2011中考数学模拟分类汇编45投影与视图解析

合集下载

第一讲 视图与投影(尺规作图)

第一讲 视图与投影(尺规作图)

模块七图形与变换第一讲视图与投影(尺规作图)知识梳理夯实基础知识点1:尺规作图1.尺规作图的工具没有刻度的直尺和圆规。

2.五种基本的尺规作图(5)经过一点作已知直线的垂线尺规作图中的易错之处1.混淆尺规作图与一般画图.尺规作图要求只能用无刻度的直尺和圆规来画图,在操作过程中是不允许度量的.而一般画图可以用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量.2.缺少作图痕迹.尺规作图一般不要求写步骤,但每一步的作图痕迹都要保留下来,痕迹要清晰.3.缺少“点睛之笔”.解答中除了作图之外,最后的答案一定要强调题目所要求作的是哪条线段、哪个角、哪个点或哪个图形知识点2:投影与视图1.投影一个物体放在阳光下或者灯光前,就会在地面上或者墙面上留下它的影子,这个影子称为物体的投影。

平行投影由平行的光线所形成的投影。

如:物体在太阳光的照射下所形成的影子。

中心投影由一点(点光源)发出的光线所形成的投影。

如:物体在灯泡发出的光的照射下形成的影子。

2.三视图的概念一个几何体在一个平面上的正投影叫做这个几何体的视图。

三视图画法的规律主视图与俯视图要长对正,主视图与左视图要高平齐,俯视图与左视图要宽相等.注:看得见的部分的轮廓线要画成 ,看不见的线要画成 。

3.常见几何体的三视图几何体主视图左视图俯视图正方体圆柱圆锥主视图从几何体的前方向后投射,在正面投影面上得到的视图左视图从几何体的左侧向右投射,在侧面投影面上得到的视图俯视图从几何体的上方向下投射,在水平投影面上得到的视图球体长方体三棱柱圆台4.由三视图确定几何体由三视图想象几何体时,首先分别根据主视图、左视图、俯视图想象几何体的正面、左侧和底面,然后综合起来考虑整体。

知识点3:几何体的展开与折叠1.常见几何体的展开图几何体展开图的特点图示(选其中一种)正方体6个大小相同的正方形圆柱2个大小相同的圆和1个矩形主视图可以分清几何体的长和高,提供正面的形状。

左视图可以分清几何体的高和宽,提供左侧的形状。

中考数学试题分类汇编:投影与视图

中考数学试题分类汇编:投影与视图

(2013•衡阳)下列几何体中,同一个几何体的主视图与俯视图不同的是( ) A .B .C .D .考点: 简单几何体的三视图. 分析: 主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形. 解答:解:A 、圆柱的主视图与俯视图都是矩形,错误; B 、正方体的主视图与俯视图都是正方形,错误;C 、圆锥的主视图是等腰三角形,而俯视图是圆和圆心,正确;D 、球体主视图与俯视图都是圆,错误; 故选C . 点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图,俯视图是从物体的上面看得到的视图.(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为( )A . 2个B . 3个C . 5个D . 10个考点: 由三视图判断几何体. 分析:从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数. 解答:解:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体, 从俯视图可以验证这一点,从而确定小正方体总个数为5个. 故选;C . 点评:此题主要考查了由三视图判定几何体的形状,此问题是中考中热点问题,同学们应熟练掌握.(( )株洲)下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是()A BC DA .正方体 B .圆柱C .圆锥 D .球 考点: 简单几何体的三视图 分析: 俯视图是分别从物体上面看所得到的图形.分别写出四个几何体的俯视图即可得到答案. 解答:解:正方体的俯视图是正方形;圆柱体的俯视图是圆;圆锥体的俯视图是圆;球的俯视图是圆. 故选:A . 点评:本题主要考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. (2013,成都)如图所示的几何体的俯视图可能是( )(2013•达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A .(3)(1)(4)(2)B .(3)(2)(1)(4)C .(3)(4)(1)(2)D .(2)(4)(1)(3) 答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C 。

中考数学专题复习题投影与视图(含解析)

中考数学专题复习题投影与视图(含解析)

2017-2018年中考数学专题复习题:投影与视图、选择题1. 图中三视图对应的几何体是2. 如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是3. 如图,上下底面为全等的正六边形礼盒,其正视图与侧视图均由矩形构成,正视图中大矩形边长如图所示,侧视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为I IA. B. C. D.3112—60cm -—20cm M CE正视图侧视图A. 320 cmB. 讥IH .- ;C. 4 1, 一二’D. 480 cm4. 如图,一个正方体切去一个三棱锥后所得几何体的俯视图是A.5. 有一圆柱形的水池,已知水池的底面直径为 4米,水面离池口 2米,水池内有一小青蛙,它每天晚上都会浮在水面上赏月,则它能观察到的最大视角为如图,直立于地面上的电线杆 AB 在阳光下落在水平地面和坡面上的影子分别是 BC CD 测得BC=6米, = -米,二 二:二FC',在D 处测得电线杆顶端 A 的仰角为:Ej ,则电线杆AB 的高度为,A. 2+ 2逅B. 4+ 2V3C. 2+D.4+8. 在阳光下,一名同学测得一根长为 1米的垂直地面的竹竿的影长为1七米,同时另一名同学测量树的高度时,发现树的影 子不全落在地面上,有一部分落在教学楼的第一级台阶上,6.如图所示,在房子外的屋檐E 处安有一台监视器,a一 一 -邛1■ 口 口FA B CA. _ -.1B. A BFDC.四边形 BCEDD. - -5;7.测得此影子长为米,一级台阶高为)d米,如图所示,若此时落在地面上的影长为丄丄]米,则树高为I IA. ■> -■ ■米B. 8 米C. .1 =米D. 12 米9. 如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是I .10. 圆桌面•桌面中间有一个直径为:.4-;的圆洞I正上方的灯泡I看作一个点I发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影,已知桌面直径为_.?:■,桌面离地面1m若灯泡离地面3m则地面圆环形阴影的面积是()A. 1.1. A1 1. ■B.丄,‘C.D. 0.72rm:、填空题11.如图,光源P在横杆AB的正上方,I' ^「,」3 = 1.;,「二二•:;「,则AB离地面的距离为12.如图,圆桌面正上方的灯泡发出的光线照射桌面后,在地面上形成阴影圆形»已知灯泡距离地面2 4 ;,桌面距离地面■I “桌面厚度不计算「,若桌面的面积是一.J:'-,则地面上体的俯视图的周长是 _______ ,面积是 _______15. 如图,AB 和DE 是直立在地面上的两根立柱,-F 二F 米,某一时刻 AB 在阳光下的投影3 ? = :■米,在测量AB 的投影时,同时测量出DE 在阳光下的投影长为 6米,则 DE 的长为 _______ 16. 如图,在一面与地面垂直的围墙的同侧有一根高13米的旗杆AB 和一根高度未知的电线杆CD 它们都与地面垂直,为了侧得电线杆的高度,数学兴趣小组的同学进 行了如下测量.某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为3米,落在地面上的影子 BF 的长为8 米,而电信杆落在围墙上的影子 GH 的长度为:-2 米,落在地面上的银子 DH 的长为6米,依据这些数据,该小组的同学计算出了电 线杆的高度是的阴影面积是 ______ m 町13.如图是某几何体的三视图,根据图中数据,求得该几何体的表面积为 ______ .1 !r1 ■ ■ 1 ■ ■ ■ ■ ■ ■14.如图,正三棱柱的底面周长为15,截去一个底面周长为 6的正三棱柱,所得几何__________________ 米・地面的距离CD = ________19. ___________________________________________________________ 桌面上放两件物体,它们的三视图图,则这两个物体分别是 _____________________________ ,它们的位置20.桌上放着一个三棱锥和一个圆柱体, 如图的三幅图分别是从哪个方向看的?按图填17. 如图是王芳同学某一天观察到的一棵树在不同时刻的影子,请你把它们按时间先后顺序进行排列是 ________18.墙壁D 处有一盏灯如图,小明站在A 处测得他的影长与身长相等都为1三「,小明向墙壁走1m 到B 处发现影子刚好落在 A 点,则灯泡与厂□王观圈旗杆电遙杆(A) (B)是 ______21. 如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成亠卩角时,第二次是阳光与地面成 :< 角时,两次测量的影长相差8米,求树高AB多少米,结果保留根号・22. 如图,是住宅区内的两幢楼,它们的高-F = L":=■■ j ,两楼间的距离现需了解甲楼对乙楼的采光的影响情况..当太阳光与水平线的夹角为•工角时,求甲楼的影子在乙楼上有多高|精确到1 : > .厂1 ;若要甲楼的影子刚好不落在乙楼的墙上,此时太阳与水平线的夹角为多少度?23. 某兴趣小组开展课外活动如图,小明从点M出发以]三米秒的速度,沿射线MN方向匀速前进,2秒后到达点B,此时他(4#)在某一灯光下的影长为MB继续按原速行走2秒到达点D,此时他在同一灯光下的影子GD仍落在其身后,并测得这个影长GD为1 1米,然后他将速度提高到原来的一上倍,再行走2秒到达点F,此时点A, C, E三点共线..请在图中画出光源0点的位置,并画出小明位于点F时在这个灯光下的影长- J 不写画法;•求小明到达点F时的影长FH的长.■---------------------------------------M B G D F N24.如图是一个密封纸盒的三视图,请你根据图中数据计算这个密封纸盒的表面积结果保留根号【答案】J D 1 解:在A - _ "1中,:山 £T |J在丁_.匸〕中,'in 厂AB AB 如&'——^,答:树高AB 为4.-米.22.解:I 如图,延长0B 交DC 于E,作严丄_卫,交AB 于F ,在- 中,1. 2. C 3. C 4. D 5. C 6. D 7. B 8. 9. D 10. D11.12.13. (225 + 25 v 1?) T14. 13; Ml415. 10m16. 1117. B A 、C D18.4.Srn19. 长方体和圆柱;圆柱在前,长方体在后20. 左面、上面、正面21.= :: } ,一 匚二 I 二:口 ,设5-=.,则?5= : . • 根据勾股定理知'二.,. 2.「 「:小"■,:1 j-. 负值舍去, 八'二川;•因此,-—. - •(勻当甲幢楼的影子刚好落在点 C 处时,一 为等腰三角形,因此,当太阳光与水平线夹角为 芟,时,甲楼的影子刚好不落在乙楼的墙上.23.解:|如图,点0和FH 为所作;M B G D K F H M'.■ ■- ' — — '「一 ; . ,4 二一.=,;二二一 ♦一.二'2= - E-,设 -5 = II.二三二二 I :',作;■■-:于K 如图,I ■ ■.",_ j.\ 2、s _;「[ -■,V CD//OK,J 8OX 耐JT'•,即卩二——ffJC OK l.^rDK由注得"亠,解得H,.-m「,_三“_二即'■':OJC KK ffFM5 E答:小明到达点F时的影长FH的长为24. 解:根据该密封纸盒的三视图知道它是一个六棱柱,其高为12cm底面边长为5cm其侧面积为丨<,密封纸盒的上、下底面的面积和为:「「_「. -匚:”」,其表面积为-。

中考数学真题分类汇编及解析(四十二)投影与视图

中考数学真题分类汇编及解析(四十二)投影与视图

(2022•玉林中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.这个几何体的主视图如下:(2022·安徽中考)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【解析】选A.从上面看,是一个矩形.(2022•江西中考)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【解析】选A.如图,它的俯视图为:(2022•云南中考)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥(2022•丽水中考)如图是运动会领奖台,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形:(2022•绍兴中考)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【解析】选B.由图可得,题目中图形的主视图是(2022•舟山中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A. B. C. D.【解析】选B.从正面看底层是三个正方形,上层左边是一个正方形.(2022•温州中考)某物体如图所示,它的主视图是()A.B.C.D.【解析】选D.某物体如图所示,它的主视图是:(2022•扬州中考)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【解析】选B.由于主视图与左视图是三角形,俯视图是正方形,故该几何体是四棱锥(2022•凉山州中考)如图所示的几何体的主视图是()A.B.C.D.【解析】选C.从正面看,底层是三个小正方形,上层的中间是一个小正方形(2022•泸州中考)如图是一个由6个大小相同的正方体组成的几何体,它的俯视图是()A.B.C.D.【解析】选C.从物体上面看,底层有一个正方形,上层有四个正方形(2022•湖州中考)如图是由四个相同的小正方体组成的几何体,它的主视图是()A.B.C.D.【解析】选B.观察该几何体发现:从正面看到的应该是三个正方形,上面1个左齐,下面2个(2022•宁波中考)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【解析】选C.根据题意可得,球体的俯视图是一个圆,圆柱的俯视图也是一个圆,圆柱的底面圆的半径大于球体的半径,如图,,故C选项符合题意(2022•黄冈中考)某几何体的三视图如图所示,则该几何体是()A.圆锥 B.三棱锥 C.三棱柱 D.四棱柱【解析】选C.由三视图可知,这个几何体是直三棱柱.(2022•宜宾中考)如图是由5个相同的正方体搭成的几何体,从正面看,所看到的图形是()A.B.C.D.【解析】选D.从正面看,底层是三个相邻的小正方形,上层的右边是一个小正方形.(2022•十堰中考)下列几何体中,主视图与俯视图的形状不一样的几何体是()A. B. C. D.【解析】选C.A.正方体的主视图与俯视图都是正方形,故A不符合题意;B.圆柱的主视图与俯视图都是长方形,故B不符合题意;C.圆锥的主视图是等腰三角形,俯视图是一个圆和圆心,故C符合题意;D.球体的主视图与俯视图都是圆形,故D不符合题意.(2022•武汉中考)如图是由4个相同的小正方体组成的几何体,它的主视图是()A. B. C. D.【解析】选A.从正面看共有两层,底层三个正方形,上层左边是一个正方形.A.主视图和左视图 B.主视图和俯视图C.左视图和俯视图 D.三个视图均相同【解析】选A.该几何体的三视图中完全相同的是主视图和左视图,均为半圆;俯视图是一个实心圆. (2022•邵阳中考)下列四个图形中,圆柱体的俯视图是()A.B.C.D.【解析】选D.从圆柱体的上面看到是视图是圆,则圆柱体的俯视图是圆(2022•天津中考)如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【解析】选A.从正面看底层是两个正方形,左边是三个正方形,则立体图形的主视图是A中的图形(2022•嘉兴中考)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【解析】选C.由图可知主视图为:(2022•衡阳中考)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【解析】选A.从正面看,可得如下图形,(2022•湘潭中考)下列几何体中,主视图是三角形的是()A.B.C.D.【解析】选A.A、圆锥的主视图是三角形,故此选项符合题意;B、圆柱的主视图是长方形,故此选项不符合题意;C、球的主视图是圆,故此选项不符合题意;D、三棱柱的主视图是长方形,中间还有一条实线,故此选项不符合题意(2022•眉山中考)下列立体图形中,俯视图是三角形的是()A.B.C.D.【解析】选B.A、圆锥体的俯视图是圆,故此选项不合题意;B、三棱柱的俯视图是三角形,故此选项符合题意;C、球的俯视图是圆,故此选项不合题意;D、圆柱体的俯视图是圆,故此选项不合题意(2022•台州中考)如图是由四个相同的正方体搭成的立体图形,其主视图是()A.B.C.D.【解析】选A.根据题意知,几何体的主视图为:(2022•福建中考)如图所示的圆柱,其俯视图是()A.B.C.D.【解析】选A.根据题意可得,圆柱的俯视图如图,.大致形状是()A.B.C.D.【解析】选B.根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形.(2022•雅安中考)下列几何体的三种视图都是圆形的是()A.B.C.D.【解析】选B.A选项的主视图和左视图为长方形,A选项不符合题意;∵B选项的三种视图都是圆形,∴B选项符合题意;∵C选项的主视图和左视图为等腰三角形,∴C选项不符合题意;∵D选项主视图和左视图为等腰梯形,∴D选项不符合题意;综上,B选项的三种视图都是圆形.(2022•贺州中考)下面四个几何体中,主视图为矩形的是()A.B.C.D.【解析】选A.A.长方体的主视图是矩形,故本选项符合题意;B.三棱锥的主视图是三角形,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.圆台的主视图是等腰梯形,故本选项不符合题意.(2022•黔东南州中考)一个物体的三视图如图所示,则该物体的形状是()A.圆锥B.圆柱C.四棱柱D.四棱锥【解析】选B.根据主视图和左视图都是长方形,判定该几何体是个柱体,∵俯视图是个圆,∴判定该几何体是个圆柱.(2022•哈尔滨中考)六个大小相同的正方体搭成的几何体如图所示,其左视图是()A.B.C.D.【解析】选D.由题意知,题中几何体的左视图为:(2022•齐齐哈尔中考)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【解析】选C.由俯视图知最下面一层一定有四个小正方体,由主视图和左视图知上面一层至少有处在对角的位置上的两个小正方体,故搭成该几何体的小正方体的个数最少为6个.(2022•鄂州中考)如图所示的几何体是由5个完全相同的小正方体组成,它的主视图是()A.B.C.D.【解析】选A.该几何体的主视图为:一共有两列,左侧有三个正方形,右侧有一个正方形,所以A选项正确.(2022•仙桃中考)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【解析】选A.根据三视图可知,该立体图形是长方体.(2022•威海中考)如图所示的几何体是由五个大小相同的小正方体搭成的.其俯视图是()A.B.C.D.【解析】选B.从上面看,底层左边是一个小正方形,上层是三个小正方形.(2022•梧州中考)在下列立体图形中,主视图为矩形的是()A.B.C.D.【解析】选A.A.圆柱的主视图是矩形,故本选项符合题意;B.球的主视图是圆,故本选项不符合题意;C.圆锥的主视图是等腰三角形,故本选项不符合题意;D.三棱锥形的主视图是三角形,故本选项不符合题意.(2022•龙东中考)如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【解析】选B.从俯视图课看出前后有三层,从左视图可看出最后面有2层高,中间最高是2层,要是最多就都是2层,最前面的最高是1层,所以最多的为:2+2×2+1×2=8.(2022•长沙中考)如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是()A.B.C.D.【解析】选B.根据主视图的概念,可知选B.(2022•包头中考)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【解析】选B.由俯视图可以得出几何体的左视图为:则这个几何体的左视图的面积为4.(2022•赤峰中考)下面几何体的俯视图是()A.B.C.D.【解析】选B.几何体的俯视图是:(2022·遵义中考)如图是《九章算术》中“堑堵”的立体图形,它的左视图为()A.B.C.D.【解析】选A.这个“堑堵”的左视图如图:(2022•海南中考)如图是由5个完全相同的小正方体摆成的几何体,则这个几何体的主视图是()A.B.C.D.【解析】选C.这个组合体的主视图如图:(2022·牡丹江中考)如图是一些完全相同的小正方体搭成的几何体的三视图.这个几何体只能是()A.B.C.D.【解析】选A.由俯视图易得最底层有4个正方体,第二层有1个正方体,那么共有4+1=5个正方体组成,由主视图可知,一共有前后2排,第一排有3个正方体,第二排有2层位于第一排中间的后面.(2022•吉林中考)吉林松花石有“石中之宝”的美誉,用它制作的砚台叫松花砚,能与中国四大名砚媲美.如图是一款松花砚的示意图,其俯视图为()A.B.C.D.【解析】选C.俯视图是从物体的上面向下面投射所得的视图,由松花砚的示意图可得其俯视图为C.(2022•抚顺中考)如图是由6个完全相同的小正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.【解析】选B.从上面看,底层右边是一个小正方形,上层是三个小正方形.(2022•杭州中考)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【解析】∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.(2022•北部湾中考)古希腊数学家泰勒斯曾利用立杆测影的方法,在金字塔影子的顶部直立一根木杆,借助太阳光测金字塔的高度.如图,木杆EF长2米,它的影长FD是4米,同一时刻测得OA是268米,则金字塔的高度BO是134米.【解析】据相同时刻的物高与影长成比例,设金字塔的高度BO为x米,则可列比例为4268=2x,解得:x=134.答案:134.。

2011全国中考数学真题解析120考点汇编 投影

2011全国中考数学真题解析120考点汇编 投影

(2012年1月最新最细)2011全国中考真题解析120考点汇编☆投影
一、选择题
1.(2011某某荆州,4,3分)如图.位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm,则投彩三角形的对应边长为()
A、8cm
B、20cm
C、
D、10cm
考点:位似变换;中心投影.
专题:几何图形问题.
分析:根据位似图形的性质得出相似比为2:5,对应变得比为2:5,即可得出投彩三角形的对应边长.
解答:解:∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,三角尺的一边长为8cm,
∴投彩三角形的对应边长为:8÷ 25=20cm.
故选:B.
点评:此题主要考查了位似图形的性质以及中心投影的应用,根据对应变得比为2:5,再得出投彩三角形的对应边长是解决问题的关键.
2.(2011某某崇左,17,3分)一位小朋友拿一个等边三角形木框在阳光下玩,等边三角
形木框在地面上的影子不可能是( )
考点:平行投影.
专题:应用题.
分析:根据看等边三角形木框的方向即可得出答案.
解答:解:竖直向下看可得到线段,沿与平面平行的方向看可得到C,延与平面不平行的方向看可得到D,不论如何看都得不到一点.
故选B.
点评:本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.。

全国2011年中考数学试题分类解析汇编 专题22投影与视图

全国2011年中考数学试题分类解析汇编 专题22投影与视图

全国2011年中考数学试题分类解析汇编(181套)专题22:投影与视图一、选择题1.(某某3分)下图是一支架(一种小零件),支架的两个台阶的高度和宽度都是同一长度.则它的三视图是【答案】A。

【考点】几何体的三视图。

【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中:细心观察原立体图形的位置,从正面看,是一个矩形,矩形左上角缺一个角;从左面看,是一个正方形;从上面看,也是一个正方形。

故选A。

2.(某某綦江4分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是【答案】C。

【考点】简单组合体的三视图。

【分析】俯视图是从上面看,圆锥看见的是圆和点,两个正方体看见的是两个正方形。

故选C。

3.(某某潼南4分)下面四个几何体中,主视图与其它几何体的主视图不同的是【答案】C。

【考点】简单几何体的三视图。

【分析】找到从正面看所得到的图形比较即可:A、主视图为长方形;B、主视图为长方形;C、主视图为两个相邻的三角形;D、主视图为长方形。

故选C。

4.(某某某某、某某3分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是(A)两个外离的圆(B)两个外切的圆(C)两个相交的圆(D)两个内切的圆【答案】D。

【考点】圆与圆的位置关系,简单组合体的三视图。

【分析】观察图形可知,两球都与水平线相切,所以,几何体的左视图为相内切的两圆。

故选D。

5.(某某某某4分)如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是【答案】A。

【考点】简单组合体的三视图。

【分析】主视图是从正面看,圆柱从正面看是两个圆柱,看到两个长方形。

故选A。

6.(某某某某4分)由5个相同的正方体搭成的几何体如图所示,则它的左视图是【答案】D。

【考点】简单组合体的三视图。

【分析】从左面看易得第一层有1个正方形,第二层左边有2个正方形,右边有1个正方形。

故选D。

7.(某某某某、某某3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是A 、6B 、5C 、4D 、3【答案】B 。

2011全国各地中考数学试题分类汇编考点41投影与视图(2份)

2011全国各地中考数学试题分类汇编考点41投影与视图(2份)

因式分解 一、选择题1. (2011广西南宁,6,3分)把多项式x 3—4x 分解因式所得的结果是:(A) x (x 2 -4) (B) x (x +4)(x -4) (C) x (x +2)(x -2) (D)(x+2)(x-2)【答案】C2. (2011广西梧州,6,3分)因式分解x 2y -4y 的正确结果是(A )y (x +2)(x -2) (B )y (x +4)(x -4)(C )y (x 2-4) (D )y (x -2)2【答案】A3.4.5.6. 二、填空题1. (2011福建泉州,9,4分)分解因式:=-162x .【答案】()()44-+x x2. (2011广东湛江,13,4分)分解因式:23x x += .【答案】(3)x x +3. (2011广东珠海,6,4分)分解因式:a x 2-4a .【答案】a (x+2)(x-2)4. (2011广西桂林,13,3分)因式分解:a 2+2a =______.【答案】a (a +2)5. (2011黑龙江省哈尔滨市,13,3分)把多项式2a 4a 22+-分解因式的结果是 _。

【答案】21a 2)(- 6. (2011湖北十堰,11,3分)分解因式:x 2-2x= .【答案】x(x-2)7. (2011湖北随州,2,3分)分解因式8a 2-2=____________________________.【答案】2(2a +1)(2a -1)8. (湖南湘西,4,3分)分解因式:22x y -=__________.【答案】(x+y)(x-y)9. (2011江苏常州,10,2分)计算:()21x +=______;分解因式:29x -=_______. 【答案】221x x ++,(x+3)(x-3)10.(2011广东深圳,13,4分)分解因式:a 3- a = ____________.【答案】(1)(1)a a a +-11. (2011陕西,13,3分)分解因式:=+-a ab ab 442.【答案】2)2(-b a12. (2010湖南长沙,11,3分)分解因式:a 2-b 2=_______________.【答案】(a+b )(a-b )13. (2011山东莱芜,14,4分)分解因式(a+b)3-4(a+b)=__________________________.【答案】()()()22-++++b a b a b a14. (2011北京市,10,4分)分解因式:321025a a a -+=______________.【答案】a (a -5)215. (2011广东清远,12,3分)分解因式:226x x -= .【答案】2x (x -3)16. (2011广西桂林,13,3分)因式分解:a 2+2a =______.【答案】()2a a +17. (2011黑龙江省哈尔滨市,13,3分)把多项式2a 4a 22+-分解因式的结果是 _。

九年级数学下册常考点微专题提分精练(投影与视图最新中考真题与模拟精练(解析版)

九年级数学下册常考点微专题提分精练(投影与视图最新中考真题与模拟精练(解析版)

专题28 投影与视图最新中考真题与模拟精练1.(2022·安徽·定远县育才学校一模)学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6 m 的小明(AB )的影子BC 长是3 m,而小颖(EH )刚好在路灯灯泡的正下方H 点,并测得HB=6 m . (1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G ; (2)求路灯灯泡的垂直高度GH ;(3)如果小明沿线段BH 向小颖(点H )走去,当小明走到BH 的中点B 1处时,其影子长为B 1C 1;当小明继续走剩下路程的13到B 2处时,其影子长为B 2C 2;当小明继续走剩下路程的14到B 3处,…,按此规律继续走下去,当小明走剩下路程的11n +到Bn 处时,其影子BnCn 的长为 m .(直接用含n 的代数式表示)【答案】(1)详见解析;(2)路灯灯泡的垂直高度GH 是4.8 m ;(3)BnCn=31n +. 【分析】(1)确定灯泡的位置,可以利用光线可逆可以画出;(2)要求垂直高度GH 可以把这个问题转化成相似三角形的问题,图中△ABC△△GHC 由它们对应成比例可以求出GH ;(3)的方法和(2)一样也是利用三角形相似,对应相等成比例可以求出,然后找出规律. 【详解】解:(1)形成影子的光线如图所示,路灯灯泡所在的位置为点G.(2)根据题意,得△ABC △△GHC ,∴AB BC GH HC =,∴1.6363GH =+,解得GH=4.8 m . 答:路灯灯泡的垂直高度GH 是4.8 m .(3)提示:同理可得△A 1B 1C 1△△GHC 1,∴11111A B B C GH HC=, 设B 1C 1长为x m,则1.64.83xx =+, 解得x=1.5,即B 1C 1=1.5 m . 同理22221.64.82B C B C =+,解得B 2C 2=1 m,∴1.614.861n n n n B C B C n =+⨯+,解得BnCn=31n +. 【点睛】本题主要考查相似三角形的应用及中心投影,只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例解题.2.(2019·江苏扬州·中考真题)如图,平面内的两条直线l 1、l 2,点A 、B 在直线l 2上,过点A 、B 两点分别作直线l 1的垂线,垂足分别为A 1、B 1,我们把线段A 1B 1叫做线段AB 在直线l 2上的正投影,其长度可记作T (AB ,CD )或T (AB ,l 2),特别地,线段AC 在直线l 2上的正投影就是线段A 1C ,请依据上述定义解决如下问题.(1)如图1,在锐角△ABC 中,AB=5,T (AC ,AB )=3,则T (BC ,AB )= ;(2)如图2,在Rt△ABC 中,△ACB=90°,T (AC ,AB )=4,T (BC ,AB )=9,求△ABC 的面积; (3)如图3,在钝角△ABC 中,△A=60°,点D 在AB 边上,△ACD=90°,T (AD ,AC )=2,T (BC ,AB )=6,求T (BC ,CD ).【答案】(1)2 ;(2)△ABC 的面积=39;(3)T (BC ,CD )=732【分析】(1)如图1,过C 作CH△AB ,根据正投影的定义求出BH 的长即可;(2)如图2,过点C 作CH△AB 于H ,由正投影的定义可知AH=4,BH=9,再根据相似三角形的性质求出CH 的长即可解决问题;(3)如图3,过C 作CH△AB 于H ,过B 作BK△CD 于K ,求出CD 、DK 即可得答案. 【详解】(1)如图1,过C 作CH△AB ,垂足为H , △T (AC ,AB)=3, △AH=3, △AB=5, △BH=AB-AH=2, △T (BC ,AB)=BH=2, 故答案为2;(2)如图2,过点C 作CH△AB 于H , 则△AHC=△CHB=90°, △△B+△HCB=90°, △△ACB=90°, △△B+△A=90°△△A=△HCB,△△ACH△△CBH,△CH:BH=AH:CH,△CH2=AH·BH,△T(AC,AB)=4,T(BC,AB)=9,△AH=4,BH=9,△AB=AH+BH=13,CH=6,△S△ABC=(AB·CH)÷2=13×6÷2=39;(3)如图3,过C作CH△AB于H,过B作BK△CD于K,△△ACD=90°,T(AD,AC)=2,△AC=2,△△A=60°,△△ADC=△BDK=30°,△CD=AC·tan60°=23,AD=2AC=4,AH=12AC=1,△DH=4-1=3,△T(BC,AB)=6,CH△AB,△BH=6,△DB=BH-DH=3,在Rt△BDK中,△K=90°,BD=3,△BDK=30°,△DK=BD·cos30°=332,△T(BC,CD)=CK=CD+DK=3+332=73 2.【点睛】本题是三角形综合题,考查了正投影的定义,解直角三角形,相似三角形的判定与性质等知识,理解题意,正确添加辅助线,构建直角三角形是解题问题的关键. 3.(2020·四川攀枝花·中考真题)实验学校某班开展数学“综合与实践”测量活动.有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一斜坡,且圆柱底部到坡脚水平线MN的距离皆为100cm.王诗嬑观测到高度90cm矮圆柱的影子落在地面上,其长为72cm;而高圆柱的部分影子落在坡上,如图所示.已知落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,测得斜坡坡度1:0.75i=,在不计圆柱厚度与影子宽度的情况下,请解答下列问题:(1)若王诗嬑的身高为150cm,且此刻她的影子完全落在地面上,则影子长为多少cm?(2)猜想:此刻高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内.请直接回答这个猜想是否正确?(3)若同一时间量得高圆柱落在坡面上的影子长为100cm,则高圆柱的高度为多少cm?【答案】(1)120cm;(2)正确;(3)280cm【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)根据落在地面上的影子皆与坡脚水平线MN互相垂直,并视太阳光为平行光,结合横截面分析可得;(3)过点F作FG△CE于点G,设FG=4m,CG=3m,利用勾股定理求出CG和FG,得到BG,过点F作FH△AB于点H,再根据同一时刻身高与影长的比例,求出AH的长度,即可得到AB.【详解】解:(1)设王诗嬑的影长为xcm,由题意可得:90150 72x=,解得:x=120,经检验:x=120是分式方程的解,王诗嬑的的影子长为120cm;(2)正确,因为高圆柱在地面的影子与MN垂直,所以太阳光的光线与MN垂直,则在斜坡上的影子也与MN垂直,则过斜坡上的影子的横截面与MN垂直,而横截面与地面垂直,高圆柱也与地面垂直,△高圆柱和它的影子与斜坡的某个横截面一定同在一个垂直于地面的平面内;(3)如图,AB为高圆柱,AF为太阳光,△CDE为斜坡,CF为圆柱在斜坡上的影子,过点F作FG△CE于点G,由题意可得:BC=100,CF=100,△斜坡坡度1:0.75i=,△140.753DE FG CE CG ===, △设FG=4m ,CG=3m ,在△CFG 中,()()22243100m m +=,解得:m=20, △CG=60,FG=80, △BG=BC+CG=160, 过点F 作FH△AB 于点H ,△同一时刻,90cm 矮圆柱的影子落在地面上,其长为72cm , FG△BE ,AB△BE ,FH△AB , 可知四边形HBGF 为矩形, △9072AH AH HF BG==, △AH=90901607272BG ⨯=⨯=200,△AB=AH+BH=AH+FG=200+80=280, 故高圆柱的高度为280cm.【点睛】本题考查了解分式方程,解直角三角形,平行投影,矩形的判定和性质等知识,解题的关键是理解实际物体与影长之间的关系解决问题,属于中考常考题型.4.(2011·全国·中考模拟)如图所给的A 、B 、C 三个几何体中,按箭头所示的方向为它们的正面,设A 、B 、C 三个几何体的主视图分别是A 1、B 1、C 1;左视图分别是A 2、B 2、C 2;俯视图分别是A3、B3、C3.(1)请你分别写出A 1、A 2、A 3、B 1、B 2、B 3、C 1、C 2、C 3图形的名称;(2)小刚先将这9个视图分别画在大小、形状完全相同的9张卡片上,并将画有A 1、A 2、A 3的三张卡片放在甲口袋中,画有B 1、B 2、B 3的三张卡片放在乙口袋中,画有C 1、C 2、C 3的三张卡片放在丙口袋中,然后由小亮随机从这三个口袋中分别抽取一张卡片. ①画出树状图,求出小亮随机抽取的三张卡片上的图形名称都相同的概率;②小亮和小刚做游戏,游戏规则规定:在小亮随机抽取的三张卡片中只有两张卡片上的图形名称相同时,小刚获胜;三张卡片上的图形名称完全不同时,小亮获胜.这个游戏对双方公平吗?为什么?【答案】(1)见解析;(2)①49;②不公平,详见解析.【分析】(1)通过观察几何体,直接写出它们三种视图的名称则可; (2)按照题意画出树状图,获胜的概率相同游戏就公平.【详解】(1)由已知可得A 1、A 2是矩形,A 3是圆;B 1、B 2、B 3都是矩形;C 1是三角形,C 2、C 3是矩形;(2)①补全树状图如下:由树状图可知,共有27种等可能结果,其中三张卡片上的图形名称都相同的结果有12种,△三张卡片上的图形名称都相同的概率是124=279;②游戏对双方不公平.由①可知,三张卡片中只有两张卡片上的图形名称相同的概率是124=279,即P (小刚获胜)=49,三张卡片上的图形名称完全不同的概率是31=279,即P (小亮获胜)=19,△49>19, △这个游戏对双方不公平.【点睛】本题比较容易,考查三视图和考查立体图形的三视图和学生的空间想象能力.还考查了通过画树状图求随机事件的概率.用到的知识点为:三视图分别是从物体的正面,左面,上面看得到的图形;概率=所求情况数与总情况数之比.5.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO △OD ,EF △FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明△AOD △△EFG ,利用相似比计算出AO 的长,再证明△BOC △△AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:△AD △EG , △△ADO =△EGF . 又△△AOD =△EFG =90°, △△AOD △△EFG . △AO ODEF FG=. △ 1.820152.4EF OD AO FG ⋅⨯===. 同理,△BOC △△AOD . △BO OC AO OD=. △15161220AO OC BO OD ⋅⨯===. △AB =OA −OB =3(米). △旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.6.(2022·江西·模拟预测)如图1所示的是一户外遮阳伞支架张开的状态,图1可抽象成图2,在图2中,点A 可在BD 上滑动,当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,AE EF =,90cm AC BC CE ===,70cm DF '=.(1)BD 的长为______. (2)如图2,当54cm AB =时.①求ACB ∠的度数;(参考数据:sin17.50.30︒≈,tan16.70.30︒≈,sin36.90.60︒≈,tan31.00.60︒≈)②求伞能遮雨的面积(伞的正投影可以看作一个圆). 【答案】(1)250cm (2)①35°;②29484π【分析】(1)根据题意可得BD BF F D ''=+,当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,可得BF EF AC CE '==+,代入数据求解即可;(2)①过点C 作CG AG ⊥,根据BC AC =,可得127cm 2AG GB ACG ACB ==∠=∠,,根据sin 0.3ACG ∠=,sin17.50.30︒≈,即可求解;②根据题意可知CG AF ∥,则17.5EAH ∠=︒,根据sin17.5EH AE =︒⋅求得EH ,根据勾股定理可得222AH AE EH =-,根据正投影是一个圆,根据圆的面积公式求解即可. (1)解:△BD BF F D ''=+当伞完全折叠成图3时,伞的下端点F 落在F '处,点C 落在C '处,可得BF EF AC CE '==+△BD BF F D ''=+909070250EF F D AC CE F D ''=+=++=++=cm (2)①如图,过点C 作CG AG ⊥90BC AC ==cm ,54cm AB =27AG GB ∴==cm ,12ACG ACB ∠=∠273sin 0.39010AG ACG AC ∠===≈17.5ACG ∴∠=︒ 235ACB ACG ∴∠=∠=︒②如图,连接AF ,过点E 作EH AF ⊥,AE EF =AH HF ∴=根据题意可知CG AF ∥ 17.5EAH ∴∠=︒ 180cm AE =sin17.50.318054EH AE ∴=︒⋅=⨯=222221280598444AH AE EH ∴=-=-= ∴伞能遮雨的面积为29484π【点睛】本题考查了解直角三角形的应用,正投影,理解题意是解题的关键.7.(2018·江苏扬州·中考模拟)如图 1,在平面直角坐标系中,图形 W 在坐标轴上的投影长度定义如下:设点 P (1x , 1y ) ,Q (2x , 2y ) 是图形 W 上的任意两点,若12x x -的最大值为 m ,则图形 W 在 x 轴上的投影长度为 lx = m ;若12y y -的最大值为 n ,则图形 W 在 y 轴上的投影长度为 ly = n .如图 1,图形 W 在 x 轴上的投影长度为 lx =40- = 4 ;在 y 轴上的 投影长度为 ly =30-= 3 .(1)已知点 A (1, 2) , B (2, 3) , C (3,1) ,如图 2 所示,若图形 W 为四边形 OABC , 则 lx = , ly = ;(2)已知点 C (-32, 0) ,点 D 在直线 y =12x - 1(x < 0) 上,若图形 W 为 ∆OCD ,当 lx =ly时,求点 D 的坐标;(3 )若图形 W 为函数 y = x 2(a ≤ x ≤ b ) 的图象,其中 (0 ≤ a < b ) ,当该图形满足 lx = ly ≤ 1时,请直接写出 a 的取值范围.图 1 图 2【答案】(1)4,3;(2)(-23,143)或(-10,-14);(3) 102a ≤<.【分析】(1)确定出点A 在y 轴的投影的坐标、点B 在x 轴上投影的坐标,于是可求得问题的答案;(2)过点P 作PD△x 轴,垂足为P .设D (x ,2x+6),则PD=|2x+6|.PC=|3-x|,然后依据l x =l y ,列方程求解即可;(3)设A (a ,a 2)、B (b ,b 2).分别求得图形在y 轴和x 轴上的投影,由l x =l y 可得到b+a=1,然后根据0≤a <b 可求得a 的取值范围. 【详解】解:(1)△A (3,3),△点A 在y 轴上的正投影的坐标为(0,3). △△OAB 在y 轴上的投影长度l y =3. △B (4,1),△点B 在x 轴上的正投影的坐标为(4,0). △△OAB 在x 轴上的投影长度l x =4. 故答案为4;3.(2)如图1所示;过点P 作PD△x 轴,垂足为P .设D (x ,2x+6),则PD=2x+6.△PD△x 轴,△P (x ,0).△PC=4-x .△l x =l y ,△2x+6=4-x ,解得;x=-23.△D (-23,143). 如图2所示:过点D 作DP△x 轴,垂足为P .设D (x ,2x+6),则PD=-2x-6.△PD△x 轴,△P (x ,0).△PC=4-x .△l x =l y ,△-2x-6=4-x ,解得;x=-10.△D (-10,-14).综上所述,点D 的坐标为(-23,143)或(-10,-14). (3)如图3所示:设A (a ,a 2)、B (b ,b 2).则CE=b-a ,DF=b 2-a 2=(b+a )(b-a ).△l x =l y ,△(b+a )(b-a )=b-a ,即(b+a-1)(b-a )=0.△b≠a ,△b+a=1.又△0≤a <b ,△a+a <1,△0≤a <12. 【点睛】本题主要考查的是二次函数的综合应用、解答本题主要应用了图形W 在坐标轴上的投影长度定义、一次函数、二次函数图象上点的坐标与函数解析式的关系,依据l x =l y 列出关于x 的方程和不等式是解题的关键.8.(2022·江苏无锡·模拟预测)测量金字塔高度:如图1,金字塔是正四棱锥S ABCD -,点O 是正方形ABCD 的中心SO 垂直于地面,是正四棱锥S ABCD -的高,泰勒斯借助太阳光.测量金字塔影子PBC 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥S ABCD -表示.(1)测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形ABCD 的边长为80m ,金字塔甲的影子是50m PBC PC PB ==,,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为______m .(2)测量乙金字塔高度:如图1,乙金字塔底座正方形ABCD 边长为80m ,金字塔乙的影子是PBC ,75,402m PCB PC ∠=︒=,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.【答案】(1)100;(2)506.【分析】(1)如图2中,连接OP 交BC 于T ,勾股定理求得OP ,再根据物体的长度与影子的长度成比例,即可求得OS ;(2)如图1中,连接OP ,OC ,过点O 作OR PC ⊥交PC 的延长线于R ,勾股定理求得OP ,再根据物体的长度与影子的长度成比例,即可求得OS .【详解】(1)如图2中,连接OP 交BC 于T ,四边形ABCD 是正方形,,OC OB AC BD ∴=⊥,80BC CD == ,50PC PB ==,OP ∴垂直平分BC ,1140,4022OT CD TC TB BC ∴=====, 2222504030PT PC CT ∴=-=-=,403070OP OT PT ∴=+=+=,设金子塔的高度为h ,物体的长度与影子的长度成比例,10.7h OP =, 100h ∴=,故答案为:100.(2)如图,根据图1作出俯视图,连接OP ,OC ,过点O 作OR PC ⊥交PC 的延长线于R ,4575120OCP OCB PCB∠=∠+∠=︒+︒=︒,60OCR∴∠=︒,80BC=,四边形ABCD是正方形,22221118080402222OC AC AB BC∴==+=+=,cos60202CR OC∴=⨯︒=,3sin604022062OR OC=⨯︒=⨯=,402202602PR PC CR∴=+=+=,2222(206)(602)406OP OR PR∴=+=+=,10.8SOOP=,506SO∴=.∴乙金字塔的高度为506.【点睛】本题考查了正方形的性质,解直角三角形,俯视图,物长与影长成正比等知识,正确的添加辅助线构造直角三角形是解题的关键.9.(2021·全国·九年级专题练习)如图是某校校史荣誉室的正方形网格平面图,实线表示墙体或门.在点A处安装了360度旋转摄像头,由于墙体的的遮挡,阴影部分无法监控,这部分无法监控到的区域通常称为监控盲区.(1)小红同学进入校史荣誉室随意参观,站在监控盲区的概率是多少?(2)为了监控效果更好,使得监控盲区最小,请你帮助学校在墙体AB上重新设计摄像头安装的位置,画出示意图,并说明理由.【答案】(1)320;(2)见详解【分析】(1)分别求出荣誉室面积和盲区面积,再利用概率公式,即可求解;(2)把摄像头安装在AB的中点处,计算出监控盲区的面积,然后把摄像头安装在AB的其他位置,表达出监控盲区的面积,即可得到结论.【详解】解:(1)设小正方形的边长为1,△荣誉室面积=2×2+2×2+2×6=20,盲区面积=2×2-12×2×1=3,△站在监控盲区的概率=3÷20=320;(2)如图所示:摄像头安装在AB的中点处,监控盲区的面积最小,此时,监控盲区面积=2×12×1×2=2,若摄像头不安装在AB的中点处,则监控盲区面积=12×(CM+2)×2>2.【点睛】本题主要考查几何概率,掌握概率公式和方格纸的面积的计算,是解题的关键.10.(2019·陕西西安·中考模拟)如图,小华在晚上由路灯A走向路灯B.当他走到点P时,发现他身后影子的顶部刚好接触到路灯A的底部;当他向前再步行12m到达点Q时,发现他身前影子的顶部刚好接触到路灯B的底部.已知小华的身高是1.6m,两个路灯的高度都是9.6m,且AP=QB.(1)求两个路灯之间的距离.(2)当小华走到路灯B的底部时,他在路灯A下的影长是多少?【答案】(1)18米;(2)3.6米【分析】(1)如图1,先证明△APM△△ABD,利用相似比可得AP=16AB,即得BQ=16AB,则16AB+12+16AB=AB,解得AB=18(m);(2)如图2,他在路灯A下的影子为BN,证明△NBM△△NAC,利用相似三角形的性质得1.6189.6BNBN=+,然后利用比例性质求出BN即可.【详解】解:(1)如图1,△PM△BD,△△APM△△ABD,AP PMAB BD=,即1.69.6APAB=,△AP=16AB,△QB=AP,△BQ=16AB,而AP+PQ+BQ=AB,△16AB+12+16AB=AB,△AB=18.答:两路灯的距离为18m;(2)如图2,他在路灯A下的影子为BN,△BM△AC,△△NBM△△NAC,△BN BMAN AC=,即1.6189.6BNBN=+,解得BN=3.6.答:当他走到路灯B时,他在路灯A下的影长是3.6m.【点睛】本题考查了相似三角形的判定与性质,要求学生能根据题意画出对应图形,能判定出相似三角形,以及能利用相似三角形的性质即相似三角形的对应边的比相等的原理解决求线段长的问题等,蕴含了数形结合的思想方法.11.(2021·全国·九年级专题练习)小华想用学过的测量知识来测量家门前小河BC 的宽度:如图所示,他们在河岸边的空地上选择一点C ,并在点C 处安装了测倾器CD ,选择了河对岸边的一棵大树,将其底部作为点B ,顶部作为点A ,现测得古树的项端A 的仰角为37°,再在BC 的延长线上确定一点F ,使CF =5米,小华站在F 处,测得小华的身高EF =1.8米,小华在太阳光下的影长FG =3米,此时,大树AB 在太阳光下的影子为BF .已知测倾器的高度CD =1.5米,点G 、F 、C 、B 在同一水平直线上,且EF 、CD 、AB 均垂直于BG ,求小河的宽度BC .(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75)【答案】10米【分析】过点D 作DH △AB 所在直线于点H ,可得四边形DCBH 是矩形,BC =DH ,BH =CD =1.5,设BC =DH =x ,在Rt △ADH 中,用x 表示出AH ,再根据同一时刻物高与影长的比相等,列出等式即可求出小河的宽度BC .【详解】解:如图,过点D 作DH △AB 所在直线于点H ,可得四边形DCBH 是矩形,△BC =DH ,BH =CD =1.5,设BC =DH =x ,根据题意可知:在Rt △ADH 中,△ADH =37°,△AH =DH •tan 37°≈0.75x ,△AB =AH +BH =0.75x +1.5,BF =FC +CB =5+x ,根据同一时刻物高与影长的比相等,△EF AB FG BF=, △1.80.75 1.535x x+=+,解得x=10,所以BC=10(米),答:小河的宽度BC为10米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题、平行投影,解决本题的关键是设出未知数,利用同一时刻物高与影长的比相等建立方程.12.(2021·全国·九年级专题练习)在阳光下,小玲同学测得一根长为1米的垂直地面的竹竿的影长为0.6米,同时小强同学测量树的高度时,发现树的影子有一部分0.2米落在教学楼的第一级台阶上,落在地面上的影长为4.42米,每级台阶高为0.3米.小玲说:“要是没有台阶遮挡的话,树的影子长度应该是4.62米”;小强说:“要是没有台阶遮挡的话,树的影子长度肯定比4.62米要长”.(1)你认为小玲和小强的说法对吗?(2)请根据小玲和小强的测量数据计算树的高度;(3)要是没有台阶遮挡的话,树的影子长度是多少?【答案】(1)小玲的说法不对,小强的说法对;(2)树的高度为8米;(3)树的影子长度是4.8米.【分析】(1)根据题意可得小玲的说法不对,小强的说法对;(2)根据题意可得DEEH=10.6,DE=0.3,EH=0.18,进而可求大树的影长AF,所以可求大树的高度;(3)结合(2)即可得树的影长.【详解】(1)小玲的说法不对,小强的说法对,理由如下(2)可得; (2)根据题意画出图形,如图所示,根据平行投影可知:DEEH=10.6,DE=0.3,∴EH=0.3×0.6=0.18,∵四边形DGFH是平行四边形,∴FH=DG=0.2,∵AE=4.42,∴AF=AE+EH +FH=4.42+0.18+0.2=4.8,∵ABAF =10.6,∴AB=4.80.6=8(米).答:树的高度为8米.(3)由(2)可知:AF=4.8(米),答:树的影子长度是4.8米.【点睛】考查了相似三角形的应用、平行投影,解题关键是掌握并运用平行投影.13.(2021·全国·九年级专题练习)为方便住校生晚自习后回到宿舍就寝,新安装了一批照明路灯;一天上午小刚在观看新安的照明灯时,发现在太阳光的正面照射下,照明灯的灯杆的投影的末端恰好落在2.5米高文化走廊墙的顶端,小刚测得照明灯的灯杆的在太阳光下的投影从灯杆的杆脚到文化走廊的墙脚的影长为4.6米,同一时刻另外一个前来观看照明路灯小静测得身高1.5米小刚站立时在太阳光下的影长恰好为1米,请同学们画出与问题相关联的线条示意图并求出新安装的照明路灯的灯杆的高度?【答案】线条示意图见解析,新安装的照明路灯的灯杆的高度为9.4m.【分析】利用同一时刻投影的性质得出1.51 4.6AB ABBE==,进而得出答案.【详解】解:如图所示:过点E作EB△AC于点B,由题意可得:DC=BE=4.6m ,DE=BC=2. 5m,△同一时刻身高1.5米小刚站立时在太阳光下的影长恰好为1米,1.51 4.6AB AB BE == 解得: AB=6.9,△AC=AB+BC=6.9+2.5=9.4 (m),答:新安装的照明路灯的灯杆的高度为9.4m .【点睛】此题主要考查了投影的应用,利用同一时刻影子与高度的关系得出比例式是解题关键.14.(2011·四川达州·中考模拟)已知:如图,AB 和DE 是直立在地面上的两根立柱,AB =5m ,某一时刻,AB 在阳光下的投影BC =4m .(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影长时,同时测出DE 在阳光下的投影长为6m ,请你计算DE 的长.【答案】(1)答案见解析;(2)7.5m【详解】解:(1)作法:连接AC ,过点D 作DF△AC ,交直线BE 于F ,则EF 就是DE 的投影.(2)△太阳光线是平行的,△AC△DF .△△ACB=△DFE .又△△ABC=△DEF=90°,△△ABC△△DEF .△AB BC DE EF=, △AB=5m ,BC=4m ,EF=6m ,△546DE =, △DE=7.5(m) .【点睛】本题难度中等,主要考查学生对投影问题与相似三角形相结合解决实际问题的能力.15.(2021·全国·九年级专题练习)某数学兴趣小组,利用树影测量树高,如图(1),已测出树AB 的影长AC 为12米,并测出此时太阳光线与地面成30°夹角.(1)求出树高AB ;(2)因水土流失,此时树AB 沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.求树的最大影长.(用图(2)解答)【答案】(1)树AB 的高约为43m ;(2)83m .【分析】(1)在直角△ABC 中,已知△ACB =30°,AC =12米.利用三角函数即可求得AB 的长;(2)在△AB 1C 1中,已知AB 1的长,即AB 的长,△B 1AC 1=45°,△B 1C 1A =30°.过B 1作AC 1的垂线,在直角△AB 1N 中根据三角函数求得AN ,BN ;再在直角△B 1NC 1中,根据三角函数求得NC 1的长,再根据当树与地面成60°角时影长最大,根据三角函数即可求解.【详解】解:(1)AB =AC tan30°=12× 33= 43(米).答:树高约为43 米.(2)如图(2),B 1N =AN =AB 1sin45°=43×22=26(米).NC 1=NB 1tan60°=26 ×3 =62 (米).AC 1=AN +NC 1=26 +62 .当树与地面成60°角时影长最大AC 2(或树与光线垂直时影长最大或光线与半径为AB 的△A 相切时影长最大)AC 2=2AB 2=83 ;16.(2015·江苏镇江·中考真题)某兴趣小组开展课外活动.如图,A ,B 两地相距12米,小明从点A 出发沿AB 方向匀速前进,2秒后到达点D ,此时他(CD )在某一灯光下的影长为AD ,继续按原速行走2秒到达点F ,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H ,此时他(GH )在同一灯光下的影长为BH (点C ,E ,G 在一条直线上).(1)请在图中画出光源O 点的位置,并画出他位于点F 时在这个灯光下的影长FM (不写画法);(2)求小明原来的速度.【答案】(1)作图见试题解析;(2)1.5m /s .【分析】(1)利用中心投影的定义作图;(2)设小明原来的速度为xm /s ,则CE =2xm ,AM =(4x ﹣1.2)m ,EG =3xm ,BM =13.2﹣4x ,由△OCE △△OAM ,△OEG △△OMB ,得到CE EG AM BM,即代入解方程即可. 【详解】解:(1)如图,(2)设小明原来的速度为xm /s ,则CE =2xm ,AM =AF ﹣MF =(4x ﹣1.2)m ,EG =2×1.5x =3xm ,BM =AB ﹣AM =12﹣(4x ﹣1.2)=13.2﹣4x ,△点C ,E ,G 在一条直线上,CG △AB ,△△OCE △△OAM ,△OEG △△OMB ,△CE OE AM OM =,EG OE BM OM=, △CE EG AM BM =,即234 1.213.24x x x x=--, 解得x =1.5,经检验x =1.5为方程的解,△小明原来的速度为 1.5m /s .答:小明原来的速度为1.5m /s .【点睛】本题考查相似三角形的应用以及中心投影,掌握中心投影的定义以及相似三角形的判定与性质是解题关键.17.(2015·甘肃兰州·中考真题)如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB 和一根高度未知的电线杆CD ,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF 的长度为2米,落在地面上的影子BF 的长为10米,而电线杆落在围墙上的影子GH 的长度为3米,落在地面上的影子DH 的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是 投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【答案】(1) 平行;(2)电线杆的高度为7米.【分析】(1)有太阳光是平行光线可得利用的是平行投影;(2)连接AM 、CG ,过点E 作EN△AB 于点N ,过点G 作GM△CD 于点M ,根据平行投影时同一时刻物体与他的影子成比例求出电线杆的高度.【详解】(1)平行;(2)连接AM 、CG ,过点E 作EN△AB 于点N ,过点G 作GM△CD 于点M ,则BN=EF=2,GH=MD=3,EN=BF=10,DH=MG=5所以AN=10-2=8,由平行投影可知:即解得CD=7所以电线杆的高度为7m.18.(2020·甘肃白银·二模)如图,一棵被大风吹折的大树在B处断裂,树梢着地.经测量,折断部分AB与地面的夹角33α︒=,树干BC在某一时刻阳光下的影长6CD=米,而在同时刻身高1.8米的人的影子长为2.7米.求大树未折断前的高度(精确到0.1米).(参考数据:330. 54,330. 84,330.65sin cos tan︒︒︒≈≈≈)【答案】11.4米【分析】利用比例式求得BC的长,然后在Rt△ACB中求得AB的长,两者相加即可得到铁塔的高度.【详解】解:依题意,得1.82.7BCCD=即263BC=4BC∴=在Rt ACB∆中,47.4sin0.54BCABα==≈(米)47.411.4∴+=(米)答:大树未折断前的高度为11.4米【点睛】本题考查了解直角三角形的知识,解题的关键是正确的构造直角三角形并求解.19.(2019·台湾·中考真题)在公园有两座垂直于水平地面且高度不一的圆柱,两座圆柱后面有一堵与地面互相垂直的墙,且圆柱与墙的距离皆为120公分.敏敏观察到高度90公分矮圆柱的影子落在地面上,其影长为60公分;而高圆柱的部分影子落在墙上,如图所示.已知落在地面上的影子皆与墙面互相重直,并视太阳光为平行光,在不计圆柱厚度与影子宽度的情况下,请回答下列问题:(1)若敏敏的身高为150公分,且此刻她的影子完全落在地面上,则影长为多少公分? (2)若同一时间量得高圆柱落在墙上的影长为150公分,则高圆柱的高度为多少公分?请详细解释或完整写出你的解题过程,并求出答案.【答案】(1)敏敏的影长为100公分;(2)高圆柱的高度为330公分.【分析】(1)根据同一时刻,物长与影从成正比,构建方程即可解决问题.(2)如图,连接AE ,作//FB EA .分别求出AB ,BC 的长即可解决问题.【详解】解:(1)设敏敏的影长为x 公分.由题意:1509060x =, 解得100x =(公分),经检验:100x =是分式方程的解.△敏敏的影长为100公分.(2)如图,连接AE ,作//FB EA .//AB EF ,△四边形ABFE 是平行四边形,150AB EF ∴==公分,设BC y =公分,由题意BC 落在地面上的影从为120公分.9012060y ∴=, 180y ∴=(公分),150180330AC AB BC ∴=+=+=(公分),答:高圆柱的高度为330公分.。

2011中考数学模拟分类汇编45投影与视图解析

2011中考数学模拟分类汇编45投影与视图解析

答案B2 .( 2011年北京四中中考模拟 20)面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是、选择题1. (2011年黄冈中考调研六)图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个3、(2011年浙江省杭州市模拟)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两投影与视图4、(2011年浙江杭州三模) 如图是某几何体的三视图及相关 是( )A . a >cB . b >c2.2 2 2.2 2C . 4a +b =cD . a +b =c 答案:D第4题图5、(2011年浙江杭州六模)如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个 相同而另一个不同的几何体是(A.①②B.②③C.②④D.③④答案:B3、(2011年浙江杭州七模)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小 立方体的个数是( )A . 3B . 4C . 5D . 6主视图左视图俯视图答案:B数据,则判断正确的俯视圈1、(2011年浙江省杭州市中考数学模拟22)14、在水平的讲台上放置圆柱形水杯和长方体形粉笔盒如右下实物图,2、(北京四中模拟)右图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中 最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A答案:B、填空题则它俯视图是图,左视图是图 ____________ 图① 图② 答案:仝 ______ 4 __________OD fl图③E®实物图3、( 2011杭州模拟)如图是由棱长为 1的正方体搭成的积木三视图,则图中棱长为 1的正方体的个数是( )(09台C.左视图的面积最大D.三个视图的面积一样大5、(2011北京模拟 32)在下面的四个几何体中,左视图与主视图不相同的几何体是 <A )卩1. (2011年黄冈市浠水县中考调研试题)如图所示的正方体, 用一个平面截去它的一个角,则截面不可能是(主观图 左视圏俯视圏"A . 3个B . 5个C . 6个D . 8个 答案:D3、(2011杭州模拟25)如图,由三个相同小正方体组成的立体图形的左视图第一题改编)答案:D4、( 2011杭州模拟 26)由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的 是 ............... ()A .正视图的面积最大B .俯视图的面积最大答案:BrrFIC、答案:正方诫(E 〉心球■(C)心圆惟 (D )疋A .锐角三角形答案:CB .等腰三角形C .等腰直角三角形D •等边三角形2. (2011年北京四中中考全真模拟别为()A、矩形,矩形 B 、圆,半圆答案:D 15)一矩形纸片绕其一边旋转C 、圆,矩形D180度后,所得的几何体的主视图和俯视图分矩形,半圆3. (2011年北京四中中考全真模拟()16)如图所示俯视图左视图主俯视图A、4答案:A1.(2011湖北省天门市一模)一个正方体的平面展开图如图所示,将它折成正方体后建”字对面是()A .和答案:DB •谐设和谐D .门主视图A . 3B . 4 左视图C. 5俯视图D . 62. (2011浙江杭州模拟7)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()答案:CC .天(2011年宁夏银川)如果用□表示1个立方体,用□表示两个立方体叠加, 右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是用■表示三个立方体叠加,那么下面# * #A答案:A5. (2011则其主视图的面积为(A. C. 12D. 24答案:2、(2011年浙江仙居)小杰从正面(图 示“主视方向”)观察左边的热水瓶时, 得到的俯视图是( ) 答案:CB. 9. (2011年江苏连云港)若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体 可能是()A .球B .圆柱C .圆锥D .棱锥答案.C1.(2011年宁夏银川)教学楼里的大型多功能厅建成阶梯形状是为了()A.美观B. 宽敞明亮C.减小盲区 D.容纳量大答案:C (第 5题图)二填空题1 (2011湖北省天门市一模).图11-1是三个直立于水平面上的形状完全相同的几何体 (下底面为圆面,单位:cm ).将 它们拼成如图11-2的新几何体,则该新几何体的体积为 _______________ cm 3.(计算结果保留兀)A.C. D.CF 为2答案:60二2. . (2011浙江省杭州市10模)如图,已知圆锥的高为 4,底面圆的直径为 6,则此圆锥的侧面积是 _▲第2题图答案:15二三、解答题1、( 2011年北京四中中考模拟 19)(本小题满分5分)已知:CD 为一幢3米高的温室,其南面窗户的底框 G 距地面1米,CD 在地面上留下的最大影长米,现欲在距 C 点7米的正南方A 点处建一幢12米高的楼房AB (设A,C,F 在同一水平线上) (1 )、按比例较精确地作出高楼 AB 及它的最大影长 AE;(2)、问若大楼AB 建成后是否影响温室 CD 的采光,试说明理由。

中考数学热点题型专练:投影与视图

中考数学热点题型专练:投影与视图

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学热点题型专练:热点18 投影与视图【命题趋势】投影与视图这部分内容是一个小的考点,必考内容之一,一般为一个选择题,分值3—4分,一般解答题很少考到。

可能很多同学会忽视这部分内容,感觉投影与视图又简单,考的又少,所以在复习时往往会忽略这部分内容,这是严重错误的想法,就因为它考的不多,又简单,所以我们才应该认真对待这部分内容,拿好拿稳这几分。

【满分技巧】一、整体把握知识结构二.重点知识1.两种投影的概念与性质2.三种视图:有关视图,一般有两种类型的问题:A.由物质到视图,这种类型的问题比较简单;B.由视图想象物体的样子,这个对空间想象能力要求很高,一般比较难;这两种类型的问题,一般考查方式都是以小正方体的堆积为载体,进行考查.【限时检测】(建议用时:30分钟)一、选择题1.下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【答案】B【解析】A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.2.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.3【答案】D【解析】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∠=4π,∠n=120即∠BAB′=120°.∠E为弧BB′中点,∠∠AFB=90°,∠BAF=60°,∠BF=AB•sin∠BAF=6×=3,∠最短路线长为3.故选:D.3.一个几何体的三视图如图所示,则这个几何体的表面积是()A.5cm2B.8cm2C.9cm2D.10cm2【答案】D【解析】由题意推知几何体是长方体,长、宽、高分别1cm、1cm、2cm,所以其面积为:2×(1×1+1×2+1×2)=10(cm2).故选:D.4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体∠移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【答案】A【解析】将正方体∠移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A.5.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解析】本题考查了三视图的判断,三视图没有发生变化的是主视图和左视图,发生变化的是俯视图,故选A.6.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【答案】D【解析】解析本题考查三视图,俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D7.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.【答案】B【解析】从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.8.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】从左面看可得到从左到右分别是3,1个正方形.故选:B.9.下列几何体中,主视图是三角形的是()A. B. C. D.【答案】C【解析】A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.10.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.7【答案】B【解析】从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.11.如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【答案】A【解析】从上面观察可得到:.故选:C.12.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解析】从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:故选:A.13.下列几何体中,俯视图不是圆的是()A.四面体B.圆锥C.球D.圆柱【答案】A【解析】A、俯视图是三角形,故此选项正确;B、俯视图是圆,故此选项错误;C、俯视图是圆,故此选项错误;D、俯视图是圆,故此选项错误;故选:A.14.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】分析根据俯视图即从物体的上面观察得得到的视图,进而得出答案A故选:A.15.)如图为正方体的一种平面展开图,各面都标有数字,则数字为﹣2的面与其对面上的数字之积是()A.﹣12B.0C.﹣8D.﹣10【答案】A【解析】分析根据正方体的平面展开图的特征知,其相对面的两个正方形之间一定相隔一个正方形,所以数字为﹣2的面的对面上的数字是6,其积为﹣12.故选:A16.如图∠是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图∠.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【答案】A【解析】图∠的三视图为:图∠的三视图为:故选:A.17.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【答案】C【解析】从上面看,得到的视图是:,故选:C.18.如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是()A.平行四边形B.正方形C.矩形D.圆【答案】C【解析】圆柱底面圆半径为2,高为2,∴底面直径为4,∴圆柱的左视图是一个长为4,宽为2的长方形,故选:C.19.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.观察图形可知,这块西瓜的三视图是.故选:B.20.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【解析】左视图有3列,每列小正方形数目分别为2,1,1.故选:B.21.如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.二、填空题22.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.【答案】10【解析】设俯视图有9个位置分别为:由主视图和左视图知:∠第1个位置一定是4,第6个位置一定是3;∠一定有2个2,其余有5个1;∠最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.23.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【答案】∠∠【解析】本题考查对三视图的认识.∠长方体的主视图,俯视图,左视图均为矩形;∠圆柱的主视图,左视图均为矩形,俯视图为圆;∠圆锥的主视图和左视图为三角形,俯视图为圆.故答案为∠∠24.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为 . 【答案】(18+2)cm 2【解析】该几何体是一个三棱柱,底面等边三角形边长为2cm ,高为cm ,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm 2).故答案为(18+2)cm 2第11题图③圆锥②圆柱①长方体25.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.。

中考试题中的视图与投影

中考试题中的视图与投影

三、鲁班锁
3. 鲁班锁,民间也称作孔明锁、八卦锁,它起源于中国古代建筑中首创的榫卯结构,如图是鲁班锁的
其中一个部件,它的主视图是( )
第 3 题图
—1—
Байду номын сангаас
参考答案
中考试题中的数学文化
1. C 2. A 【解析】S 侧面=4×4+2 2×4×2=16+16 2. 3. C
—2—
第七章 图形的变化
第二节 视图与投影
中考试题中的数学文化
一、牟合方盖 所谓“牟合方盖” ,是以棱长为一寸的立方体八枚,合之则棱长为二寸的立方体,又以过立方体中之 二正圆柱垂直相贯并内切于立方体之相应侧面,则二内切于立方体的两垂直相贯的正圆柱的共同部分.“牟 合方盖”是刘徽研究球体体积公式时创建的几何模型,这一模型的建立,为最后获得球体体积公式提供了 充分条件. 1. 我国古代数学家利用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从 纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方 盖”的一种模型,它的主视图是( )
二、《九章算术》——堑堵 2. 我国古代数学著作《九章算术》中,将底面是直角三角形,且侧棱与底面垂直的三棱柱称为“堑 堵”.某“堑堵”的三视图如图所示(网格图中每个小正方形的边长均为 1),则该“堑堵”的侧面积为( )
第 2 题图
A. 16+16 2
B. 16+8 2
C. 24+16 2
D. 4+4 2

中考数学真题专项汇编解析—投影与视图、命题、尺规作图

中考数学真题专项汇编解析—投影与视图、命题、尺规作图

中考数学真题专项汇编解析—投影与视图、命题、尺规作图一.选择题1.(2022·新疆·中考真题)如图是某几何体的展开图,该几何体是()A.长方体B.正方体C.圆锥D.圆柱【答案】C【分析】观察所给图形可知展开图由一个扇形和一个圆构成,由此可以判断该几何体是圆锥.【详解】解:∵展开图由一个扇形和一个圆构成,∵该几何体是圆锥.故选C.【点睛】本题考查圆锥的展开图,熟记圆锥展开图的形状是解题的关键.2.(2022·江苏宿迁·中考真题)下列展开图中,是正方体展开图的是()A.B.C.D.【答案】C【分析】根据正方体的表面展开图共有11种情况,A,D是“田”型,对折不能折成正方体,B是“凹”型,不能围成正方体,由此可进行选择.【详解】解:根据正方体展开图特点可得C答案可以围成正方体,故选:C.【点睛】此题考查了正方体的平面展开图.关键是掌握正方体展开图特点.3.(2022·浙江金华·中考真题)如图,圆柱的底面直径为AB,高为AC,一只蚂蚁在C处,沿圆柱的侧面爬到B处,现将圆柱侧面沿AC“剪开”,在侧面展开图上画出蚂蚁爬行的最近路线,正确的是()A.B.C.D.【答案】C【分析】根据圆柱的侧面展开特征,两点之间线段最短判断即可;【详解】解:∵AB为底面直径,∵将圆柱侧面沿AC“剪开”后,B点在长方形上面那条边的中间,∵两点之间线段最短,故选:C.【点睛】本题考查了圆柱的侧面展开,掌握两点之间线段最短是解题关键.4.(2022·四川遂宁·中考真题)如图是正方体的一种展开图,那么在原正方体中与“我”字所在面相对的面上的汉字是()A.大B.美C.遂D.宁【答案】B【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“美”是相对面.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手.5.(2022·四川自贡·中考真题)如图,将矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是()A.B.C.D.【答案】A【分析】根据矩形绕一边旋转一周得到圆柱体示来解答.【详解】解:矩形纸片ABCD绕边CD所在的直线旋转一周,得到的立体图形是圆柱体.故选:A.【点睛】本题考查了点、线、面、体,熟练掌握“面动成体”得到的几何体的形状是解题的关键.6.(2022·湖南衡阳·中考真题)石鼓广场供游客休息的石板凳如图所示,它的主视图是()A.B.C.D.【答案】A【分析】根据主视图的定义和画法进行判断即可.【详解】解:从正面看过去,看到上下共三个矩形,所以主视图是:故选A【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.7.(2022·云南·中考真题)下列图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图),则这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.圆柱【答案】D【分析】根据三视图逆向即可得.【详解】解:此几何体为一个圆柱.故选:D.【点睛】此题考查由三视图还原几何体,既要考虑各视图的形状,还要把各视图的情况综合考虑才能得到几何体的形状.8.(2022·天津·中考真题)下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】A【分析】画出从正面看到的图形即可得到它的主视图.【详解】解:几何体的主视图为:故选:A【点睛】本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.9.(2022·江西·中考真题)如图是四个完全相同的小正方体搭成的几何体,它的俯视图为()A.B.C.D.【答案】A【分析】从上面观察该几何体得到一个“T”字形的平面图形,横着两个正方形,中间有一个正方形,且有两条垂直的虚线,下方有半个正方形.画出图形即可.【详解】俯视图如图所示.故选:A.【点睛】本题主要考查了几何体的三视图,俯视图是从上面观察几何体得出的平面图形..注意:能看到的线用实线,看不到而存在的线用虚线.10.(2022·浙江温州·中考真题)某物体如图所示,它的主视图是()A.B.C.D.【答案】D【分析】根据主视图的定义和画法进行判断即可.【详解】解:某物体如图所示,它的主视图是:故选:D.【点睛】本题考查简单几何体的主视图,主视图就是从正面看物体所得到的图形.11.(2022·浙江宁波·中考真题)如图所示几何体是由一个球体和一个圆柱组成的,它的俯视图是()A.B.C.D.【答案】C【分析】根据俯视图的意义和画法可以得出答案.【详解】根据俯视图的意义可知,从上面看物体所得到的图形,选项C符合题意,故答案选:C.【点睛】本题主要考查组合体的三视图,注意虚线、实线的区别,掌握俯视图是从物体的上面看得到的视图是解题的关键.12.(2022·江苏扬州·中考真题)如图是某一几何体的主视图、左视图、俯视图,该几何体是()A.四棱柱B.四棱锥C.三棱柱D.三棱锥【答案】B【分析】根据各个几何体三视图的特点进行求解即可.【详解】解:∵该几何体的主视图与左视图都是三角形,俯视图是一个矩形,而且两条对角线是实线,∵该几何体是四棱锥,故选B.【点睛】本题主要考查了由三视图还原几何体,熟知常见几何体的三视图是解题的关键.13.(2022·浙江绍兴·中考真题)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【答案】B【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B.【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.14.(2022·浙江嘉兴·中考真题)如图是由四个相同的小立方体搭成的几何体,它的主视图是()A.B.C.D.【答案】B【分析】主视图有3列,每列小正方形数目分别为2,1,1.【详解】如图所示:它的主视图是:.故选:B.【点睛】此题主要考查了简单组合体的三视图,正确把握观察角度是解题关键.15.(2022·浙江丽水·中考真题)如图是运动会领奖台,它的主视图是()A.B.C.D.【答案】A【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:领奖台的主视图是:故选:A.【点睛】本题考查了简单几何体的三视图,从正面看得到的图形是主视图.16.(2022·安徽·中考真题)一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:该几何体的俯视图为:,故选:A【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.17.(2022·浙江舟山·中考真题)用尺规作一个角的角平分线,下列作法中错误的是( )A .B .C .D .【答案】D【分析】根据作图轨迹及角平分线的定义判断即可得出答案.【详解】A 、如图,由作图可知:,OA OC AB BC ==,又∵OB OB =,∵OAB OCB ≅,∵AOB COB ∠=∠,∵OB 平分AOC ∠.故A 选项是在作角平分线,不符合题意;B 、如图,由作图可知:,OA OB OC OD ==,又∵COB AOD ∠=∠,∵OBC OAD ≅,∵OA OB OAD OBC OCB ODA =∠=∠∠=∠,,,∵AC BD =,∵CEA BED ∠=∠,ECA EDB ∠=∠,∵AEC BED ≅△△,∵AE BE =,∵,EAO EBO OA OB ∠=∠=,∵AOE BOE ∠=∠,∵OE 平分AOB ∠.故B 选项是在作角平分线,不符合题意;C 、如图,由作图可知:,AOB MCN OC CD ∠=∠=,∵CD OB ∥,COD CDO =∠∠,∵DOB CDO ∠=∠,∵COD DOB ∠=∠,∵OD 平分AOB ∠.故C 选项是在作角平分线,不符合题意;D 、如图,由作图可知:,OA BC OC AB ==,又∵OB OB =,∵AOB CBO ≅,∵,,AOB OBC COB ABO ∠=∠∠=∠故D 选项不是在作角平分线,符合题意;故选:D【点睛】本题考查了角平分线的作图,全等三角形的性质与判定,掌握以上知识是解题的关键.18.(2022·山东泰安·中考真题)某种零件模型如图所示,该几何体(空心圆柱)的俯视图是( )A .B .C .D .【答案】C【详解】找到从上面看所得到的图形即可:空心圆柱由上向下看,看到的是一个圆环.故选C19.(2022·湖北十堰·中考真题)如图,工人砌墙时,先在两个墙脚的位置分别插一根木桩,再拉一条直的参照线,就能使砌的砖在一条直线上.这样做应用的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形两边之和大于第三边【答案】B【分析】由直线公理可直接得出答案.【详解】解:建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故选:B.【点睛】此题主要考查了直线的性质,要想确定一条直线,至少要知道两点.20.(2022·四川达州·中考真题)下列命题是真命题的是()A.相等的两个角是对顶角B.相等的圆周角所对的弧相等C.若a b<,则22ac bc<D.在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是1 3【答案】D【分析】分别根据对顶角的定义,圆周角定理,不等式的基本性质及概率公式进行判断即可得到答案.【详解】有公共顶点且两条边互为反向延长线的两个角是对顶角,故A选项错误,不符合题意;在同圆或等圆中,相等的圆周角所对的弧相等,故B选项错误,不符合题意;若a b<,则22ac bc≤,故C选项错误,不符合题意;在一个不透明的箱子里放有1个白球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是13,故D选项正确,符合题意;故选:D.【点睛】本题考查了命题的真假,涉及对顶角的定义,圆周角定理,不等式的基本性质及概率公式,熟练掌握知识点是解题的关键.21.(2022·湖北随州·中考真题)如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【分析】根据三视图的形成,从正面、左面和上面三个方向看立体图形得到的平面图形,注意所有的看到的或看不到的棱都应表现在三视图中,看得见的用实线,看不见的用虚线,虚实重合用实线.【详解】解:从正面和左面看,得到的平面图形均是半圆,而从上面看是一个圆,因此该几何体主视图与左视图一致,故选:A.【点睛】本题考查了三视图的知识,准确把握从正面、左面和上面三个方向看立体图形得到的平面图形是解决问题的关键.22.(2022·湖北黄冈·中考真题)某几何体的三视图如图所示,则该几何体是()A.圆锥B.三棱锥C.三棱柱D.四棱柱【答案】C【分析】由主视图和左视图得出该几何体是柱体,再结合俯视图可得答案.【详解】解:由三视图知,该几何体是三棱柱,故选:C.【点睛】本题主要考查由三视图判断几何体,由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.23.(2022·广西梧州·中考真题)下列命题中,假命题...是()A.2-的绝对值是2-B.对顶角相等C.平行四边形是中心对称图形D.如果直线,∥∥,那么直线a ba cb c∥【答案】A【分析】根据绝对值的意义,对顶角的性质,平行四边形的性质,平行线的判定逐一判断即可.【详解】解:A.2-的绝对值是2,故原命题是假命题,符合题意;B.对顶角相等,故原命题是真命题,不符合题意;C.平行四边形是中心对称图形,故原命题是真命题,不符合题意;D.如果直线,a cb c∥∥,那么直线a b∥,故原命题是真命题,不符合题意;故选:A.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.24.(2022·内蒙古包头·中考真题)几个大小相同,且棱长为1的小正方体所搭成几何体的俯视图如图所示,图中小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图的面积为()A.3B.4C.6D.9【答案】B【分析】根据该几何体的俯视图以及该位置小正方体的个数,可以画出左视图,从而求出左视图的面积;【详解】由俯视图以及该位置小正方体的个数,左视图共有两列,第一列两个小正方体,第二列两个小正方体,可以画出左视图如图,所以这个几何体的左视图的面积为4故选:B【点睛】本题考查了物体的三视图,解题饿到关键是根据俯视图,以及该位置小正方体的个数,正确作出左视图.25.(2022·湖北武汉·中考真题)如图是一个立体图形的三视图,该立体图形是()A.长方体B.正方体C.三棱柱D.圆柱【答案】A【分析】根据题意可得这个几何体的三视图为长方形和正方形,即可求解.【详解】解:根据题意得:该几何体的三视图为长方形和正方形,∵该几何体是长方体.故选:A【点睛】本题考查由三视图确定几何体的名称,熟记常见几何体的三视图的特征是解题的关键.26.(2022·黑龙江齐齐哈尔·中考真题)由一些大小相同的小正方体搭成的几何体的主视图、左视图和俯视图都是如图所示的“田”字形,则搭成该几何体的小正方体的个数最少为()A.4个B.5个C.6个D.7个【答案】C【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出第二层的个数,从而算出总的个数.【详解】解:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=6.故选:C.【点睛】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.27.(2022·黑龙江绥化·中考真题)下列图形中,正方体展开图错误的是()A.B.C.D.【答案】D【分析】利用正方体及其表面展开图的特点解题.【详解】D选项出现了“田字形”,折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,A、B、C选项是一个正方体的表面展开图.故选:D.【点睛】此题考查了几何体的展开图,只要有“田”“凹”字的展开图都不是正方体的表面展开图.28.(2022·广西贺州·中考真题)下面四个几何体中,主视图为矩形的是()A.B.C.D.【答案】A【分析】依次分析每个选项中的主视图,找出符合题意的选项即可.【详解】解:A选项图形的主视图为矩形,符合题意;B选项图形的主视图为三角形,中间由一条实线,不符合题意;C选项图形的主视图为三角形,不符合题意;D选项图形的主视图为梯形,不符合题意;故选:A.【点睛】本题考查了几何体的主视图,解题关键是理解主视图的定义.29.(2022·湖南永州·中考真题)我市江华县有“神州摇都”的美涨,每逢“盘王节”会表演长鼓舞,长鼓舞中使用的“长鼓”内腔挖空,两端相通,两端鼓口为圆形,中间鼓腰较为细小.如图为类似“长鼓”的几何体,其俯视图的大致形状是()A.B.C.D.【答案】B【分析】根据题目描述,判断几何体的俯视图即可;【详解】解:根据长鼓舞中使用的“长鼓”内腔挖空,两端相通,可知俯视图中空,两端鼓口为圆形可知俯视图是圆形,鼓腰也是圆形,且是不能直接看见,所以中间是虚圆;故选:B.【点睛】本题主要考查几何体的三视图中的俯视图,解本题的关键在于需学生具备一定的空间想象能力.30.(2022·湖南岳阳·中考真题)某个立体图形的侧面展开图如图所示,它的底面是正三角形,那么这个立体图形是()A.圆柱B.圆锥C.三棱柱D.四棱柱【答案】C【分析】根据常见立体图形的底面和侧面即可得出答案.【详解】解:A选项,圆柱的底面是圆,故该选项不符合题意;B选项,圆锥的底面是圆,故该选项不符合题意;C选项,三棱柱的底面是三角形,侧面是三个长方形,故该选项符合题意;D选项,四棱柱的底面是四边形,故该选项不符合题意;故选:C.【点睛】本题考查了几何体的展开图,掌握n棱柱的底面是n边形是解题的关键.31.(2022·河南·中考真题)2022年北京冬奥会的奖牌“同心”表达了“天地合·人心同”的中华文化内涵,将这六个汉字分别写在某正方体的表面上,如图是它的一种展开图,则在原正方体中,与“地”字所在面相对的面上的汉字是()A.合B.同C.心D.人【答案】D【分析】根据正方体的展开图进行判断即可;【详解】解:由正方体的展开图可知“地”字所在面相对的面上的汉字是“人”;故选:D.【点睛】本题主要考查正方体的展开图相对两个面上的文字,注意正方体的空间图形,从相对面入手是解题的关键.32.(2022·湖南湘潭·中考真题)如图,小明在学了尺规作图后,作了一个图形,其作图步骤是:∵作线段2AB ,分别以点A、B为圆心,以AB长为半径画弧,两弧相交于点C、D;∵连接AC、BC,作直线CD,且CD与AB相交于点H.则下列说法不正确的是()A.ABC是等边三角形B.AB CD⊥C.AH BH=D.45∠=︒ACD【答案】D【分析】根据等边三角形的判定和性质,线段垂直平分线的性质一一判断即可.【详解】解:由作图可知:AB=BC=AC,∵∵ABC是等边三角形,故A选项正确∵等边三角形三线合一,由作图知,CD是线段AB的垂直平分线,∵AB CD⊥,故B选项正确,∵AH BH=,30∠=︒,故C选项正确,D选项错误.故选:D.ACD【点睛】此题考查了作图-基本作图,等边三角形的判定和性质,线段垂直平分线的性质,解题的关键是理解题意,灵活运用所学知识解决问题.33.(2022·四川广元·中考真题)如图,在∵ABC中,BC=6,AC=8,∵C=90°,以点B为圆心,BC长为半径画弧,与AB交于点D,再分别以A、D为圆心,AD的长为半径画弧,两弧交于点M、N,作直线MN,分别交AC、AB于大于12点E 、F ,则AE 的长度为( )A .52B .3C .D .103【答案】A【分析】由题意易得MN 垂直平分AD ,AB =10,则有AD =4,AF =2,然后可得4cos 5AC A AB ∠==, 进而问题可求解.【详解】解:由题意得:MN 垂直平分AD ,6BD BC ==,∵1,902AF AD AFE =∠=︒,∵BC =6,AC =8,∵C =90°,∵10AB ,∵AD =4,AF =2,4cos 5AC A AB ∠==,∵5cos 2AF AE A ==∠;故选A . 【点睛】本题主要考查勾股定理、垂直平分线的性质及三角函数,熟练掌握勾股定理、垂直平分线的性质及三角函数是解题的关键.34.(2022·河北·中考真题)∵~∵是由相同的小正方体粘在一起的几何体,若组合其中的两个,恰是由6个小正方体构成的长方体,则应选择( )A.∵∵B.∵∵C.∵∵D.∵∵【答案】D【解析】【分析】观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意【详解】解:观察图形可知,∵~∵的小正方体的个数分别为4,3,3,2,其中∵∵组合不能构成长方体,∵∵组合符合题意故选D【点睛】本题考查了立体图形,应用空间想象能力是解题的关键.二、填空题35.(2022·江苏无锡·中考真题)请写出命题“如果a b>,那么0-<”的逆命题:b a________.【答案】如果0-<,那么a b>b a【分析】根据逆命题的概念解答即可.【详解】解:命题“如果a b>,那么0b a-<,那么a b>”,-<”的逆命题是“如果0b a故答案为:如果0-<,那么a b>.b a【点睛】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.36.(2022·湖南常德·中考真题)如图是一个正方体的展开图,将它拼成正方体后,“神”字对面的字是________.【答案】月【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:由正方体的展开图特点可得:“神”字对面的字是“月”.故答案为:月.【点睛】此题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.37.(2022·浙江湖州·中考真题)“如果a b =,那么a b =”的逆命题是___________.【答案】如果a b =,那么a b =【分析】把一个命题的条件和结论互换就得到它的逆命题,从而得出答案.【详解】解:“如果a b =,那么a b =”的逆命题是:“如果a b =,那么a b =”,故答案为:如果a b =,那么a b =.【点睛】本题考查命题与定理,解题的关键是理解题意,掌握逆命题的定义. 38.(2022·浙江温州·中考真题)如图是某风车示意图,其相同的四个叶片均匀分布,水平地面上的点M 在旋转中心O 的正下方.某一时刻,太阳光线恰好垂直照射叶片,OA OB ,此时各叶片影子在点M 右侧成线段CD ,测得8.5m,13mMC CD==,垂直于地面的木棒EF与影子FG的比为2∵3,则点O,M之间的距离等于___________米.转动时,叶片外端离地面的最大高度等于___________米.【答案】1010【分析】过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ交BD 于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,求出CH的长度,根据23EF OMFG MH==,求出OM的长度,证明BIO JIB∽,得出23BI IJ=,49OI IJ=,求出IJ、BI、OI的长度,用勾股定理求出OB的长,即可算出所求长度.【详解】如图,过点O作AC、BD的平行线,交CD于H,过点O作水平线OJ 交BD于点J,过点B作BI∵OJ,垂足为I,延长MO,使得OK=OB,由题意可知,点O是AB的中点,∵OH AC BD,∵点H是CD的中点,∵13m CD=,∵16.5m2CH HD CD===,∵8.5 6.515m MH MC CH=+=+=,又∵由题意可知:23EF OMFG MH==,∵2153OM=,解得10m=OM,∵点O、M之间的距离等于10m,∵BI∵OJ,∵90BIO BIJ∠=∠=︒,∵由题意可知:90OBJ OBI JBI ∠=∠+∠=︒,又∵90BOI OBI ∠+∠=︒,∵BOI JBI ∠=∠,∵BIO JIB ∽,∵23BI OI IJ BI ==,∵23BI IJ =,49OI IJ =, ∵,OJ CD OH DJ ,∵四边形IHDJ 是平行四边形,∵ 6.5m OJ HD ==, ∵46.5m 9OJ OI IJ IJ IJ =+=+=,∵ 4.5m IJ =,3m BI =,2m OI =,∵在Rt OBI △中,由勾股定理得:222OB OI BI =+,∵OB ,∵OB OK ==,∵(10m MK MO OK =+=,∵叶片外端离地面的最大高度等于(10m,故答案为:10,10+【点睛】本题主要考查了投影和相似的应用,及勾股定理和平行四边形的判定与性质,正确作出辅助线是解答本题的关键.39.(2022·浙江杭州·中考真题)某项目学习小组为了测量直立在水平地面上的旗杆AB 的高度,把标杆DE 直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .已知B ,C ,E ,F 在同一直线上,AB ∵BC ,DE ∵EF ,DE =2.47m ,则AB =_________m .【答案】9.88【分析】根据平行投影得AC ∵DE ,可得∵ACB =∵DFE ,证明Rt ∵ABC ∵∵Rt ∵DEF ,然后利用相似三角形的性质即可求解.【详解】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC =8.72m ,EF =2.18m .∵AC ∵DE ,∵∵ACB =∵DFE ,∵AB ∵BC ,DE ∵EF ,∵∵ABC =∵DEF =90°,∵Rt ∵ABC ∵∵Rt ∵DEF , ∵AB BC DE EF =,即8.722.47 2.18AB =,解得AB =9.88, ∵旗杆的高度为9.88m .故答案为:9.88.【点睛】本题考查了相似三角形的判定与性质,平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.证明Rt ∵ABC ∵∵Rt ∵DEF 是解题的关键.40.(2022·湖南衡阳·中考真题)如图,在ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作圆弧,两弧相交于点M 和点N ,作直线MN 交CB 于点D ,连接AD .若8AC =,15BC =,则ACD △的周长为_________.【答案】23【分析】由作图可得:MN 是AB 的垂直平分线,可得,DA DB =再利用三角形的周长公式进行计算即可.【详解】解:由作图可得:MN 是AB 的垂直平分线,,DA DB ∴=8AC =,15BC =,81523,ACD CAC CD AD AC CD BD AC BC 故答案为:23【点睛】本题考查的是线段的垂直平分线的作图,线段的垂直平分线的性质,掌握“线段的垂直平分线的性质”是解本题的关键.三.解答题41.(2022·陕西·中考真题)小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB 的影长OC 为16米,OA 的影长OD 为20米,小明的影长FG 为2.4米,其中O 、C 、D 、F 、G 五点在同一直线上,A 、B 、O 三点在同一直线上,且AO ∵OD ,EF ∵FG .已知小明的身高EF 为1.8米,求旗杆的高AB .【答案】旗杆的高AB 为3米.【分析】证明∵AOD ∵∵EFG ,利用相似比计算出AO 的长,再证明∵BOC ∵∵AOD ,然后利用相似比计算OB 的长,进一步计算即可求解. 【详解】解:∵AD ∵EG ,∵∵ADO =∵EGF . 又∵∵AOD =∵EFG =90°,∵∵AOD ∵∵EFG . ∵AO ODEF FG =.∵ 1.820152.4EF OD AO FG ⋅⨯===. 同理,∵BOC ∵∵AOD .∵BO OCAO OD =.∵15161220AO OC BO OD ⋅⨯===. ∵AB =OA −OB =3(米).∵旗杆的高AB 为3米.【点睛】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.42.(2022·陕西·中考真题)如图,已知,,ABC CA CB ACD =∠△是ABC 的一个外角.请用尺规作图法,求作射线CP ,使CP AB ∥.(保留作图痕迹,不写作法)。

(9月最新修订版)2011全国各地中考数学试题分类汇编考点41_投影与视图(含答案)

(9月最新修订版)2011全国各地中考数学试题分类汇编考点41_投影与视图(含答案)

投影与视图A一、选择题1. (2011浙江金华,2,3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )A .6B .5C .4D .3 【答案】B2. (2011湖北鄂州,12,3分)一个几何体的三视图如下:其中主视图都是腰长为4、底边为2的等腰三角形,则这个几何体的侧面展开图的面积为( ) A .2πB .12π C . 4π D .8π【答案】C3. (2011安徽芜湖,3,4分)如图所示,下列几何体中主视图、左视图、俯视图都相同()【答案】C4. (2011福建福州,3,4分)在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是 ( )第12题图左视图右视图 俯视图ABDC【答案】A5. (2011江苏扬州,5,3分)如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的主视图是()【答案】A6. (2011山东德州2,3分)一个几何体的主视图、左视图、俯视图完全相同,它一定是(A)圆柱(B)圆锥(C)球体(D)长方体【答案】C7. (2011山东济宁,8,3分)如图,是有几个相同的小正方体搭成的几何体的三种视图,则搭成这个几何体的小正方体的个数是()A. 3个B. 4个C. 5个D. 6个【答案】B8. (2011山东日照,5,3分)如图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,那么该几何体的主视图为()【答案】C9. (2011山东泰安,6 ,3分)下列几何体:(第8题)其中,左视图是平等四边形的有()A.4个B.3个C. 2个D.1个`【答案】B10.(2011山东威海,10,3分)如图是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是()A.3个B.4个C.5个D.6个【答案】D12. (2011浙江杭州,8,3)如图是一个正六棱柱的主视图和左视图,则图中的a=()A.B C.2D.1【答案】B13. (2011宁波市,6,3分)如图所示的物体的府视图是【答案】D14. (2011浙江衢州,1,3分)如下图,下列几何体的俯视图是右面所示图形的是( )【答案】A15. (2011浙江绍兴,4,4分)由5个相同的正方体搭成的几何体如图所示,则它的左视图是()A. B. C. D.主视方向【答案】D16. (2011浙江台州,2,4分)下列四个几何体中,主视图是三角形的是( )【答案】B17. (2011浙江温州,3,4分)如图所示的物体由两个紧靠在一起的圆柱体组成,它的主视图是( )【答案】A18. (2011浙江义乌,4,3分)如图,下列水平放置的几何体中,主视图不是..长方形的是( )【答案】B19. (2011浙江省嘉兴,5,4分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ) (A )两个外离的圆 (B )两个外切的圆 (C )两个相交的圆(D )两个内切的圆【答案】D20.(2011浙江丽水,2,3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )A .6B .5C .4D .3【答案】B21. (2011江西,3,3分)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).【答案】C22. (2011甘肃兰州,6,4分)如图是由几个小立方块所搭几何体的俯视图,小正方形中主视方向(第5题)A .C .D .的数字表示在该位置的小立方块的个数,这个几何体的主视图是A .B .C .D .【答案】D23. (2011湖南常德,10,3分)如图3,是由四个相同的小正方形组成的立体图形,它的左视图是( )【答案】A24. (2011江苏连云港,8,3分)如图,是由8个相同的小立方块搭成的几何体,它的三个视图都是2×2的正方形,若拿掉若干个小立方块后(几何体不倒掉...),其三个视图仍都为2×2的正方形,则最多能拿掉小立方块的个数为( )A .1B .2C .3D .4【答案】B25. (2011江苏宿迁,3,3分)下列所给的几何体中,主视图是三角形的是(▲)【答案】B26. (2011江苏泰州,4,3分)右图是一个几何体的三视图,则这个几何体是主视方向A B CD2 111正面A .B .C .D .俯视图左视图主视图A .圆锥B .圆柱C .长方体D . 球体 【答案】A27. (2011山东济宁,10,3分)如图,是某几何体的三视图及相关数据,则下面判断正确的是A .a c >B .b c >C .2224a b c += D .222a b c +=【答案】D28. (2011山东聊城,2,3分)如图,空心圆柱的左视图是( )【答案】C29. (2011四川成都,2,3分)如图所示的几何体的俯视图是 D第10题【答案】D30. (2011四川广安,9,3分)由n 个相同的小正方体堆成的几何体,其视图如下所示,则n 的最大值是( ) A .18 B .19 C .20 D .21【答案】A31. (2011四川内江,8,3分)由一些大小相同的小正方体搭成的几何体的俯视图如右图所示,其正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是12213ABCD【答案】B32. (2011四川宜宾,6,3分)如图所示的几何体的正视图是( )【答案】D33. (2011重庆綦江,3,4分)如图,是由两个相同的小正方体和一个圆锥体组成的立体图形,其俯视图是( )A .B. C. D.(第6题图)主视图俯视图A.B.C.D.【答案】:C34.(2011江西南昌,3,3分)将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是().A. B. C. D. 图甲图乙第3题图【答案】C35.(2011江苏淮安,4,3分)如图所示的几何体的主视图是()A. B. C. D.【答案】B36.(2011江苏南通,6,3分)下列水平放置的几何体中,俯视图是矩形的是【答案】B37. (2011四川绵阳8,3)由四个相同的小正方体搭建了一个积木,它的三视图如右图所示,则这个积木可能是【答案】B38. (2011四川乐山4,3分)如图(2),在正方体ABCD-A 1B 1C 1D 1中,E 、F 、G 分别是 AB 、BB 1、BC 的中点,沿EG 、EF 、FG 将这个正方体切去一个角后,得到的几何体的俯视图是【答案】 B39. (2011四川凉山州,11,4分)一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( )A .66B .48 C.36 D .57【答案】A40. (2011安徽芜湖,3,4分)如图所示,下列几何体中主视图、左视图、俯视图都相同的ABCD是【答案】C41.(2011湖北武汉市,8,3分)右图是某物体的直观图,它的俯视图是A.B.C.D.【答案】A42.(2011湖北黄石,5,3分)如图(1)所示的几何体的俯视图是【答案】B43.(2011湖南衡阳,3,3分)如图所示的几何体的主视图是()A.B.C.D.【答案】B44.(2011贵州贵阳,4,3分)一个几何体的三视图如图所示,则这个几何体是主视图左视图俯视图(第4题图)(A )圆柱 (B )三棱锥 (C )球 (D )圆锥 【答案】D45. (2011广东肇庆,3,3分)如图是一个几何体的实物图,则其主视图是【答案】C46. (2011湖北襄阳,8,3分)有一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有A.3块B.4块C.6块D.9块【答案】B47. (2011湖南永州,10,3分)如图所示的几何体的左视图是( )【答案】B .A .B .C .D(第10题)图2主视图左视图 俯视图图DCBA49. (2011山东东营,3,3分)一个几何体的三视图如图所示,那么这个几何体是( )【答案】C50. (2011江苏镇江,3,2分)已知某几何体的三个视图(如图),此几何体是()A.正三棱柱B. 三棱锥C. 圆锥D. 圆柱 【答案】C51. (2011内蒙古乌兰察布,5,3分)如图是由五个相同的小正方体搭成的几何体,它的主视图是( )【答案】B52.(2011重庆市潼南,6,4分)如图,在四个几何体中,主视图与其它几何体的主视图的形状不同的是【答案】C53. (2011安徽,3,4分)下图是五个相同的小正方体搭成的几何体,其左视图是( )6题图AC第5题图ACBD正面A .B .C.D .【答案】A54. (2011广东湛江4,3分)下面四个几何体中,主视图是四边形的几何体有圆锥 圆柱 球 正方体 A 1个 B 2个 C 3个 D 4个【答案】B55. (2011贵州安顺,6,3分)如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是( )A .B .C .D .【答案】A56. (2011湖南湘潭市,4,3分)一个几何体的三视图如下图所示,这个几何体是A.球B. 圆柱C.长方体D.圆锥【答案】B57. (2011湖北荆州,4,3分)如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm ,则投影三角尺的对应边长为 A . 8cm B .20cm C .3.2 cm D .10cm【答案】B58.(2011湖北宜昌,6,3分)如图,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大心的变化情况是( ).A.越来越小B.越来越大C.大小不变D.不能确定(第6题图)【答案】A59.(2011湖北宜昌,8,3分)一个圆锥体按如图所示摆放,它的主视图是( ).【答案】A二、填空题1.(2011山东菏泽,12,3分)如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的是.【答案】62. (2011山东东营,17,4分)如图,观察由棱长为1的小立方体摆成的图形,寻找规律:如图①中; 共有1个小立方体,其中1个看得见,0个看不见;如图②中;把共有8个小立方体,其中7个看得见,1个看不见;如图③中;共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看得见的小立方体有______________个【答案】913. (2011山东枣庄,14,4分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是 .【答案】左视图4. (2010湖北孝感,14,3分)一个几何体是由一些大小相同的小正方体摆成的,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有 个.主视图 左视图 【答案】5三、解答题1. (2011广东广州市,20,10分)5个棱长为1的正方体组成如图5的几何体.(1)该几何体的体积是 (立方单位),表面积是 (平方单位) (2)画出该几何体的主视图和左视图【答案】(1)5,22(2主视图左视图投影与视图B一、选择题1. (2011福建泉州,4,3分)下面左图是一个圆柱体,则它的正视图是( )正面图5【答案】A2. (2011广东河源,3,3分)下面是空心圆柱在指定方向上的视图,正确的是()A.B.C.D.【答案】C3. 下面四个几何体中,主视图是四边形的几何体有圆锥圆柱球正方体A1个B2个C3个D4个【答案】B4. (2011广西桂林,7,3分)如图,图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是().图1 图2 A B C D第7题图【答案】C5. (2011贵州毕节,3,3分)将下图所示的Rt△ABC绕直角边AB旋转一周,所得几何体的主视图为( )A B C D【答案】C6. (2011海南省,6,3分)图1所示几何体的俯视图是图1A.B.C.D.【答案】A7. (2011黑龙江省哈尔滨市,6,3分)如图所示的几何体是由五个小正方体搭建而成的,它的主视图是()A.B.C.D.【答案】C8. (2011湖北十堰,3,3分)下面几何体的主视图是()正面【答案】C9. (湖南湘西,13,3分)图中几何体的左视图是()【答案】C10.(2011江苏常州,3,2分)已知某几何体的三个视图(如图),此几何体是( )A.正三棱柱B. 三棱锥C. 圆锥D. 圆柱【答案】C11.(2011辽宁大连,4,3分)图1是由四个完全相同的正方体组成的几何体,这个几何体的左视图是A.B.C.D.【答案】C12. (2011广东深圳,2,3分)如图1所示的物体是一个几何体,其主视图是()【答案】C13. (2011陕西,2,3分)下面四个几何体中,同一几何体的主视图和俯视图相同的共有( )A .1个B .2个C .3个D .4个 【答案】B14. (2011天津,7,3分)右图是一支架(一种小零件),支架的两个台阶的高度和宽度都同一长度,则它的三视图是( )答案:A15. (2011湖北襄阳,8,3分)有一些相同的小立方块搭成的几何体的三视图如图2所示,则搭成该几何体的小立方块有A.3块B.4块C.6块D.9块【答案】B16. (2011广东佛山,9,3)如图,一个由小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是图2主视图左视图俯视图ABC D【答案】B17. (2011山东莱芜,6,3分)如右图所示是由几个相同的小正方形搭成的几何体的三视图,则搭成这个几何体的小正方体的个数()A.3B.4C.5D.6(第6题图)俯视图左视图主视图【答案】C18. (2011贵州遵义,2,3分)如图是一个正六棱柱,它的俯视图是【答案】C20.(2011四川达州,3,3分) 图1是由几个相同的小正方体搭成的一个几何体,它的俯视图是【答案】D21. (2011福建莆田,6,4分)如图所示的是某几何体的三视图,则该几何体的形状是( ) A.长方体 B.三棱柱 C.圆锥 D.正方体【答案】B22. (2011广东肇庆,3,3分)如图是一个几何体的实物图,则其主视图是【答案】C23. (2011广西南宁,2,3分)如右图l ,三视图描述的实物形状是: (A)棱柱 (B)棱锥 (C)圆柱 (D)圆锥DC BA【答案】C24.(2011黑龙江省哈尔滨市,6,3分)如图所示的几何体是由五个小正方体搭建而成的,它的主视图是()A.B.C.D.【答案】C25.(2011黑龙江绥化,16,3分)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示的数字为该位置小正方体的个数,则这个几何体的左视图是()【答案】A26.(2011湖北潜江天门仙桃江汉油田,2,3分)如图所示,该几何体的俯视图是()【答案】A27. (2011湖北省随州市,4,4分)一个几何体的三视图如下:其中主视图和左视图都是腰长为4,底边为2的等腰三角形,则这个几何体侧面展开图的面积为( )A .2πB .21π C .4π D .8π主视图 左视图 俯视图 第4题图 【答案】C28. (2011江西b 卷,3,3分)如图,是一个实物在某种状态下的三视图,与它对应的实物图应是( ).【答案】A29. (2011吉林长春,3,3分)右图是由4个相同的小正方体组成的几何体,其俯视图为【答案】(C )30. (2011吉林,12,3分)如图所示,小华看到桌面上的几何体是由五个完全相同的小正方体组成的,他看的几何体的主视图是( )【答案】A31. (2011辽宁沈阳,2,3分)左下图是由五个相同的小立方体五搭成的几何体,这个几何体的主视图是【答案】 C32. (2011福建龙岩,5,4分)如图,该几何体的主视图是( )BADC正面【答案】B33. (2011四川广元,6,3分)如图,下列四个几何体中,其各自的主视图、左视图、俯视图中有两个相同,而另一个不同的是( D )①正方体 ②球 ③圆锥 ④圆柱AB C D正面第2题图A.①②B.②③C.②④D.③④【答案】D34.(2011四川眉山,9,3分)如图所示的物体的左视图是【答案】D35.(2011福建三明,3,4分)由5个大小相同的正方体组成的几何体如图所示,其主视图是()正面(第3题)A B C D【答案】A36.(2011云南省昆明市,2,3分)如图是一个由相同的小正方体组成的立体图形,它的主视图是( )【答案】D37.(2011昭通,4,3)图1所示是一个由4个相同的正方体组成的立体图形,它的三视图为()图1 A . B . C . D . 【答案】B38. (2011内蒙古包头,8,3分)下列几何体各自的三视图中,只有两个视图相同的是( )A .①③B .②③C .③④D .②④【答案】D39. (2011内蒙古赤峰,5,3分)在下面四个几何体中,主视图、俯视图、左视图都相同的几何体的个数是 ( )A .1个B .2个C .3个D .4个【答案】B40. (2011吉林长春,3,3分)右图是由4个相同的小正方体组成的几何体,其俯视图为【答案】(C )(第3题)(D )(C ) (B ) (A )①正方体②圆锥④圆柱③球41.(2011•泸,10,2分)如图是一些大小相同的小正方体组成的几何体的主视图和俯视图,则组成这个几何体的小正方体最多块数是()A、8B、10C、12D、14【答案】C.42.(2011四川自贡,5,3分)由七个大小相同的正方体组成的几何体如图所示,则它的左视图是()D.【答案】D43.(2011四川自贡,11,3分)李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为()A. 37B. 33C. 24D. 21【答案】B【答案】B45.(2011山东青岛,2,3分)如图,空心圆柱的主视图是().A. B. C. D.【答案】A46.(2011年青海,14,3分)如图5,是一个水管的三叉接头,它的左视图是()图5 A B C D【答案】B47.(2011广西崇左,17,3分)一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子不可能是()【答案】BDCBA48.(2011广西柳州,4,3分)某几何体得三视图如图所示,则这个几何体是A.正方体B.圆锥体C.圆柱体D.球体【答案】B49.(2011广西玉林、防港,7,3分)如图,你能看出这个倒立的水杯的俯视图是()【答案】B50.(2011广西百色,3,3分)下列四个立体图中,它的几何体的左视图是圆的是【答案】:A51.(2011广西贵港,3,3分)如图所示是一个几何体的三视图,则该几何体是主视图左视图俯视图(A)三棱锥(B)三棱柱(C)正方体(D)长方体【答案】B52.(2011湖南岳阳,3,3分)下面给出的三视图表示的几何体是()A .圆锥B .正三棱柱C .正三棱锥D .圆柱 【答案】B53. (2011张家界,10,3分)如图是一个几何体的三视图,则这个几何体的名称是 .【答案】圆锥54. (2011湖南郴州市,3,3分)图中所给的三视图表示的物体是( )【答案】B55. (2011福建漳州,4,3分)如图是由若干个小正方体堆成的几何体的主视图(正视图),这个几何体是()【答案】C56. (2011辽宁本溪,2,3分)如图是某几何体的三视图,则这个几何体是( )A .球B .圆锥C .圆柱D .三棱柱 【答案】B57. (2011青海西宁,6,3分)一节电池如图2所示,则它的三视图是2题图【答案】D58. (2011黑龙江黑河,16,3分)下图是一个由多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方体的个数,则这个几何体的左视图是 ( )【答案】A 二、填空题1. (2011广西梧州,17,3分)图9是由两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm ),计算出这个立体图形的表面积是________mm 2.【答案】2002. (2011山东枣庄,14,4分)如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是.A B CDA B C D图2主视图 左视图 俯视图 图9【答案】左视图3.(2011云南玉溪,9,3分)若一个几何体的三视图相同,则这个几何体是_______. 【答案】球体或正方体.三、解答题。

北师大版九年级上册数学《投影》投影与视图说课教学课件

北师大版九年级上册数学《投影》投影与视图说课教学课件

2. 平行投影与中心投影的联系与区别:
知1-讲
项目
定义
类型
平行投影
平行光线所形成的投 影
中心投影 从一个点发出的光线的投影
光源
太阳等
点光源(如电灯等)
区别
投影线 投影方向
联系
平行 相同
相交于一点
由点光源与物体的相对位置确 定
都是投影现象,都是物体在光线照射下形成影子
知1-讲
例1 某校墙边有甲、乙两根木杆,已知乙木杆的高度为1.5 m.
1. 中心投影的定义:从一个点(点光源)发出的光线形成的投知2-讲
影称为中心投影.
2.中心投影的性质:
(1)光源、物体边缘上的点以及它在影子上的对应点在同一
条直线上,根据同一灯光下两个不同物体及它们的影
子,可以确定灯(点光源)所在的位置;
(2)若物体相对于光源的方向改变,则该物体的影子的方向
也发生变化,但光源、物体的影子始终分居在物体的两
(来自《点拨》)
知2-练
1 下列现象属于中心投影的有( ) ①小孔成像;②皮影戏;③手影;④放电影.
2 A.1个 B.2个 C.3个 D.4个 小华自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与 屏幕平行,光源到幻灯片的距离是30 cm,幻灯片到屏幕的距离 是1.5 m,幻灯片上小树的高度是10 cm,则屏幕上小树的高度 是( ) A.50 cm B.60 cm C.500 cm D.600 cm
知识点 2 中心投影
知2-导
做一做
取一些长短不等的小棒和三角形、矩形纸片,用手电筒 (或台灯)等去照射这些小棒和纸片,观察它们的影子. (1)固定手电筒(或台灯),改变小棒或纸片的摆放位置
和方向,它们的影子分别发生了什么变化? (2)固定小棒或纸片,改变手电筒(或台灯)的摆放位置

中考数学试题分项版解析汇编(第01期)专题5.4投影与视图(含解析)(2021年整理)

中考数学试题分项版解析汇编(第01期)专题5.4投影与视图(含解析)(2021年整理)

2018年中考数学试题分项版解析汇编(第01期)专题5.4 投影与视图(含解析)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018年中考数学试题分项版解析汇编(第01期)专题5.4 投影与视图(含解析))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018年中考数学试题分项版解析汇编(第01期)专题5.4 投影与视图(含解析)的全部内容。

专题5.4 投影与视图一、单选题1.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A. B. C. D.【来源】江苏省连云港市2018年中考数学试题【答案】A点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.2.如图是由5个大小相同的小正方体组成的几何体,则它的左视图是()A. B。

C. D.【来源】江苏省盐城市2018年中考数学试题【答案】B【解析】分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.详解:从左面看易得第一层有1个正方形,第二层有2个正方形,如图所示:.故选:B.点睛:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.图中立体图形的主视图是( )A。

B。

C。

D.【来源】广东省深圳市2018年中考数学试题【答案】B【点睛】本题考查了简单几何体的三视图,明确主视图是从几何体正面看得到的是解题的关键。

4.移动台阶如图所示,它的主视图是()A。

B。

C。

D。

【来源】浙江省温州市2018年中考数学试卷【答案】B【解析】分析:根据三视图的定义,其主视图,就是从前向后看得到的正投影,根据看的情况一一判断即可.详解: A、是其俯视图,故不符合题意;B是其主视图,故符合题意;C是右视图,故不符合题意;D是其左视图,故不符合题意。

投影与视图

投影与视图

一、知识框架二、重点、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图,能够做出简单立体图形的三视图的画法。

难点:对三视图概念理解的升华及正确画出三棱柱的三视图,三视图中三个位置关系的理解。

三、知识点、概念总结第一节投影投影:从初中数学的角度来说,一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面。

平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线形成的投影。

中心投影:由同一点(点光源发出的光线)形成的投影。

平行投影与中心投影的区别与联系:正投影:投影线垂直于投影面产生的投影。

物体正投影的形状、大小与它相对于投影面的位置和角度有关。

斜投影:投影线不平行于投影面产生的投影。

第二节 三视图三视图:三视图是观测者从三个不同位置观察同一个空间几何体而画出的图形。

视图:将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。

一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图——能反映物体的前面形状。

从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状。

从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状。

还有其它三个视图不是很常用。

三视图就是主视图、俯视图、左视图的总称。

1.投影规则:主俯长对正、主左高平齐、俯左宽相等 即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。

在许多情况下,只用一个投影不加任何注解,是不能完整清晰地表达和确定形体的形状和结构的。

如图所示,三个形体在同一个方向的投影完全相同,但三个形体的空间结构却不相同。

可见只用一个方向的投影来表达形体形状是不行的。

一般必须将形体向几个方向投影,才能完整清晰地表达出形体的形状和结构。

一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。

2011中考投影与视图专题测试题及答案

2011中考投影与视图专题测试题及答案

(投影与视图)(试卷满分 150 分,考试时间 120 分钟)一、选择题(本题共10 小题,每小题4 分,满分40分)每一个小题都给出代号为A,B,C,D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号内.每一小题:选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分。

1.图1中几何体的主视图是()。

2.如图,小明从正面观察一个圆柱体邮筒和一个正方体箱子,看到的是()。

3.正视图、左视图和俯视图完全相同的几何体是()。

4.如图所示,右面水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()。

俯视图主(正)视图左视图5.一个物体的三视图如图所示,则该物体的形状是( )。

A 、圆柱B 、圆锥C 、三棱锥D 、三棱柱6.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能是( )。

A B C D7.右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )。

A 、5个B 、6个C 、7个D 、8个8.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是( )。

A .OB . 6C .快D .乐9.下列各图是由全等的正方形组成的图形,能围成一个立方体的图形是( )。

A .B .C .D .10.一个均匀的立方体各面上分别标有数字1,2,3,4,6,8,其表面展开图是如图所示,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面上的数字的2倍的概率是( )。

A .32B .21C .31D .61二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11.如图,下列几何体是由棱长为1的小立方体按一定规律在地面上摆成的,若将露出的表面都涂上颜色(底面不涂色),则第n 个几何体中只有两个面涂色的小立方体共有_________个。

新人教版初中数学——视图与投影-知识点归纳及中考典型题解析

新人教版初中数学——视图与投影-知识点归纳及中考典型题解析

新人教版初中数学——视图与投影知识归纳及中考典型题解析一、投影1.投影在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图(1)主视图:从正面看得到的视图叫做主视图.(2)左视图:从左面看得到的视图叫做左视图.(3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法(1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图在判断几何体的三视图时,注意以下两个方面:(1)分清主视图、左视图与俯视图的区别;(2)看得见的线画实线,看不见的线画虚线.典例1【广西壮族自治区南宁市2019–2020学年七年级上学期期末数学试题】如图是从不同方向看某一几何体得到的平面图形,则这个几何体是A.圆锥B.长方体C.球D.圆柱【答案】D【解析】∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选D.【名师点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.1.如图所示的几何体的俯视图是A.B.C.D.考向二几何体的还原与计算解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.典例2如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是A.B.C.D.【答案】D【解析】如图,左视图如下:,故选D.2.某一几何体的三视图均如图所示,则搭成该几何体的小正方体的个数为A.9 B.5C.4 D.33.如图是一零件的三视图,则该零件的表面积为A.15πcm2B.24πcm2C.51πcm2D.66πcm2考向三投影1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.3.物体的投影分为中心投影和平行投影.典例3如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是A.①②③④B.④③②①C.④③①②D.②③④①【答案】C【解析】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【名师点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西–西北–北–东北–东”,是解题的关键.4.小明在太阳光下观察矩形木板的影子,不可能是A.平行四边形B.矩形C.线段D.梯形考向四立体图形的展开与折叠正方体展开图口诀:正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.典例4如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点【答案】D【解析】根据正方体展开图的特点得出与标号为1的顶点重合的是标号为5的顶点.故选D.5.如图所示正方体的平面展开图是A.B.C.D.1.如图所示几何体的主视图是A.B.C.D.2.如图的几何体是由五个相同的小正方体组合面成的,从左面看,这个几何体的形状图是A.B.C.D.3.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②4.如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为A.6.2米B.10米C.11.2米D.12.4米5.如图,(1)是几何体(2)的___________视图.6.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,那么这个长方体的体积等于__________.7.如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是__________.8.一个几何体由12个大小相同的小正方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小正方体的个数,则从正面看,一共能看到________个小正方体(被遮挡的不计).9.画出如图所示物体的主视图、左视图、俯视图.10.【山东省威海市乳山市2019–2020学年九年级上学期期末数学试题】数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.1.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为A.B.C.D.2.某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是A.B.C.D.3.如图是一个几何体的三视图,则这个几何体是A.三棱锥B.圆锥C.三棱柱D.圆柱4.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为A.B.C.D.5.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是A.B.C.D.6.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同7.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x8.如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.9.下列四个几何体中,主视图为圆的是A.B.C.D.10.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是A.B.C.D.11.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变12.某个几何体的三视图如图所示,该几何体是A.B.C.D.13.下列哪个图形是正方体的展开图A.B.C.D.14.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是A.B.C.D.15.在如图所示的几何体中,其三视图中有矩形的是_________.(写出所有正确答案的序号)16.如图是一个多面体的表面展开图,如果面F 在前面,从左面看是面B ,那么从上面看是面__________.(填字母)17.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为__________.1.【答案】D【解析】根据题意得:几何体的俯视图为,故选C .【名师点睛】此题考查了简单组合体的三视图,熟练掌握几何体三视图的画法是解本题的关键.2.【答案】C【解析】从主视图看第一列有两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列有一个,说明俯视图中的右边一列有一个正方体,所以此几何体共有4个正方体.故选C.3.【答案】B【解析】由三视图知,该几何体是底面半径为3cm、高为4cm的圆锥体,则该圆锥的母线长为(cm),∴该零件的表面积为π•32+12•(2π•3)•5=9π+15π=24π(cm2),故选B.4.【答案】D【解析】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选D.【名师点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.5.【答案】B1.【答案】C【解析】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合,故答案选择C.【名师点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.2.【答案】D【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D【名师点睛】本题考查了简单几何体的三视图,从左边看得到的图是左视图.3.【答案】B【解析】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案,故选B【名师点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.4.【答案】D【解析】设从墙上的影子的顶端到树的顶端的垂直高度是x米,则1.60.4 2.8x,解得:x=11.2,所以树高=11.2+1.2=12.4(米),故选D.【名师点睛】本题考查的是投影的知识,解本题的关键是正确理解题意、根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度.5.【答案】俯【解析】在图中(1)是几何体(2)的俯视图.6.【答案】24cm3【解析】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故答案为:24cm3.7.【答案】园【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“创”与“园”是相对面.8.【答案】8【解析】一共看到的图形是3列,左边一列看到3个,中间一列看到2个,右边一列看到3个.则一共能看到的小正方体的个数是:3+2+3=8.故答案为:8.9.【解析】主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,据此画出看到的图形如图所示.10.【答案】3.45米【解析】延长DH交BC于点M,延长AD交BC于N.可求 3.4BM =,0.9DM =. 由1.50.92MN =,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【名师点睛】考核知识点:平行投影.弄清平行投影的特点是关键.1.【答案】A【解析】它的俯视图为,故选A .【名师点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键. 2.【答案】B【解析】从正面看去,一共两列,左边有2竖列,右边是1竖列.故选B .【名师点睛】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力. 3.【答案】B【解析】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选B .【名师点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 4.【答案】D【解析】从上面看可得四个并排的正方形,如图所示:,故选D .【名师点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 5.【答案】B【解析】该几何体的左视图只有一列,含有两个正方形.故选B .【名师点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.6.【答案】C【解析】图①的三视图为:图②的三视图为:,故选C.【名师点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.7.【答案】A【解析】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选A.【名师点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.8.【答案】C【解析】几何体的主视图为:,故选C.【名师点睛】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.9.【答案】D【解析】A.主视图为正方形,不合题意;B.主视图为长方形,不合题意;C.主视图为三角形,不合题意;D.主视图为圆,符合题意,故选D.【名师点睛】此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.10.【答案】C【解析】几何体的俯视图是:,故选C.【名师点睛】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.11.【答案】A【解析】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,故选A.【名师点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.12.【答案】D【解析】由三视图可知:该几何体为圆锥.故选D.【名师点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.13.【答案】B【解析】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【名师点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.14.【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.【名师点睛】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.15.【答案】①②【解析】长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【名师点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.16.【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.【名师点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.17.【答案】cm2【解析】该几何体是一个三棱柱,底面等边三角形的边长为2 cm,三棱柱的高为3,所以其左视图的面积为cm2),故答案为cm2.【名师点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

①正方体②圆柱③圆锥④球投影与视图一、选择题1.(2011年黄冈中考调研六)图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是 ( ) A.①② B.②③ C. ②④ D. ③④ 答案B2.(2011年北京四中中考模拟20)面形状的四张纸板,按图中线经过折叠可以围成一下直三棱柱的是( )答案C 3、(2011年浙江省杭州市模拟)如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是( )A.①②B.②③C. ②④D. ③④答案:AA 、B 、C 、D 、 ①正方体②圆柱③圆锥④球(第4题)4、(2011年浙江杭州三模) 如图是某几何体的三视图及相关数据,则判断正确的是( ) A . a >c B .b >c C .4a 2+b 2=c 2D .a 2+b 2=c 2答案:D5、(2011年浙江杭州六模)如图下列四个几何体,它们各自的三视图(主视图、左视图、俯视图)中,有两个相同而另一个不同的几何体是( )A . ①②B . ②③C . ②④D. ③④答案:B3、(2011年浙江杭州七模)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( ) A .3B .4C .5D .6主视图 左视图 俯视图答案:B第4题图 ①正方体②圆柱③圆锥④球二、填空题1、(2011年浙江省杭州市中考数学模拟22)14、在水平的讲台上放置圆柱形水杯和长方体形粉笔盒如右下实物图,则它俯视图是图,左视图是图。

答案: 3 42、(北京四中模拟)右图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()答案:B3、(2011杭州模拟)如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是…………………… ( ▲ )A.3个 B.5个 C.6个 D.8个答案:D3、(2011杭州模拟25)如图,由三个相同小正方体组成的立体图形的左视图...是()(09台州中考中考试卷第一题改编)答案:D4、(2011杭州模拟26)由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是…………………( )A.正视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图的面积一样大答案:B5、(2011北京模拟32)在下面的四个几何体中,左视图与主视图不相同的几何体是()答案:B1. (2011年黄冈市浠水县中考调研试题)如图所示的正方体,用一个平面截去它的一个角,则截面不可能是()A .锐角三角形B .等腰三角形C .等腰直角三角形D .等边三角形 答案:C2. (2011年北京四中中考全真模拟15)一矩形纸片绕其一边旋转180度后,所得的几何体的主视图和俯视图分别为( )A 、矩形,矩形B 、圆,半圆C 、圆,矩形D 、矩形,半圆 答案:D3. (2011年北京四中中考全真模拟16)如图所示是由一些相同的小正方形构成的立体图形的三视图,这些相同的小正方形的个数是( )A 、4B 、5C 、6D 、7 答案:A1.(2011湖北省天门市一模)一个正方体的平面展开图如图所示,将它折成正方体后“建”字对面是( )A .和B .谐C .天D .门 答案:D2.(2011浙江杭州模拟7)由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是( )主视图 左视图 俯视图 A .3 B .4 C .5 D .6 答案:C建 设和 谐 天门(第1题9.(2011年江苏连云港)若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是( )A .球B .圆柱C .圆锥D .棱锥答案.C1.(2011年宁夏银川)教学楼里的大型多功能厅建成阶梯形状是为了( ). A. 美观 B. 宽敞明亮 C. 减小盲区 D. 容纳量大答案:C(2011年宁夏银川)如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( ).答案:A5.(2011则其主视图的面积为( )A .6B.8C .12D .24答案:B 2、(2011年浙江仙居)小杰从正面(图示“主视方向”)观察左边的热水瓶时,得到的俯视图是( ) 答案:C二 填空题1(2011湖北省天门市一模).图11-1是三个直立于水平面上的形状完全相同的几何体(下底面为圆面,单位:cm ).将它们拼成如图11-2的新几何体,则该新几何体的体积为 ____cm 3.(计算结果保留 )A B CD左视图俯视图(第5题图)A. B. C. D. 主视方向答案: 60π2. .(2011浙江省杭州市10模)如图,已知圆锥的高为4,底面圆的直径为6,则此圆锥的侧面积是 ▲ .答案: 15π三、解答题1、(2011年北京四中中考模拟19)(本小题满分5分)已知:CD 为一幢3米高的温室,其南面窗户的底框G 距地面1米,CD 在地面上留下的最大影长CF 为2米,现欲在距C 点7米的正南方A 点处建一幢12米高的楼房AB (设A,C,F 在同一水平线上) (1)、按比例较精确地作出高楼AB 及它的最大影长AE ;(2)、问若大楼AB 建成后是否影响温室CD 的采光,试说明理由。

解:如图,易算出AE=8米,由AC=7米,可得CE=1米,由比例可知:CH=1.5米>1米, 故影响采光。

1、2011杭州模拟26)右图为一机器零件的三视图。

(1)请写出符合这个机器零件形状的几何体的名称(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸, 计算这个几何体的表面积(单位:cm 2)(1)答:符合这个零件的几何体是直三棱柱。

……………………………………………2分第2题图(2)∵△ABC 是正三角形 又∵CD ⊥∴AC=°sin 60CD=4 14232422S =⨯⨯+⨯⨯⨯表面积=24+………………19.(2011年宁夏银川)如图,楼房和旗杆在路灯下的影子如图所示.(1)试确定路灯灯炮的位置;(2)再作出小树在路灯下的影子.(用线段表示,不写作法,保留作图痕迹)1、如图是一个由若干个棱长相等的正方体构成的几何体的三视图。

(1)请写出构成这个几何体的正方体个数;(2)请根据图中所标的尺寸,计算这个几何体的表面积。

答案:解:(1)5个…………………2分(2)22222(334)20S a a a a =++=表…………………2分或222562520S a a a =⨯-⨯=表…………………2分第1题图B 组一 选择题 1.(2011 天一实验学校 二模)由7个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是 ( )A .正视图的面积最大B .俯视图的面积最大C .左视图的面积最大D .三个视图的面积一样大 答案:B2. (2011浙江慈吉 模拟)如下图所示的四个立体图形中,主视图与左视图是全等图形的立体图形的个数是( )A .1B .2C .3D . 4 答案:D 3.( 2011年杭州三月月考)若右图是某几何体的三视图,则这个几何体是( )(A) 正方体 (B) 圆柱 (C)球 (D)圆锥主视图 左视图 俯视图答案:B 4.(2011年三门峡实验中学3月模拟)如图所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )A B CD答案:D 5.(2011年杭州市西湖区模拟)在水平的讲台上放置圆柱形水杯和长方体形粉笔盒如右下实物图,则它俯视图是(第4题)A .图①B .图②C .图③D .图④ 答案:C 6.(2011年杭州市西湖区模拟)右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是A BC D答案:B7.(2011年安徽省巢湖市七中模拟)在下面的四个几何体中,它们各自的主视图、左视图与俯视图都一样的是( )正方体 正四棱台 有正方形孔的正方体 底面是长方形的四棱锥 A .B .C .D .答案:A8.(2011安徽中考模拟) 在下面的四个几何体中,它们各自的左视图与主视图不全等的是( )答案:D9.(2011杭州上城区一模)下面四个几何体中,左视图是四边形的几何体共有( )A .B .C .D .60º(第2题图)A. 1个B. 2个C. 3个D. 4个答案:B10. (2011杭州市模拟)太阳光线与地面成60º的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是A. B .15 C .10 D.答案:B11.(2011北京四中二模)下图是由一些相同的小正方体构成的几何体的三视图.这些相同的小正方体的个数是( )(A )4个 (B)5个 (C )6个 (D )7个 答案:B 12.(2011浙江杭州义蓬一中一模)下面四个几何体中,左视图是四边形的几何体共有( )A. 1个B. 2个C. 3个D. 4个答案:B13.(2011浙江杭州义蓬一中一模)如图,小明发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8米,BC=20米,CD 与地面成30º角,且此时测得1米杆的影长为2米,则电线杆的高度为( )A .14米B .28米C .314+米D .3214+米 答案:D主视图 左视图 俯视图14.(2011浙江杭州育才初中模拟)如图,由三个相同小正方体组成的立体图形的左视图...是( )(09台州中考中考试卷第一题改编)A 、、、、答案:D15.(2011广东南塘二模)太阳光线所形成的投影称为A 、放大投影B 、缩小投影C 、中心投影D 、平行投影 答案:D16(2011广东南塘二模)一个均匀的立方体六个面上分别标有数字1、2、3、4、5、6,它的展开图如图,抛掷这个立方块,朝上的数恰好是朝下的数的21的概率是 A 、32 B 、21 C 、31 D 、61(第2题)答案:C17. (2011深圳市全真中考模拟一)如图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为(A)4. (C)12. (B)6.(D)15 答案:B18、(浙江杭州靖江2011模拟)如左图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )答案:D(第2题) ↑A .B .C .D .19. (浙江杭州金山学校2011模拟)(引中考复习学案视图与投影练习题)由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( ▲ )答案:C20.(河南新乡2011模拟).一物体及其正视图如下图所 示,则它的左视图与俯视图分别 是右侧图形中的( ) A.①② B.③② C.①④ D.③④答案: B 21、(北京四中2011中考模拟12)如图1是由一些相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( )(A )4个 (B )5个 (C )6个 (D )7个答案:B22、(北京四中2011中考模拟13)图2中几何体的主视图是( )答案:D23、(2011北京四中模拟)在图1的几何体中,它的左视图是( )主视左视俯视图1正面 图2 ABCD 正面答案:B24、(2011年黄冈浠水模拟1)如图是由几个小立方块所搭几何体的俯视图,小正方形中的数字表示在该位置的)A. B. C. D.答案:D25、(2011年黄冈浠水模拟2)如图下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是 ( )A、①②B、②③C、②④D、③④答案:B26、(2011年广东省澄海实验学校模拟)右面的三个图形是某几何体的三种视图,则该几何体是()A.正方体B.圆柱体C.圆锥体D.球体答案:C27.(2011年深圳二模)右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是()A. B. C. D.答案:A28.(2011年杭州市上城区一模)下面四个几何体中,左视图是四边形的几何体共有()①正方体②圆柱③圆锥④球213第2题图A. 1个B. 2个C. 3个D. 4个 答案:B 29.(2011年杭州市模拟)在水平的讲台上放置圆柱形水杯和长方体形粉笔盒如右下实物图,则它俯视图是A .图①B .图②C .图③D .图④ 答案:C30. (2011年杭州市模拟)右图需再添上一个面,折叠后才能围成一个正方体,下面是四位同学补画的情况(图中阴影部分),其中正确的是A B C D 答案:B 31、(赵州二中九年七班模拟)如图所示几何体的主视图是( )。

相关文档
最新文档