二次函数与几何图形的面积

合集下载

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法

二次函数中三角形面积问题的三种求解方法二次函数是一种广泛应用于数学解题中的重要运算工具,有时需要根据给定的几何图形求解相关表达式,比如求出三角形的面积。

三角形面积问题在很多学科中都有着广泛的应用,下面将介绍三种求解三角形面积的方法,这三种方法均基于二次函数的概念。

第一种求解三角形面积的方法是通过使用二次函数的半径求解。

首先,根据给定的三角形边长,使用勾股定理求出该三角形的半径,然后用半径公式计算出三角形的面积,半径公式为πr/2,其中π是常数3.14159。

这种方法的优点是简单易行,只需要掌握勾股定理和半径公式即可求解三角形的面积。

第二种求解三角形面积的方法是使用三角函数求解。

有些三角形的边长有着特殊的关系,可以使用三角函数求出三角形的面积。

举例来说,如果某三角形的三条边长分别为a,b,c,那么可以使用以下公式求出此三角形的面积:S= a*b*sin(c)/2。

这种方法的优点是可以准确求出三角形的面积,但是要掌握的知识比较多,需要熟练掌握三角函数的概念。

第三种求解三角形面积的方法是使用二次函数求解。

如果给定三角形的三条边长都可以用二次函数表示,那么可以使用椭圆公式求解三角形的面积。

椭圆公式为S=∫ab√(f(x))dx,其中f(x)表示三角形边长可以表示为二次函数的表达式,a,b表示积分下限和上限。

这种方法的优点是准确度高,但使用难度也比较大,需要掌握椭圆公式和二次函数的概念。

以上就是介绍了三种求解三角形面积的方法。

不同的求解方法都有各自的优势和局限性,在不同场景下要根据实际情况选择合适的求解方法,使用二次函数可以有效地求出三角形的面积。

22_3 第1课时 二次函数与图形面积问题【人教九上数学学霸听课笔记】

22_3 第1课时 二次函数与图形面积问题【人教九上数学学霸听课笔记】

(2)S=72-12(6-t)·2t=t2-6t+72(0≤t≤6).
(3)因为S=t2-6t+72=(t-3)2+63,
所以当t=3时,S有最小值,最小值为63.
谢 谢 观 看!
与 围成一个矩形场地ABCD,求该矩形场地的最大面积.

用 解:设矩形场地的面积为S m2,平行于墙的
一边BC的长为x m.由题意,得
图22-3-1
S=x·12(80-x)=-12(x-40)2+800,
所以当 x=40 时,S 最大值=800,12(80-x)=20,符合题意.
探 究
所以当所围成的矩形场地ABCD的长为40 m,宽为20 m时,其
故当所围成的矩形场地ABCD的长为30 m,宽为25 m时,其面积最
大,最大面积为750 m2.
探 究
变式 在美化校园的活动中,某兴趣小组想借助如图J22-3
与 -1所示的直角墙角(两边足够长),用28 m长的篱笆围成一个

用 矩形花园ABCD(篱笆只围AB,BC两边),在P处有一棵树与墙
CD,AD的距离分别是15 m和6 m,要将这棵树围在花园内(含
1.用一条长为 40 cm 的绳子围成一个面积为 S cm2 的矩形,S 的
小 检
值不.可.能.为( D )
测 A.20
B.40
C.100
D.120
随 [解析] 设矩形的一边长为x cm,则S=x(20-x)=-x2+20x=-

小 (x-10)2+100.
检 测
可见S的最大值是100,
所以S的值不可能为120.
探 归纳总结
究 与
应用二次函数解决面积最值问题的“三个关键点”
应 用

中考数学压轴题:二次函数中的面积问题(含答案)

中考数学压轴题:二次函数中的面积问题(含答案)

学生/课程年级日期学科时段课型数学授课教师核心内容二次函数中求面积最值,图形平移或折叠面积问题1.会利用函数的图象性质来研究几何图形的面积最值问题;教学目标重、难点2.掌握几种求图形面积的常见解题方法与技巧,如:割补法、平行等积变换法等。

3.掌握图形平移或折叠变换过程中找等量关系列函数解析式求图形面积问题的一般方法.割补法求三角形面积,动态问题一般解题思路。

了解学生的学习情况S△ = a h或S△ = a d (d表示已知点到直线的距离)以动点作垂直(平行)x轴的直线,即铅垂高,再分别过点A,C作PF的高,即和为水平宽。

S△ = ×水平宽×铅垂高如下图:①等底等高的两个三角形面积相等.②底在同一条直线上并且相等,该底所对角的顶点是同一个点或在与底平行的直线上,这两个三角形面积相等.如图,AD∥BC中,AC与BD交点O,则S△ABC = S△DBC,S△AOB = S△COD2如图,在平面直角坐标系中,抛物线y=mx -8mx+4m+2(m>0)与y轴的交点为A,与x轴的交点分别为B(x ,10),C(x ,0),且x -x =4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线,直线AD2 2 1的交点分别为P,Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值.图形面积的求法常见有三种,分别是:(1)_______________________________(2)_______________________________(3)_______________________________[学有所获答案] (1)直接公式求法 割补法 平行线等积变换法(2)(3) 2 如图,已知抛物线y =x +bx +c 与 轴交于A ,B 两点(点A 在点B 的左侧)与 轴交于点C (0,-3),对称轴是直线x=1,直线BC 与抛物线的对称轴交于点D ,点E 为y 轴上一动点,CE 的垂直平分线交抛物线于P ,Q 两点(点P 在第三象限)(1)求抛物线的函数表达式和直线BC 的函数表达式;(2)当△CDE 是直角三角形,且∠CDE =90°时,求出点P 的坐标;(3)当△PBC 的面积为 时,求点E 的坐标.2 如图,已知抛物线y = x +ax +4a 与x 轴交于点A ,B ,与y 轴负半轴交于点C 且OB =OC ,点P 为抛物线上的一个动点,且点P 位于x 轴下方,点P 与点C 不重合.(1)求该抛物线的解析式;(2)若△PAC 的面积为 ,求点P 的坐标;(3)若以A ,B ,C ,P 为顶点的四边形面积记作S ,则S 取何值时,对应的点P 有且只有2个?将()的图像如何平移到的图像。

二次函数与几何函数综合题:探究图形面积数量关系压轴题重难点突破

二次函数与几何函数综合题:探究图形面积数量关系压轴题重难点突破

二次函数与几何函数综合题探究图形面积数量关系压轴题重难点突破一.备考策略解决二次函数压轴题中的面积问题,求几何图形的面积是解决问题的关键,常有以下方法:(1)有一条边在坐标轴上:以坐标轴所在的边为底边,过顶点的作底边的垂线。

(2)①当没有边在坐标轴上时,作辅助线转化为面积和差求解:作平行于坐标轴的直线,转化为两个同底三角形,底×高的和。

②作两条平行于坐标轴的直线:借助直角梯形-两个直角三角形面积求解。

(3)当三角形面积为定值,求点坐标(点的轨迹为到底边一定距离的两条平行直线)(4)同底不等高的三角形,面积比等于高之比(5)等高不同底的三角形,面积比等于底边长之比(6)二次函数常见图形面积二.突破技巧构造二次函数来确定几何图形中的有关面积问题是近年常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学的知识,如勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等寻找等量关系,从而构造二次函数,再利用二次函数的性质即可求解。

三.真题在线例1. (2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.【分析】(1)联立两解析式,根据判别式即可求证;(2)画出图象,求出A、B的坐标,再求出直线y=﹣2x+1与x轴的交点C,然后利用三角形的面积公式即可求出答案.【解答】解:(1)联立化简可得:x2﹣(4+k)x﹣1=0,∴△=(4+k)2+4>0,故直线l与该抛物线总有两个交点;(2)当k=﹣2时,∴y=﹣2x+1过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,∴联立解得:或∴A(1﹣,2﹣1),B(1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x+1与x轴的交点C为(,0)∴OC==S△AOC+S△BOC∴S△AOB=OC•AF+OC•BE=OC(AF+BE)=××(2﹣1+1+2)=例2. (2018•徐州)已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B 点坐标代入,即可求出二次函数的解析式.(2)根据的函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标.(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.【解答】解:(1)设抛物线顶点式y=a(x+1)2+4将B(2,﹣5)代入得:a=﹣1∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3)令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即抛物线与x轴的交点为:(﹣3,0),(1,0)(3)设抛物线与x轴的交点为M、N(M在N的左侧),由(2)知:M(﹣3,0),N (1,0)当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,故A'(2,4),B'(5,﹣5)=×(2+5)×9﹣×2×4﹣×5×5=15.∴S△OA′B′例3. (2018•黑龙江)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB 交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).练习反馈1. 如图, △ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次函数334y x =-+的图像与y 轴、x 轴的交点,点B 在二次函数218y x bx c =++的图像上,且该二次函数图像上存在一点D 使四边形ABCD 能构成平行四边形. (1)试求b 、c 的值,并写出该二次函数的解析式;(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问: ①当P 运动到何处时,由PQ ⊥AC ?②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?2.如图 抛物线y =ax 2+bx +c 经过平行四边形ABCD 的顶点A (0,3),B (-1,0),D (2,3),抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点F .P 为直线l 上方抛物线上一动点,设点P 的横坐标为t .(1)求抛物线的函数表达式.(2)当t 为何值时,△PFE 的面积最大?并求最大值的立方根.(3)是否存在点P 使△PAE 为直角三角形?若存在,求出t 的值;若不存在,请说明理由.3. 如图,抛物线y=13x2+23x-5与x轴交于点A和点B,与y轴交于点C.若点E为x轴下方抛物线上的一动点,当S△ABE =S△ABC时,求点E的坐标.4. 如图,已知抛物线y=-x2+mx+3与x轴交于点A,B,与y轴交于点C,点B的坐标为(3,0),抛物线与直线y=-32x+3交于C,D两点.连接BD,AD.(1)求m的值;(2)抛物线上有一点P,满足S△ABP =4S△ABD,求点P的坐标.5. 如图,在平面直角坐标系中,二次函数y=-14x2+bx+c的图象与坐标轴交于A,B,C 三点,其中点A 的坐标为(0,8),点B 的坐标为(-4,0). (1)求该二次函数的表达式及点C 的坐标;(2)点D 的坐标为(0,4),点F 为该二次函数在第一象限内图象上的动点,连接CD ,CF ,以CD ,CF 为邻边作▱CDEF ,设▱CDEF 的面积为S ,求S 的最大值.6.如图,抛物线顶点坐标为点C(1,4),交x 轴于点A(3,0),交y 轴于点B(1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及;(3)在(2)中是否存在一点P ,使,若存在,求出P 点的坐标;若不存在,请说明理由.7. 抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积.(2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程)8. 已知二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为P.(1)结合图形,提出几个面积问题,并思考解法;(2)求A 、B 、C 、P 的坐标,并求出一个刚刚提出的图形面积; (3)在抛物线上(除点C 外),是否存在点N ,使得ABC NAB S S ∆∆=,若存在,请写出点N 的坐标;若不存在,请说明理由。

专题:二次函数与几何图形综合——图形面积问题(后附答案)【精品】

专题:二次函数与几何图形综合——图形面积问题(后附答案)【精品】

专题二次函数与几何图形综合——图形面积问题类型1 已知三角形的面积,求点的坐标
1.如图所示,二次函数y=ax2-4x+c的图象经过坐标原点,与x 轴交于点A(-4,0).
(1)求二次函数的解析式;
(2)在抛物线上存在点P,满足S△AO P=8,请求出点P的坐标.
2.如图,抛物线y=-x2-2x+3交x轴于点A,B,交y轴于点C,P为抛物线上在第二象限内的一点.若△PAC的面积为3,求点P的坐标.
类型2 已知三角形面积之间的数量关系,求点的坐标
3.如图是二次函数y=(x+m)2+k的图象,其顶点坐标为M(1,-4).(1)求出图象与x轴的交点A,B的坐标;
(2)在二次函数的图象上是否存在点P,使S△PAB=5
4
S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.
类型3 求三角形面积的最值
4.如图,直线l:y=-3x+3与x轴、y轴分别相交于A,B两点,抛物线y=ax2-2ax+a+4(a<0)经过点B.
(1)求该抛物线的函数解析式;
(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM,BM.设点M的横坐标为m,△ABM的面积为S,求S关于m的函数解析式,并求出S的最大值.。

人教九年级数学上册《二次函数与图形面积问题》课件

人教九年级数学上册《二次函数与图形面积问题》课件

第1课时 二次函数与图形面积问题
重难互动探究
探究问题 求几何图形的最大(小)面积 例 [教材探究1变式题] 一条隧道的截面如图22-3-2所 示,它的上部是一个以AD为直径的半圆O,下部是一个矩形 ABCD.
图22-3-2
第1课时 二次函数与图形面积问题
(1)当AD=4米时,求隧道截面上部半圆O的面积; (2)已知矩形ABCD相邻两边之和为8米,半圆O的半径为r米. ①求隧道截面的面积S(平方米)关于半径r(米)的函数关系 式(不要求写出r的取值范围); ②若2米≤CD≤3米,求隧道截面的面积S的最大值(π取3.14, 结果精确到0.1平方米).
与x间的函数关系,再求解.
解: 不妨设矩形纸较短边长为 a,设 DE=x,则 AE=a -x.
那么两个正方形的面积和为 y=x2+(a-x)2 =2x2-2ax+a2. 当 x=--2×22a=12a 时, y 最小=2×12a2-2a×12a+a2=12a2. 即点 E 选在矩形纸较短边的中点时,剪下的两个正方形的 面积和最小.
[解析] (1)已知AD=4米,即半圆O的半径为2米,直接根 据圆的面积公式计算;(2)①隧道的截面积由两部分组成, 即半圆面积和矩形面积;②注意自变量的取值范围,在实际问 题中求最大(小)值,要注意自变量的范围是否符合实际意义.
第1课时 二次函数与图形面积问题
解:(1)当 AD=4 米时,S 半圆=12π·A2D2=12π×22=2 π(平方米),
数学
新课标(RJ) 九年级上册
22.3 实际问题与二次函数
第1课时 二次函数与图形面积问题
第1课时 二次函数与图形面积问题
新知梳理
► 知识点 用二次函数求几何图形的最大(小)面积 在解答有关二次函数求几何图形的最大(小)面积的问题时 ,应遵循以下规律: (1)利用几何图形的面积(或体积)公式得到关于面积( 或体积)的二次函数关系式; (2)由已得到的二次函数关系式求解问题; (3)结合实际问题中自变量的取值范围得出实际问题的答 案.

二次函数应用几何图形的最大面积问题教学课件

二次函数应用几何图形的最大面积问题教学课件
根据几何图形的特性,选择合 适的二次函数模型来表示面积 。
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所

二次函数应用--几何图形的最大面积问题

二次函数应用--几何图形的最大面积问题

F6
=-2x2 + 16x =-2(x-4)2 + 32
B
(0<x<6)
10 所以当x=4时 花园的最大面积为32
注: 1。自变量X的取值范围为一切实数,顶点处取 最 值。
2。有取值范围的在端点或顶点处取最值。
引例 从地面竖直向上抛出一小球,小球的高度 h(单
位:m)与小球的运动时间 t(单位:s)之间的关系 式是h= 30t - 5t 2 (0≤t≤6).小球的运动时间是多少时
,小球最高?小球运动中的最大高度是多少?
∵a<0, ∴抛物线开口向下 C
Q 1cm/秒B
∴ 当P、Q同时运动2秒后Δ PBQ的面积y最大 最大面积是 4 cm2
在矩形荒地ABCD中,AB=10,BC=6, 今在四边上分别选取E、F、G、H四点,且 AE=AH=CF=CG=x,建一个花园,如何设 计,可使花园面积最大?
H
D AE
解:设花园的面积为y G C 则 y=60-x2 -(10-x)(6-x)
2a
值 y 4ac b2 . 4a
h= 30t - 5t 2 (0≤t≤6)
t

b 2a


2
30 (
5)
3,
h
4ac b2 4a

4 (3025) 45.
小球运动的时间是 3s 时,小球最 h/
高.小球运动中的最大高度是 45
m4 0
h= 30t - 5t
2
m.
2 0
问题 如何求自变量的取值范围? 0 < x ≤18.
问题 如何求最值?
由于30 >18,因此只能利用函数的增减性求其最值. 当x=18时,S有最大值是378.

《二次函数与图形面积问题》PPT课件 人教版九年级数学

《二次函数与图形面积问题》PPT课件 人教版九年级数学

即当AC、BD的长均为5时,四边形ABCD的面积最大.
2.用一段长为30m的篱笆围成一个一边靠墙的矩形菜园(如 图所示),墙长为18m,这个矩形的长,宽各为多少时, 菜园的面积最大,最大面积是多少?
解:设矩形的长为x m,面积为y m2,则矩形的宽为15- 2xm.
y
x
15
x
2
=
1 2
x2
15x.
二次函数与图 形面积问题
R·九年级上册
复习导入
用你认为最简单的方法求出顶点坐标,说
出开口方向,对称轴及最值.
(1)y=x2-4x-5
开口方向 对称轴 顶点坐标 最小值
向上 x=2 (2,-9) -9
(2)y=-x2+x+ 1 4
向上
x=1 4
(1 ,1) 22 1
2
探究新知
知识点 利用二次函数解决最大(小)面积问题
2
2
x2
5x
A
B
所以当
x= -
2
5 (-
1
=5 )
时,S取最大值,S最大值
1 52 2
5 5=
25 2
2
当AC,BD的长均为5时,四边形ABCD的面积最大.
6. 一块三角形材料如图所示,∠A=30°,∠C=90°,
AB=12. 用这块材料剪出一个矩形CDEF,其中,点D,
E,F分别在BC,AB,AC上,要使剪出的矩形CDEF的
D
GC
则AH=a-x,HE = a - x2 + x2 ,
H
S正方形EFGH [ (a - x)2 x2 ]2 =2 x2 2ax + a2
当x=
a 2

二次函数的应用ppt课件

二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

9 第1课时二次函数与图形面积问题

9  第1课时二次函数与图形面积问题

22.3 实际问题与二次函数第1课时 二次函数与图形面积问题置疑导入 归纳导入 复习导入 类比导入如图22-3-1,用12米长的木料,做一个有一条横档的矩形窗框,为了使窗户透进的光线最多,窗框的长、宽应各是多少?图22-3-1[说明与建议] 说明:通过对周长一定的矩形面积最大值的实际问题的导入,激发学生的学习兴趣和探究新知的欲望,从而引导学生研究二次函数与图形面积问题的一般方法.建议:可以对以上问题挖空让学生填写:设宽为x 米,面积为S 米2.根据题意并结合图形可得S =x (6-32x ) = -32x 2+6x .∵-32 < 0,∴S 有最 大 值,当x = -62×(-32)=2 时,S 最 大 ,此时6-32x = 3 ,即当窗框的长为 3米 ,宽为 2米 时,窗户透进的光线最多.(1)(做一做)请你画一个周长为12厘米的矩形,算一算它的面积是多少.再和周围同学所画的矩形比一比,你发现了什么?谁画的矩形的面积最大?(2)(练一练)已知一个矩形的周长为12米,它的一边长为x 米,那么矩形面积S (平方米)与x (米)之间有怎样的关系?自变量的取值范围是什么?(3)(试一试)若想设计一个周长为12米的矩形广告牌,假如你是设计师,你知道怎么设计才能使广告牌的面积最大吗?[说明与建议] 说明:(1)题比较简单,但对学生有很大的吸引力和挑战性,可有效地激发学生的学习兴趣.(2)题在(1)题的基础上提出问题,引导学生对实际问题与二次函数展开联想.(3)题在(2)题的基础上加入实际背景求最值,这样低起点,快反馈,能有效地提高学生的数学建模能力.建议:教师要重点关注学生能否正确求解,考虑问题是否全面以及学生能否将实际问题转化为数学问题.——第49页探究1用总长为60 m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少米时,场地的面积S最大?【模型建立】利用二次函数解决几何图形的最大(小)面积问题,先利用几何图形的面积公式得到关于面积的二次函数解析式,再由二次函数的图象和性质确定二次函数的最大(小)值,从而确定几何图形面积的最大(小)值.【变式变形】1.用一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长为18 m,这个矩形菜园的长,宽各为多少时,它的面积最大?最大面积是多少?[答案:长为15 m,宽为7.5 m时,它的面积最大,最大面积为112.5 m2]2.如图22-3-2,用长为24米的篱笆,围成中间隔有一道篱笆的矩形花圃,且花圃的长可借用一段墙体(墙体的最大可用长度a=10米):(1)如果所围成的花圃的面积为45平方米,试求花圃的宽AB;(2)按题目的设计要求,能围成面积比45平方米更大的花圃吗?图22-3-2[答案:(1)AB=5米(2)能]3.如图22-3-3,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的矩形花圃.设花圃的边AB长为x米,面积为S平方米.(1)求S与x之间的函数解析式及自变量的取值范围;(2)当x取何值时,所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为8米,求围成的花圃的最大面积.图22-3-3[答案:(1)S=-4x2+24x(0<x<6)(2)当x=3时,所围成的花圃面积最大,最大值为36平方米(3)最大面积是32平方米]4.[教材第52页习题22.3第9题]分别用定长为L的线段围成矩形和圆,哪种图形的面积大?为什么?[答案:圆理由略]——第52页习题22.3第7题如图22-3-4,点E,F,G,H分别位于正方形ABCD的四条边上.四边形EFGH也是正方形.当点E位于何处时,正方形EFGH的面积最小?图22-3-4【模型建立】通过设未知数建立函数关系,把几何问题转化为函数问题,把动点问题转化为函数问题,通过对函数的变化规律的研究来解决几何问题.【变式变形】如图22-3-5,在边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B,C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形的边上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形的边上时,记为点H;…依此操作下去.(提示:旋转前、后的图形全等.)图22-3-5(1)图②中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF的长.(2)若经过三次操作可得到四边形EFGH.①四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x之间的函数解析式及面积y的取值范围.[答案:(1)EF=-4 2+4 6(2)y=2x2-8x+16(0<x<4)8≤y<16][命题角度1] 利用二次函数的性质解决图形面积的最值问题此类问题常见题型:(1)利用二次函数解决图形的最大(小)面积问题,如教材P49探究1,P52习题22.3T4,T9.(2)几何图形上点的运动问题,何时面积最大(小),如教材P52习题22.3T6,T7,解决此类问题,关键是求二次函数的最值(二次函数图象的顶点的纵坐标或在使实际问题有意义的自变量取值范围内,根据二次函数的增减性找最值).例福建中考如图22-3-6,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另外三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.图22-3-6[答案:(1)AD的长为10米(2)当a≥50时,S的最大值为1250;当0<a<50时,S 的最大值为50a -12a 2] [命题角度2] 在几何图形运动过程中,判断函数图象此类问题一般作为中考选择题的最后一道题,难度较大.注意把几何图形的性质转化为求函数解析式的条件,然后再判断图象.例 孝感中考如图22-3-7,在△ABC 中,∠B =90°,AB =3 cm ,BC =6 cm ,动点P 从点A 开始沿AB 边向点B 以1 cm /s 的速度移动,动点Q 从点B 开始沿BC 边向点C 以2 cm /s 的速度移动,若P ,Q 两点分别从点A ,B 同时出发,点P 到达点B 时两点同时停止运动,则△PBQ 的面积S 与出发时间t 之间的函数关系图象大致是( C )图22-3-7图22-3-8[命题角度3] 二次函数与周长、面积、线段等最值存在性问题此类问题一般作为中考的压轴题,常与三角形或四边形知识紧密结合,体现了初中数学知识的灵活性和综合性.例 如图22-3-9,在平面直角坐标系中,抛物线y =ax 2+bx +1交y 轴于点A ,交x轴正半轴于点B (4,0),与过点A 的直线相交于另一点D (3,52),过点D 作DC ⊥x 轴,垂足为C.(1)求抛物线的函数解析式;(2)点P 在线段OC 上(不与点O ,C 重合),过点P 作PN ⊥x 轴,交直线AD 于点M ,交抛物线于点N ,连接CM ,求△PCM 面积的最大值.图22-3-9[答案:(1)y=-34x2+114x+1(2)△PCM面积的最大值为2516]1. 如图,已知:正方形ABCD的边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为S,AE为x,则S关于x的函数图象大致是()2. 用长度为2l的材料围成一个矩形场地,中间有2个隔墙,要使矩形的面积最大,则隔墙的长度为()A.14l B.13l C.12l D.l3. 已知一个直角三角形两直角边之和为20 cm,则这个直角三角形的最大面积为.4. 给你长8 m的铝合金条,请问:(1)你能用它制成一矩形窗框吗?(2)怎样设计,窗框的透光面积最大?(3)如何验证?参考答案1.B2.A3.50 cm24.解:(1)能.(2)设计成边长为2 m的正方形时,窗框的透光面积最大.(3)设矩形的一边长为x m,则另一边长为(4-x)m,设矩形窗框的面积为y m2,则y=x(4-x)=-x2+4x=-(x-2)2+4.所以当x=2时,y有最大值,y最大=4.所以当设计成边长为2 m的正方形时,窗框的透光面积最大,最大面积为4 m2.一位仁道主义的数学家——阿涅泽意大利科学家阿涅泽(Maria Gaetana Agnesi,1718~1799)在自然科学与哲学的著作对整个学术世界开启了一扇窗.而她最著名的数学作品,《分析讲义》,被公认是第一部完整的微积分教科书之一。

人教版九年级数学上册2实际问题与二次函数第1课时几何图形的最大面积

人教版九年级数学上册2实际问题与二次函数第1课时几何图形的最大面积
∴菜园垂直于墙的一边为5m时,菜园面积y最大,最大面积为50m2
变式训练1
2、如图,用总长20米的篱笆围成一个一面靠墙的矩形 菜园,墙长 8 米,设菜园垂直于墙的一边为x米,面积 为y平方米。 (1)求y与x的函数关系式及自变量的取值范围;
y=x(20-2x) =-2x2+20x (6≤x<10) (2)怎样围才能使菜园的面积最大?最大面积是多少?
AP B
课堂小结 二次函数解决几何面积最值问题的方法
1.求出函数解析式和自变量的取值范围; 2.配方变形,或利用公式求它的最大值或最小值, 3.检查求得的最大值或最小值对应的自变量的值必须在自 变量的取值范围内.
课堂检测
1、某工厂为了存放材料,需要围一个周长160米的矩形场地,若要使存放场地 的面积最大,则矩形的长和宽各取 40 米。 2、用一段长为15m的篱笆围成一个一边靠墙的矩形菜园,墙长为18m,这个矩 形菜园的最大面积是__2_82_5__m_2_. 3、已知直角三角形的两直角边之和为8,两直角边分别为 4 时,此三角形的 面积最大。最大值是 8 。
求下列函数的最大值与最小值
(1)y x2 3x 2 (3 x 1)
y
-3
1
0
x
x3 2
求二次函数的值
问题2 当自变量x有限制时,二次函数y=ax2+bx+c的最值
如何确定?
y
求下列函数的最大值与最小值
-3 0 1 x
求二次函数的值
方法归纳
当自变量的范围有限制时,二次函数y=ax2+bx+c的最值可以根据以下 步骤来确定:
向B以1cm/s的速度移动,点Q从B开始向C以2cm/s的 D
C
速度移动。如果P、Q分别从A、B同时出发。设△PBQ

(word完整版)二次函数与几何综合--面积问题

(word完整版)二次函数与几何综合--面积问题

二次函数与几何综合—-面积问题➢ 知识点睛1.“函数与几何综合"问题的处理原则:_________________,__________________.2.研究背景图形:①研究函数表达式.二次函数关注____________,一次函数关注__________.② ___________________________.找特殊图形、特殊位置关系,寻求边长和角度信息.3.二次函数之面积问题的常见模型①割补求面积—-铅垂法: ②转化法——借助平行线转化:若S △ABP =S △ABQ , 若S △ABP =S △ABQ ,当P ,Q 在AB 同侧时, 当P ,Q 在AB 异侧时,PQ ∥AB .AB 平分PQ .➢ 例题示范例1:如图,抛物线y =ax 2+2ax —3a 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OA =OC ,连接AC .(1)求抛物线的解析式.(2)若点P 是直线AC 下方抛物线上一动点,求△ACP 面积的最大值.(3)若点E 在抛物线的对称轴上,抛物线上是否存在点F ,使以A,B ,E ,F 为顶点的四边形是平行四边形?若存在,求出所有满足条件的点F 的坐标;若不存在,请说明理由.第一问:研究背景图形【思路分析】读题标注,注意到题中给出的表达式中各项系数都只含有字母a ,可以求解A (—3,0),B (1,0),对称轴为直线x =-1;结合题中给出的OA =OC ,可得C (0,—3),代入表达式,即可求得抛物线解析式. 再结合所求线段长来观察几何图形,发现△AOC 为等腰直角三角形. 【过程示范】解:(1)由223y ax ax a =+-(3)(1)a x x =+-可知(30)A -,,(10)B ,, ∵OA OC =,∴(03)C -,, 将(03)C -,代入223y ax ax a =+-, 第二问:铅垂法求面积 【思路分析】(1)整合信息,分析特征:由所求的目标入手分析,目标为S △ACP 的最大值,分析A ,C 为定点,P 为动点且P 在直线AC 下方的抛物线上运动,即-3〈x P <0; (2)设计方案:1()2APBB A S PM x x =⋅⋅-△注意到三条线段都是斜放置的线段,需要借助横平竖直的线段来表达,所以考虑利用铅垂法来表达S △ACP .【过程示范】如图,过点P 作PQ ∥y 轴,交AC 于点Q ,易得:3AC l y x =--设点P 的横坐标为t ,则2(23)P t t t +-,, ∵PQ ∥y 轴, ∴(3)Q t t --,,∴223(23)3(30)Q P PQ y y t t t t t t =-=---+-=---<<, ∴2139()(30)222ACP C A S PQ x x t t t =⋅-=---<<△ ∵302-<, ∴抛物线开口向下,且对称轴为直线32t =-, ∴当32t =-时,ACP S △最大,为278. 第三问:平行四边形的存在性 【思路分析】 分析不变特征:以A ,B ,E ,F 为顶点的四边形中,A ,B 为定点,E ,F 为动点,定点A ,B 连接成为定线段AB .分析形成因素: 要使这个四边形为平行四边形.首先考虑AB 在平行四边形中的作用,四个顶点用逗号隔开,位置不确定,则AB 既可以作边,也可以作对角线. 画图求解:先根据平行四边形的判定来确定EF 和AB 之间应满足的条件,再通过平移和旋转来尝试画图,确定图形后设计方案求解.①AB 作为边时,依据平行四边形的判定,需满足EF ∥AB 且EF =AB ,要找EF ,可借助平移.点E 在对称轴上,沿直线容易平移,故将线段AB 拿出来沿对称轴上下方向平移,确保点E 在对称轴上,来找抛物线上的点F .注意:在对称轴的左、右两侧分别平移.找出点之后,设出对称轴上E 点坐标,利用平行且相等表达抛物线上F 点坐标,代入抛物线解析式求解.②AB 作为对角线时,依据平行四边形的判定,需满足AB ,EF 互相平分,先找到定线段AB 的中点,在旋转过程中找到EF 恰好被AB 中点平分的位置,因为E 和AB 中点都在抛物线对称轴上,说明EF 所在直线即为抛物线对称轴,则与抛物线的交点(抛物线顶点)即为F 点坐标.结果验证:画图或推理,根据运动范围考虑是否找全各种情形. 【过程示范】(3)①当AB 为边时,AB ∥EF 且AB =EF , 如图所示,设E 点坐标为(—1,m ),当四边形是□ABFE 时,由(30)A -,,(10)B ,可知,F 1代入抛物线解析式,可得,m =12, ∴F 1(3,12); 当四边形是□ABEF 时,由(30)A -,,(10)B ,可知,F 2(—5,m )可得,m =12, ∴F 2(—5,12).②当AB 为对角线时,AB 与EF 互相平分,AB 的中点D (—1,0),设E (—1,m ),则F (—1,—m ),代入抛物线解析式,可得,m =4, ∴F 3(—1,-4).综上:F 1(3,12),F 2(—5,12),F 3(—1,—4).精讲精练1.如图,抛物线经过A (—1,0),B (3,0),C (0,3)三点.(1)求抛物线的解析式.(2)点M 是直线BC 上方抛物线上的点(不与B ,C 重合),过点M 作MN ∥y 轴交线段BC 于点N ,若点M 的横坐标为m ,请用含m 的代数式表示MN 的长.(3)在(2)的条件下,连接MB ,MC ,是否存在点M ,使四边形OBMC 的面积最大?若存在,求出点M 的坐标及四边形OBMC 的最大面积;若不存在,2.如图,在平面直角坐标系中,点A ,B 在x 轴上,点C ,D在y 轴上且OB =OC =3,OA =OD =1,抛物线2(0)y ax bx c a =++≠经过A ,B ,C 三点,直线AD 与抛物线交于另一点E . (1)求这条抛物线的解析式;(2)若M 是直线AD 上方抛物线上的一个动点,求△AME 面积的最大值.(3)在直线AD 下方的抛物线上,是否存在点G ,使得6AEG S =△?如果存在,求出点G 的坐标;如果不存在,请说明理由.(4)已知点Q 在x 轴上,点P 在抛物线上,Q 的坐标.3.如图,已知抛物线y =ax 2-2ax -b (a 〉0)与x 轴交于A ,B 两点,点A 在点B 的右侧,且点B 的坐标为(-1,0),与y 轴的负半轴交于点C ,顶点为D .连接AC ,CD ,∠ACD =90°. (1)求抛物线的解析式;(2)若点M 在抛物线上,且以点M ,A ,C 以及另一点N 为顶点的平行四边形ACNM 的面积为12,设M 的横坐标为m ,求m 的值.(3)已知点E 在抛物线的对称轴上,点F 在抛物线上,且以A ,B ,E ,F 为顶点的四边形是平行四边形,求点F 的坐标.4.如图,抛物线254y ax ax =-+(0a <)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC .(1)求抛物线的解析式;(2)设抛物线与x 轴的另一个交点为点D ,在抛物线上是否存在异于点B 的一点Q ,使△CDQ 的面积与△CDB 的面积相等?若存在,求出点Q 的横坐标;若不存在,请说明理由.(3)已知点F 是抛物线上的动点,点E 是直线y =—x 上的动点,且以O ,C ,E ,F 为顶点的四边形是平行四边形,求点E 的横坐标.。

二次函数应用几何图形的最大面积问题课件

二次函数应用几何图形的最大面积问题课件

对未来学习的思考和展望
深入学习二次函数和几何图形的基础知识,掌握更多解 决实际问题的技巧和方法。
拓展学习领域,了解更多与数学相关的学科知识,如线 性代数、微积分等,为解决更复杂的问题提供支持。
关注数学在实际生活中的应用,了解数学与其他学科的 交叉点,培养跨学科解决问题的能力。
THANKS
的最大面积。
03
几何图形面积的最大值问 题
几何图形面积最大值的求解方法
03
代数法
几何法
参数法
通过代数运算和不等式性质,求出几何图 形面积的最大值。
利用几何图形的性质和特点,通过作图和 观察,求出面积最大值。
引入参数表示几何图形,通过参数的变化 和约束条件,求出面积的最大值。
面积最大值在二次函数中的应用
二次函数应用几何图形的最 大面积问题课件
目录
• 二次函数与几何图形的关系 • 二次函数的最值问题 • 几何图形面积的最大值问题 • 实际应用案例分析 • 总结与思考
01
二次函数与几何图形的关 系
二次函数图像的几何意义
01
二次函数图像是抛物线,其 顶点是函数的极值点。
02
二次函数图像的对称轴是x=h ,顶点的纵坐标是k。
二次函数与几何图形面积最大值问题 紧密相关,通过合理设定函数参数, 可以找到几何图形面积的最大值。
在解决实际问题时,需要综合考虑多 种因素,如几何图形的形状、大小和 位置等,以及二次函数的参数和约束 条件。
二次函数开口方向和顶点位置对几何 图形面积的影响是关键,需要根据实 际情况调整函数表达式,以获得最佳 效果。
01
总结词
02
详细描述
矩形面积最大化
在给定长和宽的条件下,利用二次函数求矩形的最大面积。通过设定 长和宽为二次函数的形式,并利用求导数的方法找到面积的最大值。

二次函数与几何应用

二次函数与几何应用

二次函数与几何应用一、二次函数的定义与性质二次函数是指函数的表达式为f(x) = ax^2 + bx + c,其中a、b、c为常数且a ≠ 0。

二次函数是一种重要的数学函数,在几何学中有广泛的应用。

1. 定义与图像特点二次函数的图像通常呈现为一条开口朝上或朝下的抛物线。

当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

图像的对称轴为x = -b/2a,顶点坐标为V(-b/2a, f(-b/2a))。

2. 零点与根的关系二次函数的零点即为函数f(x) = 0的解,即满足ax^2 + bx + c = 0的x值。

零点与二次函数的根的关系为:当函数有两个不同的实根时,抛物线与x轴相交于两个不同的点;当函数只有一个实根时,抛物线与x 轴相切于一个点;当函数没有实根时,抛物线不与x轴相交。

二、几何应用二次函数在几何学中有多种应用,下面分别进行介绍。

1. 抛物线的应用抛物线是二次函数的图像,它在几何学中广泛应用于诸多问题的求解。

比如,在物理学中,抛物线可以用于描述抛体运动的轨迹。

当一个物体做抛体运动时,在重力的作用下,它沿着抛物线的轨迹运动。

抛物线方程可以帮助我们计算运动物体在不同时间和位置的速度、加速度等信息。

2. 最值问题二次函数可以用来解决最值问题,即找出函数在一定范围内的最大值或最小值。

抛物线的对称轴和顶点是解决最值问题的重要工具。

通过求二次函数的导数,找到导数为0的点,即可确定函数的极值点。

通过对极值点的讨论,可以确定函数的最大值或最小值。

3. 面积计算二次函数与几何图形的面积计算也有密切关联。

例如,在计算梯形或三角形的面积时,可以利用二次函数的图像。

将二次函数与x轴围成的图形,可以通过积分的方法计算其面积。

4. 曲线和直线的交点二次函数可以与直线相交于一个或两个点,这个交点的坐标可以通过联立方程求解得到。

这在几何学中经常用于求解二次函数与直线的交点坐标。

5. 平移与缩放对二次函数进行平移和缩放也是几何应用的一部分。

[详细讲解]利用二次函数求几何图形面积的最值问题

[详细讲解]利用二次函数求几何图形面积的最值问题

利用二次函数求几何图形面积的最值问题构造二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如,勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质即可求解.现举例说明.方法:1、用含有自变量的代数式分别表示出与所求几何图形相关的量(如周长、长、宽、半径等)。

2、根据几何图形的特征,列出其面积的计算公式,用函数表示这个面积。

3、根据函数关系式求出最大值及取得最大值的自变量的值,当 的值不在自变量的取值范围内时,应根据取值范围来确定最大值。

例1(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.简析 设矩形PNDM 的边DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4), 易知CN =4-x ,EM =4-y .且有NP BC CN-=BFAF(作辅助线构造相似三角形),即34y x --=12,所以y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4),此二次函数的图象开口向下,对称轴为x =5,所以当x ≤5时,函数的值是随x 的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12.说明 本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给同学们探索解题思路留下了思维空间.例2(2006年南京市中考试题)如图2,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?简析 因为矩形MFGN ∽矩形ABCD ,所以MNAD=MF AB,因为AB =2AD ,MN =x ,所以MF =2x ,所以EM =EF -MF =10-2x ,所以S =x (10-2x )=-2x 2+10x =-2(x -52)2+252,所以当x =52时,S 有最大值为252.说明 本题是利用相似多边形的性质,求出矩形的边之间的关系,再运用矩形的面积构造出二次函数的表达式,使问题求解.例3(2006年泉州市中考试题)一条隧道的截面如图3所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S (米)关于半径r (米)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米)简析(1)当AD =4米时,S半圆=12π×22AD ⎛⎫ ⎪⎝⎭=12π×22=2π(米2).(2)①因为AD =2r ,AD +CD =8,所以CD =8-AD =8-2r ,所以S =12πr 2+AD ·CD =12πr 2+2r (8-2r )=(12π-4)r 2+16r ;②由①知CD =8-2r ,又因为2米≤CD ≤3米,所以2≤8-2r ≤3,图 2 图1所以 2.5≤r ≤3,由①知S =(12π-4)r 2+16r =(12×3.14-4)r 2+16r =-2.43r 2+16r =-2.43(r -82.43)2+642.43,因为-2.43<0,所以函数图象为开口向下的抛物线,因为函数图象对称轴r =82.43≈3.3.又2.5≤r ≤3<3.3,由函数图象的性质可知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).即隧道截面面积S 的最大值约为26.1米2.说明 本题是一道典型的代数与几何的综合题,集图形的面积、不等式与二次函数的知识有机的结合在一起,有助于培养同学们的综合应用能力.例4(2006年陕西中考课改试题)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图4),王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图5),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点.(1)求FC 的长;(2)利用如图5求出矩形顶点B 所对的顶点到BC 边的距离x (cm)为多少时,矩形的面积最大?最大面积时多少?图3(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.简析(1)由题意,得△DEF ∽△CGF ,FC DF =CGDE,即603060=-FC FC , 所以FC =40(cm).(2)如图5,设矩形顶点B 所对顶点为P ,则①当顶点P 在AE 上时,x =60,y 的最大值为60×30=1800(cm 2);②当顶点P 在EF 上时,过点P 分别作PN ⊥BG 于点N ,PM ⊥AB 于点M .根据题意,得△GFC ∽△GPN ,所以CGFG NG DF =,所以NG =23x ,所以BN =120-23x ,所以y =x (120-23x )=-23(x -40)2+2400,所以当x =40时,y 的最大值为2400(cm 2);③当顶点P 在FC 上时,y 的最大值为60×40=2400(cm 2).综合①②③,得x =40cm 时,矩形的面积最大,最大面积为2400cm 2.(3)根据题意,正方形的面积y (cm 2)与边长x (cm)满足的函数表达式为: y =-23x 2+120x .当y =x 2时,正方形的面积最大,所以x 2=-23x 2+120x .解之,得 x 1=0(舍去),x 2=48(cm).图4图5所以面积最大得正方形得边长为48 cm.说明本题是一道典型的二次函数与几何综合应用的问题,在解第(2)小题时,一定不要忽视分类讨论来求出每一种情况的最大值后,再进行比较得出结论,第(3)小题只需根据题意列出方程就能解决.。

二次函数与几何专题一 面积问题 教案

二次函数与几何专题一 面积问题 教案

二次函数与几何专题一 面积问题一、学习目标1、 学生学会在二次函数中解决简单的与二次函数有关的面积问题2、 学生会用代数、几何的方法解决面积最大问题二、重点、难点函数中的坐标与线段的互相转化三、学习过程(一)基础训练1、若抛物线y=-x 2–x+6与x 轴交于A 、B 两点,则AB= 此抛物线与y 轴交于点C ,则C 点的坐标为 ,△ABC 的面积为 .2、已知二次函数y=x 2–21x-23与x 轴交于A 、B 两点,顶点为C ,则△ABC 的面积为 . 3、已知二次函数y=-21x 2+x+4的图象与x 轴的交点从右向左为A 、B 两点,与y 轴交点为C ,顶点为D ,求四边形ABCD 的面积.4、已知抛物线y=x 2–4x+1, 与x 轴交于A 、B 两点,在抛物线上有一点N,使△ABN 的面积为43,求点N 的坐标.5、 已知一次函数y=kx+m 的图象与二次函数y=a x 2 +bx+c 相交于A(-2,-1),B(6,3)两点,且二次函数图象与y 轴的负半轴交于C 点,若△ABC 的面积为12,求一次函数及二次函数解析式.(二)能力提升(2011•清远)如图,抛物线y=(x+1)2+k与x轴交于A、B两点,与y轴交于点C(0,-3)(1)求抛物线的对称轴及k的值;(2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标;(3)点M是抛物线上的一动点,且在第三象限.①当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;②当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点的坐标.二次函数与几何专题二直角三角形一、学习目标1、学生学会在二次函数中解决与二次函数有关的直角三角形问题2、学生会用勾股定理、相似的方法解决直角问题二重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形三、学习过程1、如图,抛物线y=(x-1)2+n与x轴交于A、B两点,A在B的左侧,与y轴交于C(0,-3).(1)求抛物线的解析式;(2)点P为对称轴右侧的抛物线上一点,以BP为斜边作等腰直角三角形,直角顶点M正好落在对称轴上,求P点的坐标.2、(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(-3,0),B(1.0),C(0,-3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.二次函数与几何——相似一、学习目标学生学会在二次函数中解决与二次函数有关的相似问题二、重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形1、(2013•莱芜)如图,抛物线y=ax2+bx+c(a≠0)经过点A(-3,0)、B(1,0)、C(-2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似(不包括全等)?若存在,求点P的坐标;若不存在,请说明理由.2、(2013•营口)如图,抛物线与x轴交于A(1,0)、B(-3,0)两点,与y轴交于点C (0,3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标.(2)试判断△BCD的形状,并说明理由.(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.3、(2013•凉山州)如图,抛物线y=ax2-2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM 的形状;若不存在,请说明理由.二次函数与几何——全等一、学习目标学生学会在二次函数中解决与二次函数有关的全等问题二重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形1、(2013•贵港)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c交y轴于点C(0,4),对称轴x=2与x轴交于点D,顶点为M,且DM=OC+OD.(1)求该抛物线的解析式;(2)设点P(x,y)是第一象限内该抛物线上的一个动点,△PCD的面积为S,求S关于x的函数关系式,并写出自变量x的取值范围;(3)在(2)的条件下,若经过点P的直线PE与y轴交于点E,是否存在以O、P、E为顶点的三角形与△OPD全等?若存在,请求出直线PE的解析式;若不存在,请说明理由.2、(2012•威海)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为点F,点P在抛物线上,且位于对称轴的右侧,PM⊥x轴,垂足为点M,△PCM为等边三角形.(1)求该抛物线的表达式;(2)求点P的坐标;(3)试判断CE与EF是否相等,并说明理由;(4)连接PE,在x轴上点M的右侧是否存在一点N,使△CMN与△CPE全等?若存在,试求出点N的坐标;若不存在,请说明理由.二次函数与几何——等腰三角形一、学习目标学生学会在二次函数中解决与二次函数有关的等腰三角形问题二、重点、难点函数中的坐标与线段的互相转化;在函数中找到几何的基本图形三、学习过程3、(2012•龙岩)在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB 在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).(1)请直接写出点B、C的坐标;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF所在直线与(1)中的抛物线交于点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.二次函数与几何——平行四边形 4月16日一、学习目标学生学会在二次函数中解决与平行四边形有关的问题二重点、难点函数中的坐标与线段的互相转化;在函数图象中找到几何的基本图形三、学习过程活动一:1、若抛物线y =x 2-bx +16过点(1,10),则b 的值为____ __2、抛物线过(-1,0),(3,0),(1,-5)三点,则这个二次函数的解析式_________________________。

初中复习方略数学微专题四 二次函数中几何图形线段、周长、面积的最值

初中复习方略数学微专题四 二次函数中几何图形线段、周长、面积的最值

抛物线对称轴为直线 x=- 2
=1,
2×(-1)
3k+c=0
设直线 AC 的解析式为 y=kx+c,将 A(3,0),C(0,3)代入,得:

c=3
k=-1
解得:

c=3
∴直线 AC 的解析式为 y=-x+3,∴P(1,2);
(3)存在.设 P(1,t),①以 AC 为边时,如图 2,∵四边形 ACPQ 是菱形, ∴CP=CA, ∴12+(3-t)2=32+32,解得:t=3± 17 , ∴P1(1,3- 17 ),P2(1,3+ 17 ), ∴Q1(4,- 17 ),Q2(4, 17 ),
1.(2021·天津中考)已知抛物线 y=ax2-2ax+c(a,c 为常数,a≠0)经过点 C(0,- 1),顶点为 D. (1)当 a=1 时,求该抛物线的顶点坐标; (2)当 a>0 时,点 E(0,1+a),若 DE=2 2 DC,求该抛物线的解析式; (3)当 a<-1 时,点 F(0,1-a),过点 C 作直线 l 平行于 x 轴,M(m,0)是 x 轴上 的动点,N(m+3,-1)是直线 l 上的动点.当 a 为何值时,FM+DN 的最小值为 2 10 ,并求此时点 M,N 的坐标.
(2021·常德中考)如图,在平面直角坐标系 xOy 中,平行四边形 ABCD 的 AB 边与 y 轴交于 E 点,F 是 AD 的中点,B、C、D 的坐标分别为(-2,0),(8,0),(13, 10). (1)求过 B、E、C 三点的抛物线的解析式; (2)试判断抛物线的顶点是否在直线 EF 上; (3)设过 F 作与 AB 平行的直线交 y 轴于 Q,M 是线段 EQ 之间的动点,射线 BM 与抛物线交于另一点 P,当△PBQ 的面积最大时,求 P 的坐标.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五课时抛物线与几何图形面积教学设计
教学流程安排
教学过程设计
ABC、△ABE、△OCD、△OCE
问:这几个图形求面积有何共同点?
探究1:你能否求出△ADE及四边形OCDE的面积呢?
探究2:在x轴下方抛物线的图像上是否存在一点p使得△ABP的面积最大,若存在,求出点p的坐标;若不存在,请说明理由。

探究3:在第四象限的抛物线上,教师出示例1的幻灯
片,留时间给学生思
考,然后由学生举手上
台讲解,教师给予点评
与总结
目的是让学生对面积的最
值有个初步的认识
培养学生分析问题的能力,
掌握用代数的方法解决几
何问题的能力及求坐标系
中水平线段与竖直线段长
的方法
培养学生综合分析问题的
能力,使学生具备探究意
识及小组合作意识。

是否存在一点Q ,使得△CBQ 的面积最大,若存在,求出点Q 的坐标,若不存在,说明理由。

例2 (2012广东省9分)如图,
抛物线21
3y=x x 922
--与x 轴交于A 、B 两点,与y 轴交于点C ,连接BC 、AC .
(1)求AB 和OC 的长;
(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作直线l 平行BC ,
交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;
(3)在(2)的条件下,连接CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).
【活动4】自我挑战
如图1, △ABC 是以BC 为底边的等腰三角形,点A 、C 分别是一次
教师出示例2的幻灯片,同样留足够时间给
学生思考,可由小组合作讨论,最后派代表举手发言,上台讲解,教师作出评价与总结
教师带领学生一起分析,教师讲解压轴题的
板书格式,学生领会
规范学生压轴题解题格式
目的是检测学生的掌握情
况,让学生把所学到的方
法加以巩固,让学生从中
体会到数学学习的乐趣及
学习成就感
函数3
34
y x =-
+的图像与y 轴、
x 轴的交点,点B 在二次函数
2
18
y x bx c =++的图像上,且该二
次函数图像上存在一点D 使四边形ABCD 能构成平行四边形.
(1)试求b 、c 的值,并写出该
二次函数的解析式;
(2)动点P 从A 到D ,同时动点Q 从C 到A 都以每秒1个单位的速度运动,问:
①当P 运动到何处时,由PQ ⊥AC ?
②当P 运动到何处时,四边形PDCQ 的面积最小?此时四边形PDCQ 的面积是多少?
【活动5】 小结与作业
请学生对本节课自己及同桌的
学习加以评价
作业:差异导学基础训练
教师鼓励学生在方法后能够大胆的挑战自我,学生可以小组合作,共闯难关
培养学生自我总结的能力,能适当,适时对自己及同学作出评价与反思。

感谢您的阅读,祝您生活愉快。

相关文档
最新文档