高中数学必修一基本题型
高中数学必修一 讲义 专题1.5 集合的基本运算-重难点题型精讲(学生版)
专题1.5 集合的基本运算-重难点题型精讲1.并集的概念及表示2.交集的概念及表示温馨提示:(1)两个集合的并集、交集还是一个集合.(2)对于A∪B,不能认为是由A的所有元素和B的所有元素所组成的集合.因为A与B可能有公共元素,每一个公共元素只能算一个元素.(3)A∩B是由A与B的所有公共元素组成,而非部分元素组成.3.并集、交集的运算性质4.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)符号表示:全集通常记作U.5.补集温馨提示:∁U A的三层含义:(1)∁U A表示一个集合;(2)A是U的子集,即A⊆U;(3)∁U A是U中不属于A的所有元素组成的集合.【题型1 并集的运算】【例1】(2022•河南模拟)已知集合A={x|﹣2<x<3},集合B={x|1﹣x>﹣1},则集合A∪B=()A.(2,3)B.(﹣2,2)C.(﹣2,+∞)D.(﹣∞,3)【变式1-1】(2022•东城区校级三模)已知集合A={x|﹣1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|﹣1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}【变式1-2】(2022春•乐清市校级期中)设集合A={2,3},B={x|2<x<4},则A∪B=()A.{3}B.{2,3}C.(2,3)D.[2,4)【变式1-3】(2022春•平罗县校级期中)已知集合M={x|﹣1<x<1},N={x|0<x<2},则M∪N等于()A.(0,1)B.(−1,2)C.(−1,0)D.(1,2)【题型2 交集的运算】【例2】(2022•金东区校级模拟)设集合A={x|x≥2},B={x|﹣1<x<3},则A∩B=()A.{x|x≥2}B.{x|x<2}C.{x|2≤x<3}D.{x|﹣1≤x<2}【变式2-1】(2022•金凤区校级三模)已知集合A={x|1<x﹣1≤3},B={2,3,4},则A∩B=()A.{2,3,4}B.{3,4}C.{2,4}D.{2,3}【变式2-2】(2022•浙江学业考试)已知集合P={0,1,2},Q={1,2,3},则P∩Q=()A.{0}B.{0,3}C.{1,2}D.{0,1,2,3}【变式2-3】(2022•巴宜区校级二模)集合A={x∈Z|x<2},B={﹣1,0,1,2,3},则A∩B=()A.{﹣1,0,1,2}B.{﹣1,0,1}C.{0,1}D.{1}【题型3 由集合的并集、交集求参数】【例3】(2021秋•宜宾期末)已知集合A={x|2<x<4},B={x|a﹣1≤x≤2a+1,a∈R}.(1)若a=1,求A∪B;(2)若A∩B=A,求实数a的取值范围.【变式3-1】(2021秋•资阳期末)已知全集U=R,集合A={x|2a+1<x<2a+6},B={x|﹣4≤x≤2}.(1)若a=﹣1,求A∪B;(2)若A∩B≠∅,求实数a的取值范围.【变式3-2】(2021秋•伊州区校级期末)若集合A={x|2x﹣1⩾3},B={x|3x﹣2<m},C={x|x<5,x∈N}.(1)求A∩C;(2)若A∪B=R,求实数m的取值范围.【变式3-3】(2021秋•黑龙江期末)已知集合A={x|﹣2≤x≤7},B={x|m+1≤x≤2m﹣1}.(1)当用m=5时,求A∩B,A∪B;(2)若A∪B=A,求实数m的取值范围.【题型4 补集的运算】【例4】(2022•沈阳模拟)已知全集U={x∈N|﹣1<x≤3},A={1,2},∁U A=()A.{3}B.{0,3}C.{﹣1,3}D.{﹣1,0,3}【变式4-1】(2022•林州市校级开学)已知全集A={x|1≤x≤6},集合B={x|1<x<5},则∁A B=()A.{x|x≥5}B.{x|5<x≤6或x=1}C.{x|x≤1或x≥5}D.{x|5≤x≤6}∪{1}【变式4-2】(2022•乙卷)设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M【变式4-3】(2022•北京)已知全集U={x|﹣3<x<3},集合A={x|﹣2<x≤1},则∁U A=()A.(﹣2,1]B.(﹣3,﹣2)∪[1,3)C.[﹣2,1)D.(﹣3,﹣2]∪(1,3)【题型5 交集、并集、补集的综合运算】【例5】(2022•临沂三模)已知集合A=N,B={x|x≥3},A∩(∁R B)=()A.{﹣1,0}B.{1,2}C.{﹣1,0,1}D.{0,1,2}【变式5-1】(2022•柯桥区模拟)已知集合A={x∈R|x≤0},B={x∈R|﹣1≤x≤1},则∁R(A∪B)=()A.(﹣∞,0)B.[﹣1,0]C.[0,1]D.(1,+∞)【变式5-2】(2022•大通县三模)已知全集U={﹣1,0,1,2,3,4},集合A={x|x≤2,x∈N},B={﹣1,0,1,2},则A∪(∁U B)=()A.{0,1,2}B.{﹣1,0,1,2}C.{﹣1,0,1}D.{0,1,2,3,4}【变式5-3】(2022•义乌市模拟)已知全集U=R,集合P={x|﹣2<x<1},Q={x|x⩾0},则P∩(∁U Q)=()A.(﹣2,0)B.(0,1)C.(﹣∞,0)∪(0,1)D.(﹣∞,1)【题型6 利用集合间的关系求参数】【例6】(2021秋•沈阳期末)已知集合A={x|﹣2≤x≤5},B={x|m+1≤x≤2m﹣1},U=R.(1)若A∪∁U B=U,求实数m的取值范围;(2)若A∩B≠∅,求实数m的取值范围.【变式6-1】(2021秋•湖州期末)已知集合A={x|﹣3≤x≤2},B={x|2m﹣1≤x≤m+3}.(1)当m=0时,求∁R(A∩B);(2)若A∪B=A,求实数m的取值范围.【变式6-2】(2021秋•海东市期末)已知集合A={x|a<x<2a},B={x|x≤﹣4或x≥3}.(1)当a=2时,求A∪(∁R B);(2)若A⊆∁R B,求a的取值范围.【变式6-3】(2021秋•玉溪期末)已知集合A={x|a﹣1≤x≤a+1},B={x|x−5x+3≤0}.(1)若a=﹣3,求A∪B;(2)在①A∩B=∅,②B∪(∁R A)=R,③A∪B=B,这三个条件中任选一个作为已知条件,求实数a 的取值范围.。
必修一数学必考题型及答题方法
必修一数学必考题型及答题方法全文共四篇示例,供读者参考第一篇示例:数学作为一门理科必修课程,对于学生来说是一个必考的科目。
必修一数学主要包括函数、导数、微分、积分等内容,其中考试题型也比较多样化。
在备考必修一数学考试时,掌握各种题型及答题方法是非常重要的。
本文将针对必修一数学的必考题型及相应的答题方法进行分析与总结。
1. 函数与极限函数与极限是必修一数学中一个非常重要的题型,通常考察的内容包括函数的性质、极限的计算以及极限存在性的判断。
在应对这类题型时,需要注意以下几点答题方法:- 对于函数的性质,需要掌握函数的定义域、值域、奇偶性等基本概念,并能够应用这些概念解决实际问题。
- 在计算极限时,需要掌握常见极限的计算方法,如利用洛必达法则、泰勒展开等方法,同时要注意极限存在性的判断。
- 针对极限存在性的判断,需要掌握夹逼定理、单调有界准则等方法,以判断函数在某点的极限是否存在。
2. 导数与微分导数与微分是必修一数学中另一个重点考察的内容,通常考察的内容包括导数的计算、导数的应用、微分的计算等。
在应对这类题型时,需要注意以下几点答题方法:- 计算导数时,要掌握基本函数的导数计算方法,如常数函数、幂函数、指数函数、对数函数、三角函数等的导数计算公式。
- 在导数的应用中,需要注意应用题的建模、解题过程,并掌握利用导数分析函数的单调性、凹凸性以及求取最值等问题。
- 对于微分的计算,要掌握微分的定义及微分运算规则,并能够熟练应用微分进行问题的求解。
3. 积分与定积分积分与定积分是必修一数学中另一个重要的考察内容,通常考察的内容包括积分的计算、定积分的应用、面积计算等。
在应对这类题型时,需要注意以下几点答题方法:- 对于积分的计算,要掌握不定积分的计算方法,如基本积分法、换元积分法、分部积分法等,同时要注意积分的性质和常见积分的计算结果。
- 在应用题中,要能够熟练应用定积分计算曲线下面积、旋转体的体积、物理问题中的积分应用等内容。
高中数学必修一1.2 集合间的基本关系-单选专项练习(1)(人教A版,含解析)
1.2 集合间的基本关系一、单选题1.集合M= x ∈N*| x (x -3)< 0}的子集个数为 A .1 B .2 C .3 D .4答案:D 详解:{}{*|(3)0}{*|03}1,2M x N x x x N x =∈-<=∈<<=所以集合的子集个数为224=个,故选D .2.若集合{|11}M x x =∈-≤≤Z ,2{|,}P y y x x M ==∈,则集合M 与P 的关系是( ) A .M P = B .M P C .P MD .M P ⋂=∅答案:C解析:根据集合M ,求出集合P ,进而可得集合M 与P 的关系. 详解:解:由题意可得{1,0,1}M ,{0,1}P =,所以P M .故选:C . 点睛:本题考查了集合包含关系的判断及应用,属基础题.3.已知集合{}12A x x =<≤,{}B x x a =<.若A B ⊆,则a 的取值范围是( ) A .1a a ≥ B .1a a ≤C .{}2a a ≥D .{}2a a >答案:D解析:利用数轴法,根据集合间的关系,即可得答案; 详解: 根据题意作图:易知2a >. 故选:D.点睛:本题考查根据集合间的关系求参数的取值,求解时注意等号成立的条件. 4.已知集合{}0,1A =,{}1,0,2B a =-+,若A B ⊆,则a 的值为( ) A .2- B .1- C .0 D .1答案:B解析:根据A B ⊆可得出关于a 的等式,解出即可. 详解:集合{}0,1A =,{}1,0,2B a =-+,A B ⊆,21a ∴+=,解得1a =-. 故选:B. 点睛:本题考查利用集合的包含关系求参数,考查计算能力,属于基础题. 5.集合(1,2)(3,4)}的子集个数为( ) A .3 B .4C .15D .16答案:B解析:直接枚举求解即可. 详解:易得()(){}1,2,3,4的子集有∅,(){}1,2,(){}3,4,()(){}1,2,3,4. 故选:B 点睛:本题主要考查了集合的子集个数,属于基础题. 6.集合{1,0,1}-的非空真子集共有( ) A .5个 B .6个C .7个D .8个答案:B解析:将集合的所有非空真子集列举出来,即可得解. 详解:集合{1,0,1}-,则其非空真子集为{}1-,{0},{1},{1,0}-,{0,1},{1,1}-, 所以非空真子集共有6个, 故选:B. 点睛:本题考查了集合的真子集概念,真子集个数计算,属于基础题.7.已知集合{}0,1,2A =,则A 的子集共有( ) A .2个 B .4个 C .6个 D .8个答案:D解析:根据集合中元素的个数,以及集合子集的个数2n ,简单计算可得结果. 详解:集合A 的子集共有328=个. 故选:D. 点睛:本题考查集合子集个数的计算,识记常用结论,假设集合元素个数为n ,则该集合子集个数为2n ,真子集个数为21n -,非空子集个数为21n -,非空真子集个数为22n -,属基础题. 8.含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b +,则20092009a b +的值为 A .0 B .-1 C .1 D .答案:B解析:根据集合的相等,分别找到元素的对应关系,排除不可能的情况,再进行分类讨论,得到答案. 详解:含有三个实数的集合表示为,,1b a a ⎧⎫⎨⎬⎩⎭,也可表示为{}2,,0a a b + 所以可得0a =或者0ba=当0a =时,因有b a,所以不成立. 故只能0b a=,即0b =此时集合分别为{},0,1a 和{}2,,0a a所以有21a =,即1a =±而由集合的互异性可知,1a =时,不成立 故1a =- 故选B 项. 点睛:本题考查集合的相等,和集合的性质,属于简单题.9.集合P 具有性质“若x P ∈,则1P x∈”,就称集合P 是伙伴关系的集合,集合111,0,,,1,2,3,432A ⎧⎫=-⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合的个数为A .3B .7C .15D .31答案:C解析:首先分析集合A 中的哪些元素能是伙伴关系的集合里的元素,然后利用集合的子集个数公式求解. 详解:根据条件可知满足伙伴关系的集合里面有111,1,,3,,232-中的某些元素,13和3,12和2都以整体出现,13和3看成一个元素,12和2也看成一个元素,∴共有4个元素,集合是非空集合,∴有42115-=个.故选C 点睛:本题主要考查集合关系的判断,利用条件确定伙伴关系的元素是解决本题的关键,意在考查分析问题和解决问题的能力.10.设A=x|2≤x≤4},B=x|2a≤x≤a+3},若B 真包含于A ,则实数a 的取值范围是( ) A .[]1,3 B .(){}3,1∞+⋃ C .{}1 D .()3,∞+答案:C解析:由B 真包含于A ,讨论B =∅与B≠∅时,求出a 的取值范围. 详解:∵A=x|2≤x≤4},B =x|2a≤x≤a+3},且B 真包含于A ; 当B =∅时,2a >a+3,解得a >3;当B≠∅时,232234a a a a ≤+⎧⎪≥⎨⎪+≤⎩解得a =1;此时A=B.∴a 的取值范围是a|a >3} 故选C . 点睛:本题考查了集合之间的基本运算,解题时容易忽略B =∅的情况,是易错题.11.集合{}1,2,3的真子集有( ) A .4个 B .6个 C .7个 D .8个答案:C解析:根据集合真子集的个数公式求解即可. 详解:集合{}1,2,3的元素个数为3个, 故真子集的个数为3217-=, 故选:C 点睛:本题主要考查了集合子集,真子集的概念,考查了集合真子集个数公式,属于容易题.12.集合{}2|4,,A y y x x N y N ==-+∈∈的真子集的个数为A .9B .8C .7D .6答案:C 详解:{}0,3,4,A =故A 有7个真子集13.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 的所有可能取值的集合为 A .{}1,0,1- B .{}1,1- C .{}1 D .{}1-答案:A 详解:试题分析:B A ⊆,∴B=φ或B =-1}或B =1},∴a=0,-1,1. 考点:子集关系点评:本题考查了子集关系,勿忘空集.14.下列四个集合中,空集是A .{}2|20x R x ∈+=B .0C .{}|84x x x ><或D .{}∅答案:A 详解:试题分析:A.因为方程2+2=0x 无解,所以{}2|20x R x ∈+= =φ;B.0中含有一个元素0,所以不是空集;C. {}|84x x x ><或含有很多元素,所以不是空集;D. {}∅含有一个元素φ,所以不是空集. 考点:集合的表示方法;空集的定义.点评:空集就是不含任何元素的集合.属于基础题型.15.下列四个关系中,正确的是( ) A .{},a a b ∈ B .{}{},a a b ∈ C .{}a a ∉D .(){},a a b ∈答案:A解析:因为a 是集合{,}a b 中的元素,判断A 选项正确;因为{}a 与{},a b 是两个集合,判断B 选项错误;因为a 是集合{}a 中的元素,判断C 选项错误;因为数a 不在集合{(,)}a b 中,判断D 选项错误. 详解:解:A 选项:因为a 是集合{,}a b 中的元素,所以{},a a b ∈,故A 选项正确; B 选项:{}a 与{},a b 是两个集合,集合之间没有属于关系,故B 选项错误; C 选项:因为a 是集合{}a 中的元素,所以{}a a ∈,故C 选项错误;D 选项:因为集合{(,)}a b 中的元素是点(,)a b ,数a 不在集合{(,)}a b 中,故D 选项错误; 故选:A. 点睛:本题考查元素与集合的属于关系、集合之间的包含关系,是基础题 16.集合{1,2,3}的子集共有 A .7个 B .8个 C .6个 D .5个答案:B 详解:集合{1,2,3}中共三个元素,子集个数为:328=. 故选B.17.集合A =(x ,y)|y =x}和B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭,则下列结论中正确的是 ( )A .1∈AB .B ⊆AC .(1,1)⊆BD .∅∈A答案:B解析:B =()21,|45x y x y x y ⎧⎫-=⎧⎨⎨⎬+=⎩⎩⎭=(1,1)},而A =(x ,y)|y =x},B 中的元素在A 中,所以B ⊆A故选B .18.已知集合{}22,4,A a =,{}2,6B a =+,若B A ⊆,则a =( )A .-3B .-2C .3D .-2或3答案:C解析:因为B A ⊆得到64a +=或者26a a +=,但是算出a 的值后,要将a 值代回去检验是否满足集合的互异性的条件. 详解: 因为B A ⊆,若64a +=,则2a =-,24a =,集合A 中的元素不满足互异性,舍去; 若26a a +=,则3a =或-2,因为2a ≠-,所以3a =. 故选C. 点睛:根据集合之间的包含关系求解参数的值时,一定要记得将参数的值代回集合中检验是否会有重合的元素,如果有重合的情况就要舍掉这个参数的取值,切记集合的三要素:确定性,互异性,无序性.19.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤ C .21a -<< D .2a <-或1a >答案:B解析:{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩,选A. 点睛:形如|x -a|+|x -b|≥c(或≤c)型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a],(a ,b],(b ,+∞)(此处设a <b)三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a|+|x -b|>c(c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a|+|x -b|和y 2=c 的图象,结合图象求解.20.设集合{}|12A x x =<<,{}|B x x a =<,若A B ⊆,则a 的取值范围 A .2a ≤ B .1a ≤C .1a <D .2a ≥答案:D解析:结合数轴分析即可. 详解:画出数轴可得,若A B ⊆则2a ≥.故选:D点睛:本题主要考查了根据集合的关系求参数的问题,属于基础题型.。
高中数学必修一题型总结
高中数学必修一题型总结高中数学必修一题型总结高中数学必修一题型总结第一章集合1.考查集合的特性确定性、无序性、互异性Eg.已知一集合A={2,9,5,36,X},则该集合中的X为下列选项中的哪一个()A.8B.9C.36D.5答案选A,原因就是集合特性中的互异性。
2.集合之间的基本关系子集、真子集、空集Eg.(20xx天津理数)设集合A={x||x-a|<1,x∈R},B={x||x-b|>2,x∈R}.若AB,则实数a、b必满足答案为|a-b|≥3,原因是A=(a-1,a+1)B=(-∞,b-2)∪(b+2,+∞)因为A包含于B所以a+1=b+2aⅢ.在不能约分的情况下用判别式法Eg.y=2x-2x+3/x-x+1Xy-xy+y=2x-2x+3(y-2)x+(2-y)x+y-3=0当x=2,-1≠0则y≠2B-4ac≥0代入得4-4y+y-4(y-5y+6)-3y+16y-20≥0(y-2)(3y-10)≤02≤y≤10/3又∵y≠2则y∈2,10/3]2.单调性与增减性同增异减扩展阅读:高中数学必修一函数题型方法总结这份资料是全部内容已经完成的一部分,后续资料正在编写中。
此资料是必修一函数部分的总结,希望对各位高中同学有所帮助。
部分题目给出了详细的答案,部分题目仅给出了简单思路。
部分题目仅仅是题目。
希望同学能仔细阅读给出答案的题目,总结这一类题目的思路与方法。
活学活用。
第一部分典型例题解析一、函数部分一、函数的值域:求函数值域的常用方法有(观察法、配方法、判别式、换元、分离常数法、方程法)。
1、函数y164x的值域是()。
A、[0,+∞)B、[0,4)C[0,4]D(0,4)解析:本题是指数函数与幂函数复合,我们可以直接求出各自的取值范围。
所以本题我们用直接分析法。
4x>016-4x<16;要根号有意义,16-4x0。
综上可知:016-4x<1616-4x0,4 2、若函数yf(x)的值域是12,3,则函数F(x)f(x)1f(x)的值域是()。
人教版高中数学必修第一册知识点及题型总结---不等关系与不等式
目录不等关系与不等式 (2)考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)考点1:不等关系与不等式知识点一基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点二重要不等式∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.题型1:用不等式(组)表示不等关系例1《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票(以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票.……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h(米),物品外部长、宽、高尺寸之和为P(厘米),请用不等式表示下表中的不等关系.解由题意可获取以下主要信息:(1)身高用h(米)表示,物体长、宽、高尺寸之和为P(厘米);(2)题中要求用不等式表示不等关系.解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34,又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 答案 C解析 对于A ,x 应满足x ≤2 000,故A 错误;对于B ,x ,y 应满足x <y ,故B 错误;C 正确;对于D ,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100答案 C解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关答案 A解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .随x 值变化而变化答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .(a +4)(b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 答案 C解析 由题意知a >4b ,根据面积公式可以得到(a +4)(b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 答案 |x -500|≤1解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________.答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1),所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A ,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y , 得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130. ∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =N D .无法确定答案 B解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12答案 A解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式(组)将题中的不等关系表示为________.答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *)解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.(填“>”“<”“=”) 答案 >解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1) =a 1(b 1-b 2)+a 2(b 2-b 1) =(b 1-b 2)(a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即(b 1-b 2)(a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 (1)如果a =b ,那么b =a . (2)如果a =b ,b =c ,那么a =c . (3)如果a =b ,那么a ±c =b ±c . (4)如果a =b ,那么ac =bc . (5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 (1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.答案 ①③解析 对于①,若ab >0,则1ab>0, 又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-(-10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a (b +m )<b (a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.(2)已知a >b >0,c <d <0.求证:3a d<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-ad>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确. 故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8(a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定答案 C解析 P 2=2a +13+2(a +6)(a +7), Q 2=2a +13+2(a +5)(a +8),因为(a +6)(a +7)-(a +5)(a +8)=a 2+13a +42-(a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b ,则a >0,b <0B .若a >b ,b ≠0,则ab >1C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d 答案 A解析 对于A ,∵1a >1b ,∴b -a ab >0,又a >b ,∴b -a <0,∴ab <0, ∴a >0,b <0,故A 正确;对于B ,当a >0,b <0时,有ab<1,故B 错;对于C ,当a =10,b =2时,有10+1>2+3,但1<3, 故C 错;对于D ,当a =-1,b =-2时,有(-1)×(-1)>(-2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和ab 的取值范围.解 ∵15<b <36,∴-36<-b <-15, ∴12-36<a -b <60-15,即-24<a -b <45. 又136<1b <115,∴1236<a b <6015,即13<a b <4. 故-24<a -b <45,13<a b <4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________. 答案 -32<2a -b <52解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |答案 A解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .(a -b )c 2≥0答案 D解析 ∵a >b ,∴a -b >0,∴(a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数答案 A解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 答案 C解析 利用性质可得A ,B ,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 答案 D解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 答案 a >0>b解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.答案 ②③解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<(-3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.答案 z >y >x解析 ∵a >b >c >0,y 2-x 2=b 2+(c +a )2-a 2-(b +c )2=2ac -2bc=2c (a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.(1)若a <b ,c <0,则c a <c b; (2)a c 3<b c 3,则a >b ; (3)若a >b ,且k ∈N *,则a k >b k ;(4)若a >b ,b >c ,则a -b >b -c .解 (1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. (2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.(3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.(4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52(a +b )<152,-2<-12(a -b )<-1, 所以-92<52(a +b )-12(a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b答案 D 解析 对于A ,若c <0,其不成立;对于B ,若a ,b 均小于0或a <0,其不成立;对于C ,若a >0,b <0,其不成立;对于D ,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 答案 C解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C ,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )A .d >b >a >cB .b >c >d >aC .d >b >c >aD .c >a >d >b答案 A解析 ∵a +b =c +d ,a +d >b +c ,∴a +d +(a +b )>b +c +(c +d ),即a >c .∴b <d .又a+c<b,∴a<b.综上可得,d>b>a>c.。
高中数学必修1知识点总结及题型
高中数学必修1知识点总结及题型高中数学讲义必修一第一章复知识点一:集合的概念集合是由一些能够归纳在一起的对象构成的整体,通常用大写拉丁字母A、B、C等表示。
构成集合的对象称为元素,通常用小写拉丁字母a、b、c等表示。
不含任何元素的集合称为空集,记为∅。
知识点二:集合与元素的关系如果元素a是集合A的一部分,则称a属于集合A,记作a∈A;如果a不是集合A中的元素,则称a不属于集合A,记作a∉A。
知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。
集合可以分为有限集和无限集。
有限集包含有限个元素,无限集包含无限个元素。
知识点四:集合的表示方法集合的元素可以通过列举法和描述法来表示。
列举法是将集合的元素一一列举,并用花括号“{}”括起来表示集合的方法。
描述法是用集合所含元素的共同属性来表示集合的方法。
知识点五:集合与集合的关系子集是指集合A中的所有元素都是集合B中的元素,此时称集合A是集合B的子集,记作A⊆B。
如果A是B的子集且A不等于B,则称A是B的真子集,记作A⊂B。
空集是任何集合的子集,任何集合都是其本身的子集。
如果A是B的子集,B是C的子集,则A是C的子集。
如果A是B的真子集,B是C的真子集,则A是C的真子集。
集合相等是指A是B的子集,B是A的子集,此时称A与B相等,记作A=B。
知识点六:集合的运算交集是指两个集合中共同存在的元素构成的集合,记作A∩B。
并集是指两个集合中所有元素构成的集合,记作A∪B。
1.自然语言中,由文字、符号和图形语言组成的集合,称为集合A与B的并集。
2.交集的运算性质包括:A∩B=B∩A(交换律)A∩A=A(恒等律)A∩∅=∅(零律)A⊆B⇔A∩B=A(吸收律)3.在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
4.对于一个集合A,由全集U中除A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁UA。
高中数学必修一集合经典题型总结
慧诚教育2017年秋季高中数学讲义必修一第一章复习知识点一集合的概念1.集合一般地,把一些能够________________对象看成一个整体,就说这个整体是由这些对象________构成的集合(或集),通常用大写拉丁字母A,B,C,…来表示.2.元素构成集合的____________叫做这个集合的元素,通常用小写拉丁字母a,b,c,…来表示.3.空集不含任何元素的集合叫做空集,记为∅.知识点二集合与元素的关系1.属于如果a是集合A的元素,就说a________集合A,记作a________A.2.不属于如果a不是集合A中的元素,就说a________集合A,记作a________A.知识点三集合的特性及分类1.集合元素的特性________、________、________.2.集合的分类(1)有限集:含有________元素的集合.(2)无限集:含有________元素的集合.3.常用数集及符号表示知识点四1.列举法把集合的元素________________,并用花括号“{}”括起来表示集合的方法叫做列举法.2.描述法用集合所含元素的________表示集合的方法称为描述法. 知识点五 集合与集合的关系 1.子集与真子集2.子集的性质(1)规定:空集是____________的子集,也就是说,对任意集合A ,都有________. (2)任何一个集合A 都是它本身的子集,即________. (3)如果A ⊆B ,B ⊆C ,则________. (4)如果A ⊆B ,B ⊆C ,则________. 3.集合相等4.如果A ⊆B ,B ⊆A ,则A =B ;反之,________________________.知识点六 集合的运算1.交集2.并集3.交集与并集的性质4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的________,那么就称这个集合为全集,通常记作________.5.补集典例精讲题型一 判断能否构成集合1.在“①高一数学中的难题;②所有的正三角形;③方程x 2-2=0的实数解”中,能够构成集合的是 。
高中数学必修一重点题型和分析
高中数学必修一重点题型和分析高中数学必修一,其重点题型有:
一、函数的定义与特点
1. 描述函数的定义及基本性质;
2. 对函数特点的总结分析,例如:一元函数的奇偶性、连续性等;
3. 求函数的递推公式及其解析表示。
二、一元函数的图像性质
1. 对一元函数曲线的性质进行图上表示;
2. 分析函数曲线上的关键点以及图像变化;
3. 分析函数极限性质及图样特征。
三、一元函数的分析
1. 求函数的单调性,增加减少和极值;
2. 分析函数的奇偶性、循环性、封闭性及一阶和二阶导数的性质;
3. 对函数的凹凸性和拐点进行分析;
4. 解决利用函数表达式求函数极限等问题。
四、实数的性质
1. 熟练体会和掌握实数的性质;
2. 描述实数的层次关系,包括闭包性、对称性及自反性;
3. 求解实数的基本运算,例如关系运算、交集运算等。
五、代数式和方程
1. 熟悉代数式的概念和表示,以及它与模型的关系;
2. 了解方程的定义和性质,以及解出方程的方法;
3. 掌握解一元方程及一般多项式方程的定理;
4. 理解简单应用函数方程的概念及性质。
人教A版高中数学必修1全册练习题
人教A版高中数学必修1全册练习题高中数学必修1练习题集第一章、集合与函数概念1.1.1集合的含义与表示例1.用符号和填空。
⑴设集合A是正整数的集合,则0_______A,________A,______A;⑵设集合B是小于的所有实数的集合,则2______B,1+______B;⑶设A为所有亚洲国家组成的集合,则中国_____A,美国_____A,印度_____A,英国____A例2.判断下列说法是否正确,并说明理由。
⑴某个单位里的年轻人组成一个集合;⑵1,,,,这些数组成的集合有五个元素;⑶由a,b,c组成的集合与b,a,c组成的集合是同一个集合。
例3.用列举法表示下列集合:⑴小于10的所有自然数组成的集合A;⑵方程x=x的所有实根组成的集合B;⑶由1~20中的所有质数组成的集合C。
例4.用列举法和描述法表示方程组的解集。
典型例题精析题型一集合中元素的确定性例1.下列各组对象:①接近于0的数的全体;②比较小的正整数全体;③平面上到点O的距离等于1的点的全体;④正三角形的全体;⑤的近似值得全体,其中能构成集合的组数是()A.2B.3C.4D.5题型二集合中元素的互异性与无序性例2.已知x{1,0,x},求实数x的值。
题型三元素与集合的关系问题1.判断某个元素是否在集合内例3.设集合A={x∣x=2k,kZ},B={x∣x=2k+1,kZ}。
若aA,bB,试判断a+b与A,B的关系。
2.求集合中的元素例4.数集A满足条件,若aA,则A,(a≠1),若A,求集合中的其他元素。
3.利用元素个数求参数取值问题例5.已知集合A={x∣ax+2x+1=0,aR},⑴若A中只有一个元素,求a的取值。
⑵若A中至多有一个元素,求a的取值范围。
题型四列举法表示集合例6.用列举法表示下列集合⑴A={x∣≤2,xZ};⑵B={x∣=0}⑶M={x+y=4,xN,yN}.题型五描述法表示集合例7.⑴已知集合M={xN∣Z},求M;⑵已知集合C={Z∣xN},求C.例8.用描述发表示图(图-8)中阴影部分(含边界)的点的坐标的集合。
高中数学必修1基本初等函数基础训练
数学测试一、选择题1.下列函数与x y =有相同图象的一个函数是( )A .2x y = B .x x y 2= C .)10(log ≠>=a a a y x a 且 D .x a a y log = 2.下列函数中是奇函数的有几个( ) ①11x x a y a +=- ②2lg(1)33x y x -=+- ③x y x = ④1log 1a x y x +=- A .1 B .2 C .3 D .43.函数y x =3与y x =--3的图象关于下列那种图形对称( )A .x 轴B .y 轴C .直线y x =D .原点中心对称4.下列函数为偶函数是是 ( )A )f(x)=x 2+x-1B )f(x)=x|x|C )f(x)=x 2-x 3D )()f x =5.函数y = )A .[1,)+∞B .2(,)3+∞ C .2[,1]3 D .2(,1]3 6.三个数60.70.70.76log 6,,的大小关系为( ) A . 60.70.70.7log 66<< B . 60.70.70.76log 6<< C .0.760.7log 660.7<< D . 60.70.7log 60.76<<7.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34xe + 二、填空题1.985316,8,4,2,2从小到大的排列顺序是 。
2.若3)1()(2++-=mx x m x f 是偶函数,则)(x f 的递增区间是____________。
3.计算:(log )log log 2222545415-++= 。
4.函数1218x y -=的定义域是______;5.判断函数2lg(y x x =的奇偶性 。
三、解答题1.已知二次函数f(x)的图像的顶点是(-1,2),且过原点,求f(x)的表达式附加题。
高中数学人教版必修第一册经典题型练习题及答案
3
3 +4 3
=8-
17 3
=
7 3
当且仅当8(3x+4)= 6 时,y 有最小值 7
3
3 +4
3
故答案为: 7
3
第 13 题:
答案:33
4
解:
(1)令 log3 (4x+1)=☆
则 f〔log3 (4x+1)〕=f(☆)
其中:☆可以是一个数,也可以一个字母,还可以是一个代数式。
也就是说:☆可以是 log3 (4x+1), ☆也可以是 2
=2( 3sin2x + 1cos2x)+
2
2
=2sin(2x+ )+(a+1)
6
∴sin(2x+ )∈〔- 1,1〕
6
2
所以 f(x)最小=2×(- 1) +(a+1)=3
2
解得:a=3
故答案为:a=3
(2)由(1)得到 f(x)的解析式:
f(x) =2sin(2x+ )+4
6
f( )= 2sin(2· + )+4 =6
由④知道,-7 <2-x <14-------------⑤ ⑤-2,得 -9<-x <12------------------------⑥ ⑥×(-1),得 -12<x<9 所以 f(2-x)的定义域:(-12,9) 故选:B 第6题 答案:A 解:已知 f(2x+3)=2 2 -3x+13 令x= ☆ 则 f(2☆+3)=2☆2 -3☆+13-------------① 因为 f(2☆+3)与 f(4 2-1)是相同的运算法则 所以令 2☆+3 =4 2-1 解得:☆= 2 2 -2---------------------② 将②代入① f〔2(2 2 -2)+3〕=2(2 2 − 2)2 -3(2 2 -2)+13 f(4 2 -1)=8 4-22 2+27 故选:A 第7题 答案:D 解: (1)函数是奇函数,排除 A,B (2)当 x>2 时,y>0 排除 C 故选 D 第8题
高中数学必修一第一章第一节集合的概念基础题3
高中数学必修一1.1集合的概念基础题3第I 卷(选择题)一、单选题1.对于正实数α,记M α是满足下列条件的函数()f x 构成的集合:对于任意的实数12,x x R ∈且12x x <,都有()()()()212121x x f x f x x x αα--<-<-成立.下列结论中正确的是 A .若()1f x M α∈,()2g x M α∈,则()()12f x g x M αα⋅⋅∈B .若()1f x M α∈,()2g x M α∈且()0g x ≠,则()()12M f x g x M αα∈ C .若()1f x M α∈,()2g x M α∈,则()()12f x g x M αα++∈D .若()1f x M α∈,()2g x M α∈()2g x M α∈且12αα>,则()()12f x g x M αα--∈2.设A 是整数集的一个非空子集,对于k ∈A ,如果1k A -∉且1k A +∉,那么称k 是集合A 的一个“好元素”.给定集合S ={1,2,3,4,5,6,7,8},由S 的3个元素构成的所有集合中,不含“好元素”的集合共有( ) A .2个B .4个C .6个D .8个3.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉4.若集合()22017*2,10,,2n mn n A m n m Z n Z ⎧⎫++⎪⎪==∈∈⎨⎬⎪⎪⎩⎭,则集合A 的元素个数为 A .4038 B .4036 C .22017 D .220185.已知x 、y 、z 为非零实数,代数式||||||||x y z xyz x y z xyz+++的值所组成的集合是M ,则下列判断正确的是( ) A .0M ∉B .2M ∈C .4M -∉D .4M6.当一个非空数集G 满足:如果,a b G ∈,则,,a b a b ab G +-∈,且0b ≠时,aG b∈时,我们称G 就是一个数域,以下关于数域的说法:∈0是任何数域的元素;∈若数域G 有非零元素,则2019G ∈;∈集合{}2P x x k k Z ==∈,是一个数域;∈有理数集是一个数域;∈任何一个有限数域的元素个数必为奇数,其中正确的选项是( )A .∈∈∈B .∈∈∈∈C .∈∈∈D .∈∈∈∈ 7.已知集合{}{}2|00,1x x ax +==,则实数a 的值为.A .1-B .0C .1D .28.定义集合A 与B 的运算“*”为:{|A B x x A *=∈或x B ∈,但}x A B ∉⋂.设X 是偶数集,{}1,2,3,4,5Y =,则()X Y Y **=( )A .XB .YC .X Y ⋂D .X Y ⋃二、多选题9.已知{}2A x x px q x =++=,()(){}2111B x x p x q x =-+-+=+,当{}2A =时,则集合B 中实数x 可能的取值为( )A.4B .3 C .3D .410.设集合{}22,,Z M a a x y x y ==-∈,则下列是集合M 中的元素的有( )A .4n ,Z n ∈B .41n +,Z n ∈C .42n +,Z n ∈D .43n +,Z n ∈11.(多选题)已知集合{}|4A x Z x =∈<,B N ⊆,则( ) A .集合B N N ⋃= B .集合A B 可能是{}1,2,3 C .集合A B 可能是{}1,1-D .0可能属于B12.已知集合{}{}1,2,|20P Q x ax ==+=,若P Q P =,则实数a 的值可以是( ) A .2-B .1-C .1D .0第II 卷(非选择题)三、填空题13.设集合A 是由1,k 2为元素构成的集合,则实数k 的取值范围是________.14.已知{}21,x x ∈-,则实数x 的值是________.15.已知()f x ax b =+,集合{}()0A x f x φ===(1)2,f =,则120182019a b -+=_____. 16.用列举法表示集合*6,5A aN a Z a ⎧⎫=∈∈=⎨⎬-⎩⎭__________.参考答案:1.C 【解析】 由题意知2121()()f x f x x x αα--<<-,从而求得.【详解】解:对于()()()()212121x x f x f x x x αα--<-<-, 即有()()()2121f x f x x x αα--<<-,令()()()2121f x f x k x x -=-, 则k αα-<<,若()1f x M α∈,()2g x M α∈, 即有11f k αα-<<,22g k αα-<<, 所以1212f g k k αααα--<+<+, 则有()()12f x g x M αα++∈, 故选:C . 【点睛】本题考查了函数的性质的判断与应用,属于中档题. 2.C 【解析】 【分析】根据“好元素”的定义用列举法列举出满足条件的所有集合,即可得到答案. 【详解】根据“好元素”定义,可知由S 中的3个元素构成的集合中,不含“好元素”,则这3个元素一定是相连的3个数,所以不含“好元素”的集合共有{}1,2,3,{}2,3,4,{}3,4,5,{}4,5,6,{}5,6,7,{}6,7,8,共6个.故选:C .3.B 【解析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题. 4.B 【解析】首先由题意方程变形为两个数相乘,即()201820172125n n m ++=⨯,依次讨论n 为奇数或偶数,得到满足条件的n ,从而得到集合A 的元素个数. 【详解】由题意可知220172210n mn n ++=⨯ 即()201820172125n n m ++=⨯,当n 是偶数时,21n m ++是奇数,当20182n =,此时2017215n m ++=,解得201720185122m Z --=∈,满足条件,依次类推,201825n =⨯,2018225⨯,2018325⨯......2018201725⨯,共2018个n ,每一个n 对应唯一的m ,当n 时奇数时,21n m ++是偶数,此时05n =,15,25…..20175共2018个n , 综上可知满足条件的n 有4036个数,每一个n 对应唯一的m , 所有集合A 的元素个数为4036个. 故选:B【点睛】本题考查由方程的整数解,确定集合的元素个数,意在考查分析问题和解决问题的能力,本题的关键是根据条件变形为()201820172125n n m ++=⨯,从而讨论n 是奇数或偶数,将2018201725⨯分成不同的两个数相乘,从而确定n 的个数即元素个数.5.D 【解析】 【分析】根据题意,分析可得代数式||||||||x y z xyz x y z xyz+++的值与x 、y 、z 的符号有关;按其符号的不同分4种情况讨论,分别求出代数式在各种情况下的值,即可得M ,分析选项可得答案. 【详解】根据题意,分4种情况讨论;∈x 、y 、z 全部为负数时,则xyz 也为负数,则||4||||||x y z xyz x y z xyz+++=-, ∈x 、y 、z 中有一个为负数时,则xyz 为负数,则||0||||||x y z xyz x y z xyz +++=, ∈x 、y 、z 中有两个为负数时,则xyz 为正数,则||0||||||x y z xyz x y z xyz+++=, ∈x 、y 、z 全部为正数时,则xyz 也正数,则||4||||||x y z xyz x y z xyz+++=; 则{4M =,4-,0}; 分析选项可得A 符合. 故选:D . 【点睛】本题考查集合与元素的关系,注意题意中x 、y 、z 的位置有对称性,即代数式的值只与x 、y 、z 中有几个为负数有关,与具体x 、y 、z 中谁为负无关.6.D 【解析】 【分析】直接根据数域的定义,采用赋值法依次判断各个选项即可得到结果. 【详解】对于∈,当a b =且,a b G ∈时,由数域定义知:0a b G -=∈,∴0是任何数域的元素,∈正确;对于∈,当0a b =≠且,a b G ∈时,由数域定义知:1aG b=∈, 112G ∴+=∈,123G +=∈,134G +=∈,…,120182019G +=∈,∈正确;对于∈,当2a =,4b =时,12a Gb =∉,∈错误; 对于∈,若,a b Q ∈,则,,a b a b ab Q +-∈,且当0b ≠时,aQ b∈,则有理数集是一个数域,∈正确;对于∈,0G ∈,若b G ∈且0b ≠,则b G -∈,则这个数不为0则必成对出现,∴数域的元素个数必为奇数,∈正确.故选:D. 7.A 【解析】 【详解】依题意,有{}{}0,0,1a -=,所以,1a =-.选A. 8.A 【解析】 【详解】试题分析:首先求出{}2,4X Y ⋂=,,X Y 的并集再去掉交集即得{}*1,3,5,6,8,10,X Y =.同理可得{}(*)*2,4,6,8,10,X Y Y X ==.考点:新定义及集合基本运算. 9.BC 【解析】由条件可知方程2x px q x ++=有两个相等的实根,并且2x =,列式求,p q 的值,再代入集合B ,求方程的实数根. 【详解】由{}2A =,得方程2x px q x ++=有两个相等的实根,且2x =. 从而有()2422140p q p q ++=⎧⎪⎨--=⎪⎩解得34p q =-⎧⎨=⎩从而()(){}213141B x x x x =---+=+.解方程()()213141x x x ---+=+,得3x =± 故选:BC 【点睛】本题考查集合元素与一元二次方程实数根的关系,重点考查计算能力,属于基础题型. 10.ABD 【解析】 【分析】分别对x ,y 取整数,1x n =+,1y n =-可判断A ;由21x n =+,2y n =可判断B ;令()()42n x y x y +=+-,通过验证不成立可判断C ;由22x n =+,21y n =+可判断D ,进而可得正确选项. 【详解】对于A :因为()()22411n n n =+--,Z n ∈,1Z n +∈,1Z n -∈,所以4n M ,故选项A 正确;对于B :因为()()2241212n n n +=+-,Z n ∈,21Z n +∈,2Z n ∈,所以41n M ,故选项B 正确;对于C :若()42Z n n M +∈∈,则存在x ,Z y ∈使得2242x y n,则()()42n x y x y +=+-,易知x y +和x y -同奇或同偶,若x y +和x y -都是奇数,则()()x y x y +-为奇数,而42n +是偶数,矛盾;若x y +和x y -都是偶数,则()()x y x y +-能被4整除,而42n +不能被4整除,矛盾,所以42nM ,故选项C 不正确;对于D :()()22432221n n n +=+-+,22Z n +∈,21Z n +∈,所以43n M ,故选项D 正确; 故选:ABD. 11.ABD 【解析】【分析】根据集合Z ,N 的定义,及集合元素的特点进行逐一判断即可. 【详解】∈B N ⊆,∈B N N ⋃=,故A 正确.∈集合{}4A x Z x =∈<,∈集合A 中一定包含元素1,2,3, ∈B N ⊆,∈集合A B 可能是{}1,2,3,故B 正确; ∈1-不是自然数,∈集合A B 不可能是{}1,1-,故C 错误; ∈0是最小的自然数,∈0可能属于集合B ,故D 正确. 故选:ABD. 【点睛】本题考查了集合Z ,N 的概念及集合元素的特点,属于基础题. 12.ABD 【解析】 【分析】由题得Q P ⊆,再对a 分两种情况讨论,结合集合的关系得解. 【详解】因为P Q P =,所以Q P ⊆. 由20ax +=得2ax =-,当0a =时,方程无实数解,所以Q =∅,满足已知; 当0a ≠时,2x a =-,令21a-=或2,所以2a =-或1-.综合得0a =或2a =-或1a =-. 故选:ABD 【点睛】易错点睛:本题容易漏掉0a =. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解. 13.k ≠±1 【解析】 【详解】∈1∈A ,k 2∈A ,结合集合中元素的互异性可知k 2≠1,解得k ≠±1.点睛: 利用元素的性质求参数的方法(1)确定性的运用:利用集合中元素的确定性解出参数的所有可能值.(2)互异性的运用:根据集合中元素的互异性对集合中元素进行检验. 14.1 【解析】本题可分为1x -=、21x =两种情况进行讨论,得出实数x 的值后代入集合中判断是否成立,即可得出结果. 【详解】 因为{}21,x x ∈-,所以若1x -=,则1x =-,此时21x =,不满足;若21x =,则1x =或1-(舍去),1x =,此时集合为{}1,1-,满足, 故答案为:1. 【点睛】易错点睛:通过元素与集合的关系求参数时,要注意求出的集合中的元素需要满足互异性,考查计算能力,是中档题. 15.2020 【解析】由()f x ax b =+且集合{}()0A x f x φ===(1)2,f =,解得0a =,2b =,由此能求出120182019a b -+.【详解】 解:()f x ax b =+且集合{|()0}A x f x ===∅,0ax b ∴+=无解,0a ∴=,(1)2f =,2b ∴=,1020182019202a b -+=. 故答案为:2020. 【点睛】本题考查函数值的求法,是基础题.解题时要认真审题,仔细解答.16.{}1,2,3,4- 【解析】 【分析】对整数a 取值,并使65a-为正整数,这样即可找到所有满足条件的a 值,从而用列举法表示出集合A . 【详解】 因为a Z ∈且*65N a∈- 所以a 可以取1-,2,3,4. 所以{}1,2,3,4A =- 故答案为:{}1,2,3,4- 【点睛】考查描述法、列举法表示集合的定义,清楚Z 表示整数集,属于基础题.。
高中数学必修1基础练习题(附详细答案)
➢•高中数学必修一基础练习题班号姓名❖❖集合的含义与表示1.下面的结论正确的是()A.a∈Q,则a∈N B.a∈Z,则a∈NC.x2-1=0的解集是{-1,1} D.以上结论均不正确2.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程x2-4=0和方程|x-1|=1的解构成了一个四元集3.用列举法表示{(x,y)|x∈N+,y∈N+,x+y=4}应为()A.{(1,3),(3,1)} B.{(2,2)}C.{(1,3),(3,1),(2,2)} D.{(4,0),(0,4)}4.下列命题:(1)方程x-2+|y+2|=0的解集为{2,-2};(2)集合{y|y=x2-1,x∈R}与{y|y=x-1,x∈R}的公共元素所组成的集合是{0,1};(3)集合{x|x-1<0}与集合{x|x>a,a∈R}没有公共元素.其中正确的个数为()A.0 B.1 C.2 D.32,4,6,8,若a∈A,则8-a∈A,则a的取值构成的集合是________.5.对于集合A={}6.定义集合A*B={x|x=a-b,a∈A,b∈B},若A={1,2},B={0,2},则A*B中所有元素之和为________.7.若集合A={-1,2},集合B={x|x2+ax+b=0},且A=B,则求实数a,b的值.8.已知集合A={a-3,2a-1,a2+1},a∈R.(1)若-3∈A,求实数a的值;(2)当a为何值时,集合A的表示不正确.➢•集合间的基本关系1.下列关系中正确的个数为()①0∈{0};②∅{0};③{(0,1)}⊆{(0,1)};④{(a,b)}={(b,a)}.A.1 B.2 C.3 D.42.已知集合A={x|-1<x<2},B={x|0<x<1},则()A.A>B B.A B C.B A D.A⊆B3.已知{1,2}⊆M{1,2,3,4},则符合条件的集合M的个数是() A.3 B.4 C.6 D.84.集合M={1,2,a,a2-3a-1},N={-1,3},若3∈M且N M,则a的取值为() A.-1 B.4 C.-1或-4 D.-4或15.集合A中有m个元素,若在A中增加一个元素,则它的子集增加的个数是__________.6.已知M={y|y=x2-2x-1,x∈R},N={x|-2≤x≤4},则集合M与N之间的关系是________.7.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.8.设集合A={x|a-2<x<a+2},B={x|-2<x<3},(1)若A B,求实数a的取值范围;(2)是否存在实数a使B⊆A?☺☺并集与交集1.A∩B=A,B∪C=C,则A,C之间的关系必有()A.A⊆C B.C⊆A C.A=C D.以上都不对2.A={0,2,a},B={1,a2},A∪B={0,1,2,4,16},则a的值为() A.0 B.1 C.2 D.43.已知全集U=R,集合M={x|-2≤x-1≤2}和N={x|x=2k-1,k∈N*}的关系的韦恩(V enn)图如图所示,则阴影部分所示的集合的元素共有()A.2个B.3个C.1个D.无穷多个4.设集合M={x|-3≤x<7},N={x|2x+k≤0},若M∩N≠∅,则k的取值范围是()A.k≤3 B.k≥-3 C.k>6 D.k≤65.已知集合M={x|-3<x≤5},N={x|-5<x<-2或x>5},则M∪N=________,M∩N=________.6.已知集合A={(x,y)|y=x2,x∈R},B={(x,y)|y=x,x∈R},则A∩B中的元素个数为___.7.已知集合A={x|x2+px+q=0},B={x|x2-px-2q=0},且A∩B={-1},求A∪B.8.已知A={x|x<-2或x>3},B={x|4x+m<0,m∈R},当A∩B=B时,求m的取值范围. 集合的补集运算1.已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7}, 则∁U (M ∪N )=( ) A .{5,7}B .{2,4}C .{2,4,8}D .{1,3,5,6,7}2.已知全集U ={2,3,5},集合A ={2,|a -5|},若∁U A ={3},则a 的值为( ) A .0B .10C .0或10D .0或-103.已知全集U =R ,集合A ={x |-2≤x ≤3},B ={x |x <-1或x >4}, 那么集合A ∩(∁U B )等于( )A .{x |-2≤x <4}B .{x |x ≤3或x ≥4}C .{x |-2≤x <-1}D .{x |-1≤x ≤3}4.如图所示,U 是全集,A ,B 是U 的子集,则阴影部分所表示的集合是( )A .A ∩B B .A ∪BC .B ∩(∁U A )D .A ∩(∁U B )5.已知全集S =R ,A ={x |x ≤1},B ={x |0≤x ≤5},则(∁S A )∩B =________.6.定义集合A *B ={x |x ∈A ,且x ∉B },若A ={1,2,3,4,5}, B ={2,4,5},则A *B 的子集的个数是________.7.已知全集U =R ,A ={x |-4≤x ≤2},B ={x |-1<x ≤3},P ={x |x ≤0或x ≥52},(1)求A ∩B ; (2)求(∁U B )∪P ; (3)求(A ∩B )∩(∁U P ).8.已知集合A ={x |2a -2<x <a },B ={x |1<x <2},且A ∁R B ,求a 的取值范围.函数的概念1.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集 合N 的函数关系的是( ) 2.f (x )=2x -x的定义域是( )A .(-∞,1]B .(0,1)∪(1,+∞)C .(-∞,0)∪(0,1]D .(0,+∞)3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}4.若函数f (x )=ax 2-1,a 为一个正常数,且f [f (-1)]=-1,那么a 的值是( ) A .1B .0C .-1D .25.函数y =x 2x 2+1(x ∈R )的值域是________.6.设f (x )=11-x,则f [f (x )]=________. 7.求下列函数的定义域:(1) f (x )=2x -1-3-x +1; (2) f (x )=4-x 2x +1.8.已知函数f (x )=x 21+x 2, (1)求f (2)+f (12),f (3)+f (13)的值; (2)求证f (x )+f (1x )是定值。
人教版高中数学必修一函数的基本性质专题习题
人教版高中数学必修一函数的基本性质专题习题高考复专题:函数的基本性质定义域函数的定义域是指所有可以输入的自变量的取值范围。
求函数定义域的常用方法有:1.无论什么函数,优先考虑定义域是偶次根式的被开方式非负;分母不为零;指数幂底数不为零;对数真数大于且底数大于不等于1;tanx定义域为{x|x≠(2k+1)π/2,k∈Z}。
2.复合函数的定义域是x的范围,f的作用范围不变。
例如,下面是一些函数的定义域:1.y = log0.5(4x2-3x),定义域为x>3/4或x<0.2.f(x)的定义域是[-1,1],则f(x+1)的定义域是[-2,0]。
3.若函数f(x)的定义域是[-1,1],则函数f(log2x)的定义域是(1/4,1]。
4.已知f(x2)的定义域为[1,1],则f(x)的定义域为[-1,1]或[0,1]。
5.已知函数y = f(x+1)3,定义域是[-5,4]。
值域和最值函数的值域是指函数所有可能的输出值的集合。
求函数值域的常用方法有:1.对于一次函数y = kx+b,当k>0时,值域为[XXX,ymax],其中ymin = b,ymax = kx+b;当k<0时,值域为[XXX,XXX]。
2.对于二次函数y = ax2+bx+c,当a>0时,值域为[XXX,ymax],其中ymin = c-Δ/4a,ymax = c;当a<0时,值域为[XXX,XXX]。
3.对于指数函数y = a^x,当a>1时,值域为(0,+∞);当0<a<1时,值域为(0,1]。
4.对于对数函数y = loga(x),当a>1时,值域为(-∞,+∞);当0<a<1时,值域为(-∞,0]。
最值是函数在定义域内取得的最大值或最小值。
求函数最值的常用方法有:1.对于一次函数y = kx+b,当k>0时,最小值为b,最大值为无穷;当k<0时,最小值为无穷,最大值为b。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修一基本题型题型一:集合运算1. 已知{}R x x x y y M ∈+-==,34|2,{}R x x x y y N ∈++-==,82|2则__________=N M 。
注意集合的代表元素。
2. 已知集合}31{≤≤-=x x A ,},{2A x y x y B ∈==,},2{A x a x y y C ∈+==,若满足BC ⊆,求实数a 的取值范围.集合包含关系一定要优先考虑空集。
3. 设P=}|),{(},|{22x y y x Q x y x ===,则P 、Q 的关系是 ( ) (A )P ⊆Q (B )P ⊇Q (C )P=Q (D )P ⋂Q=∅ 区别好点集与数集,二者是不可能有共同元素的。
4. 集合{}22|190A x x ax a =-+-=,{}2|560B x x x =-+=,{}2|280C x x x =+-=满足,A B φ≠ ,,A C φ= 求实数a 的值。
5. 集合A={(x ,y )|y=a|x|},B={(x ,y )|y=x+a},C=A ∩B ,且集合C 为单元素集合,则实数a的取值范围为( )A.|a|≤1B.|a|>1C.a>1D.a>0或a<06. 已知集合M ={(x ,y )|x +y =3},N ={(x ,y )|x -y =5},那么集合M ∩N 为( ) A .x =4,y =-1 B .(4,-1) C .{4,-1} D .{(4,-1)}7. 高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有__________人. 复杂的集合问题要善用韦恩图。
题型二:基本函数概念及性质1.若偶函数)(x f 在(]1,-∞-上是增函数,则下列关系式中成立的是( )A .)2()1()23(f f f <-<-B .)2()23()1(f f f <-<-C .)23()1()2(-<-<f f f D .)1()23()2(-<-<f f f根据奇偶性把已知数据转换到已知区间,再利用单调性比较大小。
2.已知函数)127()2()1()(22+-+-+-=m m x m x m x f 为偶函数,则m 的值是( )A. 1B. 2C. 3D. 43.设函数()23,(2)()f x x g x f x =++=,则()g x 的表达式是( )A .21x +B .21x -C .23x -D .27x +建议使用换元法。
4.已知定义在R 上的奇函数()f x ,当0x >时,2()1f x x x =-+-,那么0x <时,()f x =5.若函数2()1x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________.奇函数善用0处的函数值为0.6.若函数2()(32)f x k k x b =-++在R 上是减函数,则k 的取值范围为__________。
7.函数12log (32)y x =-的定义域是 ( )(A )[1,+∞] (B) (23,)+∞ (C) [23,1] (D) (23,1] 8.已知函数⎩⎨⎧<+≥=-),3)(1(),3(2)(x x f x x f x 则=)3(log2f _________.9.26.已知[]2,1,4329)(-∈+⨯-=x x f x x(1)设[]2,1,3-∈=x t x ,求t 的最大值与最小值; (2)求)(x f 的最大值与最小值; 10.已知函数()f x 是定义域在R 上的奇函数,且在区间(,0)-∞上单调递减,求满足f(x 2+2x-3)>f(-x 2-4x+5)的x 的集合. 11.函数xx x y +=的图象是图中的 ( )利用奇偶性单调性排除,找特殊点带入。
12. 当a ≠0时,函数y a x b =+和y b ax=的图象只可能是( )13.函数()y f x =的图象与直线1x =的公共点数目是( ) A .1 B .0 C .0或1 D .1或2 考察函数的定义。
理解好。
14. 函数21()223f x x x =+-+的值域是 。
15.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。
16.已知221)(xxx f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=_____。
17. 定义在R 上的函数f(x)满足f (x + y) = f (x) + f ( y )(x ,y ∈R),当x<0时,, f (x)>0,则函数f (x)在[a,b]上 ( )A 有最小值f (a)B 有最大值f (b)C 有最小值f (b)D 有最大值f ( b)18. 函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5ff =__________。
题型三:指对函数基本性质1.三个数60.70.70.76log 6,,的大小关系为( ) A. 60.70.70.7log 66<< B. 60.70.70.76log 6<<C .0.760.7log 660.7<<D. 60.70.7log 60.76<<2.已知0.1 1.32log 0.3,2,0.2a b c ===,则,,a b c 的大小关系是( ) A .a b c << B .c a b << C .a c b << D .b c a <<3.函数log (2)1a y x =++的图象过定点 ( ) A.(1,2)B.(2,1)C.(-2,1)D.(-1,1)4.函数2(232)xy a a a =-+是指数函数,则a 的取值范围是 ( )(A) 0,1a a >≠ (B) 1a = (C) 12a = ( D) 121a a ==或5.已知f(x)=|lgx|,则f(41)、f(31)、f(2) 大小关系为 ( )A. f(2)> f(31)>f(41) B. f(41)>f(31)>f(2) C. f(2)> f(41)>f(31) D. f(31)>f(41)>f(2)6.函数y= | lg (x-1)| 的图象是 ( )7. 设 1.50.90.4812314,8,2y y y -⎛⎫=== ⎪⎝⎭,则 ( )A 、312y y y >>B 、213y y y >>C 、132y y y >>D 、123y y y >>8. 已知A ba ==53,且211=+ba,则A 的值是( ) A. 15B. 15C. 15±D. 2259. 比较下列各组数值的大小:(1)3.37.1和1.28.0;(2)7.03.3和8.04.3;(3)25log,27log,2398题型四:零点存在性定理以及方程的解与图像结合问题 1. 求132)(3+-=x x x f 零点的个数为 ( ) A .1 B .2 C .3 D .42. 函数()ln 2f x x x =-+的零点个数为 。
3. 方程01=-xx 的一个实数解的存在区间为 ( )A 、(0,1)B 、(0.5,1.5)C 、(-2,1)D 、(2,3) 4.若1x 是方程lg 3x x +=的解,2x 是310=+x x 的解,则21x x +的值为( ) A .23错误!未指定书签。
B .32 C .3 D .315. 方程0lg =-x x 根的个数为( )A .无穷多错误!未指定书签。
B .3C .1D .0 6.直线3y =与函数26y x x =-的图象的交点个数为( ) A .4个 B .3个 C .2个 D .1个7. 函数5()3f x x x =+-的实数解落在的区间是( ) A .[0,1] B .[1,2] C .[2,3] D .[3,4]题型五:复杂函数问题1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
2. 已知二次函数),(2)(2R c b c bx x x f ∈++=满足0)1(=f ,且关于x 的方程0)(=++b x x f 的两实数根分别在区间(-3,-2),(0,1)内。
(1)求实数b 的取值范围; (2)若函数)(log )(x f x F b=在区间(-1-c ,1-c )上具有单调性,求实数C 的取值范围3. 已知1222)(+-+⋅=x xa a x f )(R x ∈,若)(x f 满足)()(x f x f -=-,(1)求实数a 的值;(2)判断函数的单调性,并加以证明。