人教版数学高二A版选修4-1预习导航第二讲四弦切角的性质

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预习导航
1.弦切角
顶点在圆上,一边和圆相交、另一边和圆相切的角叫做弦切角.
弦切角可分为三类:(1)圆心在角的外部,如图①;(2)圆心在角的一边上,如图②;(3)圆心在角的内部,如图③.
思考1 你对弦切角是怎样理解的?
提示:弦切角的特点:(1)顶点在圆上;(2)一边与圆相交;(3)另一边与圆相切.
弦切角定义中的三个条件缺一不可.如图①②③④中的角都不是弦切角.图①中,缺少“顶点在圆上”的条件;图②中,缺少“一边和圆相交”的条件;图③中,缺少“一边和圆相切”的条件;图④中,缺少“顶点在圆上”和“另一边和圆相切”两个条件.
2.弦切角定理
证明两个角相等
提示:(1)由弦切角定理及圆周角定理可以得到: ①弦切角的度数等于它所夹弧的度数的一半; ②弦切角等于它所夹的弧所对的圆心角的一半.
(2)由弦切角定理可以直接得出一个结论:若两弦切角所夹的弧相等,则这两个弦切角也相等.它给我们提供了证明角相等的又一个重要依据.如图,DE 切⊙O 于点A ,若AB =
AC ,则∠BAD =∠CAE .
温馨提示 (1)弦切角定理的推论:若一个圆的两个弦切角所夹的弧相等,则这两个弦切角也相等.
(2)弦切角定理也可以表述为弦切角的度数等于它所夹的弧的度数的一半.这就建立了弦切角与弧之间的数量关系,它为直接依据弧进行角的转换确立了基础.
(3)圆心角、圆周角、弦切角的比较.。

相关文档
最新文档