八年级初二数学数学平行四边形的专项培优练习题(附解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级初二数学数学平行四边形的专项培优练习题(附解析
一、选择题
1.如图,点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③仅有当∠DAP =45°或67.5°时,△APD 是等腰三角形;④∠PFE =∠BAP :⑤22
PD =EC .其中有正确有( )个.
A .2
B .3
C .4
D .5
2.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )
A .3
B .4
C .5
D .6
3.如图,正方形ABCD 中,点E F 、分别在边BC CD 、上,且AE EF FA ==,有下列结论:①ABE ADF ∆≅∆;②CE CF =;③75AEB ∠=︒;④BE DF EF +=;⑤A ABE DF CEF S S S ∆∆∆+=;其中正确的有( )个.
A .2
B .3
C .4
D .5
4.如图,菱形ABCD 中,∠A 是锐角,E 为边AD 上一点,△ABE 沿着BE 折叠,使点A 的对应点F 恰好落在边CD 上,连接EF ,BF ,给出下列结论: ①若∠A =70°,则∠ABE =35°;②若点F 是CD 的中点,则S △ABE 13
=
S 菱形ABCD 下列判断正确的是( )
A .①,②都对
B .①,②都错
C .①对,②错
D .①错,②对
5.已知点M 是平行四边形ABCD 内一点(不含边界),设
12MAD MBA θθ∠=∠=,,3 MCB θ∠=,4MDC θ∠=.若
110,AMB ∠=︒ 90CMD ∠=︒,60BCD ∠=︒,则( )
A .142310θθθθ+--=︒
B .241330θθθθ+--=︒
C .142330θθθθ+--=︒
D .241340θθθθ+--=︒
6.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于O ,2BD AD =,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:
①BE AC ⊥;②EG GF =;③EFG GBE ∆∆≌;④EA 平分GEF ∠;⑤四边形BEFG 是菱形.
其中正确的是( )
A .①②③
B .①③④
C .①②⑤
D .②③⑤
7.在矩形ABCD 中,点E 、F 分别在AB 、AD 上,∠EFB=2∠AFE=2∠BCE ,CD=9,CE=20,则线段AF 的长为( ).
A .32
B .112
C 19
D .4
8.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )
A .12S S >
B .12S S
C .12S S <
D .无法确定
9.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2
=
△;(4)2EF 的最小值为2.其中正确的有( ).
A .4个
B .3个
C .2个
D .1个
10.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185
.其中正确结论的个数是( )
A .1
B .2
C .3
D .4
二、填空题
11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC =,则平行四边形ABCD
的周长等于______________ .
12.如图,正方形ABCD的边长为4,点E为CD边上的一个动点,以CE为边向外作正方形ECFG,连结BG,点H为BG中点,连结EH,则EH的最小值为______
13.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是直线AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连结AM、MN,若AC=6,AB=5,则AM-MN的最大值为________.
14.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,则线段BC的长为_____.
15.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有_____.
16.在ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则DEF的周长为______.
17.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设
正方形的对称中心为O,连接AO,则AO=_____.
18.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=10.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.
19.如图所示,已知AB=6,点C,D在线段AB上,AC =DB =1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.
20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D落在AB边的点F处,得折痕AE,再折叠,使点C落在AE边的点G处,此时折痕恰好经过点B,如果AD=a,那么AB长是多少?”常明说;“简单,我会. AB应该是_____”.
常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B,而是经过了AB边上的M点,如果AD=a,测得EC=3BM,那么AB长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.
三、解答题
21.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).
(1)如图(1),当90GOD ∠=︒,
①求证:DE GH =; ②求证:2GD EH DE +>;
(2)如图(2),当45GOD ∠=︒,边长4AB =,25HG =,求DE 的长.
22.已知正方形ABCD .
(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.
①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.
②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.
(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当
13
AE CF =时.请直接写出HC 的长________. 23.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF . (1)操作发现:
①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;
②当折痕经过点A 时,BE 与AE 的数量关系为 .
(2)深入探究:
在矩形ABCD 中,AB 3BC =3
①当△BEF 是等边三角形时,求出BF 的长;
②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.
24.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .
图1 图2
(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .
①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.
25.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.
(发现与证明..
)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;
结论2:'B D AC .
试证明以上结论.
(应用与探究)
在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)
26.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .
(1)求证:AF∥CH;
(2)若AB=23,AE=2,试求线段PH的长;
(3)如图②,连结CP并延长交AD于点Q,若点H是BP的中点,试求CP
PQ
的值.
27.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为t秒.
(1)直接写出AQH的面积(用含t的代数式表示).
(2)当点M落在BC边上时,求t的值.
(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t的值;若不存在请说明理由(不能添加辅助线).
28.如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长度的速度从 A向 D运动,到D点后停止运动;Q沿着A B C D
→→→路径以每秒3个单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动.设运动时间为 t秒,问:
(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形
(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?
29.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm /秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:
(1)PC = cm .(用t 的代数式表示)
(2)当t 为何值时,△ABP ≌△DCP ?
(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.
30.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .
(1)求证:四边形ADEF 为平行四边形;
(2)当点D 为AB 中点时,ADEF 的形状为 ;
(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.D
解析:D
【分析】
过P 作PG ⊥AB 于点G ,根据正方形对角线的性质及题中的已知条件,证明△AGP ≌△FPE 后即可证明①AP=EF ;④∠PFE=∠BAP ;在此基础上,根据正方形的对角线平分对角的性质,在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,求得
DP=2EC ,得出⑤正确,即可得出结论.
【详解】
过P 作PG ⊥AB 于点G ,如图所示:
∵点P 是正方形ABCD 的对角线BD 上一点,
∴GP=EP ,
在△GPB 中,∠GBP=45°,
∴∠GPB=45°,
∴GB=GP ,
同理:PE=BE ,
∵AB=BC=GF ,
∴AG=AB-GB ,FP=GF-GP=AB-GB ,
∴AG=PF ,
在△AGP 和△FPE 中,
90AG PF AGP FPE PG PE ⎧⎪⎨⎪∠∠⎩
︒====,
∴△AGP ≌△FPE (SAS ),
∴AP=EF ,①正确,∠PFE=∠GAP ,
∴∠PFE=∠BAP ,④正确;
延长AP 到EF 上于一点H ,
∴∠PAG=∠PFH ,
∵∠APG=∠FPH ,
∴∠PHF=∠PGA=90°,
∴AP⊥EF,②正确,
∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45°,∴当∠PAD=45°或67.5°时,△APD是等腰三角形,
除此之外,△APD不是等腰三角形,故③正确.
∵GF∥BC,
∴∠DPF=∠DBC,
又∵∠DPF=∠DBC=45°,
∴∠PDF=∠DPF=45°,
∴PF=EC,
∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,
∴DP=2EC,

2
2
PD=EC,⑤正确.
∴其中正确结论的序号是①②③④⑤,共有5个.
故选D.
【点睛】
本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.
2.D
解析:D
【分析】
连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.
【详解】
解:连接AC、CE,CE交BD于P,连接AP、PE,
∵四边形ABCD是正方形,
∴OA=OC,AC⊥BD,即A和C关于BD对称,
∴AP=CP,
即AP+PE=CE,此时AP+PE的值最小,
所以此时△PAE周长的值最小,
∵正方形ABCD的边长为4,点E在边AB上,AE=1,
∴∠ABC=90°,BE=4﹣1=3,
由勾股定理得:CE=5,
∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,
【点睛】
本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难题型.
3.C
解析:C
【分析】
由已知得AB AD =,AE AF =,利用“HL ”可证ABE ADF ∆≅∆,利用全等的性质判断①②③正确,在AD 上取一点G ,连接FG ,使AG GF =,由正方形,等边三角形的性质可知15DAF ∠=︒,从而得30DGF ∠=︒,设1DF =,则2AG GF ==,3DG =,分别表示AD ,CF ,EF 的长,判断④⑤的正确性.
【详解】
解:
AB AD =,AE AF EF ==,
()ABE ADF HL ∴∆≅∆,AEF ∆为等边三角形, BE DF ∴=,又BC CD =,
CE CF ∴=,
11()(9060)1522
BAE BAD EAF ∴∠=∠-∠=︒-︒=︒, 9075AEB BAE ∴∠=︒-∠=︒, ∴①②③正确,
在AD 上取一点G ,连接FG ,使AG GF =,
则15DAF GFA ∠=∠=︒,
230DGF DAF ∴∠=∠=︒,
设1DF =,则2AG GF ==,3DG =
23AD CD ∴==+13CF CE CD DF ==-=
226EF CF ∴==2BE DF +=,
∴④错误,
⑤12232
ABE ADF S S AD DF ∆∆+=⨯⨯= 1232
CEF S CE CF ∆=⨯=∴⑤正确.
∴正确的结论有:①②③⑤.
故选C .
本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.
4.A
解析:A
【解析】
【分析】
只要证明BF BC =,可得ABF BFC C 70∠∠∠===,即可得出ABE 35∠=;延长EF 交BC 的延长线于M ,只要证明DEF ≌CMF ,推出EF FM =,可得
EMB BCDE S S =四边形,BEF MBE 1S S 2=,推出ABE ABCD 1S S 3
菱形=. 【详解】 ①∵四边形ABCD 是菱形,∴AB ∥CD ,∠C=∠A=70°.
∵BA=BF=BC ,∴∠BFC=∠C=70°,∴∠ABF=∠BFC=70°,∴∠ABE 12
=∠ABF=35°,故①正确;
②如图,延长EF 交BC 的延长线于M ,
∵四边形ABCD 是菱形,F 是CD 中点,∴DF=CF ,∠D=∠FCM ,∠EFD=∠MFC ,∴△DEF ≌△CMF ,∴EF=FM ,∴S 四边形BCDE =S △EMB ,S △BEF 12=S △MBE ,∴S △BEF 12
=S 四边形BCDE ,∴S △ABE 13
=
S 菱形ABCD .故②正确, 故选A .
【点睛】 本题考查了菱形的性质、等腰三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.
5.D
解析:D
【分析】
依据平行四边形的性质以及三角形内角和定理,可得θ2-θ1=10°,θ4-θ3=30°,两式相加即可得到θ2+θ4-θ1-θ3=40°.
【详解】
解:∵四边形ABCD 是平行四边形,
∴∠BAD=∠BCD=60°,
∴∠BAM=60°-θ1,∠DCM=60°-θ3,
∴△ABM中,60°-θ1+θ2+110°=180°,即θ2-θ1=10°①,△DCM中,60°-θ3+θ4+90°=180°,即θ4-θ3=30°②,
由②+①,可得(θ4-θ3)+(θ2-θ1)=40°,
2413 40
θθθθ
∴+--=︒;
故选:D.
【点睛】
本题主要考查了平行四边形的性质以及三角形内角和定理等知识;熟练掌握平行四边形的对角相等是解题的关键.
6.B
解析:B
【分析】
由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.【详解】
解:∵四边形ABCD是平行四边形
∴BO=DO=1
2
BD,AD=BC,AB=CD,AB∥BC,
又∵BD=2AD,
∴OB=BC=OD=DA,且点E 是OC中点,∴BE⊥AC,故①正确,
∵E、F分别是OC、OD的中点,
∴EF∥CD,EF=1
2 CD,
∵点G是Rt△ABE斜边AB上的中点,
∴GE=1
2
AB=AG=BG
∴EG=EF=AG=BG,无法证明GE=GF,故②错误,∵BG=EF,AB∥CD∥EF
∴四边形BGFE是平行四边形,
∴GF=BE,且BG=EF,GE=GE,
∴△BGE≌△FEG(SSS)故③正确
∵EF∥CD∥AB,
∴∠BAC=∠ACD=∠AEF,
∵AG=GE,
∴∠GAE=∠AEG,
∴∠AEG=∠AEF,
∴AE平分∠GEF,故④正确,
若四边形BEFG是菱形
∴BE=BG=1
2 AB,
∴∠BAC=30°
与题意不符合,故⑤错误
故选:B.
【点睛】
本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.
7.C
解析:C
【分析】
如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,进而求出BH=CH=EH=10,∠HBC=∠HCB=a,再根据AD∥BC求出EF∥BH,进而得出△EFG和△BGH 均为等腰三角形,则BF=EH=10,再根据勾股定理即可求解.
【详解】
如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,
∵在矩形ABCD中有AD∥BC,∠A=∠ABC=90°,
∴△BCE为直角三角形,
∵点H为斜边CE的中点,CE=20,
∴BH=CH=EH=10,∠HBC=∠HCB=a,
∵AD∥BC,
∴∠AFB=∠FBC=3a,
∴∠GBH=3a-a=2a=∠EFB,
∴EF∥BH,
∴∠FEG=∠GHB=∠HBC+∠HCB=2a=∠EFB=∠GBH,
∴△EFG和△BGH均为等腰三角形,
∴BF=EH=10,
∵AB=CD=9,
∴2222
10919
AF BF AB
=-=-=
故选C.
【点睛】
本题考查直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,解题的关键是根据题意正确作出辅助线.
8.B
解析:B
【分析】
连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,根据已知条件易证△BHK≌△ABC,继而由全等三角形的性质得S△BHK=S△ABC,BC=HK,∠ABC=
∠BHK,再由全等三角形的判定可得△BCJ≌△HKL,进而可得S1=S△BHK=S△ABC,由正方形的性质和全等三角形的判定可知△ABC≌△AIG,继而可得S△ABC=S△AIG=S2,等量代换即可求解.
【详解】
解:连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,
由题意可知:四边形BCED是正方形,四边形ACFG是正方形,四边形ABHI是正方形,
∠ACB=90°
∴∠CEH=∠ECK=90° ,CE=BC
∵∠BKH=90°,
∴四边形CEHK是矩形,
∴ CE=HK
又∠HBK+∠ABC=90°, ∠BAC+∠ABC=90°
∴∠HBK=∠BAC
∴△BHK≌△ABC(AAS)
∴S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,
∵∠ABC+∠CBJ=90°,∠BHK+∠KHL=90°
∴∠CBJ=∠KHL
∴△BCJ≌△HKL(ASA)
∴S△BCJ=S△HKL,
∴S1=S△BHK=S△ABC,
∵四边形ACFG是正方形,四边形ABHI是正方形,
∴AB=AI,AC=AG,∠G=∠ACB=90°
∴△ABC≌△AIG(SAS)
∴S△ABC=S△AIG=S2,
即S1=S2
故选:B
【点睛】
本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.
9.A
解析:A
【分析】
根据等腰三角形的性质,可得到:CD AB ⊥,从而证明ADE ≌CDF 且
ADC 90∠=︒,即证明DE DF =和DEF 是等腰直角三角形,以及四边形CEDF 面积ABC 1S 2
=△;再根据勾股定理求得EF ,即可得到答案. 【详解】
∵ACB 90∠=︒,2AC BC == ∴22AB 222=+=∴A B 45∠=∠=︒
∵点D 是AB 的中点
∴CD AB ⊥,且1AD BD CD AB 22
===
=∴DCB 45∠=︒
∴A DCF ∠∠=,
在ADE 和CDF 中 AD CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩
∴ADE ≌()CDF SAS
∴DE DF =,ADE CDF ∠∠=
∵CD AB ⊥
∴ADC 90∠=︒
∴EDF EDC CDF EDC ADE ADC 90∠∠∠∠∠∠=+=+==︒
∴DEF 是等腰直角三角形
∵ADE ≌CDF
∴ADE 和CDF 的面积相等
∵D 为AB 中点
∴ADC 的面积1ABC 2=的面积 ∴四边形CEDF 面积EDC CDF EDC ADE ADC ABC 1S S S S S S 2=+=+==;
当DE AC ⊥,DF BC ⊥时,2EF 值最小
根据勾股定理得:222EF DE DF =+
此时四边形CEDF 是正方形
即EF CD ==
∴22EF 2==
∴正确的个数是4个
故选:A .
【点睛】
本题考察了等腰三角形、全等三角形、正方形、直角三角形、勾股定理的知识;解题的关键是熟练掌握等腰三角形、全等三角形、正方形、直角三角形的性质,从而完成求解.
10.D
解析:D
【分析】
由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明
Rt △ABG ≌Rt △AFG ,得出①正确;
设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;
由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积=
185
,得出④正确. 【详解】
∵四边形ABCD 是正方形,
∴AB =AD =DC =6,∠B =D =90°,
∵CD =3DE ,
∴DE =2,
∵△ADE 沿AE 折叠得到△AFE ,
∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,
∴AF =AB ,
∵在Rt △ABG 和Rt △AFG 中, AG AG AB AF =⎧⎨=⎩
, ∴Rt △ABG ≌Rt △AFG (HL ),
∴①正确;
∵Rt△ABG≌Rt△AFG,
∴BG=FG,∠AGB=∠AGF,
设BG=x,则CG=BC−BG=6−x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,
∵CG=6−x,CE=4,EG=x+2
∴(6−x)2+42=(x+2)2
解得:x=3,
∴BG=GF=CG=3,
∴②正确;
∵CG=GF,
∴∠CFG=∠FCG,
∵∠BGF=∠CFG+∠FCG,
又∵∠BGF=∠AGB+∠AGF,
∴∠CFG+∠FCG=∠AGB+∠AGF,
∵∠AGB=∠AGF,∠CFG=∠FCG,
∴∠AGB=∠FCG,
∴AG∥CF,
∴③正确;
∵△CFG和△CEG中,分别把FG和GE看作底边,
则这两个三角形的高相同.

3
5
CFG
CEG
S FG
S GE
==,
∵S△GCE=1
2
×3×4=6,
∴S△CFG=3
5
×6=
18
5

∴④正确;
正确的结论有4个,
故选:D.
【点睛】
本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.
二、填空题
11.12或20
【分析】
根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出
即可.
【详解】
解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:
在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,
在Rt△ACE中,由勾股定理可知:2222
CE AC AE,
(25)42
在Rt△ABE中,由勾股定理可知:2222
BE AB AE543
=-=-=,
∴BC=BE+CE=3+2=5,
此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;
情况二:当BC边上的高在平行四边形的外部时,如图2所示:
在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25
在Rt△ACE中,由勾股定理可知:2222
CE AC AE,
(25)42
在Rt△ABE中,由勾股定理可知:2222
-=-,
BE AB AE543
∴BC=BE-CE=3-2=1,
∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,
综上所述,平行四边形ABCD的周长等于12或20.
故答案为:12或20.
【点睛】
此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.
122
【分析】
过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.
【详解】
解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:
∵H是BG的中点,且BO与HE平行,
∴HE为△BOG的中位线,且BO=2HE,
故要使得HE最短,只需要BO最短即可,
当E点位于C点时,则O点与C点重合,
当E点位于D点时,则O点与A点重合,
故E点在CD上运动时,O点在AC上运动,
由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,
∴△BOC为等腰直角三角形,且BC=4,、
∴22
22
BO,

1
2
2
HE BO,
2
【点睛】
本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE线段长转移到线段BO上.
13.5 2
【分析】
连接DM,直角三角形斜边中线等于斜边一半,得AM=DM,利用两边之差小于第三边得到AM MN DN
-≤,又根据三角形中位线的性质即可求解.
【详解】
连接DM,如下图所示,
∵90BAC EDF ∠=∠=︒
又∵M 为EF 中点
∴AM=DM=12
EF ∴AM MN DM MN DN -=-≤(当D 、M 、N 共线时,等号成立)
∵D 、N 分别为BC 、AC 的中点,即DN 是△ABC 的中位线
∴DN=12AB=52
∴AM MN -的最大值为
52 故答案为
52
. 【点睛】 本题考查了直角三角形斜边中线的性质,三角形的三边关系,关键是确定AM MN -的取值范围.
14.5【分析】
设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12
x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.
【详解】
解:设EF =x ,
∵点E 、点F 分别是OA 、OD 的中点,
∴EF 是△OAD 的中位线,
∴AD =2x ,AD ∥EF ,
∴∠CAD =∠CEF =45°,
∵四边形ABCD 是平行四边形,
∴AD ∥BC ,AD =BC =2x ,
∴∠ACB =∠CAD =45°,
∵EM ⊥BC ,
∴∠EMC =90°,
∴△EMC 是等腰直角三角形,
∴∠CEM =45°,
连接BE ,
∵AB =OB ,AE =OE
∴BE ⊥AO
∴∠BEM =45°,
∴BM =EM =MC =x ,
∴BM =FE ,
易得△ENF ≌△MNB ,
∴EN =MN =12
x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即2221
5()2x x =+
解得,x =5
∴BC =2x =5 故答案为:5
【点睛】
本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.
15.①②③④
【分析】
①根据角平分线的定义可得∠BAE =∠DAE =45°,可得出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AE 2=,从而得到AE =AD ,然后利用“角角边”证明△ABE 和△AHD 全等,根据全等三角形对应边相等可得BE =DH ,再根据等腰三角形两底角相等求出∠ADE =∠AED =67.5°,根据平角等于180°求出∠CED =67.5°,从而判断出①正确; ②求出∠AHB =67.5°,∠DHO =∠ODH =22.5°,然后根据等角对等边可得OE =OD =OH ,判断出②正确;
③求出∠EBH =∠OHD =22.5°,∠AEB =∠HDF =45°,然后利用“角边角”证明△BEH 和△HDF 全等,根据全等三角形对应边相等可得BH =HF ,判断出③正确;
④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;
⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.
【详解】
∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴
AE =
. ∵
AD =,∴AE =AD .
在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
,∴△ABE ≌△AHD (AAS ),
∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12
=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;
∵∠AHB 12
=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .
∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;
∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .
在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩
,∴△BEH ≌△HDF (ASA ),∴BH =HF ,
HE =DF ,故③正确;
由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;
∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;
综上所述:结论正确的是①②③④.
故答案为①②③④.
【点睛】
本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.
16.15.5
【分析】
先根据折叠的性质可得,AE DE EAD EDA =∠=∠,再根据垂直的定义、直角三角形的性质可得B BDE ∠=∠,又根据等腰三角形的性质可得BE DE =,从而可得
6DE AE BE ===,同理可得出5DF AF CF ===,然后根据三角形中位线定理可得
1 4.52
EF BC ==,最后根据三角形的周长公式即可得. 【详解】
由折叠的性质得:,AE DE EAD EDA =∠=∠
AD 是BC 边上的高,即AD BC ⊥
90B EAD ∴∠+∠=︒,90BDE EDA ∠+∠=︒
B BDE ∴∠=∠
BE DE ∴= 1112622DE AE BE AB ∴====⨯= 同理可得:1110522DF AF CF AC ===
=⨯= 又,AE BE AF CF ==
∴点E 是AB 的中点,点F 是AC 的中点
EF ∴是ABC 的中位线
119 4.522
EF BC ∴==⨯= 则DEF 的周长为65 4.515.5DE DF EF ++=++=
故答案为:15.5.
【点睛】
本题考查了折叠的性质、等腰三角形的性质、三角形中位线定理、直角三角形的性质等知识点,利用折叠的性质和等腰三角形的性质得出BE DE =是解题关键.
17.72;
【分析】
连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.
【详解】
解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,
∵O 是正方形DBCE 的对称中心,
∴BO=CO ,∠BOC=90°,
∵FO ⊥AO ,
∴∠AOF=90°,
∴∠BOC=∠AOF ,
即∠AOC+∠BOA=∠FBO+∠BOA ,
∴∠AOC=∠FBO ,
∵∠BAC=90°,
∴在四边形ABOC 中,∠ACO+∠ABO=180°,
∵∠FBO+∠ABO=180°,
∴∠ACO=∠FBO ,
在△AOC 和△FOB 中,
AOC FOB AO FO
ACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩
, ∴△AOC ≌△FOB (ASA ),
∴AO=FO ,FB=FC=6,
∴AF=8+6=14,∠FAO=∠OFA=45°,
∴AO=AF×cos45°=14×22
=72. 故答案为72.
【点睛】
本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.
18.10+55
【分析】
取DE 的中点N ,连结ON 、NG 、OM .根据勾股定理可得55NG =.在点M 与G 之间总有MG ≤MO+ON+NG (如图1),M 、O 、N 、G 四点共线,此时等号成立(如图2).可得线段MG 的最大值.
【详解】
如图1,取DE 的中点N ,连结ON 、NG 、OM .
∵∠AOB=90°,
∴OM=12
AB =5. 同理ON =5.
∵正方形DGFE ,N 为DE 中点,DE =10,
∴222210555NG DN DG ++===.
在点M与G之间总有MG≤MO+ON+NG(如图1),
如图2,由于∠DNG的大小为定值,只要∠DON=1
2
∠DNG,且M、N关于点O中心对称时,
M、O、N、G四点共线,此时等号成立,
∴线段MG取最大值5
故答案为:5
【点睛】
此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.
19.2
【分析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.
【详解】
解:如图,分别延长AE,BF交于点H,
∵∠A=∠FPB=60°,
∴AH∥PF,
∵∠B=∠EPA=60°,
∴BH∥PE
∴四边形EPFH为平行四边形,
∴EF与HP互相平分,
∵点G为EF的中点,
∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,
∴G的运动轨迹为△HCD的中位线MN,
∵CD=6-1-1=4,
∴MN=1
2
CD=2,
∴点G移动路径的长是2,故答案为:2.
【点睛】
本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G 的运动轨迹为△HCD 的中位线MN .
202a
3212
a 【分析】
(1)根据折叠的性质可得出,四边形AFED 为正方形,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=,得出AB=AE ,继而可得解;
(2)结合(1)可知,AE AM 2a ==
,因为EC=3BM ,所以有1BM 2FM =,求出BM ,继而可得解.
【详解】
解:(1)由折叠的性质可得,
CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=, ∴AB=AE , ∵2AE 22a a == ∴AB 2a =.
(2)结合(1)可知,AE AM 2a ==
, ∴FM 2a a =-,
∵EC=3BM , ∴1BM 2
FM = ∴2BM a a -= ∴2321AB 222
a a a a -=+=. 2a ;
3212a .
【点睛】
本题是一道关于折叠的综合题目,主要考查折叠的性质,弄清题意,结合图形找出线段间的数量关系是解题的关键.
三、解答题
21.(1)①证明见解析;②证明见解析;(2
)DE =
. 【分析】
(1)过点D 作//DM GH 交BC 延长线于点M ,连接EH ,
①由正方形的性质可得//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒,即可证明四边形DGHM 是平行四边形,可得DM=GH ,由90GOD ∠=︒可得∠EDM=90°,根据直角三角形两锐角互余的性质可得12∠=∠,利用ASA 可证明△ADE≌△CDM,可得DE=DM ,即可证明DE=GH ;
②由①得DM=DE ,根据勾股定理可得
,利用三角形三边关系即可得结论; (2)过点D 作DN//GH 交BC 于点N ,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,可证明四边形GHND 为平行四边形,可得DN HG =,GD HN =,根据勾股定理可求出CN 的长,利用AAS 可证明ADM CDN ∆∆≌,可得AM NC =,DM DN =,根据平行线的性质∠EDN=45°,根据角的和差故选可得∠MDE=∠EDN ,利用SAS 可证明MDE NDE ∆∆≌,即可证明AE CN EN +=,设AE x =,利用勾股定理可求出x 的值,进而利用勾股定理求出DE 的值即可得答案.
【详解】
(1)如图(1),过点D 作//DM GH 交BC 延长线于点M ,连接EH ,EM , ①∵四边形ABCD 为正方形,
∴//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒
∴四边形DGHM 为平行四边形,
∴DM=GH ,GD HM =,
∵90GOD ∠=︒,
∴90EDM EOH ∠=∠=︒,
∴290EDC ∠+∠=︒,
∵90ADC ∠=︒,
∴190EDC ∠+∠=︒,
∴12∠=∠,
在ADE ∆和CDM ∆中12A DCM AD DC ∠=∠⎧⎪=⎨⎪∠=∠⎩

∴ADE CDM ∆∆≌,
∴DE DM =,
∴DE GH =.
②在DEM ∆中,∠EDM=90°,
∴222DE DM EM +=,
∵DE DM =,
∴222DE EM =, ∴2EM DE =,
在EHM ∆中,HM EH EM +>,
∵GD HM =, ∴2GD EH GH +≥.
(2)如图(2),过点D 作DN//GH 交BC 于点N ,则四边形GHND 为平行四边形, ∴DN HG =,GD HN =,
∵90C ∠=︒,4CD AB ==,25HG DN == ∴222CN DN DC =-=,
∴422BN BC CN =-=-=,
作ADM CDN ∠=∠,DM 交BA 延长线于点M ,
在ADM ∆和CDN ∆中90C MAD CDN ADM DC AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩

∴ADM CDN ∆∆≌,
∴AM NC =,DM DN =,
∵45GOD EOH ∠=∠=︒,
∴45EDN ∠=︒,
∴45ADE CDN ∠+∠=︒,
∴45ADE ADN MDE ∠+∠=︒=∠,
在MDE ∆和NDE ∆中MD ND MDE EDN DE DE =⎧⎪∠=∠⎨⎪=⎩

∴MDE NDE ∆∆≌,。

相关文档
最新文档