介休市第三中学2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
介休市第三中学2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 已知点M (a ,b ,c )是空间直角坐标系O ﹣xyz 中的一点,则与点M 关于z 轴对称的点的坐标是( ) A .(a ,﹣b ,﹣c ) B .(﹣a ,b ,﹣c ) C .(﹣a ,﹣b ,c ) D .(﹣a ,﹣b ,﹣c )
2. 如果双曲线经过点P (2
,),且它的一条渐近线方程为y=x ,那么该双曲线的方程是( ) A .x 2
﹣
=1 B
.
﹣
=1 C
.
﹣
=1 D
.
﹣
=1
3. 函数f (x )=()x2﹣9的单调递减区间为( ) A .(﹣∞,0) B .(0,+∞) C .(﹣9,+∞) D .(﹣∞,﹣9)
4. 已知数列{n a }满足n
n n a 2
728-+=(*
∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .
211 B .227 C . 32259 D .32
435 5. 若函数f (x )是奇函数,且在(0,+∞)上是增函数,又f (﹣3)=0,则(x ﹣2)f (x )<0的解集是( ) A .(﹣3,0)∪(2,3) B .(﹣∞,﹣3)∪(0,3) C .(﹣∞,﹣3)∪(3,+∞) D .(﹣3,0)∪(2,+∞)
6. 下列计算正确的是( )
A 、213
3
x x x ÷= B 、4554()x x = C 、455
4x x x = D 、4455
0x x -
=
7. 在空间中,下列命题正确的是( ) A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥n
B .如果平面α内的两条直线都平行于平面β,那么平面α∥平面β
C .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥α
D .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β
8. 奇函数f (x )在(﹣∞,0)上单调递增,若f (﹣1)=0,则不等式f (x )<0的解集是( ) A .(﹣∞,﹣1)∪(0,1) B .(﹣∞,﹣1)(∪1,+∞) C .(﹣1,0)∪(0,1) D .(﹣1,0)∪(1,+∞)
9. 若将函数y=tan (ω
x+
)(ω>0
)的图象向右平移
个单位长度后,与函数y=tan (ω
x+
)的图象
重合,则ω的最小值为( ) A
.
B
.
C
.
D
.
10
.一个算法的程序框图如图所示,若运行该程序后输出的结果为,则判断框中应填入的条件是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .i ≤5?
B .i ≤4?
C .i ≥4?
D .i ≥5?
11.已知偶函数f (x )满足当x >0时,3f (x )﹣2f ()=,则f (﹣2)等于( )
A .
B .
C .
D .
12.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF|=5,若以MF 为直径的圆过点(0,2),则C 的方程为( )
A .y 2=4x 或y 2=8x
B .y 2=2x 或y 2=8x
C .y 2=4x 或y 2=16x
D .y 2=2x 或y 2=16x
二、填空题
13.计算sin43°cos13°﹣cos43°sin13°的值为 .
14.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).
15.函数2()2(1)2f x x a x =+-+在区间(,4]-∞上递减,则实数的取值范围是 .
16.已知(1+x+x 2)(x )n (n ∈N +
)的展开式中没有常数项,且2≤n ≤8,则n= .
17.已知函数
为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .
18.要使关于x 的不等式2
064x ax ≤++≤恰好只有一个解,则a =_________. 【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.
三、解答题
19.已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n+1﹣a n =2,数列{b n }的前n 项和S n =n 2+a n . (Ⅰ)求数列{a n },{b n }的通项公式;
(Ⅱ)求数列{}的前n 项和T n .
20.已知函数f(x)=在(,f())处的切线方程为8x﹣9y+t=0(m∈N,t∈R)
(1)求m和t的值;
(2)若关于x的不等式f(x)≤ax+在[,+∞)恒成立,求实数a的取值范围.
21.已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.
22.如图,已知边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点
(Ⅰ)试在棱AD上找一点N,使得CN∥平面AMP,并证明你的结论.
(Ⅱ)证明:AM⊥PM.
23.已知函数()()2
1+2||02
()1()102
x x x x f x x ⎧-≤⎪⎪=⎨⎪->⎪⎩.
(1)画出函数()f x 的图像,并根据图像写出函数()f x 的单调区间和值域;
(2)根据图像求不等式3
(x)2
f ≥的解集(写答案即可)
24.已知椭圆
+
=1(a >b >0)的离心率为
,且过点(
,
).
(1)求椭圆方程;
(2)设不过原点O 的直线l :y=kx+m (k ≠0),与该椭圆交于P 、Q 两点,直线OP 、OQ 的斜率依次为k 1、k 2,满足4k=k 1+k 2,试问:当k 变化时,m 2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.
介休市第三中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案) 一、选择题
1. 【答案】C
【解析】解:∵在空间直角坐标系中,
点(x ,y ,z )关于z 轴的对称点的坐标为:(﹣x ,﹣y ,z ), ∴点M (a ,b ,c )关于z 轴的对称点的坐标为: (﹣a ,﹣b ,c ). 故选:C .
【点评】本小题主要考查空间直角坐标系、空间直角坐标系中点的坐标特征等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.
2. 【答案】B
【解析】解:由双曲线的一条渐近线方程为y=x ,
可设双曲线的方程为x 2﹣y 2
=λ(λ≠0),
代入点P (2,),可得
λ=4﹣2=2,
可得双曲线的方程为x 2﹣y 2
=2,
即为﹣=1.
故选:B .
3. 【答案】B
【解析】解:原函数是由t=x 2
与y=(
)t
﹣9复合而成,
∵t=x 2在(﹣∞,0)上是减函数,在(0,+∞)为增函数; 又y=()t
﹣9其定义域上为减函数,
∴f (x )=()x2
﹣9在(﹣∞,0)上是增函数,在(0,+∞)为减函数,
∴函数ff (x )=()x2
﹣9的单调递减区间是(0,+∞).
故选:B .
【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减”再来判断是关键.
4. 【答案】D 【解析】
试题分析: 数列n n n a 2728-+
=,112528++-+=∴n n n a ,112527
22
n n n n
n n a a ++--∴-=-
()11
2522729
22
n n n n n ++----+=
=,当41≤≤n 时,n n a a >+1,即12345a a a a a >>>>;当5≥n 时,n n a a <+1,即...765>>>a a a .因此数列{}n a 先增后减,32259,55==∴a n 为最大项,8,→∞→n a n ,
2
11
1=a ,∴最小项为211,M m +∴的值为32435
32259211=+.故选D.
考点:数列的函数特性. 5. 【答案】A
【解析】解:∵f (x )是R 上的奇函数,且在(0,+∞)内是增函数, ∴在(﹣∞,0)内f (x )也是增函数, 又∵f (﹣3)=0, ∴f (3)=0
∴当x ∈(﹣∞,﹣3)∪(0,3)时,f (x )<0;当x ∈(﹣3,0)∪(3,+∞)时,f (x )>0; ∴(x ﹣2)•f (x )<0的解集是(﹣3,0)∪(2,3) 故选:A .
6. 【答案】B 【解析】 试题分析:根据()
a
a β
ααβ⋅=可知,B 正确。
考点:指数运算。
7. 【答案】 C
【解析】解:对于A ,直线m ∥平面α,直线n ⊂α内,则m 与n 可能平行,可能异面,故不正确;
对于B ,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确; 对于C ,根据线面垂直的判定定理可得正确;
对于D ,如果平面α⊥平面β,任取直线m ⊂α,那么可能m ⊥β,也可能m 和β斜交,;
故选:C .
【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题.
8. 【答案】A
【解析】解:根据题意,可作出函数图象:
∴不等式f (x )<0的解集是(﹣∞,﹣1)∪(0,1) 故选A .
9.【答案】D
【解析】解:y=tan(ωx+),向右平移个单位可得:y=tan[ω(x﹣)+]=tan(ωx+)
∴﹣ω+kπ=
∴ω=k+(k∈Z),
又∵ω>0
∴ωmin=.
故选D.
10.【答案】B
【解析】解:模拟执行程序框图,可得
i=1,sum=0,s=0
满足条件,i=2,sum=1,s=
满足条件,i=3,sum=2,s=+
满足条件,i=4,sum=3,s=++
满足条件,i=5,sum=4,s=+++=1﹣+﹣+﹣+﹣=.
由题意,此时不满足条件,退出循环,输出s的,则判断框中应填入的条件是i≤4.
故选:B.
【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.
11.【答案】D
【解析】解:∵当x>0时,3f(x)﹣2f()=…①,
∴3f()﹣2f(x)==…②,
①×3+③×2得:
5f(x)=,
故f(x)=,
又∵函数f(x)为偶函数,
故f(﹣2)=f(2)=,
故选:D.
【点评】本题考查的知识点是函数奇偶性的性质,其中根据已知求出当x>0时,函数f(x)的解析式,是解答的关键.
12.【答案】C
【解析】解:∵抛物线C方程为y2=2px(p>0),
∴焦点F坐标为(,0),可得|OF|=,
∵以MF为直径的圆过点(0,2),
∴设A(0,2),可得AF⊥AM,
Rt△AOF中,|AF|==,
∴sin∠OAF==,
∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,
∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF==,
∵|MF|=5,|AF|=
∴=,整理得4+=,解之可得p=2或p=8
因此,抛物线C的方程为y2=4x或y2=16x.
故选:C.
方法二:
∵抛物线C方程为y2=2px(p>0),∴焦点F(,0),
设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣,
因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为=,
由已知圆半径也为,据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,
即M(5﹣,4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.
所以抛物线C的方程为y2=4x或y2=16x.
故答案C.
【点评】本题给出抛物线一条长度为5的焦半径MF,以MF为直径的圆交抛物线于点(0,2),求抛物线的方程,着重考查了抛物线的定义与简单几何性质、圆的性质和解直角三角形等知识,属于中档题.
二、填空题
13.【答案】.
【解析】解:sin43°cos13°﹣cos43°sin13°=sin(43°﹣13°)=sin30°=,
故答案为.
14.【答案】180
【解析】解:由二项式定理的通项公式T r+1=C n r a n﹣r b r可设含x2项的项是T r+1=C7r(2x)r
可知r=2,所以系数为C102×4=180,
故答案为:180.
【点评】本题主要考查二项式定理中通项公式的应用,属于基础题型,难度系数0.9.一般地通项公式主要应用有求常数项,有理项,求系数,二项式系数等.
a≤-
15.【答案】3
【解析】
试题分析:函数()f x 图象开口向上,对称轴为1x a =-,函数在区间(,4]-∞上递减,所以14,3a a -≥≤-. 考点:二次函数图象与性质. 16.【答案】 5 .
【解析】二项式定理. 【专题】计算题.
【分析】要想使已知展开式中没有常数项,需(x )n (n ∈N +)的展开式中无常数项、x ﹣1项、x ﹣2
项,利
用(x
)n (n ∈N +
)的通项公式讨论即可.
【解答】解:设(x )n
(n ∈N +
)的展开式的通项为T r+1,则T r+1=
x n ﹣r x ﹣3r =
x n ﹣4r ,2≤n ≤8,
当n=2时,若r=0,(1+x+x 2)(x
)n
(n ∈N +)的展开式中有常数项,故n ≠2;
当n=3时,若r=1,(1+x+x 2)(x
)n
(n ∈N +
)的展开式中有常数项,故n ≠3;
当n=4时,若r=1,(1+x+x 2)(x
)n
(n ∈N +
)的展开式中有常数项,故n ≠4;
当n=5时,r=0、1、2、3、4、5时,(1+x+x 2
)(x )n
(n ∈N +
)的展开式中均没有常数项,故n=5适合
题意;
当n=6时,若r=1,(1+x+x 2
)(x )n
(n ∈N +
)的展开式中有常数项,故n ≠6;
当n=7时,若r=2,(1+x+x 2
)(x
)n (n ∈N +
)的展开式中有常数项,故n ≠7;
当n=8时,若r=2,(1+x+x 2)(x
)n
(n ∈N +
)的展开式中有常数项,故n ≠2;
综上所述,n=5时,满足题意.
故答案为:5.
【点评】本题考查二项式定理,考查二项展开式的通项公式,突出考查分类讨论思想的应用,属于难题.
17.【答案】 2 .
【解析】解:∵f (x )是定义在[﹣2a ,3a ﹣1]上奇函数, ∴定义域关于原点对称, 即﹣2a+3a ﹣1=0, ∴a=1,
∵函数为奇函数,
∴f(﹣x)==﹣,
即b•2x﹣1=﹣b+2x,
∴b=1.
即a+b=2,
故答案为:2.
18.【答案】±.
【解析】分析题意得,问题等价于264
++≤只有一解,
x ax
++≤只有一解,即220
x ax
∴280
∆=-=⇒=±,故填:±.
a a
三、解答题
19.【答案】
【解析】解:(Ⅰ)由题意知数列{a n}是公差为2的等差数列,
又∵a1=3,∴a n=3+2(n﹣1)=2n+1.
列{b n}的前n项和S n=n2+a n=n2+2n+1=(n+1)2
当n=1时,b1=S1=4;
当n≥2时,.
上式对b1=4不成立.
∴数列{b n}的通项公式:;
(Ⅱ)n=1时,;
n≥2时,,
∴.
n=1仍然适合上式.
综上,.
【点评】本题考查了求数列的通项公式,训练了裂项法求数列的和,是中档题.
20.【答案】
【解析】解:(1)函数f(x)的导数为f′(x)=,
由题意可得,f()=,f′()=,
即=,且=,
由m∈N,则m=1,t=8;
(2)设h(x)=ax+﹣,x≥.
h()=﹣≥0,即a≥,
h′(x)=a﹣,当a≥时,若x>,h′(x)>0,①
若≤x≤,设g(x)=a﹣,
g′(x)=﹣<0,g(x)在[,]上递减,且g()≥0,
则g(x)≥0,即h′(x)≥0在[,]上恒成立.②
由①②可得,a≥时,h′(x)>0,h(x)在[,+∞)上递增,h(x)≥h()=≥0,
则当a≥时,不等式f(x)≤ax+在[,+∞)恒成立;
当a<时,h()<0,不合题意.
综上可得a≥.
【点评】本题考查导数的运用:求切线方程和求单调区间,主要考查不等式恒成立问题转化为求函数最值,正确求导和分类讨论是解题的关键.
21.【答案】已知数列{a n}是等比数列,S n为数列{a n}的前n项和,且a3=3,S3=9
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=log2,且{b n}为递增数列,若c n=,求证:c1+c2+c3+…+c n<1.
【考点】数列的求和;等比数列的通项公式.
【专题】计算题;证明题;方程思想;综合法;等差数列与等比数列.
【分析】(Ⅰ)设数列{a n}的公比为q,从而可得3(1++)=9,从而解得;
(Ⅱ)讨论可知a2n+3=3•(﹣)2n=3•()2n,从而可得b n=log2=2n,利用裂项求和法求和.
【解析】解:(Ⅰ)设数列{a n}的公比为q,
则3(1++)=9,
解得,q=1或q=﹣;
故a n=3,或a n=3•(﹣)n﹣3;
(Ⅱ)证明:若a n=3,则b n=0,与题意不符;
故a2n+3=3•(﹣)2n=3•()2n,
故b n=log2=2n,
故c n==﹣,
故c1+c2+c3+…+c n=1﹣+﹣+…+﹣
=1﹣<1.
【点评】本题考查了数列的性质的判断与应用,同时考查了方程的思想应用及裂项求和法的应用.
22.【答案】
【解析】(Ⅰ)解:在棱AD上找中点N,连接CN,则CN∥平面AMP;
证明:因为M为BC的中点,四边形ABCD是矩形,
所以CM平行且相等于DN,
所以四边形MCNA为矩形,
所以CN∥AM,又CN⊄平面AMP,AM⊂平面AMP,
所以CN∥平面AMP.
(Ⅱ)证明:过P作PE⊥CD,连接AE,ME,
因为边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2,M为BC的中点
所以PE⊥平面ABCD,CM=,
所以PE⊥AM,
在△AME中,AE==3,ME==,AM==,
所以AE2=AM2+ME2,
所以AM⊥ME,
所以AM⊥平面PME
所以AM⊥PM.
【点评】本题考查了线面平行的判定定理和线面垂直的判定定理的运用;正确利用已知条件得到线线关系是关键,体现了转化的思想.
23.【答案】(1)图象见答案,增区间:(],2-∞-,减区间:[)2,-+∞,值域:(],2-∞;(2)[]3,1--。
【解析】
试题分析:(1)画函数()f x 的图象,分区间画图,当0x ≤时,()2
122
f x x x =--,此时为二次函数,开口向下,配方得()()()2
1142222
f x x x x =-
+=-++,可以画出该二次函数在0x ≤的图象,当0x >时,()1()12x f x =-,可以先画出函数1
()2
x y =的图象,然后再向下平移1个单位就得到0x >时相应的函数图
象;(2)作出函数()f x 的图象后,在作直线3
2
y =,求出与函数()f x 图象交点的横坐标,就可以求出x 的
取值范围。
本题主要考查分段函数图象的画图,考查学生数形结合思想的应用。
试题解析:(1)函数()f x 的图象如下图所示:
由图象可知:增区间:(],2-∞-,减区间:[)2,-+∞,值域为:(],2-∞。
(2)观察下图,()3
2
f x ≥
的解集为:[]3,1--。
考点:1.分段函数;2.函数图象。
24.【答案】
【解析】解:(1)依题意可得,解得a=2,b=1
所以椭圆C的方程是…
(2)当k变化时,m2为定值,证明如下:
由得,(1+4k2)x2+8kmx+4(m2﹣1)=0.…
设P(x1,y1),Q(x2,y2).则x1+x2=,x1x2=…(•)…
∵直线OP、OQ的斜率依次为k1,k2,且4k=k1+k2,
∴4k==,得2kx1x2=m(x1+x2),…
将(•)代入得:m2=,…
经检验满足△>0.…
【点评】本题考查椭圆的方程的求法,直线与椭圆方程的综合应用,考查分析问题解决问题的能力以及转化思想的应用.。