2+2x﹣3<0},B={x|﹣<x<1},则A∩B等于()A.ΦB.{x|﹣3<x<1} C.{x|﹣<x<1} D.{x|x2+2x﹣3<0}考点:交集及其运算.专题:集合.分析:通过化简A,利用交集的定义计算即可.解答:解:∵x2+2x﹣3=(x﹣1)(x+3)<0,∴﹣3<x<1,又∵B={x|﹣<x<1},∴A∩B={x|﹣<x<1},故选:C.点评:本题考查集合的交集运算,注意解题方法的积累,属于基础题.2.(5分)若复数z满足z(1+i)=4﹣2i(i为虚数单位),则|z|=()A.B.C.D.考点:复数求模.专题:数系的扩充和复数.分析:把已知的等式变形,然后利用复数代数形式的乘除运算化简,再由复数模的公式计算.解答:解:由z(1+i)=4﹣2i,得,∴.故选:D.点评:本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.(5分)2014-2015学年高二年级某研究性学习小组为了了解本校2014-2015学年高一学生课外阅读状况,分成了两个调查小组分别对2014-2015学年高一学生进行抽样调查.假设这两组同学抽取的样本容量相同且抽样方法合理,则下列结论正确的是()A.两组同学制作的样本频率分布直方图一定相同B.两组同学的样本平均数一定相等C.两组同学的样本标准差一定相等D.该校2014-2015学年高一年级每位同学被抽到的可能性一定相同考点:众数、中位数、平均数.专题:概率与统计.分析:根据每一个个体被抽到的概率都为,可得每个个体被抽到可能性相同.解答:解:∵两组同学抽取的样本容量相同且抽样方法合理,∴每一个个体被抽到的概率都为,∴该校2014-2015学年高一年级每位同学被抽到的可能性一定相同,故选D.点评:本题考查了抽样方法,在抽样方法中,每个个体被抽到的概率相等.4.(5分)已知数列{a n}为等比数列,若a4+a6=10,则a7(a1+2a3)+a3a9的值为()A.10 B.20 C.100 D.200考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的性质即可得出.解答:解:∵数列{a n}为等比数列,∴a7(a1+2a3)+a3a9=a7a1+2a7a3+a3a9===102=100,故选:C.点评:本题考查了等比数列的性质,属于基础题.5.(5分)若某几何体的三视图(单位:cm)如图所示,其中左视图是一个边长为2的正三角形,则这个几何体的体积是()A.2cm2B.cm3C.3cm3D.3cm3考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由几何体的三视图得到原几何体的底面积与高,进而得到该几何体的体积.解答:解:由几何体的三视图可知,该几何体为底面是直角梯形,高为的四棱锥,其中直角梯形两底长分别为1和2,高是2.故这个几何体的体积是×[(1+2)×2]×=(cm3).故选:B.点评:本题考查由几何体的三视图求原几何体的体积问题,属于基础题.6.(5分)从抛物线y2=4x图象上一点P引抛物线准线的垂线,垂足为M,且|PM|=3,设抛物线焦点为F,则△MPF周长为()A.6+3B.5+2C.8D.6+2考点:抛物线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先设处P点坐标,进而求得抛物线的准线方程,运用定义,进而求得P点横坐标,代入抛物线方程求得P的纵坐标,进而得到三角形周长.解答:解:设P(x0,y0),依题意可知抛物线准线x=﹣1,焦点F为(1,0),由抛物线的定义可得,|PM|=|PF|=3,即x0=3﹣1=2,∴|y0|=2,即有M(﹣2,±2),∴△MPF的周长为|PF|+|PM|+|FM|=6+=6+2.故选D.点评:本题主要考查了抛物线的应用.解题的关键是灵活利用了抛物线的定义.7.(5分)有一个7人学习合作小组,从中选取4人发言,要求其中组长和副组长至少有一人参加,若组长和副组长同时参加,则他们发言时顺序不能相邻,那么不同的发言顺序有()A.720种B.600种C.360种D.300种考点:排列、组合的实际应用.专题:计算题;排列组合.分析:根据题意,分2种情况讨论,①只有甲乙其中一人参加,②甲乙两人都参加,分别求出每一种情况下的情况数目,再由加法原理计算可得答案.解答:解:根据题意,分2种情况讨论,①、若甲乙其中一人参加,需要从剩余5人中选取3人,从甲乙中任取1人,有2种情况,在剩余5人中任取3人,有C53=10种情况,将选取的4人,进行全排列,有A44=24种情况,则此时有2×10×24=480种情况;②、若甲乙两人都参加,需要从剩余5人中选取2人,有C52=10种选法,将甲乙和选出的2人,进行全排列,有A44=24种情况,则甲乙都参加有10×24=240种情况,其中甲乙相邻的有C52A44A22A33=120种情况;则甲乙两人都参加且不相邻的情况有240﹣120=120种;则不同的发言顺序种数480+120=600种,故选:B.点评:本题考查排列、组合知识,此类问题需要注意常见问题的处理方法,如相邻问题用捆绑法等,本题的关键是根据题意正确进行分类讨论.8.(5分)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=3 B.a=4 C.a=5 D.a=6考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序,依次写出每次循环得到的S,k的值,当S=,k=4时,由题意此时满足条件4>a,退出循环,输出S的值为,结合选项即可得解.解答:解:模拟执行程序,可得S=1,k=1不满足条件k>a,S=,k=2不满足条件k>a,S=,k=3不满足条件k>a,S=,k=4由题意,此时满足条件4>a,退出循环,输出S的值为,故选:A.点评:本题主要考查了程序框图和算法,依次写出每次循环得到的S,k的值是解题的关键,属于基本知识的考查.9.(5分)设m,n是正整数,多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为﹣16,则含x2项的系数是()A.﹣13 B.6C.79 D.37考点:二项式系数的性质.专题:二项式定理.分析:由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.解答:解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为•(﹣2)+•(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是•(﹣2)2+•(﹣5)2=37,故选:D.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.10.(5分)为得到函数y=sin(x+)的图象,可将函数y=sinx的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数,则|m﹣n|的最小值是()A.B.C.πD.2π考点:函数y=Asin(ωx+φ)的图象变换;正弦函数的图象.专题:三角函数的图像与性质.分析:根据函数左右平移关系,求出m,n的表达式,然后根据绝对值的意义进行求解即可.解答:解:y=sinx的图象向左平移+2kπ个单位长度,即可得到函数y=sin(x+)的图象,此时m=+2kπ,k∈Z,y=sinx的图象向右平移+2mπ个单位长度,即可得到函数y=sin(x+)的图象,此时n=+2mπ,m∈Z,即|m﹣n|=|+2kπ﹣﹣2mπ|=|2(k﹣m)π﹣|,∴当k﹣m=1时,|m﹣n|取得最小值为2π﹣=,故选:A点评:本题考查函数y=Asin(ωx+φ)的图象变换,利用函数平移关系是解决本题的关键.11.(5分)如图,已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,O为坐标原点,以A为圆心的圆与双曲线C的某渐近线交于两点P、Q,若∠PAQ=60°且=3,则双曲线C的离心率为()A.B.C.D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:确定△QAP为等边三角形,设AQ=2R,则OP=R,利用勾股定理,结合余弦定理,即可得出结论.解答:解:因为∠PAQ=60°且=3,所以△QAP为等边三角形,设AQ=2R,则OP=R,渐近线方程为y=x,A(a,0),取PQ的中点M,则AM=由勾股定理可得(2R)2﹣R2=()2,所以(ab)2=3R2(a2+b2)①在△OQA中,=,所以7R2=a2②①②结合c2=a2+b2,可得=.故选:B.点评:本题考查双曲线的性质,考查余弦定理、勾股定理,考查学生的计算能力,属于中档题.12.(5分)若方程(x﹣1)4+mx﹣m﹣2=0各个实根x1,x2,…,x k(k≤4,k∈N*)所对应的点,(i=1,2,…,k)均在直线y=x的同侧,则实数m的取值范围是()A.(﹣1,7)B.(﹣∞,﹣7)∪(﹣1,+∞)C.(﹣7,1)D.(﹣∞,1)∪(7,+∞)考点:二次函数的性质.专题:函数的性质及应用.分析:原方程等价于(x﹣1)3+m=,原方程的实根是曲线y=(x﹣1)3+m与曲线y=的交点的横坐标,分别作出左右两边函数的图象:分m>0与m<0讨论,可得答案.解答:解:方程的根显然x≠1,原方程等价于(x﹣1)3+m=,原方程的实根是曲线y=(x﹣1)3+m与曲线y=的交点的横坐标,而曲线y=(x﹣1)3+m是由曲线y=(x﹣1)3向上或向下平移|m|个单位而得到的,若交点(xi,)(i=1,2,…,k)均在直线y=x的同侧,因直线y=x与y=交点为:(﹣1,﹣1),(2,2);所以结合图象可得,由(2﹣1)3+m=2,解得:m=1,由(﹣1﹣1)3+m=﹣1,解得:m=7∴m<1或m>7,故选:D.点评:本题综合考查了反比例函数,反比例函数与一次函数图象的交点问题,数形结合是数学解题中常用的思想方法,能够变抽象思维为形象思维,有助于把握数学问题的本质二.填空题:本大题共四个小题,每小题5分,满分20分.把正确答案填在题中横线上. 13.(5分)在直角三角形ABC中,∠C=90°,AB=2,AC=1,若,则=.考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的三角形法则和数量积的定义即可得出.解答:解:如图所示.在直角三角形ABC中,∵∠C=90°,AB=2,AC=1.∴CB==.∵,,=0∴===0+=====.故答案为:.点评:本题考查了向量的三角形法则和数量积的定义、勾股定理,属于基础题.14.(5分)曲线C1:﹣=1与曲线C2:+=1所围成图形的面积为.考点:直线的截距式方程.专题:分类讨论;数形结合法;直线与圆.分析:根据题意,在同一坐标系中画出C1、C2所围成的图形,根据图形的对称性求出它的面积即可.解答:解:对于曲线C1:﹣=1,当x>0,y>0时,﹣=1,当x>0,y<0时,+=1,当x<0,y<0时,﹣=﹣1,当x<0,y>0时,+=﹣1;对于曲线C2:+=1,当x>0,y>0时,+=1,当x>0,y<0时,﹣=1,当x<0,y<0时,+=﹣1,当x<0,y>0时,﹣=﹣1;在同一坐标系中画出这8条线段,它们所围成的图形是四边形ABCD和四边形EFGH,如图所示;由,得点A(,);∴△ABC的面积为:S△ABD=BD•y A=×4×=;∴四边形ABCD的面积为:S四边形ABCD=2S△ABD=2S△ABD=2×=;由C1、C2所围成的图形的面积为:S=S四边形ABCD+S四边形EFGH=2×=.故答案为:.点评:本题考查了直线方程的应用问题,也考查了分类讨论的应用问题,考查了数形结合的应用问题,是综合性题目.15.(5分)已知数列{a n}的首项为a1=1,a2=3,且满足对任意的n∈N•,都有a n+1﹣a n≤2n,a n+2﹣a n≥3×2n成立,则a2015=22015﹣1.考点:数列递推式.专题:点列、递归数列与数学归纳法.分析:通过对a n+1﹣a n≤2n变形可得a n+1﹣a n≥2n,利用a n+1﹣a n≤2n,可得a n+1﹣a n=2n,并项相加即得结论.解答:解:∵a n+1﹣a n≤2n,∴﹣a n+1+a n≥﹣2n,又∵a n+2﹣a n≥3×2n,∴a n+2﹣a n+1=a n+2﹣a n﹣a n+1+a n≥3×2n﹣2n=2n+1,∴a n+1﹣a n≥2n,又∵a n+1﹣a n≤2n,∴a n+1﹣a n=2n,∴a2015=a2015﹣a2014+a2014﹣a2013+…+a3﹣a2+a2﹣a1+a1=22014+22013+…+22+2+1==22015﹣1,故答案为:22015﹣1.点评:本题考查求数列的通项,注意解题方法的积累,属于中档题.16.(5分)三棱锥P﹣ABC内接于球O,球O的表面积是24π,∠BAC=,BC=4,则三棱锥P﹣ABC的最大体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:设球的半径为R,球心为O,如图所示,由球O的表面积是24π,可得4πR2=24π,解得R.设△ABC的外心为O1,外接圆的半径为r,则O1B=r=,可得.可得O1P=.在△ABC中,由余弦定理可得:,利用基本不等式的性质可得bc≤16,利用三棱锥P﹣ABC的体积V=,即可得出.解答:解:设球的半径为R,球心为O,如图所示,∵球O的表面积是24π,∴4πR2=24π,解得.设△ABC的外心为O1,外接圆的半径为r,则O1B=r==,∴=.∴O1P==.在△ABC中,由余弦定理可得:,化为b2+c2=bc+16≥2bc,∴bc≤16,当且仅当b=c=4时取等号.∴三棱锥P﹣ABC的体积V==×≤=,故答案为:.点评:本题考查了三棱锥外接球的性质、勾股定理、三棱锥的体积计算公式、正弦定理余弦定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.三.解答题:本大题共5小题,满分60分.解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知函数f(x)=cosxcosx(x+).(Ⅰ)求f(x)的最小正周期;(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,若f(c)=﹣,a=2,且△ABC 的面积为2,求边长c的值.考点:余弦定理;三角函数的周期性及其求法.专题:解三角形.分析:(1)由三角函数公式化简可得f(x)=cos(2x+)+,由周期公式可得;(2)结合(1)可得C=,由题意和面积公式可得ab的值,进而由余弦定理可得c值.解答:解:(1)化简可得f(x)=cosxcosx(x+)=cosx(cosx﹣sinx)=cos2x﹣sinxcosx=﹣sin2x=cos(2x+)+,∴f(x)的最小正周期T==π;(2)由题意可得f(C)=cos(2C+)+=﹣,∴cos(2C+)=﹣1,∴C=,又∵△ABC的面积S=absinC=ab=2,∴ab=8,∴b===4,由余弦定理可得c2=a2+b2﹣2abcosC=12,∴c=2点评:本题考查余弦定理,涉及三角函数的周期性和三角形的面积公式,属中档题.18.(12分)某公司举办一次募捐爱心演出,有1000人参加,每人一张门票,每张100元.在演出过程中穿插抽奖活动,第一轮抽奖从这1000张票根中随机抽取10张,其持有者获得价值1000元的奖品,并参加第二轮抽奖活动.第二轮抽奖由第一轮获奖者独立操作按钮,电脑随机产生两个实数x,y(x,y∈[0,4]),若满足y≥x,电脑显示“中奖”,则抽奖者再次获得特等奖奖金;否则电脑显示“谢谢”,则不中特等奖奖金.(Ⅰ)已知小明在第一轮抽奖中被抽中,求小明在第二轮抽奖中获奖的概率;(Ⅱ)设特等奖奖金为a元,求小李参加此次活动收益的期望,若该公司在此次活动中收益的期望值是至少获利70000元,求a的最大值.考点:离散型随机变量的期望与方差.专题:计算题;概率与统计.分析:(Ⅰ)由题意知符合几何概型,从而求面积比即可;(Ⅱ)特等奖奖金为a元,设小李参加此次活动的收益为ξ,则ξ的可能取值为﹣100,900,a+900.从而列分布列,再求数学期望,再令﹣≥70000即可.解答:解:(Ⅰ)设“小明在第二轮抽奖中获奖”为事件A,所有基本事件构成区域的面积为16,事件A所包含的基本事件的区域的面积为5,∴P(A)=.(Ⅱ)特等奖奖金为a元,设小李参加此次活动的收益为ξ,则ξ的可能取值为﹣100,900,a+900.P(ξ=﹣100)==,P(ξ=900)=•=,P(ξ=a+900)==.∴ξ的分布列为ξ﹣100 900 a+900P∴Eξ=﹣100×+900×+(a+900)=﹣+.∴该集团公司收益的期望为﹣1000Eξ=﹣,由题意﹣≥70000,解得a≤6400.故特等奖奖金最高可设置成6400元.点评:本题考查了几何概型的应用及分布列与数学期望的求法,属于基础题.19.(12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2CB=2.在梯形ACEF中,EF∥AC,且AC=2EF,EC⊥平面ABCD.(Ⅰ)求证:BC⊥AF;(Ⅱ)若二面角D﹣AF﹣C为45°,求CE的长.考点:用空间向量求平面间的夹角;与二面角有关的立体几何综合题.专题:综合题;空间位置关系与距离;空间角.分析:(Ⅰ)证明BC⊥AC,BC⊥EC,AC∩EC=C,可得BC⊥平面ACEF,从而BC⊥AF;(Ⅱ)建立空间直角坐标系,求出平面DAF的法向量,平面AFC的法向量,根据二面角D ﹣AF﹣C为45°,利用向量的夹角公式,即可求CE的长.解答:(Ⅰ)证明:在△ABC中,AC2=AB2+BC2﹣2AB•BCcos60°=3所以AB2=AC2+BC2,由勾股定理知∠ACB=90°所以BC⊥AC.…(2分)又因为EC⊥平面ABCD,BC⊂平面ABCD所以BC⊥EC.…(4分)又因为AC∩EC=C,所以BC⊥平面ACEF,又AF⊂平面ACEF所以BC⊥AF.…(6分)(Ⅱ)解:因为EC⊥平面ABCD,又由(Ⅰ)知BC⊥AC,以C为原点,建立如图所示的空间直角坐标系C﹣xyz.设CE=h,则C(0,0,0),,,,所以,.…(8分)设平面DAF的法向量为=(x,y,z),则令.所以=(,﹣3,).…(9分)又平面AFC的法向量=(0,1,0)…(10分)所以cos45°==,解得.…(11分)所以CE的长为.…(12分)点评:本题考查线面垂直的判定与性质,考查面面角,考查向量知识的运用,正确求出平面的法向量是关键.20.(12分)在平面直角坐标系xOy中,已知点A(﹣1,0)、B(1,0),动点C满足条件:△ABC的周长为2+2.记动点C的轨迹为曲线了.(Ⅰ)求曲线T的方程;(Ⅱ)已知点M(,0),N(0,1),是否存在经过点(0,)且斜率为k的直线l与曲线T有两个不同的交点P和Q,使得向量+与共线?如果存在,求出k的值;如果不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:圆锥曲线中的最值与范围问题.分析:(I)设C(x,y),由|AC|+|BC|+|AB|=2+2,|AB|=2,可得|AC|+|BC||=2>2,利用椭圆的定义可知:动点C的轨迹是以A,B为焦点,长轴长为2的椭圆,除去与x轴的两个交点.(II)设直线l的方程为:y=kx+,代入椭圆方程可得:+2kx+1=0,由于直线l与椭圆有两个不同的交点P和Q,可得△>0,解得k的取值范围.设P(x1,y1),Q(x 2,y2),向量+与共线,∴,把根与系数的关系代入解出即可判断出.解答:解:(I)设C(x,y),∵|AC|+|BC|+|AB|=2+2,|AB|=2,∴|AC|+|BC||=2>2,∴椭圆的定义可知:动点C的轨迹是以A,B为焦点,长轴长为2的椭圆,除去与x轴的两个交点,∴a=,c=1,∴b2=a2﹣c2=1.∴曲线T的方程为:+y2=1(y≠0).(II)设直线l的方程为:y=kx+,代入椭圆方程可得:+2kx+1=0,∵直线l与椭圆有两个不同的交点P和Q,∴△=8k2﹣4>0,解得或k.∴满足条件的k的取值范围是∪.设P(x1,y1),Q(x2,y2),∴+=(x1+x2,y1+y2),又x1+x2=,y1+y2=k(x1+x2)+2,=.∵向量+与共线,∴,∴,解得k=,∵∉∪.∴不存在k使得向量+与共线.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得△>0及其根与系数的关系、向量共线定理,考查了推理能力与计算能力,属于难题.21.(12分)已知函数f(x)=(其中k∈R,e=2.71828…是自然数的底数),f′(x)为f(x)的导函数.(1)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若x∈(0,1]时,f′(x)=0都有解,求k的取值范围;(3)若f′(1)=0,试证明:对任意x>0,f′(x)<恒成立.考点:利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.专题:导数的概念及应用;导数的综合应用;不等式的解法及应用.分析:(1)求出当k=2时,f(x)的导数,求得切线的斜率和切点,由点斜式方程即可得到切线方程;(2)由f′(x)=0可得k=,运用导数求得右边函数的最大值,即可得到k的范围;(3)由f′(1)=0,可得k=1,对任意x>0,g(x)<e﹣2+1等价为1﹣x﹣xlnx<(e﹣2+1),先证1﹣x﹣xlnx≤e﹣2+1,可由导数求得,再证>1.即可证得对任意x>0,f′(x)<恒成立.解答:解:(1)当k=2时,f(x)=的导数为f′(x)=(x>0),f′(1)=﹣,f(1)=,在点(1,f(1))处的切线方程为y﹣=﹣(x﹣1),即为y=﹣x+;(2)f′(x)=0,即=0,即有k=,令F(x)=,由0<x≤1,F′(x)=﹣<0,F(x)在(0,1)递减,x→0,F(x)→+∞,F(x)≤1,即k≤1;(3)证明:由f′(1)=0,可得k=1,g(x)=(x2+x)f′(x),即g(x)=(1﹣x﹣xlnx),对任意x>0,g(x)<e﹣2+1等价为1﹣x﹣xlnx<(e﹣2+1),由h(x)=1﹣x﹣xlnx得h′(x)=﹣2﹣lnx,当0<x<e﹣2时,h′(x)>0,h(x)递增,当x>e﹣2时,h′(x)<0,h(x)递减,则h(x)的最大值为h(e﹣2)=1+e﹣2,故1﹣x﹣xlnx≤e﹣2+1,设φ(x)=e x﹣(x+1),φ′(x)=e x﹣1,x>0时,φ′(x)>0,φ(x)>0,φ(x)>φ(0)=0,则x>0时,φ(x)=e x﹣(x+1)>0即>1.即1﹣x﹣xlnx≤e﹣2+1<(e﹣2+1),故有对任意x>0,f′(x)<恒成立.点评:本题考查导数的运用:求切线方程和单调区间及极值、最值,运用分离参数和不等式恒成立问题转化为不等式的传递性是解题的关键.四.选做题.【选修4-1:几何证明选讲】22.(10分)如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.(1)求证:AB2=DE•BC;(2)若BD=9,AB=6,BC=9,求切线PC的长.考点:相似三角形的判定;相似三角形的性质;圆的切线的性质定理的证明.专题:计算题;证明题.分析:对于(1)求证:AB2=DE•BC,根据题目可以判断出梯形为等腰梯形,故AB=CD,然后根据角的相等证△CDE相似于△BCD,根据相似的性质即可得到答案.对于(2)由BD=9,AB=6,BC=9,求切线PC的长.根据弦切公式可得PC2=PD•PB,然后根据相似三角形边成比例的性质求出PD和PB代入即可求得答案.解答:解:(1)∵AD∥BC∴AB=DC,∠EDC=∠BCD,又PC与⊙O相切,∴∠ECD=∠DBC,∴△CDE∽△BCD,∴,∴CD2=DE•BC,即AB2=DE•BC.(2)由(1)知,,∵△PDE∽△PBC,∴.又∵PB﹣PD=9,∴.∴.∴.点评:此题主要考查由相似三角形的性质解三角形的一系列问题,其中应用到弦切公式,题目属于平面几何的问题,涵盖的知识点比较多,有一定的技巧性,属于中档题目.【选修4-4:坐标系与参数方程】23.在平面直角坐标系xOy中,圆C的参数方程为(φ为参数),以O为极点,x轴的非负半轴为为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程式2ρsin(θ+)=3,射线OM:θ=与圆心C的交点为O、P,与直线l的交点为Q,求线段PQ的长.考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:坐标系和参数方程.分析:(I)把cos2φ+sin2φ=1代入圆C的参数方程为(φ为参数),消去参数化为普通方程,把代入可得圆C的极坐标方程.(II)设P(ρ1,θ1),联立,解得ρ1,θ1;设Q(ρ2,θ2),联立,解得ρ2,θ2,可得|PQ|.解答:解:(I)圆C的参数方程为(φ为参数),消去参数化为普通方程:(x ﹣1)2+y2=1,把代入可得圆C的极坐标方程:ρ=2cosθ.(II)设P(ρ1,θ1),则,解得ρ1=1,θ1=,设Q(ρ2,θ2),则,解得ρ2=3,θ2=,∴|PQ|=2.点评:本题考查了参数方程化为普通方程、直角坐标方程化为极坐标方程、弦长问题,考查了计算能力,属于中档题.【选修4-5:不等式选讲】24.设函数f(x)=|x+1|+|x|(x∈R)的最小值为a.(Ⅰ)求a;(Ⅱ)已知两个正数m,n满足m2+n2=a,求+的最小值.考点:基本不等式.专题:不等式的解法及应用.分析:(I)f(x)=,利用一次函数的单调性即可得出a.(II)由(I)可知:m2+n2=1,利用基本不等式的性质可得:1≥2mn,由于m,n>0,再利用基本不等式的性质即可得出+的最小值.解答:解:(I)f(x)=,∴当x<﹣2时,f(x)>f(﹣2)=2;当﹣2≤x≤0时,f(x)>f(0)=1;当x>0时,f(x)>f(0)=1.综上可得:函数f(x)的最小值为1,∴a=1.(II)由(I)可知:m2+n2=1,∴1≥2mn,∴.∵m,n>0,∴+≥2≥2,当且仅当m=n=时取等号.∴+的最小值为2.点评:本题考查了分段函数与一次函数的性质、基本不等式的性质,考查了数形结合的思想方法与推理能力,属于中档题.。
洛阳市——高三年级第二次统一考试.docx
洛阳市2015——2016学年高三年级第二次统一考试数学试卷(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名,考号填写在答题卡上. 2.考试结束,将答题卡交回.一、选择题:本大题共12小题,每小题5分.共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 1=2+i ,z 2=3-2i ,则z 1·z 2的虚部为A .iB .-iC .1D .-1 2.已知集合A ={x |x <-2},B ={x |2x >4},则“x ∈A ”是“x ∈B ”的 A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知数列{n a }满足1n a +=2n a ,n ∈N ﹡,a 3=4,则数列{n a }的前5项和为 A .32 B .31 C .64 D .63 4.设P (x ,y )满足约束条件4,3.x y x ⎧⎨⎩+2≤+y ≤则点P 对应的区域与坐标轴围成的封闭图形面积为 A .32 B .52 C .72 D .1125.已知离心率为2的双曲线22221x y a b-=(a >0,b >0)的实轴长为8,则该双曲线的渐近线方程为 A .y 3.y 2xC .y 3.y 26.将函数y =cos (2x +3π)的图象向左平移6π个单位,得到函数y =f (x )的图象,则下列说法正确的是A .f (x )是偶函数B .f (x )周期为2πC .f (x )图象关于x =6π对称 D .f (x )图象关于(-6π,0)对称 7.如图所示的程序框图所表示的算法功能是A .输出使1×2×4×…×n ≥2015成立的最小整数nB .输出使1×2×4×…×n ≥2015成立的最大整数nC .输出使1×2×4×…×n ≥2015成立的最大整数n +2D .输出使1×2×4×…×n ≥2015成立的最小整数n +2 8.函数f (x )=ln 2xx的图象大致为9.已知定义在R 上的奇函数f (x )都有f (x +52)+f (x )=0,当-54≤x ≤0时,f (x ) =2x+a ,则f (16)的值为 A .12 B .-12 C .32 D .-3210.在直三棱柱ABC —A 1B 1C 1中,BC ⊥AC ,AC =12,BC =5,若一个球和它的各个面都 相切,则该三棱柱的表面积为A .60B .180C .240D .360 11.已知P (a ,b )为圆22x y +=4上任意一点,则2214a b+最小时,2a 的值为 A .45 B .2 C .43D .3 12.设f (x )=324(0),2(0).ax x x x e x ⎧⎪⎨⎪⎩+6+2≤>在区间[-2,2]上最大值为4,则实数a 的取值范围为A .[12ln2,+∞)B .[0,12ln2] C .(-∞,0] D .(-∞,12ln2] 第Ⅱ卷(非选择题,共90分)二、填空题:本题共4个小题。
河南省洛阳市2015-2016学年高三下学期第二次大练习理科数学备考试题一含答案
二练备考一一、选择题(本大题共12小题,共60.0分)1. 设等差数列 的前n 项和为 , 且 ,则 ( )A. 11B. 10C. 9D. 82. 已知定义域为R 的函数 不是奇函数,则下列命题一定为真命题的是( )A. B.C.D.3. 已知 ,则“”是“ ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既非充分也非必要条件 4. 某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰 直角三角形,左视图是边长为2的正方形,则此四面体的四个面中面 积最大的为( )A. B. 4 C. D.5. 直线的倾斜角的取值范围是( )A. B. C.D.6. 如图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是( ) A. B. C. D.7. 如图,已知 ,点在线段上,且,设,则等于( ) A. B. 3 C.D.8. 设 为三条不同的直线, 为一个平面,下列命题中正确的个数是( ) ①若 ,则 与 相交 ②若 则 ③若 || , || , ,则 ④若 || , , ,则 ||A. 1B. 2C. 3D. 49.已知曲线 ,点 及点 ,从点 观察点 ,要使视线不被曲线挡住,则实数 的取值范围是( )A. (4,+∞)B. (-∞,4)C. (10,+∞)D. (-∞,10)10. 函数(其中)的图象如图所示,为了得到 的图象,则只要将 的图象( )A. 向右平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向左平移个单位长度11. 若变量满足,则点所在区域的面积为()A. B. C. D.12. 设是双曲线的左、右焦点,若双曲线右支上存在一点,使(为坐标原点),且,则双曲线的离心率为()A. B. C. D.二、填空题(本大题共4小题,共20.0分)13. 已知关于的二项式展开式的二项式系数之和为32,常数项为80,则实数的值为.14. ABC的内角A,B,C所对的边分别为,且成等比数列,若= ,=,则的值为.15. 已知点在抛物线的准线上,点M,N在抛物线C上,且位于x轴的两侧,O是坐标原点,若,则点A到动直线MN的最大距离为 .16. 在直径AB为2的圆上有长度为1的动弦CD,则的取值范围是.三、解答题(本大题共6小题,共70.0分)17. 设数列的前项和为,且首项.(Ⅰ)求证:是等比数列;(Ⅱ)若为递增数列,求的取值范围.18. (本小题满分12分)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮训练,每人投10次,投中的次数统计如下表:(Ⅰ)从统计数据看,甲乙两个班哪个班成绩更稳定(用数据说明)?(Ⅱ) 若把上表数据作为学生投篮命中率,规定两个班级的1号和2号两名同学分别代表自己的班级参加比赛,每人投篮一次,将甲、乙两个班两名同学投中的次数之和分别记作和,试求和的分布列和数学期望.19.如图,弧是半径为的半圆,为直径,点为弧的中点,点和点为线段的三等分点,平面外一点满足,.(Ⅰ)证明:;(Ⅱ)已知点,为线段,上的点,使得,求当最短时,平面和平面所成二面角的正弦值.20. (12分)已知直线经过椭圆S:的一个焦点和一个顶点.(1)求椭圆S的方程;(2)如图,M,N分别是椭圆S的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线PA的斜率为.①若直线PA平分线段MN,求的值;②对任意,求证:.21. 设,.(Ⅰ)若在上有两个不等实根,求的取值范围;(Ⅱ)若存在,使得对任意的,都有成立,求实数的取值范围.22. (本题满分10分)选修4—4:坐标系与参数方程直线(极轴与轴的非负半轴重合,且单位长度相同)。
河南省洛阳市-高三数学第二次统一考试(理科)
河南省洛阳市2008-2009学年高三第二次统一考试数学(理科)试题 第Ⅰ卷(选择题,共60分)一.选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合 符合要求的。
1.2)11(ii +- 的值为 A .1B .iC .1-D .i -2.下列四组函数中,表示相同函数的一组是A .x x f =)(,2)(x x g =B .2)(x x f =,2)()(x x g =C .11)(2--=x x x f ,1)(+=x x gD .11)(-⋅+=x x x f ,1)(2-=x x g3.对于平面α和直线m .n ,给出下列命题① 若n m //,则m .n 与α所成的角相等; ② 若α//m ,α//n ,则n m //; ③ 若α⊥m ,n m ⊥,则α//n④ 若m 与n 是异面直线,且α//m ,则n 与α相交。
其中真命题的个数是A .1B .2C .3D .44.若二项式n xx )2(3+的展开式存在常数项,则n 值可以为A .7B .8C .9D .105.已知x .y 满足约束条件⎪⎩⎪⎨⎧≥≥-+≥004430y y x x ,则x y x 222++的最小值为A .52B .12-C .2524D .16.一个正四面体的外接球半径与内切球半径之比为A .1:3B .2:3C .1:4D .1:27.已知等比数列{}n a 的前n 项和5152-⋅=-n n t S ,则实数t 的值为 A .4B .5C .54D .518.从0,1,2,3,4,5,6,7,8,9十个数字中,选出一个偶数和三个奇数组成一个没有重复数字的四位数,这样的四位数共有 A .1480个B .1440个C .1200个D .1140个9.已知10<<<y x ,)1(log +=x a x ,)1(log +=y b y ,则a .b 的大小关系是A .b a >B .b a =C .b a <D .与x .y 的具体取值有关10.在ABC ∆中,内角A .B .C 的对边分别为a .b .c ,已知a .b .c 成等比数列,3=+c a ,43cos =B ,则BC AB ⋅等于 A .23 B .32- C .3D .3-11.设离心率为e 的双曲线C :12222=-by a x )0,0(>>b a 的右焦点为F ,直线l 过焦点F ,且斜率为k ,则直线l 与双曲线C 的左右两支都相交的充要条件是A .122>-e k B .122<-e k C .122>-k e D .122<-k e12.函数⎩⎨⎧-=-x x f x f 2)4()(2,2,-≤->x x 在[)+∞,2上为增函数,且0)0(=f ,则)(x f 的最小值是A .)0(fB .)2(fC .)4(fD .)2(-f第Ⅱ卷(选择题,共90分)二.填空题:本大题共4个小题,每小题5分,共20分。