中考数学常考易错点:4-3《等腰三角形与直角三角形》

合集下载

高中数学易错点和考点归纳(最新)

高中数学易错点和考点归纳(最新)

高中数学易错点和考点归纳(一)先解决几个最值得关注的问题。

1.中考题型和难度比例。

6道选择24分,12道填空48分,7道大题78分。

难度比例是8:1:1就是120分基础题,15分中档题,15分拔高题。

15拔高题是填空18题,24题和25题第三问。

(满分120分的比例一样,分值会有差距)2. 关于今年数学难不难。

大家不要传说今年中考会很难,途听道说,信了,你就输了。

数姐见证了这么多年中考,还真没有见到那一年特别难!就算难,大家一起难,谁怕谁啊,是不?再说了,难也就那15分难,就算我一点都不会做,步骤分我还不能拿点啊。

3.关于粗心的解决办法。

习惯于依赖知识点,看到题马上就用知识点去写,忽略了问题问什么,题目条件是什么。

粗心基本是看到题目非常熟悉,想都不想就做,导致错误。

解释:看到题目感觉很熟悉很简单,想都不想就开始算,结果一不小心方向就错了,没有弄清楚问题是什么,忽略了题目条件表述和你以前熟悉的题型上细微的差别,导致做错。

这是过于想当然造成的,中了命题人的陷阱。

四条建议:一、慢慢读题,至少两遍。

二、验算工整,防止计算错误,也方便检查。

三、回头检查,主要是检查没有把握的题目。

四、深挖根源。

对粗心的相关知识点要梳理。

(二)重头戏来了,命题陷阱!我列举出了中考绝大多数易错点,本来想在后面贴上一些例题,考虑到时间太紧,文件太大学生看不完,就用文字表述。

一、数与式易错点1:有理数、无理数以及实数的有关概念理解错误,相反数、倒数、绝对值的意义概念混淆。

以及绝对值与数的分类。

每年选择必考。

易错点2:实数的运算要掌握好与实数有关的概念、性质,灵活地运用各种运算律,关键是把好符号关;在较复杂的运算中,不注意运算顺序或者不合理使用运算律,从而使运算出现错误。

易错点3:平方根、算术平方根、立方根的区别。

填空题必考。

易错点4:求分式值为零时学生易忽略分母不能为零。

易错点5:分式运算时要注意运算法则和符号的变化。

当分式的分子分母是多项式时要先因式分解,因式分解要分解到不能再分解为止,注意计算方法,不能去分母,把分式化为最简分式。

第1讲等腰三角形与直角三角形-教案

第1讲等腰三角形与直角三角形-教案

第1讲等腰三角形与直角三角形-教案概述适用学科初中数学适用年级初中二年级适用区域北师版区域课时时长(分钟) 120知识点1.等腰三角形判定与性质2.直角三角形判定与性质1.理解等腰三角形的判定定理,并会运用其进行简单的证明.教学目标2.能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性教学重点特殊三角形的灵活应用教学难点特殊三角形的灵活应用.【教学建议】本节的教学重点是使学生能熟练掌握特殊三角形的性质与判定,这一节在本册书乃至整个初中数学几何部分占据非常重要的地位,在中考中出题的频率和分值都比较高,所以教师在教学过程中要注意结合中考题型进行拓展。

学生学习本节时可能会在以下几个方面感到困难:1. 等腰三角形及直角三角形的性质与判定。

2. 结合三角形全等的几何动点。

3.综合性解答题的思路与几何问题中的数学模型。

【知识导图】1等腰三角形与直角三角形等腰三角形判定与性质直角三角形判定与性质教学过程一、导入【教学建议】有关等腰三角形和直角三角形的考题,考查重点是几何动点以及几何类比探究的综合的题型,学生最开始接触时一定要把基础的性质与判定及常见的几何模型整理好,老师在授课过程中要注重方法的指导。

二、知识讲解知识点 1 等腰三角形判定与性质1.提请学生回忆并整理已经学过的8条基本事实中的5条:(1)两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;(2)两条平行线被第三条直线所截,同位角相等;(3)两边夹角对应相等的两个三角形全等(SAS);(4)两角及其夹边对应相等的两个三角形全等(ASA);(5)三边对应相等的两个三角形全等(SSS);在此基础上回忆全等三角形的另一判别条件:(1)(推论)两角及其中一角的对边对应相等的两个三角形全等(AAS),并要求学生利用前面所提到的公理2进行证明;(2)回忆全等三角形的性质。

2.等腰三角形两个底角的平分线相等;等腰三角形腰上的高相等;等腰三角形腰上的中线相等.通过问题串回顾等腰三角形的性质定理以及证明的思路,要求学生独立思考后再进交流。

2019届中考数学一轮复习讲义第27讲等腰三角形

2019届中考数学一轮复习讲义第27讲等腰三角形

2019届中考数学一轮复习讲义考点二十七:等腰三角形聚焦考点☆温习理解一、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边。

即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

推论2:等边三角形的各个角都相等,并且每个角都等于60°(2)等腰三角形的其他性质:①等腰直角三角形的两个底角相等且等于45 °②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

③等腰三角形的三边关系:设腰长为a,底边长为b,则b<a2④等腰三角形的三角关系:设顶角为顶角为∠ A ,底角为∠ B、/ C,则∠ A=180—2 ∠ B,/ B= ∠180 AC=—22、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。

这个判定定理常用于证明同一个三角形中的边相等。

学!科网推论1:三个角都相等的三角形是等边三角形推论2 :有一个角是60°的等腰三角形是等边三角形。

推论3:在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半。

二•等边三角形1•定义三条边都相等的三角形是等边三角形• 2.性质:3•判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.三.线段垂直平分线1•定义垂直一条线段,并且平分这条线段的直线叫作这条线段的垂直平分线2•性质线段垂直平分线上的一点到这条线段的两端距离相等3•判定到一条线段两端点距离相等的点,在这条线段的垂直平分线上名师点睛☆典例分类考点典例一、等腰三角形的性质【例1】(2018黑龙江齐齐哈尔中考模拟)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的和谐分割线”.如图,线段CD是ABC的和谐分割线”,ACD为等腰三角形,CBD和ABC相【解析】试题分析:T △比CDS AEA∙G∕∙Z⅛CD=Z44h ,'∕Δ⅛CD是等腰三角形,,∕Z ADC>Z BCD J.'.Z AD OZA J即AC≠CD,①⅛AC?=AJ)时’ ZACD=ZADC=^ =67, .∖ZACE=670+4S C=113° *■②当DADC 时,ZCD=ZjL= 46 Q R √.ZACB=46" +46' =93Q J 故答案为M时或财-考点:1∙相似三角形的性质;2.等腰三角形的性质.【点睛】本题考查的是等腰三角形的性质和相似三角形的性质,熟知等腰三角形的两底角相等是解答此题的关键.【举一反三】如图,AD , CE分别是△ABC的中线和角平分线.若AB=AC , ∠ CAD=20 ,则∠ ACE的度数是( )A. 20 °B. 35 °C. 40 °D. 70 °【来源】浙江省湖州市2018年中考数学试题【答案】B【解析】分析;先⅛据等腰三角形的⅛m及三角形内角和定S⅛⅛ZCAfr=2ZCADM0% ZB=ZACH £( IS^ZCAB) =70°.再禾U用角平分线定义即可得出ZX*E W√ACB=3實.徉解::AD 是∆ABC 的中线』AB-AC J. ZaAD=20%/.ZCAB=2ZQAD=40S ZB=ZACB=I (IS^-ZCAB) =70t.ICE是AABC的甬平分线,∕÷ ZACE=i ZACB=JS ci.Z故选:B.点睛:本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70是解题的关键.考点典例二、等腰三角形的多解问题1【例2】(2018黑龙江绥化中考模拟)在等腰ABC中,AD BC交直线BC于点D ,若AD -BC ,2则ABC的顶角的度数为 ____________ .【答案】30°或150°或90°. 【解析】 试题分析:①BC 为腰,1∙∙∙ AD 丄 BC 于点 D , AD= BC ,/∙∠2②BC 为底,如图3,CAD= - ×80 °90 °2腰时,应在符合三角形三边关系的前提下分类讨论. 【举一反三】(湖南省衡阳市船山实验中学 2017-2018学年八年级上期末模拟)等腰三角形的一个内角为 70°它的一腰上的高与底边所夹的角的度数是()ACD=30° ,如图1 , AD 在△ABC 内部时, 顶角∠ C=30 ,如图2,AD 在△ABC 外部时,顶角∠ ACB=180 - 30o=150°,∙∙∙ AD 丄 BC 于点 D , AD= I BC,∙∙∙ AD=BD=CD , ∙∙∙ ∠ B= ∠ BAD , ∠ C= ∠ CAD , /. ∠ BAD+ ∠【点睛】题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边∙顶角∠ BAC=90 ,来源学科网ZXXMA. 35 °B. 20 °C. 35 °或20 °D. 无法确定【答案】C【解析】70°是顶角,它的一腰上的高与底边所夹的角的度数是35° 70°是底角,顶角是40°它的一腰上的高与底边所夹的角的度数是20°.故选C.考点典例三、等边三角形的性质与判定【例3】已知:在附鳥中,悴F T&I,为的中点V-銅,:■,垂足分别为点,且册•罔•求证:1是等边三角形.【来源】浙江省嘉兴市2018年中考数学试题【答案】证明见解析MMfi】分析;由等腥三角形的性质得SUZR=NG再用HL证明I∆CTF,得到厶IYG从而得到ZAQNG即可得到结论,徉解:「密FU /.Z5=ZC.∖'DElAB f DFLBC J ,\ZD£^=ZDFO90&.丁D为的卫匚中⅛jλΣfA=DC.又YDE=D F, -IR L AAE实RlACDF (HL),--ZJi=N方-ΞZ^C?:-AA^C是等边三角形- 点睛:本题考查了等边三角形的判定、等腰三角形的性质以及直角三角形全等的判定与性质•解题的关键是证明∠ A=∠ C.【举一反三】(重庆市江津区2017-2018学年八年级上学期期末模拟 )如图所示,AABC为等边三角形,P为BC上一点,Q为AC上一点,AQ=PQ , PR=PS, PR⊥ AB于R, PS⊥ AC于S, ?则对下面四个结论判断正确的是()①点P在∠ BAC的平分线上,②AS=AR , ③QP// AR , ④厶BRP^Δ QSP.A.全部正确;B.仅①和②正确;C.仅②③正确;D.仅①和③正确【答案】A【解析】试题解析:∙∙∙PR⊥ AB于R, PS⊥ AC于S.∙∙∙∠ARP= ∠ ASP=90 .∙∙∙ PR=PS, AP=AP..∙. Rt △A RP也Rt AASP.∙∙∙ AR=AS ,故(2)正确,∠ BAP= ∠ CAP..AP是等边三角形的顶角的平分线,故(1)正确.∙AP是BC边上的高和中线,即点P是BC的中点.∙∙∙ AQ=PQ.∙点Q是AC的中点.∙PQ是边AB对的中位线.∙PQ // AB ,故(3)正确.∙.∙∠ B= ∠ C=60 ,∠ BRP= ∠ CSP=90 , BP=CP.•••△ BRPQSP,故(4)正确.•全部正确.•故选A.考点典例四、线段垂直平分线的性质运用【例3】.如图,MM中,川,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交•于点;②作边的垂直平分线,'与!相交于点;③连接•,'.请你观察图形解答下列问题:(1) __________________________________________ 线段PA^B^C之间的数量关系是(2)若曲吭-潜,求的度数.【来源】湖北省孝感市2018年中考数学试题【答案】(1)•:'「二-b 二V; (2)80°【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ ABC= ∠ ACB=70 ,由三角形的内角和得:∠BAC=180 -2 ×0°=40°,由角平分线定义得:∠ BAD= ∠ CAD=20 ,最后利用三角形外角的性质可得结论.详解:(1)如图,PA=PB=PC ,理由是:∙∙∙ AB=AC , AM 平分∠ BAC ,∙∙∙ AD是BC的垂直平分线,∙∙∙ PB=PC ,∙∙∙ EP是AB的垂直平分线,∙PA=PB,∙PA=PB=PC ;故答案为:PA=PB=PC ;⑵ 丁AE=AG/.Z ABC-Z ACE-VO O J.∖ ZBAC=I 80o-2^70c=40e,TANl 平分ZBAC,.,.ZBAD=ZCAD=2fl D,TPA=PB=PG・∖ ZABP= Z BAP=ZACP»20C,/. ZBPc=ZABP-Z BAC+Z ACP=20 i→0fr-2 =So S.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.【举一反三】(2018广西钦州市中考模拟)如图,在△ABC中,∠ ACB=90 ,分别以点A和点B为圆心,以相同的长(大于AB )为半径作弧,两弧相交于点M和点N ,作直线MN 交AB于点D ,交BC于点巳若AC=3 , AB=5 ,则DE等于()A. B. C.D.【答案】C【解析】根据勾股定理求出BC ,根据线段垂直平分线性质求出AE=BE ,根据勾股定理求出AE ,再根据勾股定理求出DE 即可.解:在RtABC 中,由勾股定理得:BC==4,连接AE,从作法可知:DE 是AB 的垂直评分线,根据性质AE=BE ,在Rt △ACE 中,由勾股定理得AC +CE =AE+ (4-AE )即3=AE解得:AE=在Rt △ADEAD= AB=勾股定理得) DE +(=(解得:DE=故选C.课时作业☆能力提升一、选择题1. (2018年湖北省松滋市初级中学数学中考模拟试题(一))如图,在△ABC中,AB=AC , AB的垂直平分线交边AB于D点,交边AC于E点,若ΔABC与ΔEBC的周长分别是40,24,则AB为()S CA. 8B. 12C. 16D. 20【答案】C【解析】试题解析:∙∙∙DE是AB的垂直平分线,ME = RE :的周长任「Δ EHC的周长I = EE + EC + IiC =AE^ Ec [ IiC = AC + 甘:.∙. I总盒强:的周长—M 泪的周长=AB ,∣ΛZP=40-24=16.故选C.点睛:线段的垂直平分线上的点到线段两个端点的距离相等.2. (2017黑龙江大庆)如图,ΔABD是以BD3. 已知 汀 口耽:,用尺规作图的方法在 冋上确定一点冈,使Un ,则符合要求的作图痕迹是ΔBCD 中,∠ DBC=90° ∠ BCD=60° DC 中点为E , AD 与BE 的延长线交于点 F ,则∠ AF B 的度数为()A. 30 °B.15 °C.45 °D.25 °【答案】B【解析】解:τ∠ DBC=90° E 为 DC 中点,∙∙∙ BE=CE=CD ,τ∠ BCD=60° Λ∠ CBE=60° ∕∙∠ DBF=30°∙∠ ABF=75° ∙∠ AFB=180° - 90° - 75°=15° 故选B .为斜边的等腰直角三角形, •••△ ABD 是等腰直角三角形,∙∠ ABD=45° , A.【答案】D【解折】分析:夷使PZPC=BC,必有PA=PB,所以选项中只有作AB 的中垂线才能满足遗个条件,故D 正确. 详解:D 选项中作的是AB 的中垂线,.∖PA=PB.'.PB-PC-BC J∕r PA+PC=BC故选D*点睛:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出 PA=PB .4.(河北省故城县运河中学 2017-2018学年八年级(上)期末)等边三角形的边长为 2,则该三角形的面积为()A. D. 3 【答案】CB.C.【解析】如图,作CD丄AB ,贝U CD是等边△ABC底边AB上的高,根据等腰三角形的三线合一,可得AD=I ,所以,在直角ΔADC中,利用勾股定理,可求出CD= =面积计算公式,解答,代入出S AABC = ×2×故选:C.5. (2017-2018 学年苏州市工业园区金鸡湖学校期末复习)如图,在于占4八、、于占4八、、边的中点,连接则下列结论①②为等边三角形.下面判断正确是( )A. ①正确B. ②正确C. ①②都正确D. ①②都不正确【答案】C【解析】试题解析:①∙∙∙BM丄AC于点M, CN丄AB于点N , P为BC边的中点,PN= ∙∙∙ PM=PN ,正确;②∙∙∙∠ A=60 , BM 丄AC 于点M , CN 丄AB 于点N ,∙∠ ABM= ∠ ACN=30 ,在 AABC 中,∠ BCN+ ∠ CBlvF 180° -60 °-30 °×2=60° , •••点P 是BC 的中点,BM 丄AC , CN 丄AB , ∙ PM=PN=PB=PC ,∙∠ BPN=2 ∠ BCN , ∠ CPM=2 ∠ CBM ,∙∠ BPN+ ∠ CPM=2 (∠ BCN+ ∠ CBM ) =2×60°=120° , ∙∠ MPN=60 ,•••△ PMN 是等边三角形,正确; 所以①②都正确.PM= BCBC ,故选C .6.在平面直角坐标系中,点 A ( J2 ,迈),B ( 3J2 , 3丿2 ),动点C 在X 轴上,若以A 、B 、C 三点为 顶点的三角形是等腰三 角形,则点C 的个数为()A . 2B . 3C . 4D . 5【答案】B . 【解析】试爾分析:SC≡√∕AB 所在的M ⅛⅛Sy = X ,Λ⅛ AB 的中垂线所在的直线野二 V 丁点BZCgZ 的中点坐 ⅛⅛(2∙d, 2 如 把 x=2√∑,产 2√Σ 代AF = -K+占,解得 b=4√2, …朋的中垂线所在的S÷⅞≡y = -χ+4√2 , .'.C 1 ¢4^, O )J決点启为圆^以期的长为半^画弧P 与-轴的交点为点55 ^B √(3√2 -√2)z + (3√2 -√2)z =4, V3√2>4,圆心,以朋的长九半径画弧 与耳轴沒有交点.综上,可得若以久趴€三点为顶点的三角形是等腰三角形P 则点f 的个数为取故选亠考点:1.等腰三角形的判定;2•坐标与图形性质;3•分类讨论;4 •综合题;5•压轴题.7(浙江省上杭县西南片区 2017-2018学年八年级上册期末模拟 )如图,在 MBC 中,∠ B= ∠ C, AD 为AABC 的中线,那么下列结论错误的是()A. AABD ACDB. AD为ΔABC的高线C. ADD. ΔABC是等边三角形为ΔABC的角平分线【答案】D【解析】试题解析:τ∠ B= ∠ C, ∙∙∙ AB=AC ,∙∙∙ AD是△ABC的中线,∙AD丄BC ,∠ BAD= ∠ CAD ,即AD是ΔABC的高,AD为△ABC的角平分线,∙∠ADB= ∠ ADC=9°0 ,在ΔABD和ΔACD中•••△ ABD BΔ ACD ,即选项A、B、C 都正确,根据已知只能推出AC=AB ,不能推出AC、AB 和BC 的关系,即不能得出△ABC 是等边三角形,选项D 错误,故选D .二、填空题8. (2018广州市黄埔区中考数学一模)如图,已知ΔABC和ΔAED均为等边三角形,点D在BC边上,DE 与AB相交于点F,如果AC=12 , CD=4 ,那么BF的长度为__.答案】解析】试题分析:△ABC 和△AED 均为等边三角形,~ ?ACD, 又2017-2018 学年八年级上期末模拟 )已知:点 P 、Q 是 △ABC 的边 BC 上的两个 ,∠BAC 的度数是( ) 9. ( 山西省汾西县双语学校点,且 BP=PQ=QC=AP=AQA. 100 °B. 120 °C.130 °D. 150【答案】B【解析】VPctAP=AQ l l.∖ ZAP Q= ZPAQ= ZAQP=605,ZAP=BP,.∖Z B-Z TAB J Z,∖PQ-Z B÷ZPAB-SO C),∖ZB=ZTAB=SO fi,同理ZQAC=ZC=30%.∖ZBAoZPAQ十ZPAB十ZQAOl2'O HS.故选B. I10.(浙江省宁波市东方中学2017-2018学年八年级上册期末模拟)等腰△ABC ,其中AB=AC=17cm , BC=16cm ,则三角形的面积为___________ cm2.【答案】120 【解析】利用等腰三角形的顶角的平分线、底边上的中线、底边上的高的重合的性质,勾股定理求出三角形的高AD= =15cm ,再利用三角形面积公式求S AABC = BC?AD=×16×15=120cm2故答案为:120.11.(浙江省宁波市李兴贵中学2017-2018学年八年级上册期末模拟)等腰三角形一腰上的高与另一腰的夹角为40°则等腰三角形顶角的度数是________[来]【答案】50或130【解析】首先根据题意画出图形,一种情况等腰三角形为锐角三角形,①如图 1 ,∙∙∙ BD 丄AC , ∠ ABD=40 ,∙∙∙∠A=50 ,即顶角的度数为50°.另一种情况等腰三角形为钝角三角形,②如图2,∙∙∙ BD 丄AC , ∠ DBA=40∙∙∙∠ BAD=50 ,∙∙∙∠ BAC=130 .故答案为:50或130.12.(浙师大附属秀洲实验学校 2017-2018学年九年级下学期第三次模拟 )已知□ ABCD 中,AB=4, ABC 与 EDC 的角平分线交AD 边于点E , F ,且EF=3,则边AD 的长为 ___________________ .【答案】5或11;【解析】∙∙∙ BE 平分∠ ABC,∙∠ ABE= ∠ CBE ,•••四边形ABCD 是平行四边形,∙ AD // CB , CD=AB=4 ,∙∠ AEB= ∠ CBE∙∠ ABE= ∠ AEB ,∙ AE=AB=4 ,同理:DF=CD=4 ,分两种情况:∙ AD=AE+EF+DF=4+3+4=11∙ AF=1 , ∙ AD=AF+DF=1+4=5; ①如图1所示:∙∙∙ EF=3②如图2所示:■/ EF=4 ,AE=DF=4综上所述: AD的长为11或5;故答案为:5或11.13. (2017新疆建设兵团第15题)如图,在四边形 ABCD 中,AB=AD , CB=CD ,对角线AC , BD 相交于 点0,下列结论中:① ∠ ABC= ∠ ADC ;② AC 与BD 相互平分;③ AC ,BD 分别平分四边形 ABCD 的两组对角;1④ 四边形ABCD 的面积S= AC?BD .2试题解析:①在 △ABC 和ΔADC 中,AB AD∙∙∙ BC CD ,AC AC•••△ ABC ADC ( SSS),∙∙∙∠ ABC= ∠ ADC ,故①结论正确;②•••△ ABC BΔ ADC ,∙∠ BAC= ∠ DAC ,∙∙∙ AB=AD ,• OB=OD , AC 丄 BD ,而AB 与BC 不一定相等,所以 AO 与OC 不一定相等,故②结论不正确; ③由②可知:AC 平分四边形 ABCD 的∠ BAD 、/ BCD,1 而AB 与BC 不一定相等,所以 BD 不一定平分四边形 ABCD 的对角; 故③结论不正确;④∙∙∙ AC 丄 BD ,[来源学科网]•••四边形ABCD 1 1 1的面积 S=SSS 3 2 BD ?A O + 2 BD ?CO = 2 BD ?(AO+CO )=AC?BD . 2故④结论正确;所以正确的有:①④考点:全等三角形的判定与性质;线段垂直平分线的性质.14.等腰三角形 中,顶角为 ,点在以为圆心,'长为半径的圆上,且为 _________ .【来源】2018年浙江省绍兴市中考数学试卷解析【答案】 或【解析】【分析】画出示意图,分两种情况进行讨论即【解答】如图:分两种情况进行讨论■■■ ^PBC = ^ABP + ^ABC= Ilo Dl 同理:^AffP r ^^BAC )J-ABP a■ 2.BAC = 40\ LABC = tβo"-+t>*1 Λ ^P I ffC = ^AeC-= 30°.故答案为:3^或】1孑【点评】考查全等三角形的判定与性质,等腰三角形的性质等,注意分类讨论思想在数学中的应用15. (2017广西贵港第16题)如图,点P 在等边 ABC 的内部,且PC 6,PA 8,PB 10 ,将线段PC绕点C 顺时针旋转60o得到P'C ,连接AP',则Sin PAP'的值为 ___________________ . 【答案】35∙∙∙ CP=CP =6,∠ PCP =60°•••△ CPP 为等边三角形,• PP =PC=6•••△ ABC 为等边三角形,• CB=CA , ∠ ACB=60 ,∙∠ PCB= ∠ P' CA在△PCB 和 ΔP ,CA 中 PC PCPCB PCACB CAτ 62+82=102,• PP 2+AP 2=P'A,∙ PB=P A=10,[来源学。

中考数学 考点系统复习 第四章 三角形 第三节 等腰三角形与直角三角形

中考数学 考点系统复习 第四章 三角形 第三节 等腰三角形与直角三角形
81 或 5或4 .
10.(2021·娄底)如图,△ABC 中,AB=AC=2,P 是 BC 上任意一点,PE ⊥AB 于点 E,PF⊥AC 于点 F,若 S△ABC=1,则 PE+PF= 1 .
11.如图,已知在 Rt△ABC 中,∠C=90°,AC=BC,AB=6,点 P 是 Rt △ABC 的重心,则点 P 到 AB 所在直线的距离等于 1 .
( B)
A.85°
B.75° C.65° D.30°
3.(2021·福建)如图,点 F 在正五边形 ABCDE 的内部,△ABF 为等边三
角形,则∠AFC 等于
( C)
A.108°
B.120°
C.126°
D.132°
4.(2020·南充)如图,在等腰△ABC 中,BD 为∠ABC 的平分线,∠A=36°,
AB=AC=a,BC=b,则 CD= a+b
A. 2 a-b
B. 2
( C)
C.a-b
D.b-a
5.“赵爽弦图”是由 4 个全等的直角三角形与中间的一个小正方形拼成
的一个大正方形(如图所示).若直角三角形的两条直角边的长分别是 2
和 1,则图中阴影区域的面积与大正方形的面积之比为
( C)
A.13
B.14
的格点 C 的个数是
( B)
A.2
B.3
C.4
D.5
8.(2021·成都)如图,数字代表所在正方形的面积,则 A 所代表的正方 形的面积为 10100 .
9.(2021·扬州)如图,在 Rt△ABC 中,∠ACB=90°,D 是 AB 的中点, 过点 D 作 DE⊥BC,垂足为 E,连接 CD,若 CD=5,BC=8,则 DE= 3 .

特殊三角形常考知识点专题备战2023年中考数学考点微专题

特殊三角形常考知识点专题备战2023年中考数学考点微专题

考向4.4 特殊三角形常考知识点专题例1、(2021·福建·中考真题)如图,在Rt ABC 中,90ACB ∠=︒.线段EF 是由线段AB平移得到的,点F 在边BC 上,EFD △是以EF 为斜边的等腰直角三角形,且点D 恰好在AC的延长线上.(1)求证:ADE DFC ∠=∠; (2)求证:CD BF =.证明:(1)在等腰直角三角形EDF 中,90EDF ∠=︒, ∴90ADE ADF ∠+∠=︒. ∵90ACB ∠=︒,∴90DFC ADF ACB ∠+∠=∠=︒, ∴ADE DFC ∠=∠. (2)连接AE .由平移的性质得//,AE BF AE BF =. ∴90EAD ACB ∠=∠=︒, ∴18090DCF ACB ∠=︒-∠=︒, ∴EAD DCF ∠=∠.∵EDF 是等腰直角三角形, ∴DE DF =.由(1)得ADE DFC ∠=∠, ∴AED CDF ≌, ∴AE CD =,∴CD BF =.1、等腰三角形的最重要的性质“三线合一”,这是中考题中常考点;2、中考几何综合题的基本特征就是常考知识点三个以上的在一个题中出现,因此解综合题的前题是学生对知识点能全面并熟悉掌握。

3、本小题考查平移的性质、直角三角形和等腰三角形的性质、全等三角形的判定和性质,解题的关键是:正确添加辅助线、熟练掌握平移的性质和全等三角形的判定与性质. 中考真题)已知AOB 和△2OM OA ⎫<<⎪⎪⎝⎭,90AOB MON ∠=∠=︒.(1)如图1,连接AM ,BN ,求证:AM BN =; (2)将MON △绕点O 顺时针旋转.①如图2,当点M 恰好在AB 边上时,求证:2222AM BM OM +=;②当点A ,M ,N 在同一条直线上时,若4OA =,3OM =,请直接写出线段AM 的长.解:(1)∵AOB 和MON △都是等腰直角三角形,∴90OA OB ON OM AOBNOM ,,,又=+=90+AOM NOM AON AON ,=+=90+BON AOB AON AON , ∴=BON AOM , ∴()AMO BNO SAS ≌, ∴AM BN =;(2)①连接BN ,如下图所示:∴==90AOM AOB BOM BOM ,==90BON MONBOM BOM ,且OA OB OM ON ,==, ∴()AMO BNO SAS ≌, ∴45AOBN,AM BN =,∴454590ABN ABO OBN ,且OMN ∆为等腰直角三角形, ∴2MN OM =,在Rt BMN ∆中,由勾股定理可知:22222(2)2BM BN MN OM OM ,且AM BN =∴2222AM BM OM +=; ②分类讨论:情况一:如下图2所示,设AO 与NB 交于点C ,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AMAHHM; 情况二:如下图3所示,过O 点作OH ⊥AM 于H 点,45HNO ,NHO 为等腰直角三角形,∴332222NO HOHM ,在Rt AHO ∆中,22223223464()222AH AO OH , ∴46322AM AHHM; 故46322AM或46322-.1、直角三角形角的关系是两锐角互余,边的关系是勾股定理;2、本题考查了全等三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.1、等腰三角形具有的特性:等边对等角、等角对等边、对称性、;三线合一、等边三角形是特殊等腰三角形;2、直角三角形判定方法:两内角互余、勾股定理逆定理、一边上中线等于这边一半。

第18讲 等腰三角形与直角三角形-2023年中考数学一轮复习备考(考点清单+强化演练+答案)

第18讲 等腰三角形与直角三角形-2023年中考数学一轮复习备考(考点清单+强化演练+答案)

2023年中考数学一轮复习备考第18讲等腰三角形与直角三角形考点清单考点1 等腰三角形的性质与判定性质(1)两底角相等,即∠B=∠C(等边对等角);(2)两腰相等,即AB=AC;(3)是轴对称图形,有一条对称轴,即AD所在的直线;(4)“三线合一”(即顶角的①、底边上的中线和底边上的高互相重合)判定(1)两边相等的三角形是等腰三角形;(2)②相等的三角形是等腰三角形(等角对等边)周长、面积周长:C=a+2b;面积:S=③(其中a是底边长,b是腰长,h是底边上的高)【易错警示】等腰三角形中的分类讨论:(1)当顶角和底角不确定时,需要分类讨论,且需要用三角形内角和定理检验;(2)当腰长和底边长不确定时,需要分类讨论,且需要用三角形三边关系检验.考点2 等边三角形的性质与判定性质(1)等边三角形的三条边相等,即AB=BC=AC;(2)等边三角形的三个内角相等且每一个角都等于④,即∠B=∠C=∠BAC=60°;(3)等边三角形是轴对称图形,有⑤条对称轴;(4)等边三角形“三线合一”;(5)等边三角形的内心、外心重合判定(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是⑥的等腰三角形是等边三角形周长、面积周长:C=3a;面积:S=12ah=34a2(h=32a)(其中a是边长,h是任一边上的高)考点3 直角三角形的性质与判定性质(1)两锐角之和等于90°,即∠A+∠B=90°;(2)斜边上的中线等于斜边的⑦;(3)30°角所对的直角边等于斜边的⑧;(4)勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么⑨;【拓展】在直角三角形中,如果一条直角边长等于斜边长的一半,那么这条直角边所对的锐角等于⑩;外接圆半径R=c2,内切圆半径r=12(a+b-c)判定(1)有一个角为⑪的三角形是直角三角形;(2)有两个角互余的三角形是直角三角形;(3)勾股定理的逆定理:如果三角形的三边长a,b,c满足⑫,那么这个三角形是直角三角形;【拓展】一条边上的中线等于这条边的一半的三角形是直角三角形周长、面积周长:C=a+b+c;面积:S△ABC=12ab=12ch(其中a,b分别为两个直角边长,c为斜边长,h为斜边上的高)考点4 等腰直角三角形的性质与判定性质(1)两直角边相等,即AC=BC;(2)两锐角相等且都等于45°;(3)是轴对称图形,有一条对称轴,即CD所在的直线;(4)“三线合一”判定(1)顶角为⑬的等腰三角形是等腰直角三角形;(2)有两个角为⑭的三角形是等腰直角三角形;(3)有一个角为⑮的直角三角形是等腰直角三角形;(4)两直角边相等的直角三角形是等腰直角三角形周长、面积 周长:C =2a +c ;面积:S =12a 2=12ch =22ah (其中a 为直角边长,c 为斜边长,h 为斜边上的高)强 化 演 练基础练1.如图,在Rt △ABC 中,∠ACB =90°,AC =BC ,过点C 作 CD ⊥AB ,垂足为D ,E 为BC 的中点,AE 与CD 交于点F .若DF 的长为23,则AE 的长为( )A .2B .2C .5D .2 52.已知a ,b 是等腰三角形的两边长,且a ,b 满足2a -3b +5+(2a +3b -13)2=0,则此等腰三角形的周长为( )A .8B .6或8C .7D .7或83.如图,在等腰三角形ABC 中,AB =AC =5,BC =8,AD ⊥AC 交BC 于点D ,则AD 的值为( )A .125B .154C .5D .2034.如图,AD 是等边三角形ABC 的中线,AE =AD ,则∠EDC 的度数为( )A .30°B .20°C .25°D .15°5.如图是“人字形”钢架,其中斜梁AB =AC ,顶角∠BAC =120°,跨度BC =10 m ,AD 为支柱(即底边BC 上的中线),两根支撑架DE ⊥AB ,DF ⊥AC ,则DE +DF 等于( )A .10 mB .5 mC .2.5 mD .9.5 m6.如图,在△ABC 中,AB =BC ,由图中的尺规作图痕迹得到的射线BD 与AC 交于点E ,点F 为BC 的中点,连接EF .若BE =AC =2,则△CEF 的周长为( )A .3+1B .5+3C .5+1D .47.如图,在4×4的正方形网格中有两个格点A ,B ,连接AB ,在网格中再找一个格点C , 使得△ABC 是等腰直角三角形,满足条件的格点C 的个数是( )A .2B .3C .4D .58.如图,在△ABC 中AC =BC ,点D 和E 分别在AB 和AC 上,且AD =AE .连接DE ,过点A 作AH ⊥BC 于点H ,交DE 于点F .若∠C =40°,则∠AFE 的度数为( )A .60°B .65°C .75°D .80°9.如图,在△ABC 中,点O 是角平分线AD ,BE 的交点.若AB =AC =10,BC =12,则tan ∠OBD 的值是( )A .12B .2C .63D .6410.如图,在Rt △ABC 中,CD 为斜边AB 上的中线.若CD =2,则AB = .11.如图,在△ABC 中,AB =AC =2,P 是BC 上任意一点,PE ⊥AB 于点E ,PF ⊥AC 于点F .若S △ABC =1,则PE +PF = .12.如图,在Rt△ABC中,∠C=90°,AF=EF.若∠CFE=72°,则∠B=.13.如图,EA=EB=EC,∠AEB=70°,则∠ACB=°.14.如图,在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于点D,E为垂足,连接CD.若BD=1,则AC的长是 .15.如图,在△ABC中,∠ABC的平分线BD交AC边于点D,AE⊥BC于点E.已知∠ABC=60°,∠C =45°.(1)求证:AB=BD;(2)若AE=3,求△ABC的面积.16.如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至点E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.强化练17.如图,在等边三角形ABC中,AB=10,E为AC的中点,点F,G为AB边上的动点,且FG=5,则EF+CG的最小值是()A.57 B.5 6 C.53+5 D.1518.如图,在△ABC中,AD和BE是高,∠ABE=45°,F是AB的中点,AD与FE,BE分别交于点G,H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC·AD=2AE2;④S△ABC=4S△ADF.其中正确的有()A.1个B.2个C.3个D.4个提升练19.七巧板是大家熟悉的一种益智类玩具,用七巧板能拼出许多有趣的图案.小聪同学将一个直角边长为20 cm的等腰直角三角形纸板,切割七块,正好制成一副七巧板,则图中阴影部分的面积为cm2.20.如图,在△ABC中,AB=AC=6,∠BAC=120°,P是BC上的动点,Q是AC上的动点(Q不与A,C重合).(1)线段P A的最小值为;(2)当△ABP 为直角三角形,△PCQ 也为直角三角形时,CQ 的长度为 .参 考 答 案考点清单①两角 ②两角 ③12ah ④60° ⑤三 ⑥60° ⑦一半 ⑧一半 ⑨a 2+b 2=c 2 ⑩30° ⑪90° ⑫a 2+b 2=c 2 ⑬90° ⑭45° ⑮45°强化演练1. C2. D3. B4. D5. B6. C7. B8. C9. A 10. 4 11. 1 12. 54° 13. 35 14. 2 3 15. (1)证明:∵BD 平分∠ABC ,∠ABC =60°,∴∠DBC =12∠ABC =30°. ∵∠C =45°,∴∠ADB =∠DBC +∠C =75°,∠BAC =180°-∠ABC -∠C =75°,∴∠BAC =∠ADB ,∴AB =BD .(2)解:在Rt △ABE 中,∵∠ABC =60°,AE =3,∴BE =AE tan ∠ABC = 3. 在Rt △AEC 中,∵∠C =45°,AE =3,∴EC =AE tan C =3,∴BC =3+3,∴S △ABC =12BC ·AE =9+332.16. (1)证明:在△ADB 和△ADC 中,⎩⎪⎨⎪⎧AD =AD ,∠ADB =∠ADC ,BD =CD ,∴△ADB ≌△ADC (SAS),∴∠B =∠ACB .(2)解:在Rt △ADB 中,∵AB =5,AD =4,∴BD =AB 2-AD 2=52-42=3,∴BD =CD =3,AC =AB =CE =5,∴BE =2BD +CE =2×3+5=11,DE =CD +CE =8. 在Rt △ADE 中,由勾股定理,得AE =AD 2+DE 2=42+82=45,∴C △ABE =AB +BE +AE =5+11+45=16+45,S △ABE =12BE ·AD =12×11×4=22.17. A 18. D 19.25420. (1)3 (2)4.5或4或3。

第四单元 第十九讲 等腰三角形与直角三角形++++课件+2025年九年级中考数学总复习人教版(山东)

第四单元 第十九讲 等腰三角形与直角三角形++++课件+2025年九年级中考数学总复习人教版(山东)

过点F作DE∥BC,交AB于D,交AC于E,那么下列结论正确的是 ( C )
①△BDF,△CEF都是等腰三角形;②DE=BD+CE;
③△ADE的周长为AB+AC;④BD=CE.
A.③④
B.①②
C.①②③
D.②③④
(2)已知△ABC中,AB=AC=4,∠A=60°,则△ABC的周长为________.
股定理求解.
(4)折叠问题中求解线段长度问题,常常将某些条件汇集到一个直角三角形中,再
根据勾股定理列方程求解.
山东3年真题
38
1.(2023·菏泽中考)△ABC的三边长a,b,c满足(a-b)2+ 2 − − 3+|c-3 2|=0,
(4)在直角三角形中,若有斜边中点,可考虑直角三角形斜边上的中线等于斜边的
一半.
37
2.勾股定理常见应用与技巧:
(1)已知直角三角形的任意两个边长,可直接利用勾股定理求得第三条边长.
(2)已知三角形的三边长,可运用勾股定理的逆定理确定此三角形是否为直角三角
形.
(3)立体图形表面的最短路径问题,可将立体图形展开,构造直角三角形后利用勾
交AC于点D,如果DE垂直平分BC,那么∠A的度数为
A.31° B.62° C.87° D.93°
(C)
8
ቤተ መጻሕፍቲ ባይዱ
知识要点
3.直角三角形的性质与判定
互余
直角三角形的两个锐角__________

斜边
30°角所对的直角边等于______的一半

斜边
直角三角形斜边上的中线等于__________的一半
平方和
勾股定理:直角三角形中两直角边的____________等于斜边的平方

专题16等腰三角形与直角三角形(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【

专题16等腰三角形与直角三角形(共50题)-备战2023年中考数学必刷真题考点分类专练(全国通用)【

备战2023年中考数学必刷真题考点分类专练(全国通用)专题16等腰三角形与直角三角形(共50题)一.选择题(共24小题)1.(2022•宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是()A.8cm B.13cm C.8cm或13cm D.11cm或13cm2.(2022•泰安)如图,l1∥l2,点A在直线l1上,点B在直线l2上,AB=BC,∠C=25°,∠1=60°.则∠2的度数是()A.70°B.65°C.60°D.55°3.(2022•自贡)等腰三角形顶角度数比一个底角度数的2倍多20°,则这个底角的度数是()A.30°B.40°C.50°D.60°4.(2022•天津)如图,△OAB的顶点O(0,0),顶点A,B分别在第一、四象限,且AB⊥x轴,若AB=6,OA=OB=5,则点A的坐标是()A.(5,4)B.(3,4)C.(5,3)D.(4,3)5.(2022•台湾)如图,△ABC中,D点在AB上,E点在BC上,DE为AB的中垂线.若∠B=∠C,且∠EAC>90°,则根据图中标示的角,判断下列叙述何者正确?()A.∠1=∠2,∠1<∠3B.∠1=∠2,∠1>∠3C.∠1≠∠2,∠1<∠3D.∠1≠∠2,∠1>∠36.(2022•广元)如图,在△ABC中,BC=6,AC=8,∠C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,大于AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于点E、F,则AE的长度为()A.B.3C.2D.7.(2022•金华)如图是城市某区域的示意图,建立平面直角坐标系后,学校和体育场的坐标分别是(3,1),(4,﹣2),下列各地点中,离原点最近的是()A.超市B.医院C.体育场D.学校8.(2022•温州)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,连结CF,作GM⊥CF于点M,BJ⊥GM于点J,AK⊥BJ于点K,交CF于点L.若正方形ABGF与正方形JKLM的面积之比为5,CE=+,则CH的长为()A.B.C.2D.9.(2022•安徽)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△P AB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.B.C.3D.10.(2022•南充)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,DE∥AB,交AC于点E,DF⊥AB于点F,DE=5,DF=3,则下列结论错误的是()A.BF=1B.DC=3C.AE=5D.AC=911.(2022•宜昌)如图,在△ABC中,分别以点B和点C为圆心,大于BC长为半径画弧,两弧相交于点M,N.作直线MN,交AC于点D,交BC于点E,连接BD.若AB=7,AC=12,BC=6,则△ABD的周长为()A.25B.22C.19D.1812.(2022•河北)题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:d≥2,乙答:d=1.6,丙答:d=,则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整13.(2022•宜宾)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,点D是BC边上的动点(不与点B、C重合),DE与AC交于点F,连结CE.下列结论:①BD=CE;②∠DAC=∠CED;③若BD=2CD,则=;④在△ABC内存在唯一一点P,使得P A+PB+PC的值最小,若点D在AP的延长线上,且AP的长为2,则CE=2+.其中含所有正确结论的选项是()A.①②④B.①②③C.①③④D.①②③④14.(2022•眉山)在△ABC中,AB=4,BC=6,AC=8,点D,E,F分别为边AB,AC,BC的中点,则△DEF的周长为()A.9B.12C.14D.1615.(2022•湘潭)中国古代数学家赵爽在为《周髀算经》作注解时,用4个全等的直角三角形拼成正方形(如图),并用它证明了勾股定理,这个图被称为“弦图”.若“弦图”中小正方形面积与每个直角三角形面积均为1,α为直角三角形中的一个锐角,则tanα=()A.2B.C.D.16.(2022•苏州)如图,点A的坐标为(0,2),点B是x轴正半轴上的一点,将线段AB绕点A按逆时针方向旋转60°得到线段AC.若点C的坐标为(m,3),则m的值为()A.B.C.D.17.(2022•扬州)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为△ABC,提供下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC 18.(2022•湖州)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是()A.12B.9C.6D.319.(2022•宁波)如图,在Rt△ABC中,D为斜边AC的中点,E为BD上一点,F为CE中点.若AE=AD,DF=2,则BD的长为()A.2B.3C.2D.420.(2022•云南)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F 与O点都不重合,连接ED、EF.若添加下列条件中的某一个,就能使△DOE≌△FOE.你认为要添加的那个条件是()A.OD=OE B.OE=OF C.∠ODE=∠OED D.∠ODE=∠OFE 21.(2022•达州)如图,AB∥CD,直线EF分别交AB,CD于点M,N,将一个含有45°角的直角三角尺按如图所示的方式摆放,若∠EMB=80°,则∠PNM等于()A.15°B.25°C.35°D.45°22.(2022•金华)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.23.(2022•舟山)如图,在Rt△ABC和Rt△BDE中,∠ABC=∠BDE=90°,点A在边DE的中点上,若AB=BC,DB=DE=2,连结CE,则CE的长为()A.B.C.4D.24.(2022•遂宁)如图,D、E、F分别是△ABC三边上的点,其中BC=8,BC边上的高为6,且DE∥BC,则△DEF面积的最大值为()A.6B.8C.10D.12二.填空题(共15小题)25.(2022•岳阳)如图,在△ABC中,AB=AC,AD⊥BC于点D,若BC=6,则CD=.26.(2022•苏州)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为.27.(2022•云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是.28.(2022•滨州)如图,屋顶钢架外框是等腰三角形,其中AB=AC,立柱AD⊥BC,且顶角∠BAC=120°,则∠C的大小为.29.(2022•丽水)三个能够重合的正六边形的位置如图.已知B点的坐标是(﹣,3),则A点的坐标是.30.(2022•金华)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2cm.把△ABC沿AB方向平移1cm,得到△A'B'C',连结CC',则四边形AB'C'C的周长为cm.31.(2022•宜宾)《数书九章》是中国南宋时期杰出数学家秦九韶的著作,书中提出了已知三角形三边a、b、c求面积的公式,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实.一为从隅,开平方得积.”若把以上这段文字写成公式,即为S=.现有周长为18的三角形的三边满足a:b:c=4:3:2,则用以上给出的公式求得这个三角形的面积为.32.(2022•十堰)【阅读材料】如图①,四边形ABCD中,AB=AD,∠B+∠D=180°,点E,F分别在BC,CD上,若∠BAD=2∠EAF,则EF=BE+DF.【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形ABCD.已知CD=CB=100m,∠D=60°,∠ABC=120°,∠BCD=150°,道路AD,AB上分别有景点M,N,且DM=100m,BN =50(﹣1)m,若在M,N之间修一条直路,则路线M→N的长比路线M→A→N的长少m(结果取整数,参考数据:≈1.7).33.(2022•山西)如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为.34.(2022•武汉)如图,在Rt△ABC中,∠ACB=90°,AC>BC,分别以△ABC的三边为边向外作三个正方形ABHL,ACDE,BCFG,连接DF.过点C作AB的垂线CJ,垂足为J,分别交DF,LH于点I,K.若CI=5,CJ=4,则四边形AJKL的面积是.35.(2022•孝感)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m (m≥3,m为正整数),则其弦是(结果用含m的式子表示).36.(2022•台州)如图,在△ABC中,∠ACB=90°,D,E,F分别为AB,BC,CA的中点.若EF的长为10,则CD的长为.37.(2022•嘉兴)小曹同学复习时将几种三角形的关系整理如图,请帮他在括号内填上一个适当的条件.38.(2022•株洲)如图所示,点O在一块直角三角板ABC上(其中∠ABC=30°),OM⊥AB于点M,ON ⊥BC于点N,若OM=ON,则∠ABO=度.39.(2022•成都)如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N;②作直线MN交边AB于点E.若AC=5,BE=4,∠B=45°,则AB 的长为.三.解答题(共11小题)40.(2022•温州)如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)求证:∠EBD=∠EDB.(2)当AB=AC时,请判断CD与ED的大小关系,并说明理由.41.(2022•金华)如图1,将长为2a+3,宽为2a的矩形分割成四个全等的直角三角形,拼成“赵爽弦图”(如图2),得到大小两个正方形.(1)用关于a的代数式表示图2中小正方形的边长.(2)当a=3时,该小正方形的面积是多少?42.(2022•山西)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N.猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.43.(2022•武汉)问题提出如图(1),在△ABC中,AB=AC,D是AC的中点,延长BC至点E,使DE=DB,延长ED交AB于点F,探究的值.问题探究(1)先将问题特殊化.如图(2),当∠BAC=60°时,直接写出的值;(2)再探究一般情形.如图(1),证明(1)中的结论仍然成立.问题拓展如图(3),在△ABC中,AB=AC,D是AC的中点,G是边BC上一点,=(n<2),延长BC至点E,点DE=DG,延长ED交AB于点F.直接写出的值(用含n的式子表示).44.(2022•怀化)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).45.(2022•杭州)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.46.(2022•陕西)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD交于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.47.(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.48.(2022•扬州)如图1,在△ABC中,∠BAC=90°,∠C=60°,点D在BC边上由点C向点B运动(不与点B、C重合),过点D作DE⊥AD,交射线AB于点E.(1)分别探索以下两种特殊情形时线段AE与BE的数量关系,并说明理由;①点E在线段AB的延长线上且BE=BD;②点E在线段AB上且EB=ED.(2)若AB=6.①当=时,求AE的长;②直接写出运动过程中线段AE长度的最小值.49.(2022•嘉兴)小东在做九上课本123页习题:“1:也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.50.(2022•湘潭)在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,过点B、C分别作l的垂线,垂足分别为点D、E.(1)特例体验:如图①,若直线l∥BC,AB=AC=,分别求出线段BD、CE和DE的长;(2)规律探究:(Ⅰ)如图②,若直线l从图①状态开始绕点A旋转α(0<α<45°),请探究线段BD、CE和DE的数量关系并说明理由;(Ⅱ)如图③,若直线l从图①状态开始绕点A顺时针旋转α(45°<α<90°),与线段BC相交于点H,请再探线段BD、CE和DE的数量关系并说明理由;(3)尝试应用:在图③中,延长线段BD交线段AC于点F,若CE=3,DE=1,求S△BFC.。

中考数学 专题18 等腰三角形与直角三角形(解析版)

中考数学 专题18  等腰三角形与直角三角形(解析版)

第四篇图形的性质专题18等腰三角形与直角三角形知识点名师点晴等腰三角形等腰三角形的性质理解等腰三角形的性质,并能解决等腰三角形的有关计算等腰三角形的判定掌握等腰三角形的判定方法,会证明一个三角形是等腰三角形等边三角形等边三角形的性质理解等边三角形的性质等边三角形的判定掌握等边三角形的判定方法,会证明一个三角形是等边三角形直角三角形直角三角形的性质理解直角三角形的有关性质直角三角形的判定掌握直角三角形的判定方法,会证明一个三角形是直角三角形勾股定理理解并掌握勾股定理及其逆定理归纳1:等腰三角形基础知识归纳:1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边对等角)推论1:等腰三角形顶角平分线平分底边并且垂直于底边.即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.推论2:等边三角形的各个角都相等,并且每个角都等于60°. 2、等腰三角形的判定等腰三角形的判定定理及推论:定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.基本方法归纳:①等腰直角三角形的两个底角相等且等于45°②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角). ③等腰三角形的三边关系:设腰长为a ,底边长为b ,则2b<a ④等腰三角形的三角关系:设顶角为顶角为∠A ,底角为∠B 、∠C ,则∠A =180°—2∠B ,∠B =∠C =2180A∠-︒ 注意问题归纳:等腰三角形的性质与判定经常用来计算三角形的角的有关问题,并证明角相等的问题.【例1】(2019内蒙古包头市,第10题,3分)已知等腰三角形的三边长分别为a 、b 、4,且a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,则m 的值是( )A .34B .30C .30或34D .30或36 【答案】A .【分析】分三种情况讨论,①当a =4时,②当b =4时,③当a =b 时;结合韦达定理即可求解. 【详解】当a =4时,b <8.∵a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,∴4+b =12,∴b =8不符合; 当b =4时,a <8.∵a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,∴4+a =12,∴a =8不符合; 当a =b 时.∵a 、b 是关于x 的一元二次方程x 2﹣12x +m +2=0的两根,∴12=2a =2b ,∴a =b =6,∴m +2=36,∴m =34. 故选A .【点睛】本题考查了一元二次方程根与系数的关系;根据等腰三角形的性质进行分类讨论,结合韦达定理和三角形三边关系进行解题是关键.考点:1.一元二次方程的解;2.根的判别式;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.归纳2:等边三角形基础知识归纳:1.定义三条边都相等的三角形是等边三角形.2.性质:等边三角形的各角都相等,并且每一个角都等于60°3.判定三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.基本方法归纳:线段垂直平分线上的一点到这条线段的两端距离相等;到一条线段两端点距离相等的点,在这条线段的垂直平分线上.注意问题归纳:三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【例2】(2019四川省宜宾市,第7题,3分)如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()A 3B23C3D3【答案】C.【分析】连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF=∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.【详解】连接OB、OC,过点O作ON⊥BC,垂足为N.∵△ABC为等边三角形,∴∠ABC=∠ACB=60°.∵点O为△ABC的内心,∴∠OBC=∠OBA12=∠ABC,∠OCB12=∠ACB,∴∠OBA=∠OBC=∠OCB=30°,∴OB=OC.∠BOC=120°.∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC•BN33=⨯133=,∴S△OBC12=BC•ON33=.∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,∵30OBE OCFOB OCEOB FOC∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,∴△EOB≌△FOC(ASA),∴S阴影=S△OBC3=故选C.【点睛】本题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.考点:1.三角形的重心;2.全等三角形的判定与性质;3.等边三角形的性质.归纳3:直角三角形基础知识归纳:有一个角是直角的三角形叫作直角三角形直角三角形的性质:(1)直角三角形两锐角互余.(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半.基本方法归纳:(1)两个内角互余的三角形是直角三角形.(2)三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形.注意问题归纳:注意区分直角三角形的性质与直角三角形的判定,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半,它的逆命题不能直接使用.【例3】(2019山东省东营市,第14题,3分)已知等腰三角形的底角是30°,腰长为23,则它的周长是.【答案】643+.【分析】作AD⊥BC于D,根据直角三角形的性质求出AD,根据勾股定理求出BD,根据三角形的周长公式计算即可.【详解】作AD⊥BC于D.∵AB=AC,∴BD=DC.在Rt△ABD中,∠B=30°,∴AD12=AB3=,由勾股定理得:B D22AB AD=-=3,∴BC=2BD=6,∴△ABC的周长为:6+23+23=6+43.故答案为:643+.【点睛】本题考查了勾股定理、等腰三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.考点:1.等腰三角形的性质;2.含30度角的直角三角形;3.勾股定理.归纳4:勾股定理基础知识归纳:直角三角形的两条直角边a、b的平方和等于斜边c的平方,即:a2+b2=c2;基本方法归纳:如果三角形的三条边a、b、c有关系:a2+b2=c2,那么这个三角形是直角三角形.注意问题归纳:勾股定理的逆定理也是判定直角三角形一种常用的方法,通常与直角三角形的性质结合起来考查.【例4】(2019北京,第12题,2分)如图所示的网格是正方形网格,则∠P AB+∠PBA= °(点A,B,P是网格线交点).【答案】45.【分析】延长AP交格点于D,连接BD,根据勾股定理得到PD2=BD2=1+22=5,PB2=12+32=10,求得PD2+DB2=PB2,于是得到∠PDB=90°,根据三角形外角的性质即可得到结论.【详解】延长AP交格点于D,连接BD,则PD2=BD2=1+22=5,PB2=12+32=10,∴PD2+DB2=PB2,∴∠PDB=90°,∴∠DPB=∠P AB+∠PBA=45°.故答案为:45.【点睛】本题考查了勾股定理的逆定理,勾股定理,三角形的外角的性质,等腰直角三角形的判定和性质,正确的作出辅助线是解题的关键.考点:1.三角形的外角性质;2.勾股定理;3.勾股定理的逆定理.【2019年题组】一、选择题1.(2019四川省内江市,第9题,3分)一个等腰三角形的底边长是6,腰长是一元二次方程x2﹣8x+15=0的一根,则此三角形的周长是()A.16B.12C.14D.12或16【答案】A.【分析】先利用因式分解法解方程求出x的值,再根据三角形三边关系得出三角形的三边长度,继而相加即可得.【详解】解方程x2﹣8x+15=0,得:x=3或x=5,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形;若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16.故选A.【点睛】本题考查了解一元二次方程和等腰三角形的性质,三角形的三边关系定理等知识点,能求出符合的所有情况是解答此题的关键.考点:1.解一元二次方程﹣因式分解法;2.三角形三边关系;3.等腰三角形的性质.2.(2019宁夏,第5题,3分)如图,在△ABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°【答案】C.【分析】根据等腰三角形和平行线的性质即可得到结论.【详解】∵AC=CB,∠C=40°,∴∠BAC=∠B12=(180°﹣40°)=70°.∵AD=AE,∴∠ADE=∠AED12=(180°﹣70°)=55°.∵GH∥DE,∴∠GAD=∠ADE=55°.故选C.【点睛】本题考查了等边三角形的性质,平行线的性质,熟练掌握等腰三角形的性质是解题的关键.考点:1.平行线的性质;2.等腰三角形的性质.3.(2019山西省,第5题,3分)如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°【答案】C.【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.【详解】∵AB=AC,且∠A=30°,∴∠ACB=75°.在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°.∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°.故选C.【点睛】本题考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.考点:1.平行线的性质;2.等腰三角形的性质.4.(2019衢州,第7题,3分)“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动、C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°【答案】D.【分析】根据OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC据三角形的外角性质即可求出∠ODC数,进而求出∠CDE的度数.【详解】∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC,∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°﹣∠BDE=105°,∴∠CDE=105°﹣∠ODC=80°.故选D.【点睛】本题考查了等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键. 考点:等腰三角形的性质.5.(2019湖北省荆州市,第5题,3分)如图,矩形ABCD 的顶点A ,B ,C 分别落在∠MON 的边OM ,ON 上,若OA =OC ,要求只用无刻度的直尺作∠MON 的平分线.小明的作法如下:连接AC ,BD 交于点E ,作射线OE ,则射线OE 平分∠MON .有以下几条几何性质:①矩形的四个角都是直角,②矩形的对角线互相平分,③等腰三角形的“三线合一”.小明的作法依据是( )A .①②B .①③C .②③D .①②③ 【答案】C .【分析】利用矩形的性质得到AE =CE ,则OE 为等腰三角形底边上的中线,利用等腰三角形的性质可得到射线OE 平分∠MON .【详解】∵四边形ABCD 为矩形,∴AE =CE ,而OA =OC ,∴OE 为∠AOC 的平分线. 故选C .【点睛】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了矩形的性质和等腰三角形的性质.考点:1.等腰三角形的性质;2.矩形的性质;3.作图—基本作图.6.(2019湖南省常德市,第7题,3分)如图,在等腰三角形△ABC 中,AB =AC ,图中所有三角形均相似,其中最小的三角形面积为1,△ABC 的面积为42,则四边形DBCE 的面积是( )A .20B .22C .24D .26 【答案】D .【分析】利用△AFH ∽△ADE 得到AFH ADE S S =V V (FH DE )2916=,所以S △AFH =9x ,S △ADE =16x ,则16x ﹣9x =7,解得x=1,从而得到S△ADE=16,然后计算两个三角形的面积差得到四边形DBCE的面积.【详解】如图,根据题意得△AFH∽△ADE,∴AFHADESS=VV(FHDE)2=(34)2916=.设S△AFH=9x,则S△ADE=16x,∴16x﹣9x=7,解得x=1,∴S△ADE=16,∴四边形DBCE的面积=42﹣16=26.故选D.【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了相似三角形的性质.考点:1.等腰三角形的性质;2.相似三角形的判定.7.(2019湖南省长沙市,第12题,3分)如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD55+BD的最小值是()A.5B.5C.3D.10【答案】B.【分析】如图,作DH⊥AB于H,CM⊥AB于M.由tanABEAE==2,设AE=a,BE=2a,利用勾股定理构建方程求出a,再证明DH5=BD,推出CD5+BD=CD+DH,由垂线段最短即可解决问题.【详解】如图,作DH⊥AB于H,CM⊥AB于M.∵BE⊥AC,∴∠AEB=90°.∵tanABEAE==2,设AE=a,BE=2a,则有:100=a2+4a2,∴a2=20,∴a55(舍弃),∴BE=2a5∵AB=AC,BE⊥AC,CM⊥AB,∴CM=BE5)∵∠DBH=∠ABE,∠BHD=∠BEA,∴sin∠DBH55DH AEBD AB===,∴DH55=BD,∴CD 5BD=CD+DH,∴CD+DH≥CM,∴CD5+BD≥5CD5BD的最小值为5.故选B.【点睛】本题考查了解直角三角形,等腰三角形的性质,垂线段最短等知识,解题的关键是学会添加常用辅助线,用转化的思想思考问题,属于中考常考题型.考点:1.等腰三角形的性质;2.解直角三角形;3.动点型;4.最值问题;5.压轴题.8.(2019辽宁省丹东市,第7题,3分)等腰三角形一边长为2,它的另外两条边的长度是关于x的一元二次方程x2﹣6x+k=0的两个实数根,则k的值是()A.8B.9C.8或9D.12【答案】B.【分析】根据一元二次方程的解法以及等腰三角形的性质即可求出答案.【详解】当等腰三角形的底边为2时,此时关于x的一元二次方程x2﹣6x+k=0的有两个相等实数根,∴△=36﹣4k=0,∴k=9,此时两腰长为3.∵2+3>3,∴k=9满足题意,当等腰三角形的腰长为2时,此时x=2是方程x2﹣6x+k=0的其中一根,∴4﹣12+k=0,∴k=8,此时另外一根为:x=4.∵2+2=4,∴不能组成三角形.综上所述:k=9.故选B.【点睛】本题考查了一元二次方程,解题的关键是熟练运用一元二次方程的解法以及等腰三角形的性质,本题属于中等题型.考点:1.一元二次方程的解;2.根的判别式;3.三角形三边关系;4.等腰三角形的性质;5.分类讨论.9.(2019台湾,第4题,3分)图1的直角柱由2个正三角形底面和3个矩形侧面组成,其中正三角形面积为a,矩形面积为b.若将4个图1的直角柱紧密堆叠成图2的直角柱,则图2中直角柱的表面积为何?()A.4a+2b B.4a+4b C.8a+6b D.8a+12b【答案】C.【分析】根据已知条件即可得到结论.【详解】∵正三角形面积为a,矩形面积为b,∴图2中直角柱的表面积=2×4a+6b=8a+6b.故选C.【点睛】本题考查了等边三角形的性质,矩形的性质,列代数式,正确的识别图形是解题的关键.考点:1.列代数式;2.认识立体图形;3.几何体的表面积;4.等边三角形的性质.10.(2019甘肃省天水市,第8题,4分)如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1)B.(13C.31)D.33【答案】B.【分析】过点B作BH⊥AO于H点.由△OAB是等边三角形,可求出OH和BH长.【详解】过点B作BH⊥AO于H点.∵△OAB 是等边三角形,∴OH =1,BH 3=,∴点B 的坐标为(1,3). 故选B .【点睛】本题考查了等边三角形的性质,以坐标系为背景,综合考查了勾股定理和坐标与图形的性质. 考点:1.坐标与图形性质;2.等边三角形的性质.11.(2019内蒙古赤峰市,第14题,3分)如图,小聪用一张面积为1的正方形纸片,按如下方式操作: ①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉; ②在余下纸片上依次重复以上操作,当完成第2019次操作时,余下纸片的面积为( )A .22019B .201812C .201912D .202012【答案】C .【分析】根据将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,余下面积为原来面积的一半即可解答.【详解】正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,第一次:余下面积112S =,第二次:余下面积2212S =,第三次:余下面积3312S =,当完成第2019次操作时,余下纸片的面积为2019201912S =.故选C .【点睛】本题考查了图形的变化,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型. 考点:1.等腰直角三角形;2.剪纸问题;3.规律型.12.(2019台湾,第9题,3分)公园内有一矩形步道,其地面使用相同的灰色正方形地砖与相同的白色等腰直角三角形地砖排列而成.如图表示此步道的地砖排列方式,其中正方形地砖为连续排列且总共有40个.求步道上总共使用多少个三角形地砖?()A.84B.86C.160D.162【答案】A.【分析】中间一个正方形对应两个等腰直角三角形,从而得到三角形的个数为3+40×2+1.【详解】3+40×2+1=84.答:步道上总共使用84个三角形地砖.故选A.【点睛】本题考查了等腰直角三角形:两条直角边相等的直角三角形叫做等腰直角三角形.也考查了规律型问题的解决方法,探寻规律要认真观察、仔细思考,善用联想来解决这类问题.考点:1.规律型:图形的变化类;2.等腰直角三角形.13.(2019四川省内江市,第10题,3分)如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A顺时针旋转得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为()A.1.6B.1.8C.2D.2.6【答案】A.【分析】根据旋转变换的性质得到AD=AB,根据等边三角形的性质解答即可.【详解】由旋转的性质可知,AD=AB.∵∠B=60°,AD=AB,∴△ADB为等边三角形,∴BD=AB=2,∴CD=CB﹣BD=1.6.故选A.【点睛】本题考查了旋转变换的性质、等边三角形的性质,掌握旋转前、后的图形全等是解题的关键.考点:1.勾股定理;2.旋转的性质;3.动面型.14.(2019四川省成都市,第5题,3分)将等腰直角三角形纸片和矩形纸片按如图方式叠放在起,若∠1=30°,则∠2的度数为()A.10°B.15°C.20°D.30°【答案】B.【分析】根据平行线的性质,即可得出∠1=∠ADC=30°,再根据等腰直角三角形ADE中,∠ADE=45°,即可得到∠1=45°﹣30°=15°.【详解】∵AB∥CD,∴∠1=∠ADC=30°.又∵等腰直角三角形ADE中,∠ADE=45°,∴∠1=45°﹣30°=15°.故选B.【点睛】本题考查了平行线的性质,解题时注意:两直线平行,内错角相等.考点:1.平行线的性质;2.等腰直角三角形.15.(2019四川省眉山市,第11题,3分)如图,在矩形ABCD中,AB=6,BC=8,过对角线交点O作EF ⊥AC交AD于点E,交BC于点F,则DE的长是()A.1B.74C.2D.125【答案】B.【分析】连接CE,由矩形的性质得出∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC,由线段垂直平分线的性质得出AE=CE,设DE=x,则CE=AE=8﹣x.在Rt△CDE中,由勾股定理得出方程,解方程即可.【详解】连接CE,如图所示:∵四边形ABCD是矩形,∴∠ADC=90°,CD=AB=6,AD=BC=8,OA=OC.∵EF⊥AC,∴AE=CE,设DE=x,则CE=AE=8﹣x.在Rt△CDE中,由勾股定理得:x2+62=(8﹣x)2,解得:x74=,即DE74=.故选B.【点睛】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键.考点:1.线段垂直平分线的性质;2.勾股定理;3.矩形的性质.16.(2019四川省绵阳市,第10题,3分)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sinθ﹣cosθ)2=()A.15B.55C.355D.95【答案】A.【分析】根据正方形的面积公式可得大正方形的边长为55,再根据直角三角形的边角关系列式即可求解.【详解】∵大正方形的面积是125,小正方形面积是25,∴大正方形的边长为5,小正方形的边长为5,∴5θ﹣5θ=5,∴cosθ﹣sinθ5=,∴(sinθ﹣cosθ)215=.故选A.【点睛】本题考查了解直角三角形的应用,勾股定理的证明,正方形的面积,难度适中.考点:1.数学常识;2.勾股定理的证明;3.解直角三角形的应用.17.(2019滨州,第10题,3分)满足下列条件时,△ABC不是直角三角形的为()A .AB 41=,BC =4,AC =5 B .AB :B C :A C =3:4:5C .∠A :∠B :∠C =3:4:5D .|cosA 12-|+(tanB 3-)2=0【答案】C .【分析】依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【详解】A .∵22254251641(41)+=+==,∴△ABC 是直角三角形,错误;B .∵(3x )2+(4x )2=9x 2+16x 2=25x 2=(5x )2,∴△ABC 是直角三角形,错误; C .∵∠A :∠B :∠C =3:4:5,∴∠C 51807590345=⨯︒=︒≠︒++,∴△ABC 不是直角三角形,正确;D .∵|cosA 12-|+(tanB 3-)2=0,∴132cosA tanB ==,,∴∠A =60°,∠B =30°,∴∠C =90°,∴△ABC 是直角三角形,错误. 故选C .【点睛】本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.考点:1.非负数的性质:绝对值;2.非负数的性质:偶次方;3.三角形内角和定理;4.勾股定理的逆定理;5.特殊角的三角函数值.18.(2019聊城,第11题,3分)如图,在等腰直角三角形ABC 中,∠BAC =90°,一个三角尺的直角顶点与BC 边的中点O 重合,且两条直角边分别经过点A 和点B ,将三角尺绕点O 按顺时针方向旋转任意一个锐角,当三角尺的两直角边与AB ,AC 分别交于点E ,F 时,下列结论中错误的是( )A .AE +AF =ACB .∠BEO +∠OFC =180° C .OE +OF 22=BCD .S 四边形AEOF 12=S △ABC 【答案】C .【分析】连接AO ,易证△EOA ≌△FOC (ASA ),利用全等三角形的性质可得出EA =FC ,进而可得出AE +AF =AC ,选项A 正确;由三角形内角和定理结合∠B +∠C =90°,∠EOB +∠FOC =90°可得出∠BEO +∠OFC =180°,选项B 正确;由△EOA ≌△FOC 可得出S △EOA =S △FOC ,结合图形可得出S 四边形AEOF =S △EOA +S△AOF=S △FOC +S △AOF =S △AOC 12=S △ABC ,选项D 正确.综上,此题得解. 【详解】连接AO ,如图所示.∵△ABC 为等腰直角三角形,点O 为BC 的中点,∴OA =OC ,∠AOC =90°,∠BAO =∠ACO =45°. ∵∠EOA +∠AOF =∠EOF =90°,∠AOF +∠FOC =∠AOC =90°,∴∠EOA =∠FOC .在△EOA 和△FOC 中,∵EOA FOC OA OC EAO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EOA ≌△FOC (ASA ),∴EA =FC ,∴AE +AF =AF +FC =AC ,选项A 正确;∵∠B +∠BEO +∠EOB =∠FOC +∠C +∠OFC =180°,∠B +∠C =90°,∠EOB +∠FOC =180°﹣∠EOF =90°,∴∠BEO +∠OFC =180°,选项B 正确;∵△EOA ≌△FOC ,∴S △EOA =S △FOC ,∴S 四边形AEOF =S △EOA +S △AOF =S △FOC +S △AOF =S △AOC 12=S △ABC ,选项D 正确. 故选C .【点睛】本题考查了全等三角形的判定与性质、旋转的性质、等腰直角三角形以及三角形内角和定理,逐一分析四个选项的正误是解题的关键.考点:1.等腰直角三角形;2.旋转的性质;3.动面型.19.(2019江苏省苏州市,第10题,3分)如图,在△ABC 中,点D 为BC 边上的一点,且AD =AB =2,AD ⊥AB .过点D 作DE ⊥AD ,DE 交AC 于点E .若DE =1,则△ABC 的面积为( )A .2B .4C .5D .8 【答案】B .【分析】由题意得到三角形DEC 与三角形ABC 相似,由相似三角形面积之比等于相似比的平方两三角形面积之比,进而求出四边形ABDE 与三角形ABC 面积之比,求出四边形ABDE 面积,即可确定出三角形ABC面积.【详解】∵AB⊥AD,AD⊥DE,∴∠BAD=∠ADE=90°,∴DE∥AB,∴∠CED=∠CAB.∵∠C=∠C,∴△CED∽△CAB.∵DE=1,AB=2,即DE:A B=1:2,∴S△DEC:S△ACB=1:4,∴S四边形ABDE:S△ACB=3:4.∵S四边形ABDE=S△ABD+S△ADE12=⨯2×212+⨯2×1=2+1=3,∴S△ACB=4.故选B.【点睛】本题考查了相似三角形的判定与性质,以及等腰直角三角形,熟练掌握相似三角形的判定与性质是解答本题的关键.考点:1.等腰直角三角形;2.相似三角形的判定与性质.20.(2019浙江省宁波市,第9题,4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【答案】C.【分析】先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选C.【点睛】本题考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.考点:1.平行线的性质;2.等腰直角三角形.21.(2019浙江省宁波市,第12题,4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和【答案】C.【分析】根据勾股定理得到c2=a2+b2,根据正方形的面积公式、长方形的面积公式计算即可.【详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得:c2=a2+b2,阴影部分的面积=c2﹣b2﹣a(c﹣b)=a2﹣ac+ab=a(a+b﹣c),较小两个正方形重叠部分的长=a﹣(c﹣b),宽=a,则较小两个正方形重叠部分底面积=a(a+b﹣c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积.故选C.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.考点:勾股定理.22.(2019浙江省湖州市,第9题,3分)在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是()A.2B5C 35D10【答案】D .【分析】根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得PM =AB ,利用勾股定理即可求得.【详解】如图,经过P 、Q 的直线则把它剪成了面积相等的两部分,由图形可知△AMC ≌△FPE ≌△BPD ,∴AM =PB ,∴PM =AB .∵PM 223110=+=,∴AB 10=.故选D .【点睛】本题考查了图形的剪拼,中心对称的性质,勾股定理的应用,熟练掌握中心对称的性质是解题的关键.考点:1.勾股定理;2.图形的剪拼;3.操作型.23.(2019海南,第12题,3分)如图,在Rt △ABC 中,∠C =90°,AB =5,BC =4.点P 是边AC 上一动点,过点P 作PQ ∥AB 交BC 于点Q ,D 为线段PQ 的中点,当BD 平分∠ABC 时,AP 的长度为( )A .813B .1513C .2513D .3213【答案】B .【分析】根据勾股定理求出AC ,根据角平分线的定义、平行线的性质得到∠QBD =∠BDQ ,得到QB =QD ,根据相似三角形的性质列出比例式,计算即可.【详解】∵∠C =90°,AB =5,BC =4,∴AC 22AB BC =-=3.∵PQ ∥AB ,∴∠ABD =∠BDQ ,又∠ABD =∠QBD ,∴∠QBD =∠BDQ ,∴QB =QD ,∴QP =2QB . ∵PQ ∥AB ,∴△CPQ ∽△CAB ,∴CP CQ PQ CA CB AB ==,即42345CP QB QB -==,解得:C P 2413=,∴AP =CA ﹣CP 1513=.故选B.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.考点:1.等腰三角形的判定与性质;2.勾股定理;3.相似三角形的判定与性质;4.动点型.24.(2019湖北省咸宁市,第2题,3分)勾股定理是“人类最伟大的十个科学发现之一”.我国对勾股定理的证明是由汉代的赵爽在注解《周髀算经》时给出的,他用来证明勾股定理的图案被称为“赵爽弦图”.2002年在北京召开的国际数学大会选它作为会徽.下列图案中是“赵爽弦图”的是()A.B.C.D.【答案】B.【分析】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形.【详解】“赵爽弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,如图所示:故选B.【点睛】本题考查了勾股定理的证明,证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.考点:勾股定理的证明.25.(2019湖北省黄石市,第8题,3分)如图,在△ABC中,∠B=50°,CD⊥AB于点D,∠BCD和∠BDC的角平分线相交于点E,F为边AC的中点,CD=CF,则∠ACD+∠CED=()A.125°B.145°C.175°D.190°【答案】C.【分析】根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【详解】∵CD⊥AB,F为边AC的中点,∴DF12AC=CF.。

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)

中考数学真题《等腰三角形与直角三角形》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________(25道)一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12 B 5C .23 D 32.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A .23B .232C .2D .233.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .44.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为 ①若60,ABC CBD α=︒∽,则OD 的长为 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC =,则AE 的长为( )A .1B .2C .1D .1或26.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .537.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC = 2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.29.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD的长是( )A B C D11.ABC 的三边长a b c 满足2()|0a b c --=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.参考答案一、单选题1.如图,直角ABC 中 30B ∠=︒ 点O 是ABC 的重心 连接CO 并延长交AB 于点E 过点E 作EF AB ⊥交BC 于点F 连接AF 交CE 于点M ,则MO MF的值为( )A .12BC .23 D【答案】D 【详解】解:①点O 是①ABC 的重心 ①OC =23CE ①①ABC 是直角三角形 ①CE =BE =AE ①①B =30° ①①F AE =①B =30° ①BAC =60° ①①F AE =①CAF =30° ①ACE 是等边三角形 ①CM =12CE ①OM =23CE ﹣12CE =16CE 即OM =16AE ①BE =AE ①EF①EF ①AB ①①AFE =60° ①①FEM =30° ①MF =12EF ①MF①MO MF1AE故选D .2.将一副直角三角板和一把宽度为2cm 的直尺按如图方式摆放:先把60︒和45︒角的顶点及它们的直角边重合 再将此直角边垂直于直尺的上沿 重合的顶点落在直尺下沿上 这两个三角板的斜边分别交直尺上沿于A B 两点,则AB 的长是( )A.2B.2 C .2 D.【答案】B 【分析】根据等腰直角三角形的性质可得2cm AD CD == 由含30度角直角三角形的性质可得24cm BC CD == 由勾股定理可得BD 的长 即可得到结论.【详解】解:如图,在Rt ACD △中 45ACD ∠=︒①45CAD ACD ∠=︒=∠①2cm AD CD ==在Rt BCD 中 60BCD ∠=︒①30CBD ∠=︒①24cm BC CD == ①)22224223cm BD BC CD --= ①()233cm AB BD AD =-=.故选:B .【点睛】本题考查了勾股定理 等腰直角三角形的性质 含30︒角直角三角形的性质 熟练掌握勾股定理是解题的关键.3.如图,ABC 是等腰三角形 36AB AC A =∠=︒,.以点B 为圆心 任意长为半径作弧 交AB 于点F 交BC 于点G 分别以点F 和点G 为圆心 大于12FG 的长为半径作弧 两弧相交于点H 作射线BH 交AC 于点D 分别以点B 和点D 为圆心 大于12BD 的长为半径作弧 两孤相交于M N 两点 作直线MN 交AB 于点E 连接DE .下列四个结论:①AED ABC ∠=∠ ①BC AE = ①12ED BC = ①当2AC =时 51AD =.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【分析】根据等腰三角形两底角相等与36A ∠=︒ 得到72ABC C ∠=∠=︒ 根据角平分线定义得到36ABD CBD ∠=∠=︒ 根据线段垂直平分线性质得到EB ED = 得到EBD EDB ∠=∠ 推出EDB CBD ∠=∠ 得到DE BC ∥ 推出AED ABC ∠=∠ ①正确 根据等角对等边得到AD AE = AD BD = 根据三角形外角性质得到72BDC C ∠=︒=∠ 得到BC BD = 推出BC AE = ①正确 根据AED ABC △∽△ 得到ED AD AD BC AC AD DC ==+ 推出ED = ①错误 根据2AC =时CD AD = 2AD AD =-,推出1AD = ①正确. 【详解】①ABC 中 AB AC = 36A ∠=︒ ①()1180722ABC C A ∠=∠=︒-∠=︒ 由作图知 BD 平分ABC ∠ MN 垂直平分BD ①1362ABD CBD ABC ∠=∠=∠=︒EB ED = ①EBD EDB ∠=∠①EDB CBD ∠=∠①DE BC ∥①AED ABC ∠=∠ ①正确 ADE C ∠=∠①AED ADE ∠=∠①AD AE =①A ABD ∠=∠①AD BD =①72BDC A ABD ∠=∠+∠=︒ ①BDC C ∠=∠①BC BD =①BC AE = ①正确设ED x = BC a =则AD a = BE x =①CD BE x ==①AED ABC △∽△ ①EDADADBC AC AD DC ==+ ①x aa a x =+①220x ax a +-=①0x >①51x -= 即51ED -=①错误 当2AC =时 2CD AD =- ①51CD AD -=512AD AD -=-, ①51AD = ①正确①正确的有①①① 共3个.故选:C .【点睛】本题主要考查了等腰三角形 相似三角形 解决问题的关键是熟练掌握等腰三角形判定和性质 相似三角形的判定和性质 角平分线的定义和线段垂直平分线的性质.4.如图ABC 中 90,4,,ACB AB AC x BAC α︒∠===∠= O 为AB 中点 若点D 为直线BC 下方一点 且BCD △与ABC 相似,则下列结论:①若45α=︒ BC 与OD 相交于E ,则点E 不一定是ABD △的重心 ①若60α=︒,则AD 的最大值为27 ①若60,ABC CBD α=︒∽,则OD 的长为23 ①若ABC BCD △∽△,则当2x =时 AC CD +取得最大值.其中正确的为( )A .①①B .①①C .①①①D .①①①【答案】A 【分析】①有3种情况 分别画出图形 得出ABD △的重心 即可求解 当60α=︒ BD BC ⊥时 AD 取得最大值 进而根据已知数据 结合勾股定理 求得AD 的长 即可求解 ①如图5 若60α=︒ C ABC BD ∽△△ 根据相似三角形的性质求得3CD = 3GE DF == 32CF = 进而求得OD 即可求解 ①如图6 根据相似三角形的性质得出214CD BC =在Rt ABC △中 2216BC x =- 根据二次函数的性质 即可求AC CD +取得最大值时 2x =. 【详解】①有3种情况 如图1 BC 和OD 都是中线 点E 是重心如图2 四边形ABDC 是平行四边形 F 是AD 中点 点E 是重心如图3 点F 不是AD 中点 所以点E 不是重心①正确①当60α=︒ 如图4时AD 最大 4AB =∴2AC BE == BC AE == 6BD ==∴8DE =∴AD =≠∴①错误①如图5 若60α=︒ C ABC BD ∽△△①60BCD ∠=︒ 90CDB ∠=︒ 4AB = 2AC = BC = OE = 1CE =①CD = GE DF ==32CF =①52EF DG == OG①OD =≠①①错误①如图6 ABC BCD ∽△△①CD BC BC AB= 即214CD BC =在Rt ABC △中 2216BC x =- ①()221116444CD x x =-=-+ ①22114(2)544AC CD x x x +=-+=--+ 当2x =时 AC CD +最大为5①①正确.故选:A .【点睛】本题考查了三角形重心的定义 勾股定理 相似三角形的性质 二次函数的性质 分类讨论 画出图形是解题的关键.5.如图,在ABC 中 90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上 且AD DE AB BC=,则AE 的长为( )A .1B .2C .13D .1或2【答案】D 【分析】根据题意易得3,4==AB AC 然后根据题意可进行求解.【详解】解:①90,30,2B A BC ∠︒∠︒=== ①323,24AB BC AC BC ====①点D 为AB 的中点 ①132AD AB =①AD DE AB BC= ①1DE =①当点E 为AC 的中点时 如图①122AE AC == ①当点E 为AC 的四等分点时 如图所示:①1AE =综上所述:1AE =或2故选D .【点睛】本题主要考查含30度直角三角形的性质及三角形中位线 熟练掌握含30度直角三角形的性质及三角形中位线是解题的关键.6.如图,在Rt ABC 中 9053C AB BC ∠=︒==,, 以点A 为圆心 适当长为半径作弧 分别交AB AC,于点E F , 分别以点E F ,为圆心 大于12EF 的长为半径作弧 两弧在BAC ∠的内部相交于点G 作射线AG 交BC 于点D ,则BD 的长为( )A .35B .34C .43D .53【答案】D 【分析】过点D 作DM AB ⊥于M 由勾股定理可求得4AC = 由题意可证明ADC ADM △≌△,则可得4AM AC == 从而有1BM = 在Rt DMB 中 由勾股定理建立方程即可求得结果.【详解】解:过点D 作DM AB ⊥于M 如图由勾股定理可求得4AC =由题中作图知 AD 平分BAC ∠①DM AB AC BC ⊥⊥,①DC DM =①AD AD =①Rt Rt ADC ADM △≌△①4AM AC ==①1BM AB AM =-=设BD x =,则3MD CD BC BD x ==-=-在Rt DMB 中 由勾股定理得:2221(3)x x +-= 解得:53x = 即BD 的长为为53故选:D .【点睛】本题考查了作图:作角平分线 角平分线的性质定理 全等三角形的判定与性质 勾股定理 利用全等的性质 利用勾股定理建立方程是解题的关键.7.5月26日 “2023中国国际大数据产业博览会”在贵阳开幕 在“自动化立体库”中有许多几何元素 其中有一个等腰三角形模型(示意图如图所示) 它的顶角为120︒ 腰长为12m ,则底边上的高是( )A .4mB .6mC .10mD .12m【答案】B 【分析】作AD BC ⊥于点D 根据等腰三角形的性质和三角形内角和定理可得()1180302B C BAC ∠=∠=︒-∠=︒ 再根据含30度角的直角三角形的性质即可得出答案. 【详解】解:如图,作AD BC ⊥于点DABC 中,120BAC ∠=︒ AB AC =∴()1180302B C BAC ∠=∠=︒-∠=︒AD BC ⊥∴11126m 22AD AB ==⨯=故选B .【点睛】本题考查等腰三角形的性质 三角形内角和定理 含30度角的直角三角形的性质等解题的关键是掌握30度角所对的直角边等于斜边的一半.8.如图,ABC 为等边三角形 点D E 分别在边BC AB 上 60ADE ∠=︒ 若4BD DC =2.4DE =,则AD 的长为( )A .1.8B .2.4C .3D .3.2【答案】C【分析】证明ADC DEB ∽△△ 根据题意得出45BD BC = 进而即可求解.【详解】解:①ABC 为等边三角形①60B C ∠=∠=︒①ADB ADE BDE C DAC ∠=∠+∠=∠+∠ 60ADE ∠=︒①BDE DAC ∠=∠①ADC DEB ∽△△ ①AD ACDE BD =①4BD DC = ①45BD BC =①AD AC DE BD =5445BC BC == ① 2.4DE = ①534AD DE =⨯= 故选:C .【点睛】本题考查了相似三角形的性质与判定 等边三角形的性质 熟练掌握相似三角形的性质与判定是解题的关键.9.下面是“作已知直角三角形的外接圆”的尺规作图过程: 已知:如图 1 在Rt ABC △中 90C ∠=︒.求作:Rt ABC △的外接圆.作法:如图2.(1)分别以点A 和点B 为圆心 大于12AB 的长为半径作弧 两弧相交于P Q 两点 (2)作直线PQ 交AB 于点O(3)以O 为圆心 OA 为半径作O O 即为所求作的圆.下列不属于...该尺规作图依据的是() A .两点确定一条直线B .直角三角形斜边上的中线等于斜边的一半C .与线段两个端点距离相等的点在这条线段的垂直平分线上D .线段垂直平分线上的点与这条线段两个端点的距离相等【答案】D【分析】利用直角三角形斜边中线的性质证明:OC OA OB ==即可.【详解】解:作直线PQ (两点确定一条直线)连接PA PB QA QB OC ,,,,①由作图 PA PB QA QB ==,①PQ AB ⊥且AO BO =(与线段两个端点距离相等的点在这条线段的垂直平分线上).①90ACB ∠=︒ ①12OC AB =(直角三角形斜边中线等于斜边的一半) ①OA OB OC ==①A B C 三点在以O 为圆心 AB 为直径的圆上.①O 为ABC 的外接圆.故选:D .【点睛】本题考查作图-复杂作图 线段的垂直平分线的定义 直角三角形斜边中线的性质等知识 解题的关键熟练掌握基本知识 属于中考常考题型.10.如图,在ABC 中 9034ABC AB BC ∠=︒==,, 点D 在边AC 上 且BD 平分ABC 的周长,则BD 的长是( )A B C D 【答案】C 【分析】如图所示 过点B 作BE AC ⊥于E 利用勾股定理求出5AC = 进而利用等面积法求出125BE =,则可求出95AE = 再由BD 平分ABC 的周长 求出32AD CD ==, 进而得到65DE =,则由勾股定理得BD ==【详解】解:如图所示 过点B 作BE AC ⊥于E①在ABC 中 9034ABC AB BC ∠=︒==,, ①225AC AB +BC ①1122ABC S AC BE BC AC =⋅=⋅△ ①125AB BC BE AC ⋅== ①2295AE AB BE =-= ①BD 平分ABC 的周长①AD AB BC CD +=+ 即34AD CD +=+又①5AD CD AC +==①32AD CD ==, ①65DE AD AE =-= ①2265BD BE DE =+=故选C .【点睛】本题主要考查了勾股定理 正确作出辅助线构造直角三角形是解题的关键.11.ABC 的三边长a b c 满足2()23|320a b a b c ----=,则ABC 是( )A .等腰三角形B .直角三角形C .锐角三角形D .等腰直角三角形【答案】D【分析】由等式可分别得到关于a b c 的等式 从而分别计算得到a b c 的值 再由222+=a b c 的关系 可推导得到ABC 为直角三角形.【详解】解①2()23|320a b a b c ---+-=又①()20230320a b a b c ⎧-≥⎪⎪--⎨-≥⎪⎩①()2000a b c ⎧-=-=⎪⎩①02300a b a b c ⎧-=⎪--=⎨⎪-⎩解得33a b c ⎧=⎪=⎨⎪=⎩ ①222+=a b c 且a b =①ABC 为等腰直角三角形故选:D .【点睛】本题考查了非负性和勾股定理逆定理的知识 求解的关键是熟练掌握非负数的和为0 每一个非负数均为0 和勾股定理逆定理.12.四边形ABCD 的边长如图所示 对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时 对角线AC 的长为( )A .2B .3C .4D .5【答案】B 【分析】利用三角形三边关系求得04AC << 再利用等腰三角形的定义即可求解.【详解】解:在ACD 中 2AD CD ==①2222AC -<<+ 即04AC <<当4AC BC ==时 ABC 为等腰三角形 但不合题意 舍去若3AC AB ==时 ABC 为等腰三角形故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义 解题的关键是灵活运用所学知识解决问题.二 填空题13.将形状 大小完全相同的两个等腰三角形如图所示放置 点D 在AB 边上 ①DEF 绕点D 旋转 腰DF 和底边DE 分别交①CAB 的两腰CA CB 于M N 两点 若CA=5 AB=6 AB=1:3,则MD+12⋅MA DN的最小值为 .【答案】23【分析】先求出AD=2 BD=4 根据三角形的一个外角等于与它不相邻的两个内角的和可得①AMD+①A=①EDF+①BDN 然后求出①AMD=①BDN 从而得到①AMD 和①BDN 相似 根据相似三角形对应边成比例可得MA MD BD DN= 求出MA•DN=4MD 再将所求代数式整理出完全平方的形式 然后根据非负数的性质求出最小值即可.【详解】①AB=6 AB=1:3 ①AD=6×13=2 BD=6﹣2=4 ①①ABC 和①FDE 是形状 大小完全相同的两个等腰三角形①①A=①B=①FDE 由三角形的外角性质得 ①AMD+①A=①EDF+①BDN ①①AMD=①BDN①①AMD①①BDN ①MA MD BD DN= ①MA•DN=BD•MD=4MD ①MD+12⋅MA DN =MD+2233()(2323MD MD MD+- =①3MD MD 即3MD+12⋅MA DN 有最小值为23故答案为考点:相似三角形的判定与性质 等腰三角形的性质 旋转的性质 最值问题 综合题.14.如图,在Rt ABC △中 90ACB ∠=︒ 点D 为BC 的中点 过点C 作CE AB ∥交AD 的延长线于点E 若4AC = 5CE =,则CD 的长为 .【答案】32/112/1.5 【分析】先根据AAS 证明BDA CDE △≌△ 推出5==BA CE 再利用勾股定理求出BC 最后根据中点的定义即可求CD 的长. 【详解】解:CE AB ∥∴BAD CED ∠=∠点D 为BC 的中点∴BD CD = 又BDA CDE ∠=∠∴BDA CDE △≌△()AAS∴5==BA CERt ABC △中 90ACB ∠=︒ 4AC =∴3BC === ∴1322CD BC ==. 故答案为:32. 【点睛】本题考查全等三角形的判定与性质 勾股定理 平行线的性质等 证明BDA CDE △≌△是解题的关键.15.如图,在Rt ABC 中 90ACB ∠=︒ 3AC BC == 点D 在直线AC 上 1AD = 过点D 作DE AB ∥直线BC 于点E 连接BD 点O 是线段BD 的中点 连接OE ,则OE 的长为 .541【分析】分两种情况当D 在CA 延长线上和当D 在CA 上讨论 画出图形 连接OC 过点O 作ON BC ⊥于N 利用勾股定理解题即可【详解】解:当在线段上时 连接OC 过点O 作ON BC ⊥于N①当D 在线段AC 上时1AD =2CD AC AD ∴=-=90BCD ∠=︒22222313BD CD BC ∴=+=+点O 是线段BD 的中点1132OC OB OD BD ∴====ON BC ⊥1322CN BN BC ∴===AB DE45COE A CBA CED ∴∠=∠=∠=∠=︒2CE CD ∴==31222NE ∴=-=221ON CO CN =-2222151()2OE ON NE ∴=++=②当D 在CA 延长线上时,则4CD AD AC =+=O 是线段BD 的中点 90BCD ∠=︒12OC OB OD BD ∴=== ON BC ⊥1322CN BN BC ∴=== OB OD =122ON CD ∴== AB DE45CAB COE CBA CED ∴∠=∠=∠=∠=︒4CE CD ∴==35422EN CE CN ∴=-=-=OE ∴==OE ∴【点睛】本题考查等腰直角三角形的判定和性质 勾股定理 正确作出辅助线是解题的关键.16.如图,在ABC 中 90,6C AC BC ∠=︒==.P 为边AB 上一动点 作PD BC ⊥于点D PE AC ⊥于点E ,则DE 的最小值为 .【答案】32【分析】连接CP 利用勾股定理列式求出AB 判断出四边形CDPE 是矩形 根据矩形的对角线相等可得DE CP = 再根据垂线段最短可得CP AB ⊥时 线段DE 的值最小 然后根据直角三角形的面积公式列出方程求解即可.【详解】解:如图,连接CP①90,6C AC BC ∠=︒== ①22226662AB AC BC ++=①PD BC ⊥于点D PE AC ⊥于点E 90ACB ∠=︒①四边形CDPE 是矩形①DE CP =由垂线段最短可得CP AB ⊥时 线段CP 的值最小 此时线段DE 的值最小此时 1122ABC S AC BC AB CP ==△⋅⋅ 代入数据:11666222CP ①32CP =①DE 的最小值为32故答案为:【点睛】本题考查了矩形的判定与性质 垂线段最短的性质 勾股定理 判断出CP AB ⊥时 线段DE 的值最小是解题的关键.17.如图.四边形ABCD 中 AB AD = BC DC = 60C ∠=︒ AE CD ∥交BC 于点E 8BC = 6AE =,则AB 的长为 .【答案】【分析】连接AC BD 交于点O 过点E 作EF AC ⊥ 交AC 于点F 先证明BCD △是等边三角形 AC垂直平分BD 求得30EAC ACD ACB ∠=∠=∠=︒ 6AE EC == 再解三角形求出AO AC CO =-= 4BO = 最后运用勾股定理求得AB 即可.【详解】解:如图:连接AC BD 交于点O又①BC DC = 60C ∠=︒①BCD △是等边三角形①8BD BC CD ===①AB AD = BC DC =①AC BD ⊥ 142BO DO BD === ①1302ACD ACB BCD ∠=∠=∠=︒ 又①AE CD ∥①30EAC ACD ACB ∠=∠=∠=︒.①6AE EC ==过点E 作EF AC ⊥ 交AC 于点F ①3cos30633CF CE =⋅︒==3cos30633AF AE =⋅︒==3cos3083CO BC =⋅︒==①63AC CF AF =+=①634323AO AC CO =-==①在Rt BOA 中 2222(23)427AB BO AO ++= 故答案为:27【点睛】本题属于四边形综合题 主要考查了等边三角形的判定和性质 平行线的性质 垂直平分线 勾股定理 解直角三角形等知识点 正确作出辅助线成为解答本题的关键.18.如图,已知50ABC ∠=︒ 点D 在BA 上 以点B 为圆心 BD 长为半径画弧 交BC 于点E 连接DE ,则BDE ∠的度数是 度.【答案】65【分析】根据题意可得BD BE = 再根据等腰三角形两个底角相等和三角形内角和为180°进行计算即可解答.【详解】解:根据题意可得:BD BE =①BDE BED ∠=∠①18050ABC BDE BED ABC ∠+∠+∠=︒∠=︒,①65BDE BED ∠=∠=︒.故答案为:65.【点睛】本题主要考查了等腰三角形的性质 三角形内角和等知识点 掌握等腰三角形的性质是解答本题的关键.19.如图,在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 分别以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P 作直线AP 交CD 于点E 若5AC = 6CD =,则AE = .【答案】4【分析】利用圆的性质得出AP 垂直平分CD 和5AD AC == 运用勾股定理便可解决问题.【详解】解:根据题意可知 以点C 和点D 为圆心 大于12CD 长为半径作弧 两弧交于点P ①AP 垂直平分CD ,即90AED ∠=︒ ①132DE CD == 又①在ABC 中 以A 为圆心 AC 长为半径作弧 交BC 于C D 两点 其中5AC =①5AD AC ==在ADE 中 4AE =故答案为:4.【点睛】本题主要考查圆和三角形的相关性质 掌握相关知识点是解题的关键.20.如图,在ABC 中 以点C 为圆心 任意长为半径作弧 分别交AC BC 于点D E 分别以点DE 为圆心 大于12DE 的长为半径作弧 两弧交于点F 作射线CF 交AB 于点G 若9AC = 6BC = BCG 的面积为8,则ACG 的面积为 .【答案】12【分析】过点B 作BM AC ∥交CG 的延长线于点M 证明ACG BMG ∽ 得出AG AC AC GB BM BC == 根据96ACG BCG S AG AC S GB BC ===32= 即可求解. 【详解】解:如图所示 过点B 作BM AC ∥交CG 的延长线于点M①ACM CMB ∠=∠由作图可得CG 是ACB ∠的角平分线①ACM BCM ∠=∠①BCM CMB ∠=∠①BC BM =①BM AC ∥①ACG BMG ∽ ①AG AC AC GB BM BC== ①96ACG BCG S AG AC S GB BC ===32= ①BCG 的面积为8①ACG 的面积为12故答案为:12.【点睛】本题考查了相似三角形的性质与判定 作角平分线 熟练掌握基本作图以及相似三角形的性质与判定是解题的关键.21.如图,CD 为Rt ABC △斜边AB 上的中线 E 为AC 的中点.若8AC = 5CD =,则DE = .【答案】3【分析】首先根据直角三角形斜边中线的性质得出AB 然后利用勾股定理即可得出BC 最后利用三角形中位线定理即可求解.【详解】解:①在Rt ABC △中 CD 为Rt ABC △斜边AB 上的中线 5CD =①210AB CD ==①6BC①E 为AC 的中点 ①132DE BC == 故答案为:3.【点睛】本题主要考查直角三角形的性质 三角形中位线定理 掌握直角三角形中斜边上的中线等于斜边的一半是解题的关键.22.在 Rt △ABC 中, △ACB =90° AC =6 BC =8 D 是AB 的中点,则 CD = .【答案】5【分析】先根据题意画出图形 再运用勾股定理求得AB 然后再根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:如图:①△ACB =90° AC =6 BC =8 ①22226810AB AC BC①①ACB =90° D 为AB 的中点①CD =12AB =12×10=5.故答案为5.【点睛】本题主要考查了运用勾股定理解直角三角形 直角三角形斜边上的中线等于斜边的一半的性质等知识点 掌握“直角三角形斜边上的中线等于斜边的一半”成为解题的关键.三 解答题23.在Rt ABC △中 90BAC AD ∠=︒,是斜边BC 上的高.(1)证明:C ABD BA ∽△△(2)若610AB BC ==, 求BD 的长.【答案】(1)见解析 (2)185BD = 【分析】(1)根据三角形高的定义得出90ADB ∠=︒ 根据等角的余角相等 得出BAD C ∠=∠ 结合公共角B B ∠=∠ 即可得证(2)根据(1)的结论 利用相似三角形的性质即可求解.【详解】(1)证明:①90BAC AD ∠=︒,是斜边BC 上的高.①90ADB ∠=︒ 90B C ∠+∠=︒①90B BAD ∠+∠=︒①BAD C ∠=∠又①B B ∠=∠①C ABD BA ∽△△(2)①C ABD BA ∽△△ ①AB BD CB AB=又610AB BC ==, ①23618105AB BD CB ===. 【点睛】本题考查了相似三角形的性质与判定 熟练掌握相似三角形的性质与判定是解题的关键. 24.如图,BD 是等边ABC 的中线 以D 为圆心 DB 的长为半径画弧 交BC 的延长线于E 连接DE .求证:CD CE =.【答案】见解析【分析】利用三线合一和等腰三角形的性质 证出2E ∠=∠ 再利用等边对等角即可.【详解】证明:BD 为等边ABC 的中线BD AC ∴⊥ 160∠=︒330∴∠=︒BD DE =330E ∴∠=∠=︒2160E ∠+∠=∠=︒230E ∴∠=∠=︒CD CE ∴=【点睛】本题考查了等边三角形 等腰三角形的性质和判定 理解记忆相关定理是解题的关键.25.如图,在四边形ABCD 中 点E 是边BC 上一点 且BE CD = B AED C ∠=∠=∠.(1)求证:EAD EDA ∠=∠(2)若60C ∠=︒ 4DE =时 求AED △的面积.【答案】(1)见解析 (2)3【分析】(1)由B AED ∠=∠求出BAE CED ∠=∠ 然后利用AAS 证明BAE CED ≅ 可得EA ED = 再由等边对等角得出结论(2)过点E 作EF AD ⊥于F 根据等腰三角形的性质和含30︒直角三角形的性质求出DF 和AD 然后利用勾股定理求出EF 再根据三角形面积公式计算即可.【详解】(1)证明:①B AED ∠=∠①180180B AED ︒-∠=︒-∠ 即BEA BAE BEA CED ∠+∠=∠+∠①BAE CED ∠=∠在BAE 和CED △中 B C BAE CED BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩①()AAS BAE CED ≅①EA ED =①EAD EDA ∠=∠(2)解:过点E 作EF AD ⊥于F由(1)知EA ED =①60C AED ︒∠=∠=①30AEF DEF ∠=∠=︒①4DE = ①122DF DE == ①24AD DF == 22224223EF DE DF =--①11422AED S AD EF =⋅=⨯⨯=【点睛】本题考查了三角形内角和定理 全等三角形的判定和性质 等腰三角形的性质 含30︒直角三角形的性质以及勾股定理等知识 正确寻找证明三角形全等的条件是解题的关键.。

中考数学复习 第四单元 三角形 第19课时 等腰三角形数学课件1

中考数学复习 第四单元 三角形 第19课时 等腰三角形数学课件1
(2)请选择(1)中的一种情形,写出证明过程.
(2)选①②证明如下:
在△BOE和△COD中,
∵∠EBO=∠DCO,∠EOB=∠DOC,BE=CD,
∴△BOE≌△COD,∴BO=CO,∴∠OBC=∠OCB,
∴∠EBO+∠OBC=∠DCO+∠OCB,
即∠ABC=∠ACB,∴AB=AC,
即△ABC是等腰三角形.
2
角形 ABC 的底角的度数为
.
[答案] 15°或45°或75°
[解析]分情况讨论:
(1)当∠ABC为顶角时,△ABC为等腰直角三角形,如图①,此时∠C=45°;
1
(2)当∠ABC 为底角,∠BAC 为锐角时,如图②,BD= AC,∴∠BAC=30°,则∠ABC=75°;
2
1
(3)当∠ABC 为底角,∠BAC 为钝角时,如图③,BD= AC,∴∠BAD=30°,∠BAC=150°,
又∵∠ADB=∠C+∠DAC,
∴2∠C=∠ADB,
70°
∴∠C=
2
=35°.
图19-2
| 考向精练 |
1.[2018·湖州]如图19-3,AD,CE分别是
[答案]B
△ABC的中线和角平分线.若AB=AC,
[解析] ∵AB=AC,AD是△ABC的中线,
∠CAD=20°,则∠ACE的度数是 (
∴AD⊥BC.∵∠CAD=20°,
-∠ECD=180°-50°-50°=80°,故选D.
3.[2019·黔三州]如图19-5,以△ABC的顶
[答案] 34°
点B为圆心,BA长为半径画弧,交BC边于
[解析]根据题意可得
点D,连接AD.若∠B=40°,∠C=36°,则

初中数学知识点精讲精析 等腰三角形的性质定理

初中数学知识点精讲精析 等腰三角形的性质定理

2.3 等腰三角形的性质定理学习目标1.经历利用等腰三角形的性质加深对轴对称的认识。

2.经历利用轴对称变换推导等腰三角形的性质。

知识详解1.等腰三角形性质1(1)性质1:等腰三角形的两个底角相等(简写成“等边对等角”)。

(2)理解:这是等腰三角形的重要性质,它是证明角相等常用的方法,它的应用可省去三角形全等的证明,因而更简便。

(3)适用条件:必须在同一个三角形中。

(4)应用模式:在△ABC中,因为AB=AC,所以∠B=∠C.(5)推论:等边三角形的各个内角都等于60°。

2.等腰三角形性质2(1)性质2:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.习惯上称作等腰三角形“三线合一”性质。

(2)含义:这是等腰三角形所特有的性质,它实际上是一组定理,应用过程中,只要是在等腰三角形前提下,知道是其中“一线”,就可以说明是其他的“两线”,性质中包含有线段相等、角相等、垂直等关系,所以应用非常广泛。

(3)对称性:等腰三角形是轴对称图形,顶角平分线(或底边上的高、底边上的中线)所在的直线是它的对称轴。

(4)应用模式:如图,在△ABC中,①∵AB=AC,AD⊥BC,∴AD平分∠BAC(或BD=CD);②∵AB=AC,BD=DC,∴AD⊥BC(或AD平分∠BAC);③∵AB=AC,AD平分∠BAC,∴BD=DC(或AD⊥BC).“三线合一”的应用:因为题目的证明或计算所求结果大多都是单一的,所以“三线合一”性质实际的应用也是单一的,一般得出一个结论,因此应用要灵活。

【典型例题】例1:等腰直角三角形的一个底角的度数是()A.30°B.45°C.60°D.90°【答案】B【解析】因为等腰三角形的两个底角相等,而等腰直角三角形的两个底角互余,所以每个底角等于45°例2:如图,在Rt△ABC中,AB=AC,AD⊥BC,垂足为D.E、F分别是CD、AD上的点,且CE=AF.如果∠AED=62º,那么∠DBF=()A.62º B.38º C.28º D.26º【答案】C【解析】在Rt△ABC中,AB=AC,AD⊥BC得∠BAF=∠C=∠CAD=45 º,又∠AED=62º,∴∠EAC=62º- 45 º=17 º,又CE=AF,∴△ABF≌△CAE, ∴∠ABF=17 º, ∴∠DBF=45 º-17 º=28º.例3:如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A等于()A、30ºB、40ºC、45ºD、36º【答案】D【解析】∵AB=AC,BD=BC=AD,∴∠A=∠ABD,∠C=∠ABC=∠BDC,设∠A=xº,则∠ABD= xº, ∠C=∠ABC=∠BDC=2 xº, 在△ABC中,x+2x+2x=180,∴x=36,故∠A=36º【误区警示】易错点1:线段垂直平分线的性质与等腰三角形的性质1.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数是【答案】50°【解析】∵MN是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD,∵∠DBC=15°,∴∠ABC=∠A+15°,∵AB=AC,∴∠C=∠ABC=∠A+15°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°易错点2:等腰三角形的性质2.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小为(度).【答案】45【解析】设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°﹣∠ACE=90°﹣x﹣y.∵AE=AC,∴∠ACE=∠AEC=x+y,∵BD=BC,∴∠BDC=∠BCD=∠BCE+∠DCE=90°﹣x﹣y+x=90°﹣y.在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,∴x+(90°﹣y)+(x+y)=180°,解得x=45°,∴∠DCE=45°【综合提升】针对训练1.如图,在△ABC中,AB=AC,∠A=40°,点D在AC上,BD=BC,则∠ABD的度数是.2.如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=3.如图,将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC 的中点E 的对应点为F ,则∠EAF 的度数是1.【答案】30°【解析】∵AB=AC ,∠A=40°,∴∠ABC=∠C=12(180°﹣40°)=70°, ∵BD=BC , ∴∠CBD=180°﹣70°×2=40°, ∴∠ABD=∠ABC ﹣∠CBD =70°﹣40° =30°2.【答案】18°【解析】∵AB=AC ,∠A=36°,∴∠ABC=∠ACB=72°. ∵BD ⊥AC 于点D , ∴∠CBD=90°﹣72°=18°3.【答案】60°【解析】∵将等边△ABC 绕顶点A 顺时针方向旋转,使边AB 与AC 重合得△ACD ,BC的中点E 的对应点为F , ∴旋转角为60°,E ,F 是对应点, 则∠EAF 的度数为:60°【中考链接】(2014年盐城)若等腰三角形的顶角为40°,则它的底角度数为( )A . 40°B . 50°C . 60°D . 70°【答案】D【解析】因为等腰三角形的两个底角相等, 又因为顶角是40°, 所以其底角为180402︒-︒ =70°课外拓展黄金三角形是一个等腰三角形,它的顶角为36°,每个底角为72°,它的腰与它的底成黄金比。

人教版版中考数学大一轮培优:第4章 第3节 等腰三角形与直角三角形

人教版版中考数学大一轮培优:第4章 第3节  等腰三角形与直角三角形

A. 10
B. 4 5
C.10或 4 5
D.10或 2 17
第6题图
拓展训练 7. 如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的 两个动点,若要使△APQ是等腰三角形且△BPQ是直角三角形,则
15 或 30 AQ=__4____7__.
第7题图
考点特训营
___②__③__④_.(把所有正确答案的序号都填写在横线上)
①∠BAD=∠ACD;②∠BAD=∠CAD;③AB+BD=
AC+CD;④AB-BD=AC-CD
第1题图
变式改编
2. (1)如图,若AD是△ABC的边BC上的中线,由下列条件中的某一个就能推出 △ABC是等腰三角形的是____②__③__④(把所有的正确答案的序号都填在横线上) ①∠BAD=∠ACD;②∠BAD+∠B=∠CAD+∠C;③AB+BD=AC+CD; ④AB-BD=AC-CD. (2)如图,若AD是∠BAC的平分线,由下列条件中的某一个就 能推出△ABC是等腰三角形的是________②(把所有的正确答
例2题解图
(4)若Q为BA延长线上一点,△QBC为等腰三角形(Q点不与A点重合),则S△ACQ= __1_6__2___1_6_或 _1_6_.
(5)G为AB上一动点,则GD+GC最小值为____4___5_;
(6)G为AB上一动点,过点G作GM∥BC,交AC于点M,分别过点G、M作 38
GP⊥BC,MN⊥BC,垂足分别为P、N.
8
①当GM=____3____时,矩形GMNP为正方形; ②当GM=____4____时,矩形GMNP面积最大,最大面积为_______8_.
例2题图
满分技法
特殊三角形中的分类讨论: 1.等腰三角形中的分类讨论思想主要有: (1)边:是腰还是底边; (2)角:是顶角还是底角; (3)三角形:是锐角三角形、直角三角形或钝角三角形; (4)若已知底边的中点,则可连接中线或作底边上的高,利用三线合一解题. 2.直角三角形中的分类讨论思想主要是题目中未指定哪个角是直角时,则需讨 论各个角是直角的情况.

广州中考常错易错题:几何动态

广州中考常错易错题:几何动态

中考常错易错题 第五讲 几何动态问题明确目标﹒定位考点中考定位 几何动态综合问题,融几何,代数,三角与一体,设计的知识点有全等三角形,相似三角形,勾股定理,圆的定理;解题过程中蕴含着数形结合、分类讨论、函数与方程、化归等数学思想。

此类问题,一般综合性较强,对数学知识与数学思想的要求都比较高,既能很好的考察学生的数学功底,又有很好的区分度易错点聚焦﹒题型突破易错点一 单动点问题【例1】如图,在边长为2的正方形ABCD 中,G 是AD 延长线上的一点,且DG=AD ,动点M 从A 出发,以每秒1个单位的速度沿着A→C→G 的路线向G 点匀速运动(M 不与A 、G 重合),设运动时间为t 秒。

连接BM 并延长交AG 于N 。

(1)是否存在点M ,使△ABM 为等腰三角形?若存在,分析点M 的位置;若不存在,请说明理由;(2)当点N 在AD 边上时,若BN ⊥HN ,NH 交∠CDG 的平分线于H ,求证:BN=NH ;(3)过点M 分别用AB 、AD 的垂线,垂足分别为E 、F ,矩形AEMF 与△ACG 重叠部分的面积为S ,求S 的最大值。

NM HGF E DCBA温馨提醒本题是相似形综合题目,考查了等腰三角形的判定、正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、三角函数以及三角形面积的计算等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类讨论,通过证明三角形全等和等腰直角三角形才能得出结果.【变式训练1】如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,【变式训练2】如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.易错点二双动点问题【例2】如图1,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB 向点B以每秒2个单位长度的速度运动,过点P作PD//BC,交AB于点D,联结PQ.点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒(t≥0).(1)直接用含t的代数式分别表示:QB=_______,PD=_______;(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由,并探究如何改变点Q的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q的速度;(3)如图2,在整个运动过程中,求出线段PQ的中点M所经过的路径长.图1 图2温馨提醒1.菱形PDBQ必须符合两个条件,点P在∠ABC的平分线上,PQ//AB.先求出点P运动的时间t,再根据PQ//AB,对应线段成比例求CQ的长,从而求出点Q的速度.2.探究点M的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径.【变式训练3】如图所示,在正方形ABCD中,点E、F分别在BC、CD上移动,但点A到EF的距离AH始终保持与AB的长度相等,问在点E、F移动过程中;(1)∠EAF的大小是否发生变化?请说明理由.(2)△ECF的周长是否发生变化?请说明理由.【变式练习4】如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F 分别在菱形的边BC.CD上滑动,且E、F不与B.C.D重合.(1)证明不论E、F在BC.CD上如何滑动,总有BE=CF;(2)当点E、F在BC.CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.易错点三线动问题【例3】如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1).点D是线段BC上的动点(与端点B、C不重合),过点D作直线12y x b=-+交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105 °;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d(cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).如图1,抛物线213922y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,联结BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作BC 的平行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,联结CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).易错点四面动问题(三角形、四边形、圆)【例4】如图,在平面直角坐标系中,已知点A(0,1)、D(-2,0),作直线AD并以线段AD为一边向上作正方形ABCD.(1)填空:点B的坐标为________,点C的坐标为_________.5(2)若正方形以每秒个单位长度的速度沿射线DA向上平移,直至正方形的顶点C落在y轴上时停止运动.在运动过程中,设正方形落在y轴右侧部分的面积为S,求S关于平移时间t(秒)的函数关系式,并写出相应的自变量t的取值范围.已知平面直角坐标系中两定点A(-1,0),B(4,0),抛物线()过点A、B,顶点为C.点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式与顶点C的坐标.(2)当∠APB为钝角时,求m的取值范围.(3)若,当∠APB为直角时,将该抛物线向左或向右平移t()个单位,点P、C移动后对应的点分别记为、,是否存在t,使得首尾依次连接A、B、、所构成的多边形的周长最短?若存在,求t值并说明抛物线平移的方向;若不存在,请说明理由.综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m <3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N时抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.归纳总结﹒思维升华解决几何动态问题的策略与步骤 1、一个原则“以静制动”:即化动为静,用静态几何的手段,处理动态问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.3等腰三角形与直角三角形易错清单1.运用等腰(等边)三角形的判定与性质、勾股定理解决有关计算与证明问题,需注意分类讨论思想的渗入.【例1】一直角三角形的两边长分别为3和4,则第三边的长为().【解析】本题未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【答案】 D2.两类特殊三角形的组合运用.【例2】(2014·山东威海)如图,有一直角三角形纸片ABC,边BC=6,AB=10,∠ACB=90°,将该直角三角形纸片沿DE折叠,使点A与点C重合,则四边形DBCE的周长为.【解析】先由折叠的性质得AE=CE,AD=CD,∠DCE=∠A,进而得出,∠B=∠BCD,求得=5,DE为△ABC的中位线,得到DE的长,再在Rt△ABC中,由勾股定理得到AC=8,即可得四边形DBCE的周长.【答案】∵沿DE折叠,使点A与点C重合,∴AE=CE,AD=CD,∠DCE=∠A.∴∠BCD=90°-∠DCE.又∠B=90°-∠A,∴∠B=∠BCD.∴BD=CD=AD=AB=5.∴DE为△ABC的中位线.三好网中高级教师在线1对1辅导,专注K12中小学在线一对一辅导,高考辅导、中考辅导,老师质量高,互动体验强,服务保障好,提分效果快,在家就能上课,先上课,满意在付费!以上资料来源于网络,如有异议,请添加QQ:905622058,将有关问题进行反馈!衷心感谢!第 - 1 - 页共 7 页∵BC=6,AB=10,∠ACB=90°,∴四边形DBCE的周长为BD+DE+CE+BC=5+3+4+6=18.【误区纠错】本题主要考查了折叠问题和勾股定理的综合运用.本题中得到ED是△ABC的中位线关键.3.勾股定理在折叠问题中的运用.【例3】(2014·湖北孝感)如图,已知矩形ABCD,把矩形沿直线AC折叠,点B落在点E处,连接DE,BE,若△ABE是等边三角形,则= .【解析】过E作EM⊥AB于点M,交DC于点N,根据矩形的性质得出DC=AB,DC∥AB,∠ABC=90°,设AB=AE=BE=2a,则BC==a,即MN=a,求出EN,根据三角形面积公式求出两个三角形的面积,即可得出答案.【答案】过E作EM⊥AB于点M,交DC于点N,∵四边形ABCD是矩形,∴DC=AB,DC∥AB,∠ABC=90°.∴MN=BC.∴EN⊥DC.∵延AC折叠B和E重合,△AEB是等边三角形,∴∠EAC=∠BAC=30°.【误区纠错】本题考查了勾股定理,折叠的性质,矩形的性质,等边三角形的性质的应用,解此题的关键是求出两个三角形的面积.名师点拨1.掌握等腰三角形、直角三角形的概念并能做出判断.2.会利用等腰(等边)三角形的性质和判定定理证明相关问题.3.会利用直角三角形的性质与判定解决有关直角三角形的相关问题.4.会利用HL及其他方法来证明直角三角形全等.提分策略1.等腰三角形的多解问题.因为等腰三角形的边有腰与底之分,角有底角和顶角之分,等腰三角形的高线要考虑高在形内和形外两种情况.故当题中条件给出不明确时,要分类讨论进行解题,才能避免漏解情况.【例1】若等腰三角形的一个内角为50°,则它的顶角为.【解析】(1)若这个内角恰好是顶角,则顶角是50°;(2)若这个内角是底角,则顶角=180°-2×50°=80°.【答案】50°或80°【例2】等腰三角形的周长为16,其一边长为6,则另两边为.【解析】当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.故该等腰三角形的另两边为:6,4或5,5.【答案】6,4或5,52.等腰三角形的性质与判定的运用.(1)通常用①利用线段的垂直平分线进行等线段转换,进而进行角度转换;②等边对等角说明两个角相等.(2)要证明一个三角形是等腰三角形,必须得到两边相等,而得到两边相等的方法主要有①通过等角对等边得两边相等;②通过三角形全等得两边相等;③利用垂直平分线的性质得两边相等.(3)等边三角形是特殊的等腰三角形,其中隐含着三边相等和三个角都等于60°的结论,所以要充分利用这些隐含条件,证明全等或者构造全等.【例3】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系,并说明理由.【解析】先通过平行条件得到两对内错角相等,结合线段中点得到的线段相等,可证明两个三角形全等;由角相等的条件可证明△DFG是等腰三角形,再结合点E是DF的中点,根据等腰三角形“三线合一”的性质可证明结论.【答案】(1)∵AD∥BC,∴∠ADE=∠BFE,∠DAE=∠FBE.∵E是AB的中点,∴AE=BE.∴△ADE≌△BFE.(2)EG与DF的位置关系是EG⊥DF.∵∠GDF=∠ADF,∠ADE=∠BFE,∴∠GDF=∠BFE.∴GD=GF.由(1),得DE=EF,∴EG⊥DF.3.定义、命题、定理、反证法等知识的区别与联系.只有对一件事情作出判定的语句才是命题,其中正确的命题是真命题,错误的命题是假命题.对于命题的真假(正误)判断问题,一般只需根据熟记的定义、公式、性质、判定定理等相关内容直接作出判断即可,有的则需要经过必要的推理与计算才能进一步确定真与假.【例4】在下列命题中,其逆命题是真命题的是.(只填写序号)①同旁内角互补,两直线平行;②如果两个角是直角,那么它们相等;③如果两个实数相等,那么它们的平方相等;④如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.【解析】①的逆命题:两直线平行,同旁内角互补,正确;②的逆命题:相等的两个角是直角,错误;③的逆命题:如果两个数的平方相等,那么这两个数也相等,错误,如:22=(-2)2,但2≠-2;④的逆命题:如果一个三角形是直角三角形,则它的三边长a,b,c满足a2+b2=c2,但未说明C为直角的对边,故错误.【答案】①专项训练一、选择题1. (2014·江苏镇江外国语学校模拟)在△ABC中,∠C=90°,AC,BC的长分别是方程x2-7x+12=0的两根,△ABC内一点P到三边的距离都相等,则PC为().(第2题)2. (2014·山东济南二模)如图,在Rt△ABC中,∠BAC=90°,D,E分别是AB,BC的中点,F在CA的延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为().A. 22B. 20C. 18D. 16二、填空题3. (2014·江苏大丰模拟)已知等腰三角形一腰上的高等于腰的一半,则底角为度.4. (2013·内蒙古赤峰一模)等腰三角形的腰长为2,腰上的高为1,则它的底角等于.5.(2013·江苏通州兴仁中学一模)如图,在Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,按图中所示方法将△BCD 沿BD折叠,使点C落在AB边的点C',那么△ADC'的面积是.(第5题)三、解答题6. (2014·辽宁鞍山5校联考)如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.(第6题)7. (2014·安徽马鞍山实验学校模拟)如图,点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.(1)求证:AD=BD;(2)E为AD延长线上的一点,且CE=CA,求证:AD+CD=DE;(3)当BD=2时,AC的长为.(直接填出结果,不要求写过程)(第7题)参考答案与解析3. 15或75[解析]等腰三角形分钝角和锐角三角形两种情况讨论.4.15°或75°[解析]分钝角三角形和锐角三角形讨论.5.6cm2[解析]根据勾股定理知AB=10,得AC'=4.再在直角三角形AC'D中运用勾股定理求得C'D=3,AD=5. (注:设CD=x,则C'D=x,AD=8-x)6. (1)如图,(第6题)∠1=90°-∠3,∠2=90°-∠3,∴∠1=∠2.又OC=OD,OA=OB,∴△AOC≌△BOD.(2)由△AOC≌△BOD,有AC=BD=2,∠CAO=∠DBO=45°,∴∠CAB=90°.7. (1)∵AC=BC,∠ACB=90°,∴∠CAB=∠ABC=45°.∵∠CAD=∠CBD=15°,∴∠BAD=∠ABD=30°.∴AD=BD.(2)在DE上截取DM=DC,连接CM.(第7题(1))∵AD=BD,AC=BC,DC=DC,∴△ACD≌△BCD.∴∠ACD=∠BCD=45°.∵∠CAD=15°,∴∠EDC=60°.∵DM=DC,∴△CMD是等边三角形.∴∠CDA=∠CME=120°,∵CE=CA,∴∠E=∠CAD.∴△CAD≌△CEM,∴ME=AD.∴DA+DC=ME+MD=DE.∴AD+CD=DE.(3)延长CD交AB于点H.则CH⊥AB.∵∠HBD=30°,BD=2,(第7题(2))。

相关文档
最新文档