高中数学 第三章复习教学案 北师大版必修1

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教案、学案用纸
年级高一 授课时间 学习重点 学习难点 学科数学 课题 撰写人 指数函数与对数函数的性质 灵活运用函数性质解决有关问题 第三章复习
学 习 目 标
理解指数与对数,指数函数与对数函数的联系;能更加熟练解决与指数函数、对数 函数有关问题
教 一



自 主 学 习
1. 回顾本章知识网络:
2. 指数与对数互化
) D. y
1 x
2、函数 y=log 2 x+3(x≥1)的值域是( A. 2, B.(3,+∞)
C. 3,
3、若 M {y | y 2x }, P {y | y A. { y | y 1} B. { y | y 1}
x 1} ,则 M∩P(
C. { y | y 0}
二 例 1 已知函数 f ( x) log a 并证明
师 生 互动
x5 ( a 0, a 1) ,判断 f ( x ) 在 x (, 5) 上的单调性, x5
2 ( x R) , 2 1 (1) 试证明:对于任意 a, f ( x) 在 R 为增函数; (2)试确定 a 的值,使 f ( x ) 为奇函数。



B、 ( 2 ,1) (1, 2 ) D、 ( 2,1) (1,2)
8、函数 f ( x) | log 1 x | 的单调递增区间是
2
1 A、 (0, ] 2
B、 (0,1]
C、 (0,+∞)来自D、 [1,)四 课 后 反 思
五 课 后 巩 固 练 习 1 、图中曲线分别表示 y l o g a x , y l o gb x , y l o g c x , y l o g d x 的图象, y
4、对数式 b loga2 (5 a) 中,实数 a 的取值范围是( A.a>5,或 a<2 C.2<a<3,或 3<a<5 5、 已知 f ( x) a A. a 0
2 x
B.2<a<5 D.3<a<4
x
(a 0且a 1) ,且 f (2) f (3) ,则 a 的取值范围是(
a, b, c, d 的关系是(
A、0<a<b<1<d<c C、0<d<c<1<a<b 2、a=log0.50.6,b=log A.a<b<c 3、设 f ( x) 1
x
) B、0<b<a<1<c<d D、0<c<d<1<a<b
2
y=logax y=logbx
O )
1
x
0.5,c=log
3
5 ,则(
例 2.设 a 是实数, f ( x) a
x
1 a2 0 ,则 a 的取值范围是( 例 3.若 log2 a ) 1 a 1 1 1 A. ( , ) B. (1,) C. ( ,1) D. (0, ) 2 2 2
三 巩 固 练 习 1、 下列函数中,在区间 0, 不是增函数的是( A. y 2 x B. y lg x C. y x 3 ) D.(-∞,+∞) ) D. { y | y 0} )
C. a 1 D. 0 a 1 )

B. a 1
6、函数 y=(a -1) 在(-∞,+∞)上是减函数,则 a 的取值范围是( A.|a|>1 7、函数 y B.|a|>2 C.a> 2 ) D.1<|a|< 2
log1 ( x 2 1) 的定义域为(
2
A、 2 ,1 1, 2 C、 2,1 1,2
y=logcx y=logdx
B.b<a<c
C.a<c<b
D.c<a<b
2 (1)求 f(x)的值域; (2)证明 f(x)为 R 上的增函数; 2 1
a x 1 x 4.已知函数 f(x)= a 1 (a>0 且 a≠1).
(1)求 f(x)的定义域和值域; (2)讨论 f(x)的单调性.
相关文档
最新文档