龙井市第二高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

龙井市第二高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 如果a >b ,那么下列不等式中正确的是( ) A .
B .|a|>|b|
C .a 2>b 2
D .a 3>b 3
2. 已知函数f (2x+1)=3x+2,且f (a )=2,则a 的值等于( ) A .8
B .1
C .5
D .﹣1
3. 将函数()sin 2y x ϕ=+(0ϕ>)的图象沿x 轴向左平移8
π
个单位后,得到一个偶函数的图象,则ϕ的最小值为( ) (A )
43π ( B ) 83π (C ) 4
π (D ) 8
π
4. 复数z=(其中i 是虚数单位),则z 的共轭复数=( )
A .﹣i
B .﹣﹣i
C . +i
D .﹣ +i
5. 下列式子表示正确的是( )
A 、{}00,2,3⊆
B 、{}{}22,3∈
C 、{}1,2φ∈
D 、{}0φ⊆ 6. 下列结论正确的是( )
A .若直线l ∥平面α,直线l ∥平面β,则α∥β.
B .若直线l ⊥平面α,直线l ⊥平面β,则α∥β.
C .若直线l 1,l 2与平面α所成的角相等,则l 1∥l 2
D .若直线l 上两个不同的点A ,B 到平面α的距离相等,则l ∥α
7. 已知直线 a 平面α,直线b ⊆平面α,则( )
A .a b
B .与异面
C .与相交
D .与无公共点
8. 如果双曲线经过点P (2,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( )
A .x 2﹣
=1 B .

=1 C .

=1 D .

=1
9. 下列命题正确的是( )
A .已知实数,a b ,则“a b >”是“22
a b >”的必要不充分条件
B .“存在0x R ∈,使得2
010x -<”的否定是“对任意x R ∈,均有2
10x ->”
C .函数13
1()()2x
f x x =-的零点在区间11(,)32

D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥
10.已知菱形ABCD 的边长为3,∠B=60°,沿对角线AC 折成一个四面体,使得平面ACD ⊥平面ABC ,则经过这个四面体所有顶点的球的表面积为( ) A .15π B

C

π
D .6π
11.已知函数f (x )
=x 3+(1﹣b )x 2﹣a (b ﹣3)x+b ﹣2的图象过原点,且在原点处的切线斜率是﹣3,则不
等式组所确定的平面区域在x 2+y 2
=4内的面积为( )
A

B

C .π
D .2π
12.如图甲所示, 三棱锥P ABC - 的高8,3,30PO AC BC ACB ===∠= ,,M N 分别在BC 和PO 上,且(),203CM x PN x x ==∈(,,图乙的四个图象大致描绘了三棱锥N AMC -的体积y 与 的变化关系,其中正确的是( )
A .
B . C. D .1111]
二、填空题
13.若x 、y 满足约束条件⎩⎪⎨⎪
⎧x -2y +1≤02x -y +2≥0x +y -2≤0,z =3x +y +m 的最小值为1,则m =________.
14. 设函数()x f x e =,()ln g x x m =+.有下列四个命题:
①若对任意[1,2]x ∈,关于x 的不等式()()f x g x >恒成立,则m e <;
②若存在0[1,2]x ∈,使得不等式00()()f x g x >成立,则2
ln 2m e <-;
③若对任意1[1,2]x ∈及任意2[1,2]x ∈,不等式12()()f x g x >恒成立,则ln 22
e
m <
-; ④若对任意1[1,2]x ∈,存在2[1,2]x ∈,使得不等式12()()f x g x >成立,则m e <. 其中所有正确结论的序号为 .
【命题意图】本题考查对数函数的性质,函数的单调性与导数的关系等基础知识,考查运算求解,推理论证能
力,考查分类整合思想.
15.抛物线24x y =的焦点为F ,经过其准线与y 轴的交点Q 的直线与抛物线切于点P ,则FPQ ∆ 外接圆的标准方程为_________.
16.用“<”或“>”号填空:30.8 30.7.
17.已知(2x ﹣
)n
展开式的二项式系数之和为64,则其展开式中常数项是 .
18.如果定义在R 上的函数f (x ),对任意x 1≠x 2都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2(fx 1),则称函数为“H 函数”,给出下列函数
①f (x )=3x+1 ②f (x )=()x+1
③f (x )=x 2+1 ④f (x )=
其中是“H 函数”的有 (填序号)
三、解答题
19.某城市决定对城区住房进行改造,在建新住房的同时拆除部分旧住房.第一年建新住房am 2,第二年到第四年,每年建设的新住房比前一年增长100%,从第五年起,每年建设的新住房都比前一年减少 am 2
;已知旧
住房总面积为32am 2
,每年拆除的数量相同.
(Ⅰ)若10年后该城市住房总面积正好比改造前的住房总面积翻一番,则每年拆除的旧住房面积是多少m 2

(Ⅱ),求前n (1≤n ≤10且n ∈N )年新建住房总面积S n
20.已知椭圆C :22
221x y a b
+=(0a b >>),点3(1,)2在椭圆C 上,且椭圆C 的离心率为12.
(1)求椭圆C 的方程;
(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别
交直线:4x =于M 、N 两点,求证:FM FN ⊥.
21.已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,该椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线y=x+相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)如图,若斜率为k(k≠0)的直线l与x轴,椭圆C顺次交于P,Q,R(P点在椭圆左顶点的左侧)且∠RF1F2=∠PF1Q,求证:直线l过定点,并求出斜率k的取值范围.
22.已知函数f(x)=x3+ax+2.
(Ⅰ)求证:曲线=f(x)在点(1,f(1))处的切线在y轴上的截距为定值;
(Ⅱ)若x≥0时,不等式xe x+m[f′(x)﹣a]≥m2x恒成立,求实数m的取值范围.
23.已知函数f(x)=e x(ax+b)+x2+2x,曲线y=f(x)经过点P(0,1),且在点P处的切线为l:y=4x+1.(I)求a,b的值;
(Ⅱ)若存在实数k,使得x∈[﹣2,﹣1]时f(x)≥x2+2(k+1)x+k恒成立,求k的取值范围.
24.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).
(1)若函数f(x)在[﹣1,3m]上不具有单调性,求实数m的取值范围;
(2)若f(1)=g(1)
①求实数a的值;
②设t1=f(x),t2=g(x),t3=2x,当x∈(0,1)时,试比较t1,t2,t3的大小.
龙井市第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】D
【解析】解:若a >0>b ,则
,故A 错误;
若a >0>b 且a ,b 互为相反数,则|a|=|b|,故B 错误; 若a >0>b 且a ,b 互为相反数,则a 2>b 2,故C 错误; 函数y=x 3在R 上为增函数,若a >b ,则a 3>b 3,故D 正确; 故选:D
【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.
2. 【答案】B
【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0, ∴a=2×0+1=1. 故选:B .
3. 【答案】B
【解析】将函数()()sin 20y x ϕϕ=+>的图象沿
x 轴向左平移
8
π
个单位后,得到一个偶函数
sin 2sin 28
4
[()]()y x x π
π
ϕϕ=+
+=+
+的图象,可得
42
ππ
ϕ+=
,求得ϕ的最小值为 4
π
,故选B .
4. 【答案】C
【解析】解:∵z==

∴=.
故选:C .
【点评】本题考查了复数代数形式的乘除运算,是基础题.
5. 【答案】D 【解析】
试题分析:空集是任意集合的子集。

故选D 。

考点:1.元素与集合的关系;2.集合与集合的关系。

6. 【答案】B
【解析】解:A 选项中,两个平面可以相交,l 与交线平行即可,故不正确;
B 选项中,垂直于同一平面的两个平面平行,正确;
C 选项中,直线与直线相交、平行、异面都有可能,故不正确;
D 中选项也可能相交. 故选:B .
【点评】本题考查平面与平面,直线与直线,直线与平面的位置关系,考查学生分析解决问题的能力,比较基础.
7. 【答案】D 【解析】
试题分析:因为直线 a 平面α,直线b ⊆平面α,所以//a b 或与异面,故选D. 考点:平面的基本性质及推论. 8. 【答案】B
【解析】解:由双曲线的一条渐近线方程为y=x ,
可设双曲线的方程为x 2﹣y 2
=λ(λ≠0),
代入点P (2,),可得
λ=4﹣2=2,
可得双曲线的方程为x 2﹣y 2
=2,
即为﹣=1.
故选:B .
9. 【答案】C 【解析】

点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.
【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 10.【答案】A
【解析】解:如图所示,设球心为O,在平面ABC中的射影为F,E是AB的中点,OF=x,则CF=,EF=
R2=x2+()2=(﹣x)2+()2,
∴x=
∴R2=
∴球的表面积为15π.
故选:A.
【点评】本题考查球的表面积,考查学生的计算能力,确定球的半径是关键.
11.【答案】B
【解析】解:因为函数f(x)的图象过原点,所以f(0)=0,即b=2.
则f(x)=x3﹣x2+ax,
函数的导数f′(x)=x2﹣2x+a,
因为原点处的切线斜率是﹣3,
即f′(0)=﹣3,
所以f′(0)=a=﹣3,
故a=﹣3,b=2,
所以不等式组为
则不等式组确定的平面区域在圆x2+y2=4内的面积,
如图阴影部分表示,
所以圆内的阴影部分扇形即为所求.
∵k OB=﹣,k OA=,
∴tan∠BOA==1,
∴∠BOA=,
∴扇形的圆心角为,扇形的面积是圆的面积的八分之一,
∴圆x2+y2=4在区域D内的面积为×4×π=,
故选:B
【点评】本题主要考查导数的应用,以及线性规划的应用,根据条件求出参数a,b的是值,然后借助不等式区域求解面积是解决本题的关键.
12.【答案】A
【解析】
考点:几何体的体积与函数的图象.
【方法点晴】本题主要考查了空间几何体的体积与函数的图象之间的关系,其中解答中涉及到三棱锥的体积公式、一元二次函数的图象与性质等知识点的考查,本题解答的关键是通过三棱锥的体积公式得出二次函数的解析式,利用二次函数的图象与性质得到函数的图象,着重考查了学生分析问题和解答问题的能力,是一道好题,题目新颖,属于中档试题.
二、填空题
13.【答案】
【解析】解析:可行域如图,当直线y=-3x+z+m与直线y=-3x平行,且在y轴上的截距最小时,z才能取最小值,此时l经过直线2x-y+2=0与x-2y+1=0的交点A(-1,0),z min=3×(-1)+0+m=-3+m=1,
∴m=4.
答案:4
14.【答案】①②④ 【

析】
15.【答案】()2212x y -+=或()2
2
12x y ++=
【解析】
试题分析:由题意知()0,1F ,设2001,
4P x x ⎛⎫
⎪⎝⎭
,由1'2y x =,则切线方程为()20001142y x x x x -=-,代入
()0,1-得02x =±,则()()2,1,2
,1P -,可得PF FQ ⊥,则FPQ ∆外接圆以PQ 为直径,则()2
212
x y -+=或()2212x y ++=.故本题答案填()2212x y -+=或()22
12x y ++=.1
考点:1.圆的标准方程;2.抛物线的标准方程与几何性质. 16.【答案】 >
【解析】解:∵y=3x
是增函数,
又0.8>0.7,
∴30.8>30.7.
故答案为:>
【点评】本题考查对数函数、指数函数的性质和应用,是基础题.
17.【答案】60.
【解析】解:由二项式系数的性质,可得2n=64,解可得,n=6;
(2x﹣)6的展开式为为T r+1=C66﹣r•(2x)6﹣r•(﹣)r=(﹣1)r•26﹣r•C66﹣r•,
令6﹣r=0,可得r=4,
则展开式中常数项为60.
故答案为:60.
【点评】本题考查二项式定理的应用,注意系数与二项式系数的区别.
18.【答案】①④
【解析】解:∵对于任意给定的不等实数x1,x2,不等式x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)恒成立,∴不等式等价为(x1﹣x2)[f(x1)﹣f(x2)]≥0恒成立,
即函数f(x)是定义在R上的不减函数(即无递减区间);
①f(x)在R递增,符合题意;
②f(x)在R递减,不合题意;
③f(x)在(﹣∞,0)递减,在(0,+∞)递增,不合题意;
④f(x)在R递增,符合题意;
故答案为:①④.
三、解答题
19.【答案】
【解析】解:(I)10年后新建住房总面积为a+2a+4a+8a+7a+6a+5a+4a+3a+2a=42a.
设每年拆除的旧住房为xm2,则42a+(32a﹣10x)=2×32a,
解得x=a,即每年拆除的旧住房面积是am2
(Ⅱ)设第n年新建住房面积为a,则a n=
所以当1≤n≤4时,S n=(2n﹣1)a;
当5≤n ≤10时,S n =a+2a+4a+8a+7a+6a+(12﹣n )
a=

【点评】本小题主要考查函数模型的选择与应用,属于基础题.解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.
20.【答案】(1) 22
143
x y +=;(2)证明见解析. 【解析】
试题分析: (1)由题中条件要得两个等式,再由椭圆中c b a ,,的等式关系可得b a ,的值,求得椭圆的方程;(2)可设直线P Q 的方程,联立椭圆方程,由根与系数的关系得122634m y y m -+=
+,12
29
34
y y m -=+,得直线PA l ,直线QA l ,求得点 M 、N 坐标,利用0=⋅FN FM 得FM FN ⊥.
试题解析: (1)由题意得222221
91,41,2,a b c a a b c ⎧+=⎪⎪
⎪=⎨⎪⎪=+⎪⎩
解得2,
a b =⎧⎪⎨=⎪⎩ ∴椭圆C 的方程为22
143
x y +=.
又111x my =+,221x my =+, ∴112(4,
)1y M my -,222(4,)1y N my -,则112(3,)1y FM my =-,2
22(3,)1
y FN my =-,
12122
121212
22499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++222
22363499906913434
m m m m m -+=+=-=---+++ ∴FM FN ⊥
考点:椭圆的性质;向量垂直的充要条件. 21.【答案】
【解析】(Ⅰ)解:椭圆的左,右焦点分别为F 1(﹣c ,0),F 2(c ,0),
椭圆的离心率为
,即有
=
,即
a=
c ,
b=
=c ,
以原点为圆心,椭圆的短半轴长为半径的圆方程为x 2+y 2=b 2

直线
y=x+
与圆相切,则有=1=b ,
即有
a=

则椭圆C
的方程为
+y 2=1;
(Ⅱ)证明:设Q (x 1,y 1),R (x 2,y 2),F 1(﹣1,0),
由∠RF1F2=∠PF1Q,可得直线QF1和RF1关于x轴对称,
即有+=0,即+=0,
即有x1y2+y2+x2y1+y1=0,①
设直线PQ:y=kx+t,代入椭圆方程,可得
(1+2k2)x2+4ktx+2t2﹣2=0,
判别式△=16k2t2﹣4(1+2k2)(2t2﹣2)>0,
即为t2﹣2k2<1②
x1+x2=,x1x2=,③
y1=kx1+t,y2=kx2+t,
代入①可得,(k+t)(x1+x2)+2t+2kx1x2=0,
将③代入,化简可得t=2k,
则直线l的方程为y=kx+2k,即y=k(x+2).
即有直线l恒过定点(﹣2,0).
将t=2k代入②,可得2k2<1,
解得﹣<k<0或0<k<.
则直线l的斜率k的取值范围是(﹣,0)∪(0,).
【点评】本题考查椭圆的方程和性质,主要是离心率的运用,注意运用直线和圆相切的条件,联立直线方程和椭圆方程,运用韦达定理,考查化简整理的运算能力,属于中档题和易错题.
22.【答案】
【解析】(Ⅰ)证明:f(x)的导数f′(x)=x2+a,
即有f(1)=a+,f′(1)=1+a,
则切线方程为y﹣(a+)=(1+a)(x﹣1),
令x=0,得y=为定值;
(Ⅱ)解:由xe x+m[f′(x)﹣a]≥m2x对x≥0时恒成立,
得xe x+mx2﹣m2x≥0对x≥0时恒成立,
即e x+mx﹣m2≥0对x≥0时恒成立,
则(e x+mx﹣m2)min≥0,
记g(x)=e x+mx﹣m2,
g′(x)=e x+m,由x≥0,e x≥1,
若m≥﹣1,g′(x)≥0,g(x)在[0,+∞)上为增函数,
∴,
则有﹣1≤m≤1,
若m<﹣1,则当x∈(0,ln(﹣m))时,g′(x)<0,g(x)为减函数,
则当x∈(ln(﹣m),+∞)时,g′(x)>0,g(x)为增函数,
∴,
∴1﹣ln(﹣m)+m≥0,
令﹣m=t,则t+lnt﹣1≤0(t>1),
φ(t)=t+lnt﹣1,显然是增函数,
由t>1,φ(t)>φ(1)=0,则t>1即m<﹣1,不合题意.
综上,实数m的取值范围是﹣1≤m≤1.
【点评】本题为导数与不等式的综合,主要考查导数的应用,考查考生综合运用知识的能力及分类讨论的思想,考查考生的计算能力及分析问题、解决问题的能力、化归与转化思想.
23.【答案】
【解析】解:(I)f'(x)=e x(ax+a+b)+2x+2…
依题意,,即,解得.…
(II)由f(x)≥x2+2(k+1)x+k得:e x(x+1)≥k(2x+1).
∵x∈[﹣2,﹣1]时,2x+1<0,
∴f(x)≥x2+2(k+1)x+k即e x(x+1)≥k(2x+1)恒成立,
当且仅当…
设,
由g'(x)=0得…
当;
当∴上的最大值为:

所以常数k的取值范围为…
【点评】本题考查函数的导数的综合应用,切线方程,闭区间是函数的最值的求法,构造法的应用,难度比较大,是高考常考题型.
24.【答案】
【解析】解:(1)因为抛物线y=2x2﹣4x+a开口向上,对称轴为x=1,
所以函数f(x)在(﹣∞,1]上单调递减,在[1,+∞)上单调递增,
因为函数f(x)在[﹣1,3m]上不单调,
所以3m>1,…(2分)
得,…(3分)
(2)①因为f(1)=g(1),所以﹣2+a=0,…(4分)
所以实数a的值为2.…
②因为t1=f(x)=x2﹣2x+1=(x﹣1)2,
t2=g(x)=log2x,
t3=2x,
所以当x∈(0,1)时,t1∈(0,1),…(7分)
t2∈(﹣∞,0),…(9分)
t3∈(1,2),…(11分)
所以t2<t1<t3.…(12分)
【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.。

相关文档
最新文档