雨水流量计算公式

合集下载

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)雨水流量是研究城市排水系统设计和防洪工程中的重要参数。

目前常用的雨水流量计算方法是基于雨水流量公式进行。

本文将详细介绍雨水流量公式的计算过程与结果。

一、理论背景雨水流量公式是通过对降雨特点的分析,以及流域面积、地形、土壤类型等因素的考虑,推导出的一种计算雨水流量的方法。

雨水流量公式的应用可以帮助工程师有效地评估和设计城市排水系统,确保其具有良好的抗洪能力和排水效果。

二、常见的雨水流量公式1. 曼宁公式曼宁公式是计算河流或渠道中雨水流量的一种经验公式,常用于城市排水系统的设计与规划。

该公式的基本形式为:Q = C × A × R^2/3 ×S^1/2,其中Q代表雨水流量,C为曼宁系数,A为截面面积,R为湿周(即水流与湿周长的比值),S为水流的比降。

2. 多项式公式多项式公式是通过对实测雨水流量数据进行分析和拟合得到的一种较为精确的计算方法。

多项式公式的形式为:Q = a × A^b × C^c × R^d × S^e,其中a、b、c、d、e是经验系数,A、C、R、S分别为截面面积、湿周、湿周与截面面积的比值、水流的比降。

3. 水动力学模型水动力学模型是基于流体动力学原理建立的一种计算雨水流量的方法。

通过对流速、水位、涌浪等水力要素的观测,运用数值解法求解流体动力学方程,得到雨水流量的准确计算结果。

三、计算过程以曼宁公式为例,现将具体的计算过程进行说明。

步骤一:确定曼宁系数根据河流或渠道的特征,选择合适的曼宁系数。

曼宁系数的选择需考虑流域的地貌、土壤类型、河床或渠道的形状等因素。

步骤二:测量截面面积和湿周在河流或渠道选取一截面进行测量,测量得到截面的面积A和湿周R。

步骤三:查阅水流比降表根据所在地区的地形特征,查询水流比降表,得到水流的比降S。

步骤四:代入公式进行计算将步骤一至步骤三所得数据代入曼宁公式,即可计算出雨水流量Q 的数值。

雨水管排水计算公式

雨水管排水计算公式

雨水管排水计算公式在建筑设计中,雨水管排水计算是非常重要的一部分。

合理的雨水管排水设计可以有效地避免建筑物受到雨水侵蚀和损坏,保护建筑物的结构和外观。

在进行雨水管排水计算时,需要考虑建筑物的屋面面积、雨水的流量、雨水管的尺寸和坡度等因素。

本文将介绍雨水管排水计算的基本原理和相关公式。

首先,我们需要了解一些基本的概念。

雨水管排水计算的关键参数包括雨水的流量和雨水管的尺寸。

雨水的流量取决于建筑物的屋面面积和降雨强度。

一般来说,建筑物的屋面面积越大,降雨强度越大,雨水的流量就越大。

而雨水管的尺寸则取决于雨水的流量和排水速度。

为了确保雨水能够迅速排出建筑物,我们需要选择合适尺寸的雨水管,并确定合适的坡度,使雨水能够顺利地流出。

在进行雨水管排水计算时,我们可以使用以下的基本公式:1. 雨水的流量计算公式:Q = A × i。

其中,Q 代表雨水的流量,单位为立方米/秒;A 代表建筑物的屋面面积,单位为平方米;i 代表降雨强度,单位为米/秒。

通过这个公式,我们可以计算出雨水的流量,从而确定需要排水的量。

2. 雨水管的尺寸计算公式:D = √(8Q/πv)。

其中,D 代表雨水管的直径,单位为米;Q 代表雨水的流量,单位为立方米/秒;v 代表雨水管的流速,单位为米/秒。

通过这个公式,我们可以计算出合适尺寸的雨水管直径,从而确保雨水能够迅速排出建筑物。

3. 雨水管的坡度计算公式:S = h/L。

其中,S 代表雨水管的坡度,单位为米/米;h 代表雨水管的高度差,单位为米;L 代表雨水管的长度,单位为米。

通过这个公式,我们可以计算出合适的雨水管坡度,使雨水能够顺利地流出建筑物。

在实际的雨水管排水计算中,我们还需要考虑一些其他因素,比如雨水管的材质、连接方式、防止堵塞的措施等。

在选择雨水管的材质时,我们需要考虑其耐腐蚀性能和使用寿命;在确定雨水管的连接方式时,我们需要考虑其密封性能和安装方便性;在设计防止堵塞的措施时,我们需要考虑其清洁性和维护便利性。

雨水排水系统的水力计算

雨水排水系统的水力计算

前进
返回本章总目录
6.3 雨水排水系统的水力计算
返回本书总目录
5.径流系数
后退
前进
返回本章总目录
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
返回本书总目录
1.雨水斗泄流量
重力流状态下,雨水斗的排水状况是自由堰流,通过雨水斗
的泄流量与雨水斗进水口直径和斗前水深有关,可按环形溢
流堰公式计算:
6.3 雨水排水系统的水力计算
6.3.3 设计计算步骤
返回本书总目录
2.天沟外排水 天沟布置 即确定天沟的分水线及每条天沟的汇水面积;按照屋面的
构造一般应在伸缩缝或沉降缝作为天沟分水线,单坡的排泄长 度不宜大于 50m。天沟较长时,坡度不能太大,但最小坡度不 得小于0.003。
确定天沟断面 天沟形状:矩形、梯形、半圆形、三角形等。 天沟尺寸:根据排水量、天沟汇水面积计算,根据每一条天沟
管径 I
0.02 0.03 0.04 0.05 0.06 0.07
75mm
3.07 3.77 4.35 4.86 5.33 5.75
100mm 150mm 200mm 250mm
6.63 8.12 9.38 10.49 11.49 12.41
19.55 23.94 27.65 30.91 33.86 36.57
211(110.85lgP) q
(t8)0.70
后退
前进
返回本章总目录
返回本书总目录
6.3 雨水排水系统的水力计算
6.3.1 屋面雨水设计流量计算
屋面雨水排水管道的设计降雨历时可按5min计算, 居住小区的雨水管道设计降雨历时应按下式计算:
t t1M2t

(完整版)雨水流量公式详解(含计算过程及结果)

(完整版)雨水流量公式详解(含计算过程及结果)

雨水设计流量公式Q S=qΨF 式中Q S———雨水设计流量(L /s)q———设计暴雨强度,(L /s・ha) Ψ———径流系数F———汇水面积(ha公顷)其中一、暴雨强度公式为:q=3245.114(1+0.2561lgP) (t+17.172)0.654式中t———降雨历时(min)P———设计重现期(年)(一)设计降雨历时t=t1+mt2,式中t——设计降雨历时(min)t1——地面集水时间(min)t2——雨水在管渠内流行的时间(min)m——折减系数t1的确定:地面集水时间t1受水区面积大小、地形陡缓、屋顶及地面的排水方式、土壤的干湿程度及地表覆盖情况等因素的影响。

在实际应用中,要准确地计算t1值是比较困难的,所以通常取经验数值,t1=5~15min。

在设计工作中,按经验在地形较陡、建筑密度较大或铺装场地较多及雨水口分布较密的地区,t1=5~8min;而在地势平坦、建筑稀疏、汇水区面积较大,雨水口分布较疏的地区,t1值可取10~15min。

m的确定:暗管m=2,明渠m=1.2,在陡坡地区,暗管折减系数m=1.2~2,经济条件较好、安全性要求较高地区的排水管渠m可取1。

t2的确定:t2=∑L 60v式中t2——雨水在管渠内流行时间(min)L——各管段的长度(m)v——各管段满流时的水流强度(m/s)v的确定:v=1n∙R23∙I12式中v——流速(m/s)R——水力半径(m) I——水利坡度n——粗糙系数R确定:R=A XA——输水断面的过流面积(m2)X——接触的输水管道边长(即湿周)(m)n的确定:(二)设计重现期(P)P的确定:《室外排水设计规范》(GB50014-2006)第3.2.4 条原规定:雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。

同一排水系统可采用同一重现期或不同重现期。

重现期一般采用0.5~3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3~5年,并应与道路设计协调。

雨水流量公式详解

雨水流量公式详解

雨水设计流量公式式中———雨水设计流量(L /s)q———设计暴雨强度,(L /s・ha)Ψ———径流系数F———汇水面积(ha公顷)其中一、暴雨强度公式为:式中t———降雨历时(min)P———设计重现期(年)(一)设计降雨历时,式中t——设计降雨历时(min)——地面集水时间(min)——雨水在管渠内流行的时间(min)m——折减系数的确定:地面集水时间受水区面积大小、地形陡缓、屋顶及地面的排水方式、土壤的干湿程度及地表覆盖情况等因素的影响。

在实际应用中,要准确地计算值是比较困难的,所以通常取经验数值,=5~15min。

在设计工作中,按经验在地形较陡、建筑密度较大或铺装场地较多及雨水口分布较密的地区,=5~8min;而在地势平坦、建筑稀疏、汇水区面积较大,雨水口分布较疏的地区,值可取10~15min。

m的确定:暗管m=2,明渠m=,在陡坡地区,暗管折减系数m=~2,经济条件较好、安全性要求较高地区的排水管渠m可取1。

的确定:式中——雨水在管渠内流行时间(min)L——各管段的长度(m)v——各管段满流时的水流强度(m/s)v的确定:式中v——流速(m/s)R——水力半径(m)I——水利坡度n——粗糙系数R确定:A——输水断面的过流面积(X——接触的输水管道边长(即湿周)(m)n的确定:(二)设计重现期(P)P的确定:《室外排水设计规范》(GB50014-2006)第条原规定:雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。

同一排水系统可采用同一重现期或不同重现期。

重现期一般采用~3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3~5年,并应与道路设计协调。

特别重要地区和次要地区可酌情增减。

二、汇水系数的确定(Ψ)汇水面积通常是由各种性质的地面覆盖组成的,随着它们占有的面积比例变化,Ψ的值也各异。

因此整个汇水面积的径流系数应采用平均径流系数;也可采用区域的综合径流系数,一般市区的综合径流系数Ψ=郊区的综合径流系数Ψ=。

雨水设计流量的计算公式

雨水设计流量的计算公式

雨水设计流量的计算公式雨水设计流量是指针对城市排水系统设计的一个重要指标,通过计算得出的结果可以用来确定排水系统各个部分的尺寸和容量。

本文将介绍雨水设计流量的计算公式及其相关知识点。

一、什么是雨水设计流量?雨水设计流量是指在一定的时间内,某个特定的区域或设施所要排水的最大流量。

通常用来设计雨水管道、雨水收集系统和雨水水库等工程项目。

二、计算雨水设计流量的公式在计算雨水设计流量时,常用的公式有雷诺公式和曼宁公式。

1. 雷诺公式雷诺公式是最常用的计算雨水设计流量的公式之一。

其公式如下:Q = K * A * R^n其中,Q为雨水设计流量(m^3/s),K为系数,A为截面积(m^2),R为半径(m),n为雷诺数。

2. 曼宁公式曼宁公式是根据河道流量的实测资料,经过统计和拟合得到的经验公式,用于计算河道的水流速度和流量。

曼宁公式的公式如下:Q = A * V其中,Q为雨水设计流量(m^3/s),A为截面积(m^2),V为流速(m/s)。

三、雨水设计流量的计算步骤计算雨水设计流量的步骤主要包括以下几个方面:1. 确定计算标准:根据相应的规范和标准,确定计算的基本要求和准则。

2. 收集雨量资料:通过获取气象站点的实测资料或使用统计学方法,收集雨水的降雨数据。

3. 计算截面系数:根据工程所用的截面形状,计算相应的截面系数。

4. 计算流量系数:根据工程的特点和条件,计算相应的流量系数。

5. 计算雨水设计流量:利用公式和相关参数,计算雨水设计流量。

6. 检查和修正:对计算结果进行检查和修正,并进行必要的优化。

四、雨水设计流量的影响因素计算雨水设计流量时,需要考虑以下几个主要影响因素:1. 雨水的降雨强度:降雨强度越大,雨水设计流量就越大。

2. 城市区域的面积:城市区域的面积越大,雨水设计流量也就越大。

3. 城市区域的土壤类型:不同种类的土壤具有不同的渗透能力,土壤渗透能力越低,雨水设计流量就越大。

4. 城市区域的地形和排水条件:地形和排水条件良好的区域,雨水设计流量相对较小。

雨水流量

雨水流量

屋面雨水按t=5min的降雨强度、雨水设计重现期P=10年计算。

雨水流量计算资料乃取自北京地区的降雨强度公式,其设计参数详列如下:重现期p=10年,降雨强度(5分钟)q=2001(1+0.811㏑P)/(t+8)0.711q=2001(1+0.811㏑10)/(5+8)0.711=5.85升/秒/100平方米1. 所有屋面汇水面积约=24550平方米,雨水设计流量Q1= k xΨx q x F= 1 x 0.9 x 5.85 x 24550= 1293 升/秒地面雨水按t=5min的降雨强度、雨水设计重现期P=5年计算。

q=2001(1+0.811㏑P)/(t+8)0.711q=2001(1+0.811㏑5)/(5+8)0.711=5.06升/秒/100平方米2. 地面硬地汇水面积约=12770平方米,绿化地面汇水面积约=12770平方米雨水设计流量Q2 = k xΨx q x F= 1 x 0.9 x 5.06 x 12770 + 1 x 0.25 x 5.06 x 12770= 743 升/秒C05地块总雨水设计流量Q = Q1+Q2= 1293 + 743= 2036 升/秒DN600雨水管的排水能力按下面公式计算,取n=0.011,ⅰ=0.003,R=0.15m(满流计算)Q= 1 / n X R2/3Xⅰ1/2 X A= 1 / 0.011 X 0.152/3 X 0.0031/2 X 3.14 X 0.62/ 4= 397.5 m3/ sC03地块需要DN600雨水管数量:= 2036 / 397.5= 5.1≈5注:k - 校正系数q- 设计暴雨强度Ψ- 流量径流系数 F - 汇水面积Q - 排水流量n- 粗糙系数R- 水力半径ⅰ- 坡度A- 截面积。

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)-CAL-FENGHAI.-(YICAI)-Company One1雨水设计流量公式式中———雨水设计流量(L /s)q———设计暴雨强度,(L /sha)Ψ———径流系数F———汇水面积(ha公顷)其中一、暴雨强度公式为:式中t———降雨历时(min)P———设计重现期(年)(一)设计降雨历时,式中t——设计降雨历时(min)——地面集水时间(min)——雨水在管渠内流行的时间(min)m——折减系数的确定:地面集水时间受水区面积大小、地形陡缓、屋顶及地面的排水方式、土壤的干湿程度及地表覆盖情况等因素的影响。

在实际应用中,要准确地计算值是比较困难的,所以通常取经验数值,=5~15min。

在设计工作中,按经验在地形较陡、建筑密度较大或铺装场地较多及雨水口分布较密的地区,=5~8min;而在地势平坦、建筑稀疏、汇水区面积较大,雨水口分布较疏的地区,值可取10~15min。

m的确定:暗管m=2,明渠m=,在陡坡地区,暗管折减系数m=~2,经济条件较好、安全性要求较高地区的排水管渠m可取1。

的确定:式中——雨水在管渠内流行时间(min)L——各管段的长度(m)v——各管段满流时的水流强度(m/s)v的确定:式中v——流速(m/s)R——水力半径(m)I——水利坡度n——粗糙系数R确定:A——输水断面的过流面积(X——接触的输水管道边长(即湿周)(m)n的确定:(二)设计重现期(P)P的确定:《室外排水设计规范》(GB50014-2006)第条原规定:雨水管渠设计重现期,应根据汇水地区性质、地形特点和气候特征等因素确定。

同一排水系统可采用同一重现期或不同重现期。

重现期一般采用~3年,重要干道、重要地区或短期积水即能引起较严重后果的地区,一般采用3~5年,并应与道路设计协调。

特别重要地区和次要地区可酌情增减。

二、汇水系数的确定(Ψ)汇水面积通常是由各种性质的地面覆盖组成的,随着它们占有的面积比例变化,Ψ的值也各异。

水污染控制工程 第四章 城镇雨水沟道的设计

水污染控制工程 第四章 城镇雨水沟道的设计

t = t1 + mt 2
(4-4)
式中: t— 设计降雨历时,min; t1— 地面集水时间,min; t2—管渠内流行时间,min; m— 延缓系数(也称折减系数), 暗管m=2,明渠m=1.2。
(1) 地面集水时间的确定
地面集水时间:是管渠起点断面在设计重现期、设计历时 地面集水时间 降雨的条件下达到设计流量的时间, 确定这个时间,要考虑地面集水距离、汇水面积、地面 覆盖、地面坡度和降雨强度等因素。在地面坡度皆属平缓 、地面覆盖互相接近、降雨强度都差不多的情况下(我国多 数平原大中城市即属这种情况),地面集水距离成为主要因 素。从汇水量上考察,平坦地形的地面集水距离的合理范 围是50~150米,比较适中的是80~120米。 以图4-2为例。
图4-2 地面集水时间计算示意图 1一房屋,2一屋面分水线,3一道路边沟 , 4一雨水管 , 5一道路
图中箭头表示水流方向。雨水从汇水面积上最远点的房屋 屋面分水线A点流到雨水口的地面集水时间通常是由下列流行 路程的时间所组成: a. 从屋面A点沿屋面坡度经屋檐下落到地面散水坡的时间 ,通常为0.3~O.5min。 b. 从散水坡沿地面坡度流入附近道路边沟的时间. c. 沿道路边沟到雨水口a的时间。 地面集水时间受地形坡度、地面铺砌、地面种植情况、水流 路程、道路横坡和宽度等因素的影响,这些因素直接决定着水 流沿地面或边沟的速度。此外,也与暴雨强度有关,因为暴雨 强度大,水流时间就短。但在上述各因素中,地面集水时间主 要取决于水流距离的长短和地面坡度。
3345(1 + 0.78 lg P ) q= (t + 12) 0.83
( 4-3)
图4-1
安徽省部分地区的暴雨强度公式
三.基本参数的确定

雨水水力计算公式

雨水水力计算公式

雨水水力计算公式雨水水力计算在水利工程和城市排水系统设计中可是相当重要的一部分呢。

它就像是一个神秘的密码,解开了就能让雨水乖乖听话,流到该去的地方,不造成麻烦。

先来说说雨水流量的计算吧。

雨水流量的计算公式通常是:Q =ψ×q×F 。

这里的 Q 表示雨水设计流量,ψ 是径流系数,q 是设计暴雨强度,F 则是汇水面积。

径流系数ψ 呢,它反映了降雨形成径流的比例。

比如说,一块完全不透水的地面,径流系数就接近 1 ;而一块长满花草树木、能很好吸收雨水的绿地,径流系数就会小很多。

想象一下,学校里的水泥操场和旁边的小花园,在一场大雨过后,操场可能很快就有积水,而小花园里的雨水大多都被土壤和植物吸收了,这就是径流系数不同导致的。

设计暴雨强度 q ,它和降雨的时间、地点都有关系。

不同地区、不同降雨历时,暴雨强度都不一样。

这就好像不同城市的天气脾气不一样,有的城市雨来得急、下得猛,有的城市则是细雨绵绵。

汇水面积 F 相对好理解,就是雨水汇集的区域面积。

比如说一个小区,所有雨水最终流到一个排水口,这个小区的占地面积就是汇水面积。

在实际计算中,可不能简单地套公式就完事。

得考虑很多因素。

就像我之前参与过一个老旧小区排水系统改造的项目。

那小区一下大雨就积水,居民们苦不堪言。

我们去实地勘察,发现原来的排水管道管径太小,而且汇水面积计算不准确,导致雨水排放不畅。

我们重新测量了小区的地形,仔细分析了地面的材质,确定了更准确的径流系数。

还根据当地的气象资料,计算出适合的设计暴雨强度。

经过一番努力,重新设计了排水系统。

当改造完成后,再遇到大雨,小区里再也没有出现积水的情况,居民们脸上都露出了开心的笑容。

再说说雨水管道的水力计算。

这涉及到流速、管径、坡度等参数的确定。

流速不能太快也不能太慢,太快了可能会冲刷管道,太慢了又容易造成淤积。

管径要根据流量来选择,合适的管径才能保证雨水顺利通过。

坡度则要保证雨水能够自流排放,又不能太大导致水流过于湍急。

l-雨水管渠设计流量计算公式

l-雨水管渠设计流量计算公式
管段衔接:一般用管顶平接,当条件不利时也可 用管底平接。 最小覆土厚度:一般不小于0.7m。
7
四、雨水管渠水力计算的方法
由于h/D=1,故只需确定Q、D、v、I值。Q值可经过 计算求得,然后选定D值,即可查表求得v、I值 例:已知n=0.013,设计流量Q=200L/s,地面坡 度i=0.004,试计算该管段的管径D,管底坡度I及 流速v。
5
二 雨水管段设计流量的计算


雨水管道设计的极限强度理论包括两部分内容: 1.当汇水面积最大,最远点的雨水流到设计断面时,雨水管道 的设计流量最大。 2.当降雨历时等于集水时间,雨水管道需要排除的水量是最 大的。最远点的雨水流到设计断面的集水时间等于降雨历 时,这种计算雨水管道设计流量的方法,称为极限强度法。
4
折减系数m
雨水在管道内的实际流行时间与计算得出的 流行时间不符,需要采用一个系数进行修正, 此系数叫折减系数.
引入折减系数的原因有二:一是雨水管道内
不总是满流,按满流计算的流行时间小于雨水实际的 流行时间;二是雨水管道的最大流量不大可能在同一 时间发生,上游管道存在调蓄容积.
m变化范围1.8~2.2,我国《室外排水设计规 范》建议:暗管m=2,明渠m=1.2。
1?折减系数m雨水在管道内的实际流行时间与计算得出的流行时间不符需要采用一个系数进行修正此系数叫折减系数
第三节 雨水管网设计流量计算
雨水管渠设计流量计算公式
Q qA 167Ai
式中:Q—— 雨水设计流量,L/s; Ψ—— 径流系数,其数值小于1; A —— 汇水面积,公顷; q —— 设计暴雨强度,L/s.公顷。
解:采用n=0.013的水力计算图。
横坐标找到Q=200L/s,纵坐标找到i=0.004,两线交于A点,得到 v=1.17m/s,符合规定;而D界于400~500mm之间。

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)

雨水流量公式详解(含计算过程及结果)在水资源管理和城市规划领域,雨水流量的计算是一项至关重要的工作。

通过准确计算雨水流量,可以有效地规划水资源利用和城市排水系统设计。

本文将详解雨水流量的计算过程,并提供相应的公式和实例。

一、雨水流量的概念和影响因素雨水流量是指在一定时间内径流的体积或质量,它受到多种因素的影响,包括降雨强度、时间分布、雨水径流曲线、地形、土壤类型和植被覆盖等。

准确计算雨水流量需要综合考虑这些因素,并利用相应的公式来进行计算。

二、雨水流量公式及计算过程1. 均匀降雨模型均匀降雨模型是计算雨水流量的基础模型,它假设降雨的强度在一段时间内保持恒定。

根据该模型,雨水流量的计算公式为:Q = C × A × i其中,Q表示雨水流量,C为径流系数,A为流域面积,i为雨水平均降雨强度。

2. Rational公式Rational公式是一种较为常用的雨水流量计算方法,适用于小流域或城市区域。

根据该公式,雨水流量的计算公式为:Q = CiA其中,Q表示雨水流量,C为系数(代表径流系数和水文学公式之间的关系),i为设计暴雨强度,A为流域面积。

3. SCS Curve Number法SCS Curve Number法是美国农业部Soil Conservation Service提出的一种雨水流量计算方法,适用于具有不同土壤类型和植被覆盖的流域。

根据该方法,雨水流量的计算公式为:Q = (P - 0.2S)² / (P + 0.8S)其中,Q表示雨水流量,P为降雨深度,S为地表蓄水容量。

三、实例分析为了更好地理解和应用上述公式,我们以一个示例来进行实际计算。

假设某城市的小流域面积为5000平方米,设计暴雨强度为60毫米/小时,通过Rational公式计算雨水流量如下:Q = 0.8 × 60 × 5000计算得出,雨水流量为240,000立方米/小时。

接下来,我们通过SCS Curve Number法计算雨水流量。

雨水排水系统的水力计算

雨水排水系统的水力计算

0.025
后退
前进
返回本章总目录
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
返回本书总目录
3.横管 横管包括悬吊管、管道层的汇合管、埋地横干管和出户管,
横管可以近似地按圆管均匀流计算:
I 的确定分为重力流和重力半有压流两种情况。 横管的管径根据各雨水斗流量之和确定,并宜保持管径不变。
取25×10-5 m;
α ——充水率,塑料管取0.3,铸铁管取0.35;
d ——管道计算内径,m。
后退
前进
返回本章总目录
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
返回本书总目录
重力半有压流状态 雨水排水立管 按水塞流计算, 铸铁管充水率:
α=0.57~0.35
小管径取大值, 大管径取小值。
管径 I
0.02 0.03 0.04 0.05 0.06 0.07
75mm
3.07 3.77 4.35 4.86 5.33 5.75
100mm 150mm 200mm 250mm
6.63 8.12 9.38 10.49 11.49 12.41
19.55 23.94 27.65 30.91 33.86 36.57
6.3.2 系统计算原理与参数
返回本书总目录
5.溢流口 功能:主要是雨水系统事故时排水和超量雨水排除。
按最不利情况考虑,溢流口的排水能力应不小于50年重
现期的雨水量。溢流口的孔口尺寸可按下式近似计算:
式中
Q——溢流口服务面积内的最大降雨量,L/s; b——溢流口宽度,m; h——溢流孔口高度,m; m——流量系数,取385; g——重力加速度,m/s2,取9.81。

雨水量计算

雨水量计算

雨水量计算雨水设计流量公式F q Q ⨯⨯=ϕ式中:Q ——设计流量(L/S );ϕ——径流系数,取0.5;F ——汇水面积(ha );q ——暴雨强度(L/S •ha )暴雨强度计算公式,采用唐山市暴雨强度公式: )hm (L/s tlgP)0.87935(1q 20.6⨯⨯+= 式中:P ——设计重现期,取1.0年;t ——降雨历时(min ),t=t 1+mt 2;t 1——地面积水时间,取15min ;t2——管渠内流行时间(min );m ——管渠延缓系数,管及暗渠取m=2.0,明渠取m=1.22. 备注:1ha=10000m 2(1)采用雨水回收系统,节能量考虑唐山地区降雨量较为丰富,建议本项目建立屋面雨水回收系统,收集后过滤泥沙,用于绿化和浇洒场区道路和地面。

本项目屋面汇水面积约为83704m 2。

唐山地区年平均降雨量为625mm ,雨水平均径流系数为 0.9,初期雨水弃流系数取0.85,季节折减系数取 0.80,渗入系数取 0.20,则屋面年可收集雨水量为:屋面年可收集雨水量=降雨量×汇流面积×径流系数×弃流系数×季节折减系数。

=0.625×83704×0.9×0.85×0.80=3.20万m3经分析,给水系统通过采用进一步的节能措施,年可约用水量3.20万m3,可满足本项目用于绿化和浇洒场区道路和地面用水及循环水补水,则年节约用水量为 3.20万m3折合标准煤2.74tce。

(2)采用太阳能路灯系统本项目室外照明装机功率为40.74kW,有功功率41kW,经低压侧补偿后(增加变压器损耗后)电器计算负荷为:有功功率37.27kW,经计算室外照明年耗电量为22.36万kWh。

如采用太阳能照明系统,则年节约电力22.36万kWh,折标煤27.48tce。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档