五里河初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五里河初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)若a>b,则下列各式变形正确的是()
A. a-2<b-2
B. -2a<-2b
C. |a|>|b|
D. a2>b2
【答案】B
【考点】有理数大小比较,不等式及其性质
【解析】【解答】解:A、依据不等式的性质1可知A不符合题意;
B、由不等式的性质3可知B符合题意;
C、如a-3,b=-4时,不等式不成立,故C不符合题意;
D、不符合不等式的基本性质,故D不符合题意.故答案为:B
【分析】根据不等式的性质,不等式的两边都减去同一个数,不等号的方向不变;不等式的两边都乘以同一个负数,不等号的方向改变;只有两个正数,越大其绝对值就越大,也只有对于两个正数才存在越大其平方越大。
2、(2分)已知关于x、y的方程组,给出下列说法:
①当a =1时,方程组的解也是方程x+y=2的一个解;②当x-2y>8时,;③不论a取什么实数,2x+y
的值始终不变;④若,则。以上说法正确的是()
A.②③④
B.①②④
C.③④
D.②③
【答案】A
【考点】二元一次方程组的解,解二元一次方程组
【解析】【解答】解:当a=1时,方程x+y=1-a=0,因此方程组的解不是x+y=2的解,故①不正确;
通过加减消元法可解方程组为x=3+a,y=-2a-2,代入x-2y>8可解得a>,故②正确;
2x+y=6+2a+(-2a-2)=4,故③正确;
代入x、y的值可得-2a-2=(3+a)2+5,化简整理可得a=-4,故④正确.
故答案为:A
【分析】将a代入方程组,就可对①作出判断;利用加减消元法求出x、y的值,再将x、y代入x-2y>8 解不等式求出a的取值范围,就可对②作出判断;由x=3+a,y=-2a-2,求出2x+y=4,可对③作出判断;将x、y 的值代入y=x2+5,求出a的值,可对④作出判断;综上所述可得出说法正确的序号。
3、(2分)64的平方根是()
A.±8
B.±4
C.±2
D.
【答案】A
【考点】平方根
【解析】【解答】解:∵(±8)2=64,
∴±。
故答案为:A.
【分析】根据平方根的意义即可解答。
4、(2分)用加减法解方程组中,消x用法,消y用法()
A. 加,加
B. 加,减
C. 减,加
D. 减,减
【答案】C
【考点】解二元一次方程
【解析】【解答】解:用加减法解方程组中,消x用减法,消y用加法,
故答案为:C.
【分析】观察方程组中同一个未知数的系数特点:x的系数相等,因此可将两方程相减消去x;而y的系数互为相反数,因此将两方程相加,可以消去y。
5、(2分)如果关于的不等式的解集为,那么的取值范围是()
A.
B.
C.
D.
【答案】D
【考点】不等式的解及解集
【解析】【解答】解:根据题意中不等号的方向发生了改变,可知利用了不等式的性质3,不等式的两边同时乘以或除以一个负数,不等号的方向改变,因此可知2a+1<0,解得.
故答案为:D
【分析】先根据不等式的性质②(注意不等式的符号)得出2a+1<0,然后解不等式即可得出答案。
6、(2分)若某汽车租赁公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元,则符合该公司要求的购买方式有()
A. 3种
B. 4种
C. 5种
D. 6种
【答案】A
【考点】解一元一次不等式组,一元一次不等式组的应用
【解析】【解答】设要购买轿车x辆,则要购买面包车(10-x)辆,
由题意得7x+4(10-x)≤55,
解得x≤5.
又因为x≥3,所以x=3,4,5.
因此有三种购买方案:①购买轿车3辆,面包车7辆;
②购买轿车4辆,面包车6辆;
③购买轿车5辆,面包车5辆.
故答案为:A.
【分析】此题的等量关系是:轿车的数量+面包车的数量=10;不等关系为:购车款≤55;购买轿车的数量≥3,设未知数,列不等式组,解不等式组,求出不等式组的整数解,即可解答。
7、(2分)π、,﹣,,3.1416,0. 中,无理数的个数是()
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】无理数的认识
【解析】【解答】解:在π、,﹣,,3.1416,0. 中,
无理数是:π,- 共2个.
故答案为:B
【分析】本题考察的是无理数,根据无理数的概念进行判断。
8、(2分)七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()
A. 14
B. 13
C. 12
D. 15
【答案】C
【考点】二元一次方程组的其他应用
【解析】【解答】解:设这间会议室的座位排数是x排,人数是y人.
根据题意,得
,
解得
.
故答案为:C.
【分析】本题中有两个等量关系:1、每排坐12人,则有11人没有座位;2、每排坐14 人,则余1人独坐一排. 这样设每排的座位数为x ,总人数为y,列出二元一次方程组即可.