《因式分解法解一元二次方程》教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《因式分解法解一元二次方程》教学设计
教学目标:
1.正确理解因式分解法的实质.
2.熟练掌握运用因式分解法解一元二次方程.
3.通过新方法的学习,培养学生分析问题解决问题的能力及探索精神.
4.通过因式分解法的学习使学生树立转化的思想.
教学重点:用因式分解法解一元二次方程.
教学难点:学生理解AB=0推导A=0或B=0
教学时数:1课时
教学内容及步骤:
一、明确目标
学习了公式法,便可以解所有的一元二次方程.对于有些一元二次方程,例如(x-2)(x+3)=0,如果转化为一般形式,利用公式法就比较麻烦,如果转化为x-2=0或x+3=0,解起来就变得简单多了.即可得x1=2,x2=-3.这种解一元二次方程的方法就是本节课要研究的一元二次方程的方法——因式分解法.
所谓因式分解,是将一个多项式分解成几个一次因式积的形式.如果一元二次方程的左边是一个易于分解成两个一次因式积的二次三项式,而右边为零.用因式分解法更为简单.例如:x2+5x+6=0,因式分解后(x+2)(x+3)=0,得x+2=0或x+3=0,这样就将原来的一元二次方程转化为一元一次方程,方程便易于求解.可以说二次三项式的因式分解是因式分解法解一元二次方程的关键.“如果两个因式的积等于零,那么两个因式至少有一个等于零”是因式分解法解方程的理论依据.方程的左边易于分解,而方程的右边等于零是因式分解法解方程的条件.满足这样条件的一元二次方程用因式分解法最简单.
二、整体感知
例1 解方程x2+2x=0.
解:原方程可变形x(x+2)=0……第一步
∴ x=0或x+2=0……第二步
∴ x1=0,x2=-2.
分析步骤(一)第一步变形的方法是“因式分解”,第二步变形的理论根据是“如果两个因式的积等于零,那么至少有一个因式等于零”.分析步骤(二)对于一元二次方程,一边是零,而另一边易于分解成两个一次式时,可以得到两个一元一次方程,这两个一元一次方程的解就是原一元二次方程的解.用此种方法解一元二次方程叫做因式分解法.由第一步到第二步实现了由二次向一次的“转化”,达到了“降次”的目的,解高次方程常用转化的思想方法.
教师提问、板书,学生回答.
例2 用因式分解法解方程x2+2x-15=0.
解:原方程可变形为(x+5)(x-3)=0.
得,x+5=0或x-3=0.
∴ x1=-5,x2=3.
练习:P.22中1、2.
例3 解方程3(x-2)-x(x-2)=0.
解:原方程可变形为(x-2)(3-x)=0.
∴ x-2=0或3-x=0.
∴ x1=2,x2=3.
练习P.22中3.
(2)(3x+2)2=4(x-3)2.
解:原式可变形为(3x+2)2-4(x-3)2=0.
[(3x+2)+2(x-3)][(3x+2)-2(x-3)]=0
即:(5x-4)(x+8)=0.
∴ 5x-4=0或x+8=0.
学生练习、板演、评价.教师引导,强化.
练习:解下列关于x的方程
6.(4x+2)2=x(2x+1).
学生练习、板演.教师强化,引导,训练其运算的速度.
练习P.22中4.
(四)总结、扩展
因式分解法的条件是方程左边易于分解,而右边等于零,关键是熟练掌握因式分解的知识,理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零.”