等差数列练习题(有答案)百度文库

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.设等差数列{}n a 的前n 项和为n S ,若2938a a a +=+,则15S =( ) A .60
B .120
C .160
D .240
2.中国古代数学著作《九章算术》中有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.问次一尺各重几何?” 意思是:“现有一根金锤,长五尺,一头粗一头细.在粗的一端截下一尺,重四斤;在细的一端截下一尺,重二斤.问依次每一尺各重几斤?”根据已知条件,若金箠由粗到细是均匀变化的,中间三尺的重量为( ) A .3斤
B .6斤
C .9斤
D .12斤
3.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .
825
两 B .
845
两 C .
865
两 D .
885
两 4.已知数列{}n a 是等差数列,其前n 项和为n S ,若454a a +=,则8S =( ) A .16 B .-16 C .4
D .-4
5.设数列{}n a 的前n 项和2
1n S n =+. 则8a 的值为( ).
A .65
B .16
C .15
D .14 6.在等差数列{a n }中,a 3+a 7=4,则必有( )
A .a 5=4
B .a 6=4
C .a 5=2
D .a 6=2
7.已知等差数列{}n a 前n 项和为n S ,且351024a a a ++=,则13S 的值为( ) A .8
B .13
C .26
D .162
8.《周髀算经》是中国最古老的天文学和数学著作,它揭示日月星辰的运行规律.其记载“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁”.现恰有30人,他们的年龄(都为正整数)之和恰好为一遂(即1520),其中年长者年龄介于90至100,其余29人的年龄依次相差一岁,则最年轻者的年龄为( ) A .32
B .33
C .34
D .35
9.等差数列{}n a 的公差为2,若248,,a a a 成等比数列,则9S =( ) A .72
B .90
C .36
D .45
10.设n S 是等差数列{}n a (*n N ∈)的前n 项和,且141,16a S ==,则7a =( ) A .7
B .10
C .13
D .16
11.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+
B .2
()4f x x =
C .3()4x
f x ⎛⎫= ⎪⎝⎭
D .4()log f x x =
12.已知等差数列{}n a 的前n 项和n S 满足:21<<m m m S S S ++,若0n S >,则n 的最大值为( ) A .2m
B .21m +
C .22m +
D .23m +
13.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .
47
B .
1629
C .
815
D .
45
14.在数列{}n a 中,129a =-,()
*
13n n a a n +=+∈N ,则1220a a a ++
+=( )
A .10
B .145
C .300
D .320
15.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12
B .20
C .40
D .100
16.已知等差数列{}n a 的前n 项和为n S ,且2
n S n =.定义数列{}n b 如下:
()*1m m b m m
+∈N 是使不等式()
*
n a m m ≥∈N 成立的所有n 中的最小值,则13519 b b b b +++
+=( )
A .25
B .50
C .75
D .100 17.设等差数列{}n a 的公差d ≠0,前n 项和为n S ,若425S a =,则9
9
S a =( ) A .9
B .5
C .1
D .
59
18.已知数列{}n a 的前n 项和()2
*
n S n n N =∈,则{}n
a 的通项公式为( )
A .2n a n =
B .21n a n =-
C .32n a n =-
D .1,1
2,2n n a n n =⎧=⎨
≥⎩
19.设等差数列{}n a 的前n 项和为n S ,若7916+=a a ,则15S =( ) A .60
B .120
C .160
D .240
20.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121
B .161
C .141
D .151
二、多选题21.题目文件丢失!
22.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( )
A .0,2,n n a n ⎧=⎨⎩
为奇数
为偶数
B .1(1)1n n a -=-+
C .2sin
2
n n a π= D .cos(1)1n a n π=-+
23.已知等差数列{}n a 的前n 项和为,n S 且15
11
0,20,a a a 则( )
A .80a <
B .当且仅当n = 7时,n S 取得最大值
C .49S S =
D .满足0n S >的n 的最大值为12
24.已知数列{}n a :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68S a = B .733S =
C .135********a a a a a +++
+= D .222
2123202020202021a a a a a a ++++=
25.已知数列0,2,0,2,0,2,
,则前六项适合的通项公式为( )
A .1(1)n
n a =+-
B .2cos
2
n n a π= C .(1)2sin
2
n n a π
+= D .1cos(1)(1)(2)n a n n n π=--+--
26.记n S 为等差数列{}n a 的前n 项和.已知450,5S a ==,则( ) A .25n a n =-
B .310n
a n
C .2
28n S n n =- D .2
4n S n n =-
27.(多选题)在数列{}n a 中,若22
1n n a a p --=,(2n ≥,*n N ∈,p 为常数),则称
{}n a 为“等方差数列”.下列对“等方差数列”的判断正确的是( )
A .若{}n a 是等差数列,则{}
2
n a 是等方差数列
B .
(){}1n
-是等方差数列
C .若{}n a 是等方差数列,则{}kn a (*k N ∈,k 为常数)也是等方差数列
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 28.已知数列{}n a 为等差数列,则下列说法正确的是( ) A .1n n a a d +=+(d 为常数)
B .数列{}n a -是等差数列
C .数列1n a ⎧⎫
⎨⎬⎩⎭
是等差数列
D .1n a +是n a 与2n a +的等差中项
29.记n S 为等差数列{}n a 的前n 项和.已知535S =,411a =,则( )
A .45n a n =-
B .23n a n =+
C .2
23n S n n =-
D .2
4n S n n =+
30.设公差不为0的等差数列{}n a 的前n 项和为n S ,若1718S S =,则下列各式的值为0的是( )
A .17a
B .35S
C .1719a a -
D .1916S S -
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.B 【分析】
根据等差数列的性质可知2938a a a a +=+,结合题意,可得出88a =,最后根据等差数列的前n 项和公式和等差数列的性质,得出()
11515815152
a a S a +==,从而可得出结果.
【详解】
解:由题可知,2938a a a +=+,
由等差数列的性质可知2938a a a a +=+,则88a =,
故()1158
158151521515812022
a a a S a +⨯=
===⨯=. 故选:B. 2.C 【分析】
根据题意转化成等差数列问题,再根据等差数列下标的性质求234a a a ++. 【详解】
由题意可知金锤每尺的重量成等差数列,设细的一端的重量为1a ,粗的一端的重量为5a ,可知12a =,54a =,
根据等差数列的性质可知1533263a a a a +==⇒=, 中间三尺为234339a a a a ++==. 故选:C 【点睛】
本题考查数列新文化,等差数列的性质,重点考查理解题意,属于基础题型. 3.C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
8106
100
a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式. 4.A 【详解】 由()()184588848162
2
2
a a a a S +⨯+⨯⨯====.故选A.
5.C 【分析】
利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】
由2
1n S n =+得,12a =,()2
111n S n -=-+,
所以()2
21121n n n a S S n n n -=-=--=-,
所以2,1
21,2
n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.
故选:C. 【点睛】
本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 6.C 【分析】
利用等差数列的性质直接计算求解 【详解】
因为a 3+a 7=2a 5=4,所以a 5=2. 故选:C 7.B 【分析】
先利用等差数列的下标和性质将35102a a a ++转化为()410724a a a +=,再根据
()
11313713132
a a S a +=
=求解出结果.
【详解】
因为()351041072244a a a a a a ++=+==,所以71a =,
又()
1131371313131132
a a S a +=
==⨯=, 故选:B. 【点睛】
结论点睛:等差、等比数列的下标和性质:若(
)*
2,,,,m n p q t m n p q t N +=+=∈,
(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2
m n p q t a a a a a ⋅=⋅=.
8.D 【分析】
设年纪最小者年龄为n ,年纪最大者为m ,由他们年龄依次相差一岁得出
(1)(2)(28)1520n n n n m ++++++++=,结合等差数列的求和公式得出
111429m n =-,再由[]90,100m ∈求出n 的值.
【详解】
根据题意可知,这30个老人年龄之和为1520,设年纪最小者年龄为n ,年纪最大者为m ,[]90,100m ∈,则有(1)(2)(28)294061520n n n n m n m +++++
+++=++=
则有291114n m +=,则111429m n =-,所以90111429100m ≤-≤ 解得34.96635.31n ≤≤,因为年龄为整数,所以35n =. 故选:D 9.B 【分析】
由题意结合248,,a a a 成等比数列,有2
444(4)(8)a a a =-+即可得4a ,进而得到1a 、n a ,即可求9S . 【详解】
由题意知:244a a =-,848a a =+,又248,,a a a 成等比数列,
∴2
444(4)(8)a a a =-+,解之得48a =,
∴143862a a d =-=-=,则1(1)2n a a n d n =+-=,
∴99(229)
902
S ⨯+⨯=
=,
故选:B
思路点睛:由其中三项成等比数列,利用等比中项性质求项,进而得到等差数列的基本量 1、由,,m k n a a a 成等比,即2
k m n a a a =; 2、等差数列前n 项和公式1()
2
n n n a a S +=的应用. 10.C 【分析】
由题建立关系求出公差,即可求解. 【详解】
设等差数列{}n a 的公差为d ,
141,16a S ==,
41464616S a d d ∴=+=+=,2d ∴=, 71613a a d ∴=+=.
故选:C 11.D 【分析】
把点列代入函数解析式,根据{x n }是等比数列,可知1
n n
x x +为常数进而可求得1n n y y +-的结
果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】
对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于B ,函数2
()4f x x =上的点列{x n ,y n },有y n =2
4n x ,由于{x n }是等比数列,所以1
n n
x x +为
常数,
因此1n n y y +-=()
2222
14441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;
对于C ,函数3()4x
f x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1
n n
x x +为常数, 因此1n n y y +-=133()()44n n x x
+-=3
3
()()144n q
x
⎡⎤
-⎢⎥⎣⎦
,这是一个与n 有关的数,故{y n }不是等
对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x
,由于{x n }是等比数列,所以
1
n n
x x +为常数, 因此1n n y y +-=11444
4log log log log n n n n
x x x x q ++-==为常数,故{y n }是等差数列;
故选:D . 【点睛】 方法点睛:
判断数列是不是等差数列的方法:定义法,等差中项法. 12.C 【分析】
首先根据数列的通项n a 与n S 的关系,得到10m a +>,2<0m a +,12+>0m m a a ++,再根据选项,代入前n 项和公式,计算结果. 【详解】
由21<<m m m S S S ++得,10m a +>,2<0m a +,12+>0m m a a ++. 又()()()1212112121>02m m m m a a S m a +++++=
=
+,
()()()1232322323<02
m m m m a a S m a +++++==+, ()()()()1222212211>02
m m m m m a a S m a a ++++++=
=
++.
故选:C.
【点睛】
关键点睛:本题的第一个关键是根据公式11
,2
,1n n n S S n a S n --≥⎧=⎨
=⎩,判断数列的项的正负,
第二个关键能利用等差数列的性质和公式,将判断和的正负转化为项的正负. 13.D 【分析】
设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】
设该妇子织布每天增加d 尺, 由题意知202019
2042322
S d ⨯=⨯+=, 解得4
5
d =
. 故该女子织布每天增加
4
5
尺.
14.C 【分析】
由等差数列的性质可得332n a n =-,结合分组求和法即可得解。

【详解】
因为129a =-,()
*
13n n a a n N +=+∈,
所以数列{}n a 是以29-为首项,公差为3的等差数列, 所以()11332n a a n d n =+-=-,
所以当10n ≤时,0n a <;当11n ≥时,0n a >; 所以()()12201210111220a a a a a a a a a ++
+=-++⋅⋅⋅++++⋅⋅⋅+
1101120292128
101010103002222a a a a ++--+=-
⨯+⨯=-⨯+⨯=. 故选:C. 15.B 【分析】 由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:
1011045100S a d =+=,
12920a d ∴+=, 4712920a a a d ∴+=+=.
故选:B. 16.B 【分析】
先求得21n a n =-,根据n a m ≥,求得12m n +≥,进而得到2121
2
k k b --=,结合等差数列的求和公式,即可求解. 【详解】
由题意,等差数列{}n a 的前n 项和为n S ,且2
n S n =,可得21n a n =-,
因为n a m ≥,即21n m -≥,解得12
m n +≥
, 当21m k =-,(*
k N ∈)时,
1
m m b k m
+=,即()()11212m m m mk m b m m +===++, 即2121
2
k k b --=

从而()135191
13519502
b b b b ++++=
++++=.
故选:B. 17.B 【分析】
由已知条件,结合等差数列通项公式得1a d =,即可求9
9
S a . 【详解】
4123425S a a a a a =+++=,即有13424a a a a ++=,得1a d =,
∴1999()
452
a a S d ⨯+==,99a d =,且0d ≠, ∴
9
9
5S a =. 故选:B 18.B 【分析】
利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】
2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,
当1n =时,111a S ==,上式也成立,
()
*21n a n n N ∴=-∈,
故选:B. 【点睛】
易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即
11,1,2n n
n S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结
果,考查学生的分类思想与运算求解能力,属于基础题. 19.B 【分析】
利用等差数列的性质,由7916+=a a ,得到88a =,然后由15815S a =求解. 【详解】
因为7916+=a a ,
所以由等差数列的性质得978216a a a +==, 解得88a =,
所以()11515815151581202
a a S a +=
==⨯=. 故选:B
20.B
【分析】 由条件可得127a =,然后231223S a =,算出即可.
【详解】
因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即127a =
所以231223161S a ==
故选:B
二、多选题
21.无
22.BD
【分析】
根据选项求出数列的前4项,逐一判断即可.
【详解】
解:因为数列{}n a 的前4项为2,0,2,0,
选项A :不符合题设;
选项B :01(1)12,a =-+=1
2(1)10,a =-+= 23(1)12,a =-+=34(1)10a =-+=,符合题设;
选项C :,12sin 2,2a π
==22sin 0,a π==
332sin 22
a π==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=
3cos 212,a π=+=4cos310a π=+=,符合题设.
故选:BD.
【点睛】
本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.
23.ACD
【分析】
由题可得16a d =-,0d <,21322
n d d S n n =-,求出80a d =<可判断A ;利用二次函
数的性质可判断B ;求出49,S S 可判断C ;令213022
n d d S n n =
->,解出即可判断D. 【详解】 设等差数列{}n a 的公差为d ,则()5111122+4++100a a a d a d +==,解得16a d =-, 10a >,0d ∴<,且()21113+
222n n n d d S na d n n -==-, 对于A ,81+7670a a d d d d ==-+=<,故A 正确;
对于B ,21322n d d S n n =
-的对称轴为132
n =,开口向下,故6n =或7时,n S 取得最大值,故B 错误; 对于C ,4131648261822d d S d d d =⨯-⨯=-=-,9138191822
d d S d =⨯-⨯=-,故49S S =,故C 正确;
对于D ,令213022n d d S n n =
->,解得013n <<,故n 的最大值为12,故D 正确. 故选:ACD.
【点睛】
方法点睛:由于等差数列()2111+222n n n d d S na d n a n -⎛⎫==+- ⎪⎝
⎭是关于n 的二次函数,当1a 与d 异号时,n S 在对称轴或离对称轴最近的正整数时取最值;当1a 与d 同号时,n S 在1n =取最值.
24.BCD
【分析】
根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误.
【详解】
对A ,821a =,620S =,故A 不正确;
对B ,761333S S =+=,故B 正确;
对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020a a a =-,可得
135********a a a a a +++⋅⋅⋅+=,故C 正确;
对D ,该数列总有21n n n a a a ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,
()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018a a a a -,220202020202120202019a a a a a =-,
故2222123202020202021a a a a a a +++⋅⋅⋅+=,故D 正确.
故选:BCD
【点睛】
关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n n a a a ++=+对所给式子进行变形.
25.AC
【分析】
对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案.
【详解】
对于选项A ,1(1)n n a =+-取前六项得:0,2,0,2,0,2,满足条件;
对于选项B ,2cos
2n n a π=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin 2
n n a π+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件;
故选:AC
26.AD
【分析】
设等差数列{}n a 的公差为d ,根据已知得11
45460a d a d +=⎧⎨+=⎩,进而得13,2a d =-=,故25n a n =-,24n S n n =-.
【详解】
解:设等差数列{}n a 的公差为d ,因为450,5S a ==
所以根据等差数列前n 项和公式和通项公式得:11
45460a d a d +=⎧⎨
+=⎩, 解方程组得:13,2a d =-=,
所以()31225n a n n =-+-⨯=-,24n S n n =-. 故选:AD.
27.BCD
【分析】
根据定义以及举特殊数列来判断各选项中结论的正误.
【详解】
对于A 选项,取n a n =,则
()()()422
444221111n n a a n n n n n n +⎡⎤⎡⎤-=+-=+-⋅++⎣⎦⎣⎦()()221221n n n =+++不是常数,则{}2
n a 不是等方差数列,A 选项中的结论错误;
对于B 选项,()()22111110n n +⎡⎤⎡⎤---=-=⎣⎦⎣⎦为常数,则(){}
1n -是等方差数列,B 选项中的结论正确;
对于C 选项,若{}n a 是等方差数列,则存在常数p R ∈,使得221n n a a p +-=,则数列
{}2
n a 为等差数列,所以()221kn k n a a kp +-=,则数列{}kn a (*k N ∈,k 为常数)也是等方差数列,C 选项中的结论正确;
对于D 选项,若数列{}n a 为等差数列,设其公差为d ,则存在m R ∈,使得
n a dn m =+,
则()()()()222
1112222n n n n n n a a a a a a d dn m d d n m d d +++-=-+=++=++, 由于数列{}n a 也为等方差数列,所以,存在实数p ,使得221n n a a p +-=,
则()2
22d n m d d p ++=对任意的n *∈N 恒成立,则()2202d m d d p ⎧=⎪⎨+=⎪⎩,得0p d ==, 此时,数列{}n a 为常数列,D 选项正确.故选BCD.
【点睛】
本题考查数列中的新定义,解题时要充分利用题中的定义进行判断,也可以结合特殊数列来判断命题不成立,考查逻辑推理能力,属于中等题.
28.ABD
【分析】
由等差数列的性质直接判断AD 选项,根据等差数列的定义的判断方法判断BC 选项.
【详解】
A.因为数列{}n a 是等差数列,所以1n n a a d +-=,即1n n a a d +=+,所以A 正确;
B. 因为数列{}n a 是等差数列,所以1n n a a d +-=,那么
()()()11n n n n a a a a d ++---=--=-,所以数列{}n a -是等差数列,故B 正确; C.111111n n n n n n n n a a d a a a a a a ++++---==,不是常数,所以数列1n a ⎧⎫⎨⎬⎩⎭
不是等差数列,故C 不正确;
D.根据等差数列的性质可知122n n n a a a ++=+,所以1n a +是n a 与2n a +的等差中项,故D 正确.
故选:ABD
【点睛】
本题考查等差数列的性质与判断数列是否是等差数列,属于基础题型.
29.AC
【分析】
由535S =求出37a =,再由411a =可得公差为434d a a =-=,从而可求得其通项公式和
前n 项和公式
【详解】
由题可知,53535S a ==,即37a =,所以等差数列{}n a 的公差434d a a =-=, 所以()4445n a a n d n =+-=-,()2451232n n n S n n --=
=-. 故选:AC.
【点睛】
本题考查等差数列,考查运算求解能力.
30.BD
【分析】
由1718S S =得180a =,利用17180a a d d =-=-≠可知A 不正确;;根据351835S a =可知 B 正确;根据171920a a d -=-≠可知C 不正确;根据19161830S S a -==可知D 正确.
【详解】
因为1718S S =,所以18170S S -=,所以180a =, 因为公差0d ≠,所以17180a a d d =-=-≠,故A 不正确; 135********()35235022
a a a S a +⨯====,故B 正确; 171920a a d -=-≠,故C 不正确;
19161718191830S S a a a a -=++==,故D 正确. 故选:BD.
【点睛】
本题考查了等差数列的求和公式,考查了等差数列的下标性质,属于基础题.。

相关文档
最新文档