最新冀教版八年级数学上册《特殊三角形复习课》教学设计(精品教案)

合集下载

初中数学初二数学上册《特殊三角形》教案、教学设计

初中数学初二数学上册《特殊三角形》教案、教学设计
(4)练习:设计不同难度的练习题,让学生巩固所学性质,提高解决问题的能力。
(5)拓展:引导学生运用特殊三角形的性质进行拓展练习,提高学生的创新思维和解决问题的能力。
3.教学评价:
(1)过程性评价:关注学生在课堂上的表现,如积极参与、主动探究、合作交流等,激发学生的学习积极性。
(2)总结性评价:通过课后作业、单元测试等方式,检验学生对特殊三角形性质的理解和运用程度。
4.请同学们预习下一节课的内容,提前了解特殊三角形在几何证明中的应用,为课堂学习做好准备。
5.结合本节课的学习,总结特殊三角形的性质及其应用,用思维导图的形式呈现,培养知识归纳和总结能力。
作业要求:
1.作业需独立完成,书写工整,步骤清晰,保持卷面整洁。
2.解题过程中,要注重逻辑性和条理性,体现数学思维的严密性。
1.学生对基本几何概念的理解程度,特别是对等腰、等边三角形的认识,以及直角三角形的性质。
2.学生在解决问题时,能否灵活运用特殊三角形的性质,对相关性质的理解是否深入。
3.学生的空间想象能力和逻辑思维能力,以及在学习过程中是否能够主动探究、发现和解决问题。
4.学生在小组合作中的沟通能力,以及团队合作意识的培养。
4.引导学生认识数学在科学、技术、社会等方面的广泛应用,培养学生的数学应用意识,学生数学学习的关键时期,他们在之前的学习中已经掌握了三角形的基本概念和性质,具备了一定的几何图形识别和分析能力。在此基础上,学生对特殊三角形的学习将更具挑战性和深度。然而,由于特殊三角形性质较多,学生在理解和应用上可能会存在一定困难。因此,在教学过程中,应关注以下几点:
4.能够运用特殊三角形的性质进行简单的证明,培养逻辑思维能力和推理能力。
(二)过程与方法
1.通过自主探究、小组合作等方式,让学生在探索特殊三角形性质的过程中,培养发现问题的能力,提高解决问题的能力。

2024年冀教版八年级上册第十七章 特殊三角形直角三角形

2024年冀教版八年级上册第十七章 特殊三角形直角三角形

课时目标1.探索并掌握直角三角形的两个锐角互余.2.掌握两个角互余的三角形是直角三角形.3.探索并掌握直角三角形斜边上的中线等于斜边的一半.学习重点掌握直角三角形的性质定理和判定定理.学习难点初步养成综合运用知识解决问题的能力,进一步提高推理能力.课时活动设计导入新课我们前边学习了等腰三角形,除了等腰三角形外,我们还学过直角三角形,直角三角形是又一类特殊的三角形,那么它具有什么性质呢?本节课我们来学习直角三角形的性质.设计意图:开门见山,直接引出本节课所学内容.探究新知教师出示问题:结合目前所学,你对直角三角形有什么认识呢?直角三角形有什么特征呢?学生:直角三角形的两个锐角互余.由学生自己完成此猜想的证明.已知:在Rt△ABC中,△C=90°.求证:△A+△B=90°.证明:在Rt△ABC中,△A+△B+△C=180°.△△C=90°,△△A+△B=180°-△C=180°-90°=90°.几何语言:如图,△在△ABC中,△C=90°,△△A+△B=90°.直角三角形的性质定理1:直角三角形的两个锐角互余.直角三角形的性质定理的逆命题显然也是真命题.直角三角形的判定定理:如果一个三角形的两个角互余,那么这个三角形是直角三角形.此定理证明由学生完成.已知:在△ABC中,△A+△B=90°.求证:△ABC是直角三角形.证明:在△ABC中,△A+△B+△C=180°.△△A+△B=90°,△△C=180°-(△A+△B)=180°-90°=90°.△△ABC是直角三角形.符号语言:△在△ABC中,△A+△B=90°,△△ABC是直角三角形.设计意图:学生经过猜想并证明,能够熟练掌握直角三角形的性质定理和判定定理,同时提升学生合情推理能力和演绎推理能力.探究新知设计活动,学生操作.在一张半透明的纸上画出Rt△ABC,△C=90°,如图1;将△B折叠,使点B与点C 重合,折痕为EF,沿BE画出虚线CE,如图2;将纸展开,如图3.完成下列问题.(1)△ECF与△B有怎样的关系?线段EC与线段EB有怎样的关系?解:△ECF=△B,EC=EB.(2)由发现的上述关系以及△A+△B=△ACB,△ACE+△ECF=△ACB,你能判断△ACE与△A的大小关系吗?线段AE与线段CE呢?解:△ACE=△A,AE=CE.(3)由发现的上述关系,你能猜想线段CE与线段AB的关系吗?AB.猜想:CE=AE=EB,即CE是△ABC中AB边的中线,且CE=12如何证明你的猜想呢?学生组内合作,互相交流讨论,教师引导,给予详细的证明过程,最后进行总结.已知:如图1,在Rt△ABC中,△ACB=90°,CD为斜边AB上的中线.AB.求证:CD=12证明:如图2,过点D作DE△BC,交AC于点E;作DF△AC,交BC于点F.在△AED和△DFB中,△{∠A =∠FDB(两直线平行,同位角相等),AD =DB(中线的概念),∠ADE =∠B(两直线平行,同位角相等),△△AED △△DFB (ASA).△AE =DF ,ED =FB (全等三角形的对应边相等). 同理可证,△CDE △△DCF . 从而,ED =FC ,EC =FD. △AE =EC ,CF =FB (等量代换).又△DE △AC ,DF △BC (两直线平行,同位角相等), △DE 为AC 的垂直平分线,DF 为BC 的垂直平分线. △AD =CD =BD (线段垂直平分线的性质定理). △CD =12AB.直角三角形性质定理2:直角三角形斜边上的中线等于斜边的一半.设计意图:通过学生动手操作,让学生初步感受并猜想直角三角形的性质定理,理解其合理性,为下个环节的证明作铺垫.通过教师讲解,完成此定理的证明,学生理解该定理的证明过程,并运用该定理去解决问题.拓展应用教师提出问题,学生完成证明.证明:在直角三角形中,30°角所对的直角边等于斜边的一半.已知:如图,在Rt△ABC 中,△ACB =90°,△A =30°. 求证:BC =12AB.证明:(方法1)如图1,作斜边上的中线CD ,则CD =AD =BD =12AB.△△A=30°,△△B=60°.△△CDB是等边三角形,△BC=BD=12AB.(方法2)如图2,延长BC到D,使CD=BC,连接AD.在△ABC和△ADC中,{AC=AC,∠ACB=∠ACD, BC=DC,△△ABC△△ADC(SAS).△AB=AD.△△BAC=30,△△B=90°-30°=60°.△△ABD是等边三角形.△AB=BD.△BC=12AB.学生独立完成,教师及时给予指导,最后进行总结.含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.设计意图:学生通过完成此定理的证明,能够掌握含30°角的直角三角形的性质.巩固训练1.如图,在△ABC中,△ACB=90°,CD是AB边上的高,若△A=50°,则△DCB的度数为(A)A.50°B.45°C.40°D.25°第1题图第2题图2.如图,在Rt△ABC中,△ACB=90°,△A=50°,将其折叠,使点A落在边CB上的点A'处,折痕为CD,则△A'DB的度数为(D)A.40°B.30°C.20°D.10°3.在Rt△ABC中,△C=90°,△A=30°,若AB=4 cm,则BC= 2 cm.4.若直角三角形斜边上的高和中线分别为10 cm,12 cm,则它的面积是120 cm2.设计意图:通过习题的练习,使学生能够熟练运用直角三角形的性质定理解决问题.课堂小结这节课你有那些收获?和同学交流一下.设计意图:通过小结让学生复述本节课所学知识,使学生牢固掌握本节课所学内容,把所学知识内化成自己的知识.课堂8分钟.1.教材第149页习题A组第1,2,3题,习题B组第2题.2.七彩作业.17.2直角三角形1.直角三角形的性质定理:(1)直角三角形的两个锐角互余.(2)直角三角形斜边上的中线等于斜边的一半.(3)在直角三角形中,30°角所对的直角边等于斜边的一半.2.直角三角形的判定定理:如果一个三角形的两个角互余,那么这个三角形是直角三角形.教学反思。

冀教版八年级上册数学第17章 特殊三角形 【教学设计】 等腰三角形的性质

冀教版八年级上册数学第17章 特殊三角形 【教学设计】 等腰三角形的性质
∴ ∠ A+ ∠ ABC+ ∠ C=x+2x+2x=180°, 解得 x=36°,
∴∠A=36°∠ABC=∠C=72°
使用
及时巩
固所学
学 生 完 知识,了
活动 5:应用
成后到 解学生
思维拓展
黑板上 学习效
四、
1、等腰三角形底边中点到两腰的距 板书 果,增强
发散练习 离相等吗?
学生应
拓展提高 2、利用类似的方法,还可以得到等
点 D 在 AC 上,且 BD=BC=ADA,求
生注意
△ABC 各角的度数。
D
“等边 对等
解:∵AB=AC,BD=BC=AD, B
C
角”只
∴∠ABC=∠C=∠BDC,
能在同
∠A=∠ABD(等边对等角)
一个三
设∠A=x,则
角形中
第5页 共10页
∠BDC= ∠A+ ∠ABD=2x, 从而∠ABC= ∠C= ∠BDC=2x,
在此之前,学生已学习了轴对称图形,这为过渡到本 节的学习起着铺垫作用。初二学生心理和认知发展规律要 求在教学中要充分调动他们的激情,他们不喜欢鼓噪无味 的数学课堂。根据认知理论和心理学的基本原理,学生对 学情分析 所学知识的掌握是通过感知阶段、理解阶段、巩固(记忆) 阶段、应用(迁移)阶段的发展实现的,知识的掌握如此, 思维能力的培养也是如此,也应遵循认知迁移的规律,逐 极展开。 教学目标 知识与能力目标 能够探究,归纳,验证等腰三角形的
用知识
腰三角形中哪些线段相等?
讨 论 总 的能力,

同时培
养学生
分类讨
论的思
第6页 共10页
想。 启迪发 散学生 思维

【教育资料】冀教版八年级上册 第十七章《特殊三角形》导学案(无答案)学习精品

【教育资料】冀教版八年级上册 第十七章《特殊三角形》导学案(无答案)学习精品

一、预习案1.全等三角形的5种判定方法。

2.有两边相等的三角形叫,相等的两边叫,另一边叫,两腰的夹角叫,腰和底边的夹角叫 (请在图中标出来)3.如图,在△ABC中,AB=AC,标出各部分名称二、探究案探究一:等腰三角形的性质。

问题一:△ABC是等腰三角形,其中,AB=AC.∠B和∠C有怎样的关系?问题二:底边上的高、中线及∠A的平分线有怎样的关系?问题解决提示:等腰三角形是轴对称图形,如果把等腰三角形沿着某条直线对折,哪些边和角是相互重合的?这说明什么?(等腰三角形的两个底角相互重合,所以两底角相等.三线互相重合)归纳等腰三角形的性质定理3.探究二:等边三角形的性质。

探究活动:中,如果AB=BC=AC。

那么∠A=∠B=∠C.提示:等边三角形是等腰三角形的一种特殊形式,它具有等腰三角形所有的性质,因此可以从等腰三角形的性质定理入手。

归纳:三、训练案(1)在△ABC中,AB=AC,若∠A=40°则∠C=;若∠B=72°,则∠A= .(2)在△ABC中,AB=AC,∠BAC=40°,M是BC的中点,那么∠AMC=,∠BAM= .(3)如图,在△ABC中,AB=AC,∠DAC是△ABC的外角。

∠BAC=180°-∠B,∠B=()∠DAC=∠C(4)如图,在△ABC中,AB=AC,外角∠DCA=100°,则∠B=度.(5)如图①∵AB=BC∴ = (等边对等角)②∵AB=BC,AD是角平分线∴⊥, = (三线合一)③∵AB=BC ,AD是中线∴⊥,∠ =∠(三线合一)④∵AB=BC ,AD是高∴ = ,∠ =∠(三线合一)一、预习案1、在△ABC中,AC=BC, ∠B=800,则∠C=________2、等腰三角形的一个内角是1000,则其余两个角分别是___________3、等腰三角形的一个内角是700,则其余两个角分别是 _______________或_____________.4、等腰三角形的两边长分别是8cm和6cm,则其周长是____________ cm5、等腰三角形的两边长分别是16cm和8cm,则其周长是___________cm二、探究案探究1.“等角对等边”这个识别等腰三角形的重要方法,可以如何得到?你用了哪些合情推理的方法?提示:用折叠观察的方法.探究2.如图“等角对等边”这一命题的题设:结论:已知:求证:证明:探究3.你有和上面不同的辅助线作法吗?请试一试.“作BC边上的中线AD”可行吗?三、训练案1.在△ABC中,∠A的相邻外角是110°,要使△ABC是等腰三角形,则∠B=。

2024-2025学年初中数学八年级上册(冀教版)教案第17章特殊三角形

2024-2025学年初中数学八年级上册(冀教版)教案第17章特殊三角形

第十七章特殊三角形17.1 等腰三角形第1课时等腰三角形的性质教学目标教学反思1.了解等腰三角形的概念,探索并证明等腰三角形的性质定理;2.探索并证明等边三角形的性质定理;3.能运用等腰、等边三角形的性质解决问题.教学重难点重点:探索并证明等腰、等边三角形的性质定理;难点:能运用等腰、等边三角形的性质解决问题.教学过程旧知回顾1.回忆在前面学过哪些特殊的三角形?等腰三角形、等边三角形等.2.回忆你所知道的等腰三角形、等边三角形有哪些性质?等腰三角形两腰相等,等边三角形三边相等.导入新课欣赏图片引入“等腰三角形”:——生活中的“等腰三角形”在这些图片中,你发现了哪个特殊的三角形?教师引入课题:等腰三角形探究新知一、认识等腰三角形1.概念:有两边相等的三角形叫做等腰三角形.2.进一步认识等腰三角形各部分的名称.在等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.二、等腰三角形的性质定理探究活动:1.如图,把一张长方形纸片按图中的虚线对折,剪下阴影部分,再把它展开,得到△ABC,则AB=AC,所以△ABC是等腰三角形.问题1:等腰三角形是轴对称图形吗?如果是,对称轴是哪条直线?等腰三角形是轴对称图形.底边的垂直平分线是它的对称轴.2.把剪出的等腰三角形ABC沿折痕AD对折,找出其中重合的线段和角,填入下表:重合的线段重合的角AC与AB∠CAD与∠BADCD与BD∠C与∠BAD与AD∠ADC与∠ADB问题2:等腰三角形除了两腰相等以外,你还能发现它的其他性质吗?发现1:等腰三角形的两个底角相等.如何证明两个底角相等呢?学生分析:可以运用全等三角形的性质“对应角相等”来证.思考:如何构造两个全等的三角形?教师指导,学生讨论,展示成果:如图,在△ABC中,AB=AC.求证:∠B=∠C.证明:方法一:作底边上的中线作底边的中线AD,则BD=CD.在△BAD和△CAD中,AB=AC ( 已知 ),BD=CD ( 已作 ),AD=AD (公共边),∴△BAD≌△CAD (SSS).∴∠B=∠C (全等三角形的对应角相等).方法二:作顶角的平分线作顶角的平分线AD,则有∠1=∠2.在△BAD和△CAD中,,1AB ACAD AD=⎧⎪⎨⎪⎩∠=∠2,=(公共边),∴△BAD≌△CAD(SAS).∴∠B=∠C(全等三角形的对应角相等).你能用一句话来叙述这个结论吗?等腰三角形的性质1:等腰三角形的两个底角相等(简写成“等边对等角”).几何语言:在△ABC中,∵AB=AC,∴∠B=∠C.发现2:等腰三角形顶角的平分线、底边上的中线及底边上的高重合.思考:由△BAD≌△CAD,除了可以得到∠B=∠C之外,还可以得到哪些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现.教学反思解:∵△BAD ≌△CAD ,由全等三角形的性质易得BD =CD ,∠ADB =∠ADC ,∠BAD =∠CAD . 又∵ ∠ADB +∠ADC =180°, ∴ ∠ADB =∠ADC =90° ,即AD 是等腰△ABC 底边BC 上的中线、顶角∠BAC 的平分线、底边BC 上的高线 .归纳:等腰三角形的性质定理性质1:等腰三角形的两个底角相等(等边对等角).性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高重合(三线合一). 练习:判断正误:1.等腰三角形的顶角一定是锐角.2.等腰三角形的底角可能是锐角、直角或钝角.3.钝角三角形不可能是等腰三角形.4.等腰三角形的顶角平分线一定垂直于底边.5.等腰三角形的角平分线、中线和高重合.6.等腰三角形底边上的中线一定平分顶角. 学生独立完成,教师评价:1.×2.×3. ×4. √5. ×6.√例 已知:如图,在△ABC 中,AB =AC ,BD ,CE 分别为∠ABC ,∠ACB 的平分线.求证:BD =CE .证明:∵ BD ,CE 分别为∠ABC ,∠ACB 的平分线, ∴ ∠ABD =21∠ABC ,∠ACE =21∠ACB . ∵ AB =AC ,∴ ∠ABC =∠ACB (等边对等角),∴ ∠ABD =∠ACE (等量代换).又∵ ∠A =∠A (公共角), ∴ △ABD ≌△ACE (ASA ).∴ BD =CE (全等三角形的对应边相等). 三、等边三角形的定义及性质1.定义:三边都相等的三角形叫做等边三角形.2.等边三角形的性质问题1:把等腰三角形的性质用于等边三角形,能得到什么结论?结论1:等腰三角形的两个底角相等等边三角形的三个角都相等,并且每一个角都等于60°.已知:如图,在△ABC 中,AB =AC =BC . 求证:∠A =∠B =∠C =60°. 证明:∵ AB =AC ,∴ ∠B =∠C (等边对等角) . 同理 ∠A =∠C . ∴ ∠A =∠B =∠C .∵ ∠A +∠B +∠C =180°, ∴ ∠A =∠B =∠C =60 °.问题2: 等腰三角形“三线合一”的性质同样存在于等边三角形中吗?等腰三角形顶角的平分线、底边的高、底边的中线三线合一.(一条对称轴)等边三角形顶角的平分线、底边的高、底边的中线三线合一.(三条对称轴) 归纳: 等边三角形的性质:等边三角形的三个角都_相等_,并且每一个角都等于_60°.等边三角形顶角的__平分线__、底边上的_中线___及底边上的_高__重合(__三线合一__).练习:1.如图,等边三角形ABC 与互相平行的直线a ,b 相交,若∠1=25°,教学反思则∠2的大小为( )教学反思A.25°B.35°C.45°D.55°2.如图,△ABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.学生自主完成,教师进行评价.答案:1.B2.解:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=60°-40°=20°.∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.课堂练习1.等腰三角形的一个内角是50°,则这个三角形的底角的大小是( )A.65°或50°B.80°或40°C.65°或80°D.50°或80°2.如图,四边形ABCD是正方形,△PCD是等边三角形,连接BP,则∠BPC等于( )A.15°B.20°C.25°D.30°3.如图,一个等边三角形纸片剪去一个角后变成一个四边形,则图中∠1+∠2的度数为( )A.180°B.220°C.240°D.300°4.某城市几条道路的位置关系如图所示,已知AB∥CD,AE与AB的夹角为48°,若CF与EF的长度相等,则∠C的度数为________.5.如图,在△ABC中,∠ACB=90°,∠CAB=30°,以AB为边在△ABC外作等边△ABD,E是AB的中点,连接CE并延长交AD于F.求证:△AEF≌△BEC.参考答案1.A2.A3.C4.24°5.证明:∵△ABD是等边三角形,∴∠DAB=60°.∵∠CAB=30°,∠ACB=90°,∴∠EBC=180°-90°-30°=60°,∴∠F AE=∠EBC.∵E为AB的中点,∴AE=BE.又∵∠AEF=∠BEC,∴△AEF≌△BEC(ASA).课堂小结1.等腰三角形的性质定理:性质1:等腰三角形的两个底角相等(等边对等角).性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高重合(三线合一). 2.等边三角形的性质定理等边三角形的三个角都相等,并且每一个角都等于60°.布置作业 完成教材143页习题A 组、B 组. 板书设计17.1 等腰三角形第1课时 等腰三角形的性质教学反思第十七章特殊三角形17.1 等腰三角形第2课时等腰三角形的判定教学目标教学反思1.理解并掌握等腰、等边三角形的判定方法;2.运用等腰、等边三角形的判定方法进行证明和计算;3.会利用尺规作图完成:已知底边及底边上的高线作等腰三角形.教学重难点重点:理解并掌握等腰、等边三角形的判定方法;难点:运用等腰、等边三角形的判定方法进行证明和计算.教学过程旧知回顾1.回忆等腰三角形的性质定理性质1:等腰三角形的两个底角相等(等边对等角).性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高重合(三线合一).2.回忆等边三角形的性质定理等边三角形的三个角都相等,并且每个角都等于60°.导入新课生活事件引入“等腰三角形的判定”:——海上救援位于海上B,C两处的两艘救生船接到A处遇险船只的报警,当时测得∠ABC=∠ACB.如果这两艘救生船以同样的速度同时出发,能不能同时赶到出事地点(不考虑风浪等因素)?建立数学模型:如图,在△ABC中, ∠B=∠C,那么它们所对的边AB和AC有什么数量关系?你能验证你的结论吗?教师引入课题:等腰三角形的判定探究新知一、等腰三角形的判定定理已知:如图,在△ABC中, ∠B=∠C.求证:AB=AC.教师引导提示,学生分析:构造两个全等的三角形,利用全等三角形的对应边相等来证得AB=AC.证明:如图,作∠BAC的平分线,交BC于点D.在△ABD 和△ACD 中, 12B C AD AD ⎧⎪⎨⎪⎩∠=∠,∠=∠,=, ∴ △ABD ≌ △ACD ,∴ AB =AC . 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这个三角形是等腰三角形.其中,两个相等的角所对的边相等.(简写成“等角对等边”) 几何语言: 在△ABC 中, ∵ ∠B =∠C ,∴ AC =AB , 即△ABC 为等腰三角形. 练习:1.在△ABC 中,∠A 与∠B 的度数如下,则能判定△ABC 为等腰三角形的是( ) A .∠A =60°,∠B =50° B .∠A =70°,∠B =60° C .∠A =40°,∠B =70° D .∠A =40°,∠B =80° 2.辨一辨:如图,下列推理正确吗?∵ ∠1=∠2,∴ BD =DC .∵. 学生自主完成,教师进行评价. 答案:1.C 2.错,因为都不是在同一个三角形中. 二、等边三角形的判定定理 大家讨论: 1.三个内角都相等的三角形是等边三角形吗?说出你的理由. 2.有一个角是60°的等腰三角形是等边三角形吗?说出你的理由. 学生自主讨论,得出结论: 1.是,连续用两次等角对等边,等量代换可得三角形的三边相等. 2.是,(1)若60°是顶角,根据内角和定理,可求得另外两个底角都等于60°; (2)若60°是底角,根据内角和定理可求得顶角也为60°,所以有一个角是60°的等腰三角形是等边三角形. 归纳: 等边三角形的判定方法: 1.三条边都相等的三角形是等边三角形; 2.三个角都相等的三角形是等边三角形; 3.有一个角等于60°的等腰三角形是等边三角形. 例1 如图,在等边三角形ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 求证:△ADE 是等边三角形. 证明:∵ △ABC 是等边三角形, ∴ ∠A =∠B =∠C . ∵ DE ∥BC , ∴ ∠ADE =∠B , ∠AED =∠C . 教学反思∴∠A=∠ADE=∠AED.教学反思∴△ADE是等边三角形.练习:根据条件判断下列三角形是否为等边三角形.(1)(2) (3) (4) (5) (6)答案:(2)(3)(5)(6)是,(1)不是,(4)不一定是.三、尺规作等腰三角形例2已知底边及底边上的高,用尺规作等腰三角形.如图(1)所示,已知线段a和h.求作等腰三角形ABC,使BC=a,高AD=h.(1)(2)教师指导,学生分析:先作出线段BC=a,再作出BC的垂直平分线.在这条垂直平分线上截取点A,使点A到BC的距离=h,连接相关点即得.解:作法:(1)作线段BC=a.(2)作线段BC的垂直平分线MD,垂足为点D.(3)在DM上截取DA=h.(4)连接AB,AC.则△ABC就是所求作的等腰三角形.如图(2)所示.学生通过例2的学习,自主探究作图方法.课堂练习1.如图,已知OC平分∠AOB,CD∥OB,若OD=8cm,则CD等于( )A.8cmB.4cmC.15cmD.20cm2.如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的平分线,则图中的等腰三角形有( )A.5个B.4个C.3个D.2个3.在如图所示的三角形中,若AB=AC,则能被一条直线分成两个小等腰三角形的是( )教学反思①②③ ④A.①②③B.①②④C.②③④D.①③④4.由于木质衣架没有柔性,在挂置衣服的时候不太方便操作.小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是_______cm.5.如图,在△ABC中,AB=AC,D是AB上一点,过D作DE⊥BC于点E,并与CA的延长线相交于点F,试判断△ADF的形状,并说明理由.参考答案1.A2.A3.D4.185.解:△ADF是等腰三角形.理由:在△ABC中.∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠DEB=∠DEC=90°,∴∠BDE+∠B=90°,∠F+∠C=90°,∴∠BDE=∠F.∵∠BDE=∠ADF,∴∠ADF=∠F,∴AF=AD,∴△ADF是等腰三角形.课堂小结1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形.其中,两个相等的角所对的边相等.(简称“等角对等边”)说明:(1)等腰三角形的判定定理与性质定理互逆;(2)在判定定理的应用中,可以作底边上的高,也可以作顶角平分线,但不能作底边上的中线;(3)判定定理在同一个三角形中才能适用.2.等边三角形的判定定理(1)三个角都相等的三角形是等边三角形.(2)有一个角等于60°的等腰三角形是等边三角形.布置作业完成教材146页习题A组、B组.板书设计17.1 等腰三角形第2课时 等腰三角形的判定教学反思第十七章特殊三角形17.2 直角三角形教学目标教学反思1.探索并掌握直角三角形的两个锐角互余;2.掌握两个角互余的三角形是直角三角形;3.探索并掌握直角三角形斜边上的中线等于斜边的一半.教学重难点重点:掌握直角三角形的性质定理和判定定理.难点:初步养成综合运用知识解决问题的能力,进一步提高推理能力.教学过程旧知回顾1.回忆三角形的内角和定理:三角形的内角和为180°.2.回忆直角三角形的概念及其表示:(1)直角三角形定义:有一个角等于90°的三角形叫直角三角形;(2)符号:Rt△,直角三角形ABC可以表示为Rt△ABC.导入新课实际生活引入“直角三角形”:——三角板.这是教师经常使用的两个三角板,同学们手中也有一副这样的三角板,观察一下看看它们三个内角之间有什么规律.教师引入课题:直角三角形.探究新知一、直角三角形的性质定理1和判定定理互助探究一:直角三角形的两个锐角关系.学生自主完成证明:直角三角形的两个锐角互余.已知:在Rt△ABC中,∠C=90°.求证:∠A+∠B=90°.证明:∵在Rt△ABC中,∠A+∠B+∠C=180°,且∠C=90°,∴∠A+∠B=180°-∠C=180°-90°=90°.小结:直角三角形的两个锐角互余 .符号语言:在△ABC中,∠C=90°,∴∠A+∠B=(90°).教学反思直角三角形的性质定理1:直角三角形的两个锐角互余.探讨:1.是否存在这样的三角形,它既是等腰三角形,又是直角三角形?等腰直角三角形.2.等腰直角三角形的两个锐角各是多少度呢?45°.例如图,∠C=∠D=90°,AD,BC相交于点E. ∠CAE与∠DBE有什么关系?为什么?教师指导,学生分析:通过观察∠CAE与∠CEA互余,∠DBE与∠DEB互余.解:在Rt△ACE中,∠CAE=90 °-∠AEC.在Rt△BDE中, ∠DBE=90 °-∠BED.∵∠AEC=∠BED,∴∠CAE=∠DBE.互助探究二:直角三角形的判定定理如果一个三角形的两个角互余,那么这个三角形是直角三角形.已知:在△ABC中,∠A+∠B=90°.求证:△ABC是直角三角形.证明:在△ABC中,∠A+∠B+∠C=180°,∵∠A+∠B=90°,∴∠C=180°-(∠A+∠B)=180°-90°=90°,∴△ABC是直角三角形.符号语言:在△ABC中,∠A+∠B=(90°),∴△ABC是(直角)三角形.直角三角形的判定定理:如果一个三角形的两个角互余,那么这个三角形是直角三角形.练习:1.如图1,图中直角三角形共有( )A.1个B.2个C.3个D.4个图1 图22.如图2,AD与BC相交于点O,AB∥CD,若∠B=30°,∠D=60°,则△AOB是三角形.答案:1.C 2.直角二、直角三角形性质定理2互助探究三:直角三角形斜边上的中线与斜边的关系.直角三角形斜边上的中线等于斜边的一半.(1)(2) (3)在一张半透明的纸上画出Rt△ABC,∠C=90°,如图(1);将∠B折叠,使点B与点C重合,折痕为EF,沿BE画出虚线CE,如图(2);将纸展开,如图(3).完成下列问题:(1)∠ECF 与∠B 有怎样的关系?线段EC 与线段EB 有怎样的关系? ∠ECF =∠B ,EC =EB .(2)由发现的上述关系以及∠A +∠B =∠ACB ,∠ACE +∠ECF =∠ACB ,你能判断∠ACE 与∠A 的大小关系吗?线段AE 与线段CE 呢? ∠ACE =∠A ,AE =CE .(3)由发现的上述关系,你能猜想线段CE 与线段AB 的关系吗? 猜想:CE =AE =EB ,即CE 是AB 的中线,且CE =21AB . 即:直角三角形斜边上的中线等于斜边的一半. 下面就来证明上面的“猜想”已知:如图,在Rt △ABC 中,∠ACB =90°,CD 为斜边AB 上的中线. 求证:CD =12AB . 证明:如图,过点D 作DE ∥BC ,交AC 于点E ; 作DF ∥AC ,交BC 于点F . 在△AED 和△DFB 中,A FDBAD DB ADE B ⎧⎪⎨⎪⎩∠=∠(两直线平行,同位角相等),∵=(中线的概念),∠=∠(两直线平行,同位角相等), ∴ △AED ≌△DFB (ASA ).∴ AE =DF ,ED =FB .(全等三角形的对应边相等)同理可证,△CDE ≌△DCF . 从而,ED =FC ,EC =FD .∴ AE =EC ,CF =FB .(等量代换) 又∵ DE ⊥AC ,DF ⊥BC ,∴ DE 为AC 的垂直平分线,DF 为BC 的垂直平分线. ∴AD =CD =BD (线段垂直平分线的性质定理). ∴ CD =12AB . 直角三角形性质定理2:直角三角形斜边上的中线等于斜边的一半.练习:1.如图,公路AC 、BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AM 的长为1.2 km ,则M 、C 两点间的距离为( ) A .0.5 km B .0.6 km C .0.9 km D .1.2 km2.在直角三角形中,斜边及其中线之和为6,那么该三角形的斜边长为________.学生自主完成,教师评价 答案:1. D 2. 4互助探究四: 在直角三角形中, 30°角所对的直角边等于斜边的一半.在Rt △ABC 中,∠ACB =90°,∠A =30°.求证:BC =12AB . 教学反思证明:作斜边上的中线CD ,则CD =AD =BD =12AB. ∵ ∠A =30°,∴ ∠B =60°.∴ △CDB 是等边三角形,∴ BC =BD = 12AB .还可以这样证明:延长BC 到D ,使CD =BC , 连接AD . 在△ABC 和△ADC 中,{AC =AC ,∠ACB =∠ ACD =90°,BC =DC ,∴ △ABC ≌△ADC (SAS ), ∴ AB =AD . ∵ ∠BAC =30°,∴ ∠B =90°-30°=60°, ∴ △ABD 是等边三角形, ∴ AB =BD ,∴ BC =21AB .含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半. 课堂练习1.具备下列条件的△ABC 中,不是直角三角形的是 ( )A.∠A +∠B =∠CB.∠A -∠B =∠CC.∠A ∶∠B ∶∠C =1∶2∶3D.∠A =∠B =3∠C2.如图1,在Rt △ABC 中,CD 是斜边AB 上的中线,若∠A =26°,则∠BDC 的度数是( )A .26°B .38°C .42°D .52°图1 图23.如图2,在Rt △ABC 中,∠C =90°,∠A =30°,BC =4 cm ,则AB 等于( )A .9 cmB .8 cmC .7 cmD .6 cm4.如图3,E 是△ABC 中AC 边上的一点,过E 作ED ⊥AB ,垂足为D .若∠1=∠2,则△ABC 是______三角形.图3 图45.如图4,在直角三角形ABC 中,∠ACB =90°,D 是AB 上一点,且∠ACD =∠B .求证:△ACD 是直角三角形.教学反思参考答案1.D2.D3.B4.直角5.证明:∵∠ACB=90°,∴∠A+∠B=90°.∵∠ACD=∠B,∴∠A+∠ACD=90°,∴△ACD是直角三角形.课堂小结1.直角三角形的性质定理1和判定定理:性质定理1:直角三角形的两个锐角互余;判定定理:如果一个三角形的两个角互余,那么这个三角形是直角三角形.2.直角三角形的性质定理2直角三角形斜边上的中线等于斜边的一半;含30°角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.布置作业完成教材149页习题A组、B组.板书设计17.2直角三角形教学反思第十七章特殊三角形17.3 勾股定理第1课时勾股定理教学目标教学反思1.理解如何用面积法证明勾股定理,并掌握勾股定理的内容.2.会初步应用勾股定理进行简单的计算.教学重难点重点:掌握勾股定理的内容.难点:会用勾股定理进行简单的计算.教学过程旧知回顾回顾直角三角形的性质定理和判定定理.师生活动:教师找一个学生回答,如果回答不全,再请别的同学进行补充.性质定理:直角三角形的两个锐角互余;直角三角形斜边上的中线等于斜边的一半.判定定理:如果一个三角形的两个角互余,那么这个三角形是直角三角形.导入新课数学故事引入“勾股定理”:——毕达哥拉斯相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客.在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家地面所铺的瓷砖发起呆来.原来,朋友家的地面是用一块块直角三角形形状的瓷砖铺成的,黑白相间,非常美观大方.主人看到毕达哥拉斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑着回家去了.原来,他发现了瓷砖上的三个正方形存在着某种数学关系.同学们,我们也来观察下面的图案,看看你能发现什么?(教师引导学生从面积角度观察图形)本节课我们就来学习勾股定理.板书课题探究新知一、猜想直角三角形的三边关系师生互动:问题1:图中每个小方格都是边长为1的小正方形,完成下列内容:(1) BC=,AC=, AB=.(2) 以AC 为边的正方形的面积是 ;以BC 为边的正方形的面积是 ; 以AB 为边的正方形的面积是 .(3)三个正方形的面积之间的关系是 + = . (4)能不能用直角三角形ABC 的三边表示三个正方形面积的等量关系? 问题2:如图所示的是用大小相同的两种颜色的正方形地砖铺成的地面示意图,∠ACB =.完成下列内容,并试着探究其中规律.(1)以AC 为边的正方形的面积是 平方厘米 (2)以BC 为边的正方形的面积是 平方厘米 (3)以AB 为边的正方形的面积是 平方厘米. 上面三个正方形的面积之间有什么关系? 问题3:(1)在网格中一般的直角三角形,以它的三边为边长的三个正方形A ,B ,C 是否也有类似的面积关系?观察下边两幅图(每个小正方形的面积为单位1):(2)填表: 【对于C 的面积的求法,教师做好指导工作(补形法、分割法)】思考 正方形A ,B ,C 所围成的直角三角形三条边之间有怎样的特殊关系? 通过探究师生共同猜想:在直角三角形中,两直角边的平方和等于斜边的平方. 二、实验操作 验证结论 1.传统拼图验证:给学生进行分组,让学生课前自己准备材料. 步骤如下:(1)随意确定两条线段a 、b ;(2)剪4个以a 、b 为直角边的直角三角形; (3)用这4个直角三角形拼成一个正方形;(4)思考:你拼的正方形中是否含有以斜边c 为边的正方形? (5)你能否就你拼出的图说明222c b a =+?(小组合作,进行拼图,在黑板上将拼图粘贴进行演示说明)教学反思2.展示成果:图2图1证明:∵S大正方形=2c,S小正方形=2)ab-(,∴S大正方形=4·S三角形+S小正方形,∴222214()2c ab b a a b=⨯+-=+.图2证明:∵S大正方形=2)ba+(,S小正方形=2c,∴S大正方形=4·S三角形+S小正方形,222221)4,2.a b ab ca b c+=⨯++=∴(∴三、定理归纳如图,我国古代把直角三角形较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”.因此,直角三角形三边之间的关系称为勾股定理.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么222cba=+.几何语言:∵在Rt△ABC中,∠C=90°,∴222cba=+(勾股定理).勾股定理揭示了直角三角形三边之间的关系:222cba=+,222bca-=,222acb-=.四、例题解析例1 如图,在Rt△ABC中,∠C=90°.(1)若a=1,b=2,求c.(2)若a=15,c=17,求b.学生分析:使用勾股定理前找准哪条边是直角边,哪条边是斜边,然后套上对应的公式进行计算.解:(1)根据勾股定理,得22222215,0,c a bc c=+=+=>=∵∴(2)根据勾股定理,得222221715(1715)(171564,08.b c ab b=-=-=-+=>=)∵,∴教学反思【变式题】例2 在Rt △ABC 中,AB =4,AC =3,求BC 的长.教师指导,学生分析:此题没有指明哪条边是斜边,所以要分情况讨论,即讨论AB 是直角边或斜边. 解:当AB 为斜边时,如图, 2221697,7.BC AB AC BC =-=-==∴当BC 为斜边时,如图, 22216925,5.BC AB AC BC =+=+==∴教师点睛:已知直角三角形的两边求第三边,关键是先明确所求的边是直角边还是斜边,再应用勾股定理.课堂练习1.直角三角形ABC 的两直角边BC =12,AC =16,则△ABC 的斜边AB 的长是( ) A .20 B .10 C .9.6 D .82.在△ABC 中,边AB =15,AC =13,高AD =12,则△ABC 的周长是( ) A .42 B .32 C .42或32 D .不能确定3.图中阴影部分是一个正方形,则此正方形的面积为 _________.4.在△ABC 中,∠C =90°.(1)若a =15,b =8,则c =_________ . (2)若c =13,b =12,则a = _________ .5.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.6.已知∠ACB =90°,CD ⊥AB ,AC =3,BC =4,求CD 的长. 参考答案1.A2.C3.64 cm ²4.17 155.74或246.解:因为∠ACB =90°,AC =3,BC =4, 所以22225AB AC BC =+=,即AB =5.根据三角形面积公式,11,22AC BC AB CD ⨯=⨯所以CD =125. 课堂小结1.勾股定理:如果直角三角形两条直角边分别为a ,b ,斜边为c ,那么222c b a =+.教学反思2.利用勾股定理计算边长.注意:已知直角三角形的两边求第三边,关键是先明确所求的边是直角边还是斜边,再应用勾股定理.布置作业完成教材152页习题A组、B组.板书设计第1课时勾股定理教学反思第十七章特殊三角形17.3 勾股定理第2课时勾股定理的实际应用教学反思本题已知直角三角形的一直角边和斜边,求另一直角边,可以利用勾股定理解决.教学反思(3)请同学们在练习本上完成,指一名学生板演,教师指导步骤.(4)对学生的解题过程进行讲评.解:在△ABC中,∵∠ACB=90°,∴AC2+BC2=AB2(勾股定理).∵AB=200m,BC=160m,∴AC=√AB2-BC2=√2002-1602=120(m).答:点A和点C间的距离是120m.点睛:基本思想方法:勾股定理把“形”与“数”有机地结合起来,即把直角三角形这个“形”与三边关系这一“数”结合起来,它是数形结合思想的典范.练一练:如图是某厂房屋顶的三角架的示意图.已知AB=AC=17m,AD⊥BC,垂足为D,AD=8m,求BC的长.学生独立完成,指一名学生板演.解:在Rt△ABD中,∵AB=17m,AD=8m,∴BD2=AB2-AD2=172-82=225,∴BD=15m,∵AB=AC,AD⊥BC,∴BC=2BD=30m.例2如图所示,在长为50mm,宽为40mm的长方形零件上有两个圆孔,与孔中心A,B相关的数据如图所示.求孔中心A和B间的距离.教师引导学生分析题意,提问:(1)在直角三角形中怎样求斜边的长度?(2)AC,BC的长度怎样求?(3)在练习本上写出求解过程.学生独立思考交流,得出:要求斜边AB的长度,就要求出两直角边AC和BC的长度,这样就可以根据勾股定理的变形AB=√AC2+BC2求出AB的长度.利用线段的平移可求出AC=50-15-26=9(mm),BC=40-18-10=12(mm).解:∵△ABC是直角三角形,∴AB2=AC2+BC2.∵AC=50-15-26=9(mm),BC=40-18-10=12(mm),∴AB=√AC2+BC2=√92+122=15(mm).答:孔中心A和B间的距离是15mm.例3在水平如镜的湖面上,有一朵美丽的红莲,它高出水面3尺,一阵大风吹过,红莲被吹至一边,花朵齐及水面,如果知道红莲移动的水平距离为6尺,问湖水多深?解:如图,设红莲在无风时高出水面部分CD长为3尺,点B为红莲被吹斜后花朵的位置,BC部分长6尺.设水深AC为x尺,在Rt△ABC中,AC2+BC2=AB2(勾股定理).又∵AB=AD=(x+3)尺,∴(x+3)2=x2+62,解得x=4.5.答:湖水深4.5尺.通过上面几个例题的分析,师生共同归纳:勾股定理的实际应用的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.课堂练习1.如图1,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,两船相距( )A.25海里B.30海里C.40海里D.50海里图1 图2 图32.如图2,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙脚的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米3.如图3是一张直角三角形的纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cmB.5cmC.6cmD.10cm4.如图所示的是在机器人创意大赛中,一参赛队员设计的机器人比赛时行走的路教学反思转化数学问题实际问题勾股定理直角三角形。

2022年八年级数学上册第十七章特殊三角形17.1等腰三角形1教案新版冀教版

2022年八年级数学上册第十七章特殊三角形17.1等腰三角形1教案新版冀教版

17.1等腰三角形(1)教学目标【知识与能力】在动手操作的过程中,理解等腰三角形、等边三角形的性质定理.【过程与方法】1.让学生通过动手操作,经历等腰三角形性质的探索过程,培养学生的动手、归纳、概括的能力.2.培养学生的猜想能力,让学生经过推理证明得到等腰三角形、等边三角形的性质定理. 【情感态度价值观】培养学生的逻辑思维能力,让学生树立良好的学习观,增强学生认真学习的态度.教学重难点【教学重点】等腰三角形、等边三角形的性质定理.【教学难点】等腰三角形、等边三角形的性质定理的推理和证明.课前准备多媒体课件教学过程一、新课导入:导入一:教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等边三角形、等腰三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形、等边三角形的性质定理.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.[设计意图]通过辨别,让学生发现等腰三角形是轴对称图形,从而引出可以利用轴对称的性质来确定等腰三角形.导入二:在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就从轴对称的角度来认识一些我们熟悉的几何图形.思考:三角形是轴对称图形吗?有的三角形是轴对称图形,有的三角形不是.问题:什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后,两部分能够完全重合的就是轴对称图形.这节课我们就来认识一种是轴对称图形的三角形──等腰三角形.[设计意图]从三角形的角度,让学生通过思考,了解等腰三角形是轴对称图形,从而自然地引入到本节课的学习之中,激发了学生的学习兴趣和求知欲望.导入三:1.出示一组含有等腰三角形的生活图片,让学生感知图片主要部分形状的共同点.2.出示自制的测平仪,告诉学生含45°角的三角板顶点固定一条拴着重物的绳子,标出底边中点标志,它就变成了测平仪.激起学生的好奇心,从而引入课题.[设计意图]活跃课堂气氛,消除学生的紧张情绪,让学生带着问题进入学习.二、新知构建:探究一:等腰三角形的性质定理思路一【活动1】【课件1】如图所示,把一张长方形纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的ΔABC有什么特点?【学生活动】学生动手操作,观察ΔABC的特点,可以发现AB=AC.【教师活动】让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如图所示,在ΔABC中,若AB=AC,则ΔABC是等腰三角形,AB,AC是腰,BC是底边,∠A是顶角,∠B和∠C是底角.【活动2】【课件2】 观察与思考:如上图所示,ΔABC 是等腰三角形,其中AB =AC.(1)我们知道线段BC 为轴对称图形,中垂线为它的对称轴,由AB =AC ,可知点A 在线段BC 的中垂线上.据此,你认为ΔABC 是轴对称图形吗?如果是,对称轴是哪条直线?(2)∠B 和∠C 有怎样的关系?(3)底边BC 上的高、中线及∠A 的平分线有怎样的关系?【学生活动】 学生经过观察,然后小组讨论交流,从中总结等腰三角形的性质.【教师活动】 引导学生归纳:性质1 等腰三角形的两个底角相等(简称“等边对等角”).[知识拓展] 等腰三角形的“等边对等角”的特征是用来说明两角相等、计算角的度数的常用方法.性质2 等腰三角形的顶角平分线、底边上的中线、底边上的高重合(简称“三线合一”).【活动3】 你能用所学知识验证上述性质吗?【课件3】 如图所示,在ΔABC 中,AB =AC.求证∠B =∠C.【学生活动】 学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B =∠C ,根据全等三角形的知识可以知道只需要证明这两个角所在的三角形全等即可.于是可以作辅助线构造两个三角形,作BC 边上的中线AD ,证明ΔABD 和ΔACD 全等即可,根据条件利用“边边边”可以证明.【教师活动】 让学生充分讨论,根据所学的数学知识,利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性.证明:作BC 边上的中线AD ,如图所示,则BD =CD ,在ΔABD 和ΔACD 中,{AD =AD ,AB =AC ,BD =CD ,所以ΔABD ≌ΔACD (SSS),所以∠B =∠C.这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由ΔABD≌ΔACD,还可得出∠BAD=∠CAD,∠ADB=∠ADC=90°.从而AD⊥BC,这也就证明了等腰三角形ABC底边上的中线平分顶角∠A并垂直于底边BC.添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2.说明:经过以上证明也可以得出等腰三角形底边上的中线的左右两部分经翻折可以重合,等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴. [知识拓展]等腰三角形还有以下性质:(1)等腰三角形两腰上的中线、高线相等;(2)等腰三角形两个底角平分线相等;(3)等腰三角形底边上任一点到两腰的距离之和等于一腰上的高. [设计意图]通过折叠等腰三角形让学生观察,在动手操作中掌握等腰三角形的性质,概括出性质,并引导学生加以证明,让学生经历知识的形成和证明过程,加深了对知识的理解和掌握.思路二要求学生通过自己的思考来作一个等腰三角形.【课件4】作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,BC,CA.以上活动所得三角形的两边相等吗?此三角形称为.小结:【课件5】填出等腰三角形各部分名称.归纳:等腰三角形的定义:有两边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.【课件6】问题1:等腰三角形是轴对称图形吗?请找出它的对称轴.问题2:通过折叠或测量,看看等腰三角形的两底角有什么关系?问题3:顶角的平分线所在的直线是等腰三角形的对称轴吗?问题4:底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?1.学生通过刚才自主探究,大胆猜想以上问题的结果.2.教师用几何画板直观演示并引导学生观察等腰三角形的性质.(对称性,等边对等角,三线合一.)小结:等腰三角形的性质:(1)等腰三角形的两个底角(简称“”);(2)等腰三角形的,、重合(简称“三线合一”).3.你能证明以上性质吗?问题:(1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?(2)怎样用数学符号表示条件和结论?已知:在ΔABC中,AB=AC.求证:∠B=∠C;请以“顶角的平分线”为辅助线,证明以上性质.(A组同学完成以下填空,B组同学独立证明.)教师巡视辅导点评.【课件6】证明:如图所示,作∠BAC的平分线AD,∴∠=∠, 在ΔABD与ΔACD中,{=(已知),∠=∠,AD=AD(公共边),∴ΔABD≌ΔACD(), ∴∠B=∠.4.受上述启发,能证明性质2吗?即证明∠BAC的平分线AD是ΔABC底边上的中线和高.证明:由ΔABD≌ΔACD知BD=,∠BAD=∠,∠ADB=∠,∵∠ADB+∠ADC=°,∴∠ADB=∠ADC=°.因此∠BAC的平分线AD也是ΔABC底边BC上的中线和高.5.提问:作底边上的高,又如何证明?(让同学讲证明思路.)[设计意图]通过作等腰三角形让学生感知其重点,通过几何画板让学生对照图形思考等腰三角形的性质,同时掌握对性质的证明方法,培养学生的学习能力.探究二:等边三角形的性质定理[过渡语]我们知道三边都相等的三角形是等边三角形.等边三角形是特殊的等腰三角形,它有哪些性质呢?每位同学画一个等边三角形,并用量角器量一量每个内角的度数.结论:等边三角形的三个角都相等,并且每一个角都等于60°.【课件7】已知:如图所示,在ΔABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.指导学生利用等腰三角形的性质进行证明.证明:在ΔABC中,由AB=AC,得∠B=∠C.由AC=BC,得∠A=∠B.所以∠A=∠B=∠C.由三角形内角和定理可得∠A=∠B=∠C=60°.[知识拓展]等边三角形是特殊的等腰三角形,除了具有等腰三角形的性质外,等边三角形还具有自己特有的性质:(1)等边三角形有三条对称轴(等边三角形三条边都相等,都可以作为底边);(2)作等边三角形各边的高线、中线、各角的平分线一共有三条.[设计意图]让学生通过测量、证明,发现等边三角形的性质,掌握等腰三角形和等边三角形的关系.探究三:例题讲解【课件8】已知:如图所示,在ΔABC中,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线. 求证:BD=CE.〔解析〕根据角平分线定义得到∠ABD=12∠ABC,∠ACE=12∠ACB,再根据等边对等角得到∠ABC=∠ACB,从而得到∠ABD=∠ACE,然后通过ASA证得ΔABD≌ΔACE,就可以得到BD=CE.教师巡回指导,在学生完成后,指名口述解答过程.【课件9】(补充例题)如图所示,在ΔABC中,AB=AC,点D在AC上,且BD=BC=AD,求ΔABC中各角的度数.〔解析〕根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,就可求出ΔABC的三个角的度数.如果设∠A为x,那么∠ABC,∠C都可以用x来表示,这样过程就更简捷了.解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC,∠A=∠ABD.设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.在ΔABC中,∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.所以∠A=36°,∠ABC=∠C=72°.[设计意图]通过对例题的讲解、分析,引导学生应用等腰三角形的性质,让学生掌握解题思路和方法,提高学生对等腰三角形性质的应用能力.三、课堂小结:1.等腰三角形的性质1等腰三角形的两个底角相等(简称“等边对等角”).注意:等边对等角只限于在同一个三角形中使用.2.等腰三角形的性质2等腰三角形的顶角平分线、底边上的中线、底边上的高重合(简称“三线合一”).说明:等腰三角形是轴对称图形,底边上的中线(底边上的高、顶角平分线)所在的直线是它的对称轴.3.等边三角形的性质等边三角形的三个角都相等,并且每一个角都等于60°.。

【数学】冀教版八年级上册第17章特殊三角形【学案】反证法

【数学】冀教版八年级上册第17章特殊三角形【学案】反证法

反证法【学习目标】知识与能力:通过实例,体会反证法的含义;培养用反证法简单推理的技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力。

过程与方法:了解反证法证题的基本步骤,会用反证法证明简单的命题。

情感、态度、价值观:在观察、操作、推理等探索过程中,体验数学活动充满探索性和创造性;渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想。

【学习重难点】学习重点:1、理解反证法的概念,2、体会反证法证明命题的思路方法及反证法证题的步骤,3、用反证法证明简单的命题。

学习难点:理解“反证法”证明得出“矛盾的所在”。

【学法指导】通过自学和老师的范例讲解,体会反证法的含义及反证法证明命题的思路方法,自己总结反证法证题的基本步骤。

【学习过程】一、学前准备1、复习回顾两点确定条直线;过直线外一点有且只有条直线与已知直线平行;过一点有且只有条直线与已知直线垂直。

2、看故事并回答:中国古代有一个叫《路边苦李》的故事:王戎7岁时,与小伙伴们外出游玩,看到路边的李树上结满了果子.小伙伴们纷纷去摘取果子,只有王戎站在原地不动.有人问王戎为什么?王戎回答说:“树在道边而多子,此必苦李.”小伙伴摘取一个尝了一下果然是苦李.王戎是怎样知道李子是苦的吗?答:。

他运用了怎样的推理方法? 答:。

3、自学课本,写下摘要疑惑:(1)摘要:反证法:在证明一个命题时,人们有时先假设不成立,从这样的假设出发,经过得出和已知条件矛盾,或者与等矛盾,从而得出假设的结论不成立,即所求证的命题的结论正确.这种证明方法叫做反证法.反证法证题的基本步骤:1.命题的结论的反面是正确的;(反设)2.从这个假设出发,经过逻辑推理,推出与矛盾;(归缪)3.由判定假设不正确,从而命题的结论是正确的.(结论)(2)疑惑:二、自学、合作探究1、用具体例子体会反证法的含义及思路思考:在△ABC中,已知AB=c,BC=a,CA=b,且∠C≠90°.求证;a2+b2≠c2.有些命题想从已知条件出发,经过推理,得出结论是很困难的,因此,人们想出了一种证明这种命题的方法,即反证法.假设a2+b2=c2,则由勾股定理的逆定理可以得到∠C=90°,这与已知条件∠C≠90°产生矛盾,因此,假设a2+b2=c2是错误的.所以a2+b2≠c2是正确的.什么叫反证法?(A、B组自己归纳;C、D组看课本)2、由上述的例子归纳反证法的步骤(A、B组自己归纳; C、D组看课本)1.2.3.3、学以至用已知:在△ABC中,AB≠AC求证:∠B ≠∠ C证明:假设,则()这与矛盾.假设不成立.∴.三、例题讲解例1.求证:两条直线相交只有一个交点.已知:;求证:;证明:假设AB,CD相交于两个交点O与O′,那么过O,O′两点就有_____条直线,这与“过两点”矛盾,所以假设不成立,则.例2.试证明:如果两条直线都与第三条直线平行,那么这两条直线也平行.已知:;求证:;证明:假设,则可设它们相交于点A。

新冀教版八上数学 第17章 特殊三角形 【创新学案】等腰三角形的判定

新冀教版八上数学 第17章 特殊三角形 【创新学案】等腰三角形的判定
5、教师提示:由上面的操作过程获得启发,我们可以通过作出三角形ABC的对称轴,得到两个全等三角形,从而利用三角形的全等证明这些性质。
6、鼓励学生独 立思考,请学生上黑板证明,师生共同分析讨论,教师作总结发言,给出问题的证明过程。


个人备课
集体研讨与个案补充
7、多媒体展示如下例题
例1、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
重合的线段
重合的角
3、填完之后,提问:你能发现等腰三角形的性质吗?请学生根据上表形成有关等腰三 角形性质的猜 想。
4、师生共同分析,讨论总结出等腰三角形的性质。
(1)等腰三角形的两个底角相等(简写成“等边对等角”).
(2)等腰△的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
情感、态 度和价值观
1、经历通过探究发现规律的过程,感受数学学习的乐趣,激发数学学习的兴趣。
2、经历通过应用等腰三角形的相关性 质解决实际问题的过程,体会数学与现实的密切联系,感受数学的应用价值 ,培养应用意识。
教学重点、难点
重点:等腰三角形的定义,等腰三角形的性质和应用
难点:等腰三角形性质的发现
教学设计:
请学生尝试解答。
解:∵AB=AC,BD=BC=AD,
∴∠ABC=∠C=∠BDC,∠A=∠ABD (等边对等角)
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠ C=∠BDC=2x,
于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°,
在△ABC中,∠A=36°,∠ABC=∠C=72°

冀教版数学八年级上册17.2《直角三角形》教学设计

冀教版数学八年级上册17.2《直角三角形》教学设计

冀教版数学八年级上册17.2《直角三角形》教学设计一. 教材分析冀教版数学八年级上册17.2《直角三角形》是学生在学习了三角形的性质和分类之后,进一步研究直角三角形的性质和应用。

本节课的内容包括直角三角形的定义、特性、直角三角形的边角关系、直角三角形的应用等。

通过本节课的学习,使学生掌握直角三角形的性质和应用,培养学生的空间想象能力和思维能力。

二. 学情分析学生在学习本节课之前,已经学习了三角形的性质和分类,对三角形有了一定的了解。

但直角三角形作为一种特殊的三角形,学生可能还不够熟悉。

因此,在教学过程中,需要引导学生回顾三角形的性质和分类,为新知识的学习做好铺垫。

同时,学生需要通过观察、操作、思考、交流等活动,掌握直角三角形的性质和应用。

三. 教学目标1.知识与技能:学生能够理解直角三角形的定义,掌握直角三角形的性质,能够运用直角三角形的性质解决实际问题。

2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:学生能够积极参与数学学习,体验数学学习的乐趣,增强自信心,培养合作意识。

四. 教学重难点1.重点:直角三角形的定义和性质。

2.难点:直角三角形的应用。

五. 教学方法采用问题驱动法、情境教学法、合作学习法等教学方法,引导学生观察、操作、思考、交流,培养学生的空间想象能力和思维能力。

六. 教学准备教师准备直角三角形的相关教具,如直角三角板、直尺、量角器等。

同时,准备相关的练习题和应用题,用于巩固和拓展学生的知识。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的性质和分类,为新知识的学习做好铺垫。

然后,教师展示直角三角板,提问学生:“你们知道这是什么三角形吗?”学生回答后,教师总结直角三角形的定义。

2.呈现(10分钟)教师通过展示直角三角形的图片和实物,让学生观察和描述直角三角形的特征。

同时,教师引导学生用量角器测量直角三角形的内角,验证直角三角形的性质。

冀教版八年级数学上册第17章特殊三角形PPT教学课件

冀教版八年级数学上册第17章特殊三角形PPT教学课件


底边上的中线、高和顶角 每一边上的中线、高和这一边 的平分线互相重合 所对的角的平分线互相重合 对称轴(1条) A 对称轴(3条) A
B
C
B
C
等边三角形的性质定理
等边三角形的三个角都相等,并且没一个角都等于60°. 练一练: 如图,△ABC和△ADE都是等边三角形,已知△ABC的周长为 18cm,EC =2cm,则△ADE的周长是 12 cm. A
D
C
典例精析
例 如图,在△ABC中 ,AB=AC,点D在AC上,且 BD=BC=AD,求△ABC各角的度数. 解:∵AB=AC,BD=BC=AD, ∴∠ABC=∠C=∠BDC#43; ∠ABD=2x,
从而∠ABC= ∠C= ∠BDC=2x, 于是在△ABC中,有 ∠A+∠ABC+∠C=x+2x+2x=180 ° , 解得x=36 ° ,在△ABC中, ∠A=36°, ∠ABC=∠C=72°. B
72°,72°或36°,108° ____________________ ; (3)等腰三角形一个角为120°,它的另外两个角为 _ °, ___ 30° __. 30
结论:在等腰三角形中,注意对角的分类讨论. ① 顶角+2×底角=180° ② 顶角=180°-2×底角 ③ 底角=(180°-顶角)÷2 ④0°<顶角<180° ⑤0°<底角<90°
导入新课
图片引入
图中有些你熟悉的图形吗?它们有什么共同特点? 埃及金字塔 斜拉桥梁 体育观看台架
讲授新课
一 等腰三角形的定义
剪一剪: 如图,把一张长方形的纸按图中的红线对折,并剪
去阴影部分(一个直角三角形),再把得到的直角三角形展
开,得到的三角形ABC有什么特点?

冀教版八年级上册数学教学课件 第十七章 特殊三角形 第1课时 等腰三角形的性质

冀教版八年级上册数学教学课件 第十七章 特殊三角形 第1课时 等腰三角形的性质

等边三角形的性质
A
B
C
定义:三边都相等的三角形叫做等边三角形.
等边三角形的性质
问题1.1 把等腰三角形的性质用于等边三角形,能得到什么结论?
等腰三角形 等腰三角形的两个底角相等.
等边三角形 等边三角形的三个角都相等,并且 每一 个角都等于60°.
等边三角形的性质
问题1.2 运用所学知识,证明你的结论. 已知:AB=AC=BC , 求证:∠A= ∠B=∠C= 60°. 证明: ∵AB=AC. ∴∠B=∠C(等边对等角) .同理 ∠A=∠C . ∴∠A=∠B=∠C. ∵ ∠A+∠B+∠C=180°, ∴ ∠A= ∠B= ∠C=60 °.
定义:有两边相等的三角形叫做等腰三角形.在等腰三角形中,相 等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边 的夹角叫做底角.
等腰三角形的性质
问题2.1 如图,在△ABC中,AB=AC.指出△ABC的腰、底边、顶角和底角. A
AB和AC 是腰,BC是底边,∠A是顶 角,∠B和∠C是底角.
等边三角形的性质
练一练:如图,等边三角形ABC与互相平行的直线a,b相交, 若∠1=25°,则∠2的大小为( B )
A.25° B.35 ° C.45° D.55°
CONTENTS
3
1.等腰三角形的一个内角是50°,则这个三角形的底角的大小是( A )
A.65°或50° B.80°或40° C.65°或80° D.50°或80°
A
D
C 猜想:等腰三角形的顶角平分线、底 边上的中线、底边上的高互相重合(三 线合一).
等腰三角形的性质
问题4.2 根据所学知识,证明你的猜想.
已知:如图, △ABD≌ △ACD.

最新冀教版初中数学八年级上册13.3 第4课时 具有特殊位置关系的三角形全等导学案

最新冀教版初中数学八年级上册13.3 第4课时 具有特殊位置关系的三角形全等导学案

133 全等三角形的判定第4课时 具有特殊位置关系的三角形的全等学习目标:1复习并回顾全等三角形的判定方法(重点)2根据平移或旋转证明两个三角形全等并掌握其规律(难点) 学习重点:全等三角形的判定方法学习难点:平移或旋转与三角形全等的综合一、知识链接1.观察下面几组图形,其中△AB ≌△A'B'',请写出它们的对应角和对应边答:___________________________________________________________________ 2.参照1中两个三角形的位置关系,请尝试画出几个与△AB 全等的三角形二、新知预习3如图,每组图形中的两个三角形都是全等三角形(1)观察每组中的两个三角形,请你说出其中一个三角形经过怎样的变换(平移或旋转)后,能够与另一个三角形的重合(2)请你分别再画出几组具有类似位置关系两个全等三角实际上,在我们遇到的两个全等三角形中,有些图形具有特殊的位置关系,即其中一个三角形是由另一个三角形经过平移或旋转(有时是两种变换)得到的发现两个三角形间的这种特殊关系,能够帮助我们找到命题证明的途径,较快解决问题三、自学自测1.如图所示,E为B的中点(1)当AB=DE,∠B=∠DE时,可用___________证明△ABE≌△DE;(2)当AB=DE,AE=D时,可用___________证明△ABE≌△DE;2如图,AB与D相交于点O,且A∥BD,A+BD,那么________≌_______,理由是_________________________________四、我的疑惑_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________一、要点探究探究点:具有特殊位置关系的三角形的全等问题1:已知:如图,在△AB 中,D 是B 的中点,DE ∥AB ,交A 于点E ,DF ∥A ,交AB 于点F 求证:△BDF ≌△DE【归纳总结】本题运用了转化的思想,将题目中相等的线段转化为两三角形中一对相等的边,即可证明全等【针对训练】已知:如图,A=EF,AB∥D,AB=D求证:BE∥DF问题2:已知:如图,在△AB中,D,E分别是AB,A的中点,F∥AB,交DE的延长线于点F求证:DE=FE【归纳总结】本题运用了转化的思想,观察可知,将△EF绕着点E逆时针旋转180°,它可与△EAD重合,即可证明全等得到等量关系【针对训练】已知:如图,D是△AB的边B的中点,过,B分别作AD及AD的延长线的垂线F,BE,垂足分别为F,E,求证:BE=F二、课堂小结1.已知,如图,AB∥D,BF∥DE且AE=2,A=10,则EF=_______2已知:如图,BE=F,AB∥ED,A∥DF求证:△AB≌△DEF3已知:如图,AB=D,B=E,∠AD=∠BE求证:∠1=∠2当堂检测参考答案:162∵AB∥ED,A∥DF(已知),∴∠B=∠DEF,∠F=∠AB(两直线平行,同位角相等)∵BE=F,∴BE+E=F+E(等式的性质),即B=EF在△AB和△DEF中∠B=∠DEF(已推出),B=EF(已推出)∠F=∠AB(已推出),∴△AB≌△DEF(ASA)3∵∠AD=∠BE,∴∠AD+∠DE=∠BE+∠DE,即∠AE=∠DB在△AE和△DB中,A=D(已知),∠AE=∠DB(已证),E=B(已知),∴△AE≌△DB(SAS)∴∠1=∠2。

八年级数学上册17特殊三角形教学案新版冀教版

八年级数学上册17特殊三角形教学案新版冀教版
第十七章 特殊三角形
1. 了解等腰三角形的概念 , 探索并证明等腰三角形的性质定理 ; 探索并掌握等腰三角形
的判定定理 ; 探索等边三角形的性质定理和判定定理 .
2. 探索并掌握直角三角形的性质定理 , 掌握有两个角互余的三角形是直角三角形 .
3. 探索勾股定理及其逆定理 , 并能运用它们解决一些简单的实际问题 .
(1) 等腰三角形的性质与判定、直角三角形的性质和判定
, 主要通过观察与思考、操作
与归纳等方法去探索和发现结论 , 再通过演绎推理证明结论 , 最后举例证明 , 实现在发展学
生合情推理能力的基础上 , 把证明作为探索活动的自然延续 . 较好体现了合情推理与演绎推
理两种推理形式的相辅相成 , 实现了两种推理的有机融合 .
如图所示 , 在 Δ ABC中 , 若 AB=AC, 则Δ ABC是等腰三角形 , AB, AC是腰 , BC是底边 , ∠ A 是
顶角 , ∠ B和∠ C是底角 .
【活动 2】 【课件 2】 观察与思考 : 如上图所示 , Δ ABC是等腰三角形 , 其中 AB=AC. (1) 我们知道线段 BC为轴对称图形 , 中垂线为它的对称轴 , 由 AB=AC, 可知点 A在线段 BC 的中垂线上 . 据此 , 你认为 Δ ABC是轴对称图形吗 ?如果是 , 对称轴是哪条直线 ? (2) ∠B 和∠ C有怎样的关系 ? (3) 底边 BC上的高、中线及∠ A的平分线有怎样的关系 ? 【学生活动】 学生经过观察 , 然后小组讨论交流 , 从中总结等腰三角形的性质 . 【教师活动】 引导学生归纳 : 性质 1 等腰三角形的两个底角相等 ( 简称“等边对等角” ) . [ 知识拓展 ] 等腰三角形的“等边对等角”的特征是用来说明两角相等、计算角的度 数的常用方法 . 性质 2 等腰三角形的顶角平分线、 底边上的中线、 底边上的高重合 ( 简称“三线合一” ) . 【活动 3】 你能用所学知识验证上述性质吗 ?

八年级数学上册 17《特殊三角形》回顾与反思教学建议素材 (新版)冀教版

八年级数学上册 17《特殊三角形》回顾与反思教学建议素材 (新版)冀教版

第十七章回顾与反思
通过对本章知识内容的回顾与总结,理顺知识脉络,建立知识之间的联系,形成属于学生自己的知识网络和结构.
1.对知识内容的回顾和总结,建议教师结合一组问题,先由学生各自独立完成,再进行小组讨论和全班交流,最后师生一起理清知识脉络,绘制知识结构图表.
2.在对知识内容总结的同时,教师更要引导学生重视对定理获得过程的反思,感悟数学思想,体会探究过程,掌握证明方法,让学生在对问题的反思、交流、合作、探究、证明等活动中来提升能力.
3.在“回顾与反思”整个教学过程中,教师要审时度势地进行点拨和引导,确保每个学生都能参与、都想参与.
回顾本章知识,归纳本章内容,构建三角形与特殊三角形以及特殊三角形之间的内在联系,体会探索发现和演绎证明有机结合的作用,反思问题解决过程中的思维策略。

能运用特殊三角形的性质和判定定理解决数学或实际问题,并让学生充分经历合情推理和演绎推理这一猜想结论和演绎证明的过程,提高学生发现和提出问题的能力及分析和解决问题的能力。

新冀教版八上数学 第17章 特殊三角形 【创新说课稿】直角三角形全等的判定

新冀教版八上数学 第17章 特殊三角形 【创新说课稿】直角三角形全等的判定

直角三角形全等的判定一、教材分析㈠教材所处的地位及作用本节课以前,学生已经学习了直角三角形的两种判定方法:由直角三角形定义判定或由有两个角互余判定。

在学生原有的这些认知水平上,通过对本课时内容的学习,一方面从边的数量关系出发,丰富了直角三角形的判定方法;另一方面对勾股定理的学习做了必要的延伸。

㈡教学目标:从教材和学生两方面考虑,以学生的发展为本,学生的能力培养为主,兼顾知识教学、技能训练,确定教学目标如下:知识与技能目标:要求学生掌握由三边关系判定直角三角形的方法,并能用这一方法解决简单问题。

经历探索特殊三角形三边之间的“数”的关系发现此三角形有一个角是直角的“形”的特点的过程,再一次应用数形结合思想,并在这一过程中培养学生合作交流的能力。

过程与方法目标:让学生在合作交流中获取知识,组织学生通过观察、发现、交流、体验、说理归纳等活动,感知并掌握直角三角形的判定方法。

情感、态度与价值观目标:通过创设情境,激发学生的求知欲;通过动手摆一摆、做一做、算一算等活动的开展,让学生乐于探究,培养学生独立思考和合作交流的能力,让他们享受成功的喜悦。

㈢教学重点与难点全等三角形的判定根据学生的认知水平、认知能力以及教材的特点,确定以下重点、难点:本节课的重点是由三角形三边关系判定直角三角形的方法。

本节课的难点是如何将三角形边的数量关系经过代数变化,最后达到一个目标式,来判定是否是直角三角形。

㈣教具、学具准备1.多媒体课件2.一根长绳并打上等距离的13个结3.每位学生准备三根小木棒,不同同学小木棒的长度可不一样,但要能构成三角形。

二、学情分析考虑到我校学生有以下三方面的特点,我设计了这节课。

第一在认知上:学生已学了勾股定理,在探求勾股定理的过程中,已经有过把特殊三角形有一个角是直角的“形”的特点转化为三边之间的“数”的关系的体验,对数形结合思想有了一定的认知。

第二在能力上:八年级学生已经有一定的探索能力和解决问题的能力,能从几个特殊情况入手合情推理出一般情况下的结论,但思维的严谨性相对薄弱。

2016年秋八年级数学上册17特殊三角形教学案(新版)冀教版

2016年秋八年级数学上册17特殊三角形教学案(新版)冀教版

第十七章特殊三角形1.了解等腰三角形的概念,探索并证明等腰三角形的性质定理;探索并掌握等腰三角形的判定定理;探索等边三角形的性质定理和判定定理.2.探索并掌握直角三角形的性质定理,掌握有两个角互余的三角形是直角三角形.3.探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题.4.探索并掌握判定直角三角形全等的“斜边、直角边”定理.5.会利用基本作图方法作三角形:已知底边及底边上的高线作等腰三角形;已知一直角边和斜边作直角三角形.6.通过实例体会反证法的含义.1.经历由情境引出问题,探索、掌握有关数学知识,再运用于实践的过程,培养学生学数学、用数学的意识与能力.2.在教学过程中提供充足的时间和空间,让学生经历观察、操作、实验、猜想、验证等活动过程,培养学生尝试探究的意识和能力.1.感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国及祖国悠久文化的思想感情.2.使学生从数学的角度思考问题,培养学生积极的学习态度,树立学习的信心,提高学生的学习兴趣.本章知识既是三角形内容的深化和拓展,又是进一步研究特殊四边形的重要工具.同时,等腰三角形的知识在今后探索线段相等、角相等、直线的垂直关系等方面有着广泛的应用;勾股定理及其逆定理不仅是数形结合思想的完美体现,更是我们今后解决数学问题和实际问题的有力工具.因此,本章起着承上启下的桥梁作用.(1)等腰三角形的性质与判定、直角三角形的性质和判定,主要通过观察与思考、操作与归纳等方法去探索和发现结论,再通过演绎推理证明结论,最后举例证明,实现在发展学生合情推理能力的基础上,把证明作为探索活动的自然延续.较好体现了合情推理与演绎推理两种推理形式的相辅相成,实现了两种推理的有机融合.(2)对于勾股定理的获得,设计了观察、计算、思考、归纳、猜想等探究活动,将验证猜想的过程设计为“试着做做”和“做一做”等学生自主活动,让学生体验勾股定理发现的全过程,发展学生的推理能力和创新意识;对于勾股定理的逆定理,通过让学生先操作(画直角三角形),再证明(利用全等)的方式来获得.(3)在本章的尺规作图中,都增加了分析环节,使学生不仅要知道作图的步骤,而且还要了解作图的道理.(4)在反证法一节中,除介绍反证法及证明命题的一般步骤外,还运用反证法对平行线的性质定理进行了证明,体现了本套教材在内容上的完整性.同时对直角三角形全等的“斜边、直角边”定理也用反证法给出了证明,使学生从中体会反证法的价值.【重点】1.等腰三角形、等边三角形的性质和判定.2.直角三角形的性质和判定.3.勾股定理、逆定理及其简单应用.4.反证法及其简单应用.【难点】1.等腰三角形、等边三角形的性质及其应用.2.勾股定理及其逆定理的应用.1.关于等腰三角形和直角三角形性质和判定的教学,应引导学生在独立思考和合作交流的前提下,进行观察与思考、操作与探究等活动并获得猜想,进而一起完成对猜想的证明,落实对合情推理和演绎推理的自然结合,实现提升学生推理意识和推理能力的目的.2.对于勾股定理的教学,教师要提供充足的时间和空间,让学生观察、猜想、推理,使定理的发现成为学生认识活动的自然结果.3.对于证明格式、方法和步骤,要让学生在亲身经历、体验的过程中去逐步理解和掌握,此过程切忌急于求成,更不要以教师的讲解代替学生的活动,要给学生充足的时间和空间去探索、实践和总结.4.提倡思维多样化,注重培养学生清晰表达自己思维过程的能力,对学生出现的多种思路和方法,应给予充分肯定并在全班展示,使学生的求异思维和创新意识能得到及时的表现.17.1等腰三角形2课时17.2直角三角形1课时17.3勾股定理3课时17.4直角三角形全等的判定1课时17.5反证法1课时回顾与思考1课时17.1等腰三角形1.了解等腰三角形、等边三角形的定义,掌握等腰三角形及等边三角形的性质.2.掌握等腰三角形和等边三角形的判定方法.1.通过动手操作及等腰三角形、等边三角形的对称变换掌握其性质和特征.2.掌握等腰三角形和等边三角形的判定方法,能利用性质和判定方法解决问题.1.体会等腰三角形和等边三角形的对称美.2.体会数学在现实生活中的广泛应用,认识数学无处不在,提高学生学习数学的兴趣.【重点】等腰三角形和等边三角形的性质和判定方法.【难点】等腰三角形和等边三角形的性质和判定方法的应用.第课时在动手操作的过程中,理解等腰三角形、等边三角形的性质定理.1.让学生通过动手操作,经历等腰三角形性质的探索过程,培养学生的动手、归纳、概括的能力.2.培养学生的猜想能力,让学生经过推理证明得到等腰三角形、等边三角形的性质定理.培养学生的逻辑思维能力,让学生树立良好的学习观,增强学生认真学习的态度.【重点】等腰三角形、等边三角形的性质定理.【难点】等腰三角形、等边三角形的性质定理的推理和证明.【教师准备】多媒体课件、各种形状的图形、剪刀.【学生准备】长方形纸、剪刀.导入一:教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等边三角形、等腰三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形、等边三角形的性质定理.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.[设计意图]通过辨别,让学生发现等腰三角形是轴对称图形,从而引出可以利用轴对称的性质来确定等腰三角形.导入二:在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就从轴对称的角度来认识一些我们熟悉的几何图形.思考:三角形是轴对称图形吗?有的三角形是轴对称图形,有的三角形不是.问题:什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后,两部分能够完全重合的就是轴对称图形.这节课我们就来认识一种是轴对称图形的三角形──等腰三角形.[设计意图]从三角形的角度,让学生通过思考,了解等腰三角形是轴对称图形,从而自然地引入到本节课的学习之中,激发了学生的学习兴趣和求知欲望.导入三:1.出示一组含有等腰三角形的生活图片,让学生感知图片主要部分形状的共同点.2.出示自制的测平仪,告诉学生含45°角的三角板顶点固定一条拴着重物的绳子,标出底边中点标志,它就变成了测平仪.激起学生的好奇心,从而引入课题.[设计意图]活跃课堂气氛,消除学生的紧张情绪,让学生带着问题进入学习.[过渡语]刚才我们知道等腰三角形是轴对称图形,那么它有哪些性质呢?现在我们就共同来研究它.思路一【活动1】【课件1】如图所示,把一张长方形纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的ΔABC有什么特点?【学生活动】学生动手操作,观察ΔABC的特点,可以发现AB=AC.【教师活动】让学生回顾等腰三角形的概念:有两边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如图所示,在ΔABC中,若AB=AC,则ΔABC是等腰三角形,AB,AC是腰,BC是底边,∠A是顶角,∠B和∠C是底角.【活动2】【课件2】观察与思考:如上图所示,ΔABC是等腰三角形,其中AB=AC.(1)我们知道线段BC为轴对称图形,中垂线为它的对称轴,由AB=AC,可知点A在线段BC 的中垂线上.据此,你认为ΔABC是轴对称图形吗?如果是,对称轴是哪条直线?(2)∠B和∠C有怎样的关系?(3)底边BC上的高、中线及∠A的平分线有怎样的关系?【学生活动】学生经过观察,然后小组讨论交流,从中总结等腰三角形的性质.【教师活动】引导学生归纳:性质1等腰三角形的两个底角相等(简称“等边对等角”).[知识拓展]等腰三角形的“等边对等角”的特征是用来说明两角相等、计算角的度数的常用方法.性质2等腰三角形的顶角平分线、底边上的中线、底边上的高重合(简称“三线合一”).【活动3】你能用所学知识验证上述性质吗?【课件3】如图所示,在ΔABC中,AB=AC.求证∠B=∠C.【学生活动】学生在独立思考的基础上进行讨论,寻找解决问题的办法,若证∠B=∠C,根据全等三角形的知识可以知道只需要证明这两个角所在的三角形全等即可.于是可以作辅助线构造两个三角形,作BC边上的中线AD,证明ΔABD和ΔACD全等即可,根据条件利用“边边边”可以证明.【教师活动】让学生充分讨论,根据所学的数学知识,利用逻辑推理的方式进行证明,证明过程中注意学生表述的准确性和严谨性.证明:作BC边上的中线AD,如图所示,则BD=CD,在ΔABD和ΔACD中,所以ΔABD≌ΔACD(SSS),所以∠B=∠C.这样,就证明了性质1.类比性质1的证明你能证明性质2吗?由ΔABD≌ΔACD,还可得出∠BAD=∠CAD,∠ADB=∠ADC=90°.从而AD⊥BC,这也就证明了等腰三角形ABC底边上的中线平分顶角∠A并垂直于底边BC.添加辅助线的方法多样,让学生再去讨论、交流,即用类似的方法可以证明性质2.说明:经过以上证明也可以得出等腰三角形底边上的中线的左右两部分经翻折可以重合,等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.[知识拓展]等腰三角形还有以下性质:(1)等腰三角形两腰上的中线、高线相等;(2)等腰三角形两个底角平分线相等;(3)等腰三角形底边上任一点到两腰的距离之和等于一腰上的高.[设计意图]通过折叠等腰三角形让学生观察,在动手操作中掌握等腰三角形的性质,概括出性质,并引导学生加以证明,让学生经历知识的形成和证明过程,加深了对知识的理解和掌握.思路二要求学生通过自己的思考来作一个等腰三角形.【课件4】作一条直线l,在l上取点A,在l外取点B,作出点B关于直线l的对称点C,连接AB,BC,CA.以上活动所得三角形的两边相等吗?此三角形称为.小结:【课件5】填出等腰三角形各部分名称.归纳:等腰三角形的定义:有两边相等的三角形叫做等腰三角形.在等腰三角形中,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.【课件6】问题1:等腰三角形是轴对称图形吗?请找出它的对称轴.问题2:通过折叠或测量,看看等腰三角形的两底角有什么关系?问题3:顶角的平分线所在的直线是等腰三角形的对称轴吗?问题4:底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?1.学生通过刚才自主探究,大胆猜想以上问题的结果.2.教师用几何画板直观演示并引导学生观察等腰三角形的性质.(对称性,等边对等角,三线合一.)小结:等腰三角形的性质:(1)等腰三角形的两个底角(简称“”);(2)等腰三角形的,、重合(简称“三线合一”).3.你能证明以上性质吗?问题:(1)性质1(等腰三角形的两个底角相等)的条件和结论分别是什么?(2)怎样用数学符号表示条件和结论?已知:在ΔABC中,AB=AC.求证:∠B=∠C;请以“顶角的平分线”为辅助线,证明以上性质.(A组同学完成以下填空,B组同学独立证明.)教师巡视辅导点评.【课件6】证明:如图所示,作∠BAC的平分线AD,∴∠=∠, 在ΔABD与ΔACD中,∴ΔABD≌ΔACD(), ∴∠B=∠.4.受上述启发,能证明性质2吗?即证明∠BAC的平分线AD是ΔABC底边上的中线和高.证明:由ΔABD≌ΔACD知BD=,∠BAD=∠,∠ADB=∠,∵∠ADB+∠ADC=°,∴∠ADB=∠ADC=°.因此∠BAC的平分线AD也是ΔABC底边BC上的中线和高.5.提问:作底边上的高,又如何证明?(让同学讲证明思路.)[设计意图]通过作等腰三角形让学生感知其重点,通过几何画板让学生对照图形思考等腰三角形的性质,同时掌握对性质的证明方法,培养学生的学习能力.探究二:等边三角形的性质定理[过渡语]我们知道三边都相等的三角形是等边三角形.等边三角形是特殊的等腰三角形,它有哪些性质呢?每位同学画一个等边三角形,并用量角器量一量每个内角的度数.结论:等边三角形的三个角都相等,并且每一个角都等于60°.【课件7】已知:如图所示,在ΔABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.指导学生利用等腰三角形的性质进行证明.证明:在ΔABC中,由AB=AC,得∠B=∠C.由AC=BC,得∠A=∠B.所以∠A=∠B=∠C.由三角形内角和定理可得∠A=∠B=∠C=60°.[知识拓展]等边三角形是特殊的等腰三角形,除了具有等腰三角形的性质外,等边三角形还具有自己特有的性质:(1)等边三角形有三条对称轴(等边三角形三条边都相等,都可以作为底边);(2)作等边三角形各边的高线、中线、各角的平分线一共有三条.[设计意图]让学生通过测量、证明,发现等边三角形的性质,掌握等腰三角形和等边三角形的关系.探究三:例题讲解【课件8】已知:如图所示,在ΔABC中,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线.求证:BD=CE.〔解析〕根据角平分线定义得到∠ABD=∠ABC,∠ACE=∠ACB,再根据等边对等角得到∠ABC=∠ACB,从而得到∠ABD=∠ACE,然后通过ASA证得ΔABD≌ΔACE,就可以得到BD=CE.教师巡回指导,在学生完成后,指名口述解答过程.【课件9】(补充例题)如图所示,在ΔABC中,AB=AC,点D在AC上,且BD=BC=AD,求ΔABC中各角的度数.〔解析〕根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,就可求出ΔABC的三个角的度数.如果设∠A为x,那么∠ABC,∠C都可以用x来表示,这样过程就更简捷了.解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC,∠A=∠ABD.设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.在ΔABC中,∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°.所以∠A=36°,∠ABC=∠C=72°.[设计意图]通过对例题的讲解、分析,引导学生应用等腰三角形的性质,让学生掌握解题思路和方法,提高学生对等腰三角形性质的应用能力.1.等腰三角形的性质1等腰三角形的两个底角相等(简称“等边对等角”).注意:等边对等角只限于在同一个三角形中使用.2.等腰三角形的性质2等腰三角形的顶角平分线、底边上的中线、底边上的高重合(简称“三线合一”).说明:等腰三角形是轴对称图形,底边上的中线(底边上的高、顶角平分线)所在的直线是它的对称轴.3.等边三角形的性质等边三角形的三个角都相等,并且每一个角都等于60°.1.若等腰三角形的顶角为40°,则它的底角度数为()A.40°B.50°C.60°D.70°解析:因为等腰三角形的两个底角相等,顶角是40°,所以其底角为=70°.故选D.2.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17解析:①当等腰三角形的腰为3,底边为7时,3+3<7,不能构成三角形;②当等腰三角形的腰为7,底边为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.3.如图所示,AD是等边三角形ABC的中线,AE=AD,则∠EDC等于()A.30°B.20°C.25°D.15°解析:∵ΔABC是等边三角形,∴AB=AC,∠BAC=∠C=60°,∵AD是ΔABC的中线,∴∠DAC=∠BAC=30°,AD⊥BC,∴∠ADC=90°,∵AE=AD,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC-∠ADE=90°-75°=15°.故选D.4.如图所示,l∥m,等边三角形ABC的顶点B在直线m上,边BC与直线m所成的锐角为20°,则∠α的度数为()A.60°B.45°C.40°D.30°解析:如图所示,过C作CE∥直线m,∵l∥m,∴l∥m∥CE,∴∠ACE=∠α,∠BCE=∠CBF=20°,∵ΔABC是等边三角形,∴∠ACB=60°,∴∠α+∠CBF=∠ACB=60°,∴∠α=40°.故选C.5.如图所示,在ΔABC中,AB=AC,AD⊥BC于点D,若AB=6,CD=4,则ΔABC的周长是.解析:∵在ΔABC中,AB=AC,∴ΔABC是等腰三角形,又∵AD⊥BC于点D,∴BD=CD.∵AB=6,CD=4,∴ΔABC的周长=6+4+4+6=20.故填20.6.如图所示,在ΔABC中,∠A=70°,AB=AC,CD平分∠ACB.求∠ADC的度数.解析:由AB=AC及顶角∠A的度数,利用等边对等角得到两底角相等,再利用三角形内角和定理求出底角的度数,再由CD为底角的平分线,求出∠DCB的度数,由∠ADC为三角形BCD 的外角,利用外角性质即可求出∠ADC的度数.解:∵在ΔABC中,∠A=70°,AB=AC,∴∠B=∠ACB==55°,又∵CD平分∠ACB,∴∠DCB=∠ACD=27.5°,∵∠ADC为ΔBCD的外角,∴∠ADC=∠B+∠DCB=82.5°.7.如图所示,等边三角形ABC中,D为AC边的中点,过C作CE∥AB,且AE⊥CE,那么∠CAE=∠ABD吗?请说明理由.解析:根据ΔABC为等边三角形,D为AC边上的中点得到AC=BA,∠BAC=∠BCA=60°,BD ⊥AC,求出∠BDA=90°,由CE∥AB得∠ACE=∠BAD,利用三角形内角和定理得出∠CAE=∠ABD.解:∠CAE=∠ABD,理由如下:∵ΔABC为等边三角形,D为AC边上的中点,∴AC=BA,∠BAC=∠BCA=60°,BD⊥AC,∴∠BDA=90°,∵AE⊥CE,∴∠AEC=∠BDA=90°,又∵CE∥AB,∴∠ACE=∠BAD,∴180°-90°-∠ACE=180°-90°-∠BAD,∴∠CAE=∠ABD.第1课时探究一:等腰三角形的性质探究二:等边三角形的性质探究三:例题讲解例1例2一、教材作业【必做题】1.教材第142页练习第1,2,3题.2.教材第143页习题A组第1,2,3题.【选做题】教材第143页习题B组第1,2题.二、课后作业【基础巩固】1.如图所示,在ΔABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD等于()A.30°B.45°C.60°D.90°2.如图所示,在ΔABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30°B.40°C.45°D.60°3.已知等腰三角形ABC的周长为13,且各边长均为整数,那么这样的等腰三角形ABC有()A.5个B.4个C.3个D.2个4.如图所示,在ΔABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°5.如图所示,ΔABC是一房屋人字架,其中AB=AC,为使人字架更加坚固,房主要求在顶点A和横梁BC之间加根柱子AD,可木工却不知将D点钉在BC何处才能使AD⊥BC,请同学们帮帮他,并说明理由.【能力提升】6.如图所示,ΔABC是等边三角形,E是AC上一点,D是BC延长线上一点,连接BE,DE,若∠ABE=40°,BE=DE,求∠CED的度数.7.如图所示,在ΔABC中,AB=AC,D为BC边上一D点,∠B=30°,∠DAB=45°.(1)求∠DAC的度数;(2)求证DC=AB.【拓展探究】8.已知等腰三角形一腰上的中线将三角形的周长分为9 cm和15 cm两部分,求这个等腰三角形的底边长和腰长.9.已知等边三角形ABC和点P,设点A到BC的距离为h,点P到ΔABC的三边AB,AC,BC的距离分别为h1,h2,h3,(1)如图(1)所示,若点P在边BC上,求证h1+h2=h.(2)如图(2)所示,当点P在ΔABC内时,猜想h1,h2,h3和h有什么关系?并证明你的结论.(3)如图(3)所示,当点P在ΔABC外时,h1,h2,h3和h有什么关系?【答案与解析】1.B(解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=(180°-∠A)=(180°-30°)=75°,∵以B为圆心,BC的长为半径圆弧,交AC于点D,∴BC=BD,∴∠CBD=180°-2∠ACB=180°-2×75°=30°,∴∠ABD=∠ABC-∠CBD=75°-30°=45°.)2.B(解析:∵ΔABD中,AB=AD,∠B=80°,∴∠B=∠ADB=80°,∴∠ADC=180°-∠ADB=100°,∵AD=CD,∴∠C==40°.)3.C(解析:周长为13,边长为整数的等腰三角形的边长只能为:3,5,5;或4,4,5;或6,6,1.共3个.)4.B(解析:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°.)5.解:木工将D点钉在BC中点处能使AD⊥BC,理由如下:∵AB=AC,BD=DC,∴AD⊥BC.6.解:∵ΔABC是等边三角形,∴∠ABC=∠ACB=60°,∵∠ABE=40°,∴∠EBC=∠ABC-∠ABE=60°-40°=20°,∵BE=DE,∴∠D=∠EBC=20°,∴∠CED=∠ACB-∠D=40°.7.(1)解:∵AB=AC,∴∠B=∠C=30°,∵∠C+∠BAC+∠B=180°,∴∠BAC=180°-30°-30°=120°,∵∠DAB=45°,∴∠DAC=∠BAC-∠DAB=120°-45°=75°. (2)证明:∵∠DAB=45°,∴∠ADC=∠B+∠DAB=75°,∴∠DAC=∠ADC,∴DC=AC,∵AB=AC,∴DC=AB.8.解:设等腰三角形的腰长为x,如图所示,∵ΔABC是等腰三角形,∴AB=AC,由BD是AC边上的中线,有AB+AD=9或AB+AD=15,分下面两种情况:(1)x+x=9,∴x=6,∵三角形的周长为9+15=24(cm),∴三边长分别为6,6,12,∵6+6=12,不符合三角形的三边关系,∴舍去;(2)x+x=15,∴x=10.∵三角形的周长为24 cm,∴三边长分别为10,10,4.综上可知这个等腰三角形的底边长为4 cm,腰长为10 cm.9.(1)证明:如图(1)所示,连接AP,则SΔABC=SΔABP+SΔAPC,∴BC·AM=AB·PD+AC·PF,即BC·h=AB·h1+AC·h2.又∵ΔABC是等边三角形,∴BC=AB=AC,∴h=h1+h2. (2)解:h=h1+h2+h3,证明如下:如图(2)所示,连接AP,BP,CP,则SΔABC=SΔABP+SΔBPC+SΔACP,∴BC·AM=AB·PD+AC·PF+BC·PE,即BC·h=AB·h1+AC·h2+BC·h3.又∵ΔABC是等边三角形,∴BC=AB=AC.∴h=h1+h2+h3. (3)解:h=h1+h2-h3.理由如下:如图(3)所示,连接PB,PC,PA.由三角形的面积公式得SΔABC=SΔPAB+SΔPAC-SΔPBC,即BC·AM=AB·PD+AC·PF-BC·PE,∵ΔABC是等边三角形,∴AB=BC=AC,∴h1+h2-h3=h.这节课是在学生已经学习了三角形的有关概念和“认识轴对称图形”的基础上进行学习的,学生已经掌握了三角形的相关知识,具有初步的探究学习经验.同时本节课的内容不仅是对前面所学知识的运用,也是今后证明角相等、线段相等及直线垂直的重要工具,它在教材中处于非常重要的地位.因为等腰三角形的性质在日常生活中有广泛的应用,所以探索发现等腰三角形的性质是这节课的重点;同时,对“三线合一”性质的理解和运用,学生有一定的难度,是这节课的难点.为了突出重点,教师充分创设问题情境,解决问题;为了突破难点,教师引导学生经历动手折纸、动手画图、对比分析、提出猜想、小组讨论、发现、归纳总结等活动,加以化解.教师在整个教学过程中主要通过动手操作、直观演示、小组讨论、自主探索、合作交流、发现归纳等多种教与学的方式,确保学生是学习的主人,教师是组织者、引导者、合作者.同时为了更好地启发、感染和调动学生,提高教学效率,采用课件辅助教学,充分开发和利用教育资源为课堂教学服务.在教学方法上,本节课以学生为主体,教师真正成为学生学习的组织者、引导者、合作者.特别是在探究“三线合一”的性质时,老师给出探究主题,学生以小组为单位,合作交流,自主探究、发现.本着“问题是数学的心脏”原则,教师精心设计了一些问题,在教学过程中有半数的学生回答了教师的提问,但碍于教学计划,有的问题在回答过程中还不时得到教师的提醒,这样导致的结果是难于发现学生真实的思维过程.“多提问”固然有利于学生思考和理解知识,有利于了解学生掌握知识的程度.但在倡导培养创新精神和实践能力的今天,更要重视对学生问题意识的培养.但教师在本节课的教学设计中留给学生的时间和空间偏少,导致学生发现问题、提出问题太少,长此以往,会使学生问题意识淡化.问起于疑,疑源于思,课堂上教师要为学生质疑创造足够的空间和时间.在问题解决过程中培养学生问题意识和发现问题、提出问题的良好习惯.在探究问题的过程中,教师一定要让学生自己去发现,只有由学生自己发现的东西,才是最真实的,也是最容易掌握的.在学生回答问题时,教师要适当点拨,但不能代替学生回答自己提出的问题,一定要让学生说,哪怕是错误的,也是经过学生思考得来的.【练习】(教材第142页)1.提示:(1)70°. (2)45°. (3)35°. (4)60°.图略.2.提示:(1)20°. (2)80°. (3)90°. (4)120°.3.解:(1)可以是锐角,不可以是直角和钝角.因为等腰三角形两底角相等,当底角为直角或钝角时,三角形内角和大于180°,与三角形内角和等于180°相矛盾,所以底角不可以是直角或钝角. (2)都可以,因为都符合三角形内角和定理.【习题】(教材第143页)A组1.解:(1)图中有3个等腰三角形,它们分别是ΔABC,ΔABD,ΔBCD. (2)因为AB=AC,所以∠ABC=∠C.因为BD=BC,所以∠C=∠BDC.因为BD=AD,所以∠A=∠DBA.设∠A=∠DBA=α,则∠ABC=∠BDC=∠C=2α.在ΔABC中,∠ABC+∠C+∠A=180°,所以2α+2α+α=180°,即5α=180°,所以α=36°,即∠A=36°.2.解:(1)80°,20°或50°,50°. (2)40°,40°. (3)设这个三角形的顶角为x°,则其底角为x°,由题意得x+x+x=180,∴x=90,x=45.∴这个三角形三个内角的度数分别为90°,45°,45°.3.解:∵ΔABC为等边三角形,∴AB=AC,∠BAC=60°,又∵BD=DC,∴∠CAD=∠BAD=∠BAC=60°=30°.4.解:∵AB=BC,∠B=50°,∴∠ACB=∠BAC==65°.∵AC=CD,∴∠D=∠CAD.又∵∠ACB=∠D+∠CAD,∴∠ACB=2∠D,∴2∠D=65°,∴∠D=32.5°.B组1.解:设腰长为x cm.①当腰长大于底边长时,x+x=18,∴x=12,此时底边长为15-x=15-12=9(cm).②当腰长小于底边长时,x+x=15,∴x=10,此时底边长为18-x=18-10=13(cm).综上可得等腰三角形的底边长为9 cm或13 cm.2.解:相等,相等.已知:如图所示,在ΔABC中,AB=AC,BD,CE分别是AC,AB边上的中线,BG,CH 分别是AC,AB边上的高.求证BD=CE,BG=CH.证明:∵AB=AC,BD,CE分别为AC,AB边上的中线,∴AD=AC,AE=AB,∴AD=AE.在ΔABD和ΔACE中,∴ΔABD≌ΔACE,∴BD=CE.∵AB=AC,∴∠ACB=∠ABC,∵BG,CH分别为AC,AB边上的高,∴∠BGC=∠CHB=90°.在ΔBGC和ΔCHB中,∴ΔBGC≌ΔCHB,∴BG=CH.等腰三角形的性质与应用等腰三角形“三线合一”的性质在初中几何证明和计算中占据了非常重要的地位,实际上这个性质的逆定理在证明中的直接或间接应用也不亚于这个性质的直接应用,可以作为判定等腰三角形的一种重要思路.由于书上没有直接给出逆定理,所以很多学生在解题时很难想象到利用这一定理来解决问题,以至于在几何证明过程中思维受阻,不能正确地作出辅助线.因而在教学中,教师如果把握好等腰三角形“三线合一”性质的逆定理在辅助线教学中的应用,把握好化归思想方法的渗透,将有助于让学生把握解题的关键,更好地培养和发展学生的思维能力,有助于学生突破解题的难点,明确辅助线的添加,探明解题的方法,从而帮助学生提高解决问题的能力,“三线合一”性质:等腰三角形的顶角平分线、底边上的中线、底边上的高重合, 逆定理:①如果三角形中任一角的平分线和它所对边的中线重合,那么这个三角形是等腰三角形.②如果三角形中任一角的平分线和它所对边的高重合,那么这个三角形是等腰三角形.③如果三角形中任一边的中线和这条边上的高重合,那么这个三角形是等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“特殊三角形”复习课
【知识结构】
本章主要学习了等腰三角形的性质与判定、直角三角形的性质与判定以及勾股定理等知识,这些知识点之间的结构如下图所示:
【要点回顾】
1.等腰三角形的性质:
等腰三角形两腰_______;等腰三角形两底角______(即等边对_____);等腰三角形_______合一;等腰三角形是________图形,它的对称轴是_________。

2.等腰三角形的判定:
有____边相等的三角形是等腰三角形;有_____相等的三角形是等腰三角形(即等角对_____)。

3.等边三角形的性质:
等边三角形各条边______,各内角_______,且都等于_____;等边三角形是______图形,它有____条对称轴。

4.等边三角形的判定:
有____边相等的三角形是等边三角形;有两个角都是______的三角形是等边三角形。

5.直角三角形的性质:
直角三角形两锐角_______;直角三角形斜边上的中线等于_______;直角三角形两直角边的平方和等于________(即勾股定理)。

6.直角三角形的判定:
有一个角是______的三角形是直角三角形;有两个角_______的三角形是直角三角形;两边的平方和等于_______的三角形是直角三角形。

7.直角三角形全等的判定:
斜边和___________ 对应相等的两个直角三角形全等。

8.角平分线的性质:
在角内部到角两边___________在这个角的平分线上。

【典题例析】
例1.如图,在△ABC 中,AD⊥BC于D.请你再添加一个条件,就可以确定△ABC 是等腰三角形,你添加的条件是_________。

(例3图) 解析:要使△ABC 成为等腰三角形,只需得到
AB=AC 或∠B=∠C 。

结合条件“AD ⊥BC ”可知,本例可以添加的条件有:①BD=CD (可以通过证明△ABD ≌△ACD (SAS )得到AB=AC 或∠B=∠C );②∠BAD=∠CAD (可以通过证明△ABD ≌△ACD (ASA )得到AB=AC 或∠B=∠C )。

评注:本题属于考查等腰三角形判定的条件探索开放型试题。

解这类试题通常需结合题目条件及图形特征进行探索,由于是开放题,可选填的答案一般会比较多,不过不宜太过简单,如本题如果直接填“AB=AC ”或“∠B=∠C ”,则显然不妥。

例2.已知如图,Rt △ABC 中,AB=BC ,在Rt △ADE 中,AD=DE ,连结EC ,取EC 中点M ,连结DM 和BM ,若点D 在边AC 上,点E 在边AB 上且与点B 不重合,试说明BM=DM 成立的理由。

解析:由题意可知,∠EBC=∠EDC=90°,故
△EBC 和△EDC 均为直角三角形。

又因为M 是EC 的中点,所以BM 、DM 均是直角三角形斜边上的中线,所以12
BM EC DM ==(直角三角形斜边上的中线等于斜边的一半)。

评注:本题主要是对直角三角形斜边上中线性质的考查。

除可以判定线段的倍分关系以外,直角三角形斜边上中线的性质还有着许多重要的应用(如判定角相等、
判定三角形是等腰三角形
等等),希望同学们在学习时能多加关注。

例3.如图,ACB △和ECD △都是等腰直角三角形,A 、C 、D 三点在同一直线上,连结BD 、AE ,并延长AE 交BD 于F .试说明ACE BCD △≌△的理由。

解析:本题可有两种方法,具体理由如下—
— 方法一:由ACB △和ECD △都是等腰直角三角形可知BC=AC 、CE=CD 、∠ACE=∠BCD=90°,所以ACE BCD △≌△(SAS );
方法二:同样由A C B △和ECD △都是等腰直角三角形可知BC=AC 、CE=CD 、∠ACE=∠BCD=90°,所

AE BD =,所以ACE BCD △≌△(HL )(或SSS )。

评注:本题以考查直角三角形全等的判定为主,同时也兼顾了对勾股定理的考查。

从以上两种解法可以看出,两个直角三角形只要有两条边对应相等,就可以通过勾股定理得到第三条边也对应相等,所以证明起来方法往往不止一种,解题时,同学们应根据具体情况,灵活选择。

(例3图)。

相关文档
最新文档