高考化学——化学反应与能量变化的推断题综合压轴题专题复习含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考化学——化学反应与能量变化的推断题综合压轴题专题复习含答案解析
一、化学反应与能量变化练习题(含详细答案解析)
1.某小组按图1所示的装置探究铁的吸氧腐蚀。
(1)图2是图1所示装置的示意图,在图2的小括号内填写正极材料的化学式_________;在方括号内用箭头表示出电子流动的方向___________。
(2)正极反应式为_____________________,负极反应式为__________________。
(3)按图1装置实验,约8min时才看到导管中液柱上升,下列措施可以更快更清晰地观察到液柱上升的是________。
a.用纯氧气代替具支试管内的空气
b.将食盐水浸泡过的铁钉表面撒上铁粉和碳粉的混合物
c.用毛细尖嘴管代替玻璃导管,并向试管的水中滴加少量红墨水
【答案】C O2+2H2O+e-=4OH- Fe-2e-=Fe abc
【解析】
【分析】
(1)铁钉的吸氧腐蚀中,碳作正极,铁作负极;
(2)负极上铁失电子发生氧化反应,正极上氧气得电子发生还原反应;
(3)要使现象更快、更清晰,可采取增大反应速率等方法。
【详解】
(1)在食盐水中,铁钉发生吸氧腐蚀,活动性较强的铁作负极,其中含有的活动性弱的杂质碳作正极,正极的化学式为C;电子从负极Fe沿导线流向正极C,其图象为
;
(2)该装置中,负极上铁失电子发生氧化反应,负极的电极反应式为:Fe-2e-=Fe2+;正极C 上O2得电子发生还原反应,正极的电极反应式为:2H2O+O2+4e-=4OH-;
(3)a.用纯氧气代替具支试管内的空气,氧气的浓度增大,反应速率加快,a正确;
b.用食盐水浸泡过的铁钉再蘸取铁粉和炭粉的混合物,增大反应物的接触面积,反应速率加快,b正确;
c.用毛细尖嘴管代替玻璃导管,并向试管的水中滴加少量红墨水,改变相同的压强即改变
相同的体积,毛细尖嘴管上升的高度大于玻璃导管,且红墨水现象更明显,c 正确; 故合理选项是abc 。
2.根据如图所示电化学实验装置图,回答有关问题。
(1)若只闭合S 1,该装置属于_______,能量转化形式为_______,锌极作_______极。
(2)若只闭合S 2,该装置属于_______,能量转化形式为_______,锌极上的电极反应式为_______。
(3)若只闭合S 3,该装置属于_______,铜极作_______极,锌极上的电极反应式为_______,总反应的化学方程式为_______。
【答案】原电池 化学能转化为电能 负 电解池 电能转化为化学能 -2+Zn-2e =Zn
电解池 阳 2+-2H +2e =H 2442通电Cu+H SO CuSO +H ↑
【解析】
【分析】
原电池是将化学能转化为电能,较活泼金属作负极,发生氧化反应,正极发生还原反应;电解池是将电能转化为化学能,需要外接电源,与电源正极相连的为阳极,阳极发生氧化反应,阴极发生还原反应,据此解答。
【详解】
(1)若只闭合S 1,没有外接电源,则Zn 、Cu 、稀硫酸构成原电池,该装置将化学能转化为电能,较活泼的锌作负极。
答案为:原电池;化学能转化为电能;负。
(2)若只闭合S 2,装置中有外接电源,该装置为电解池,将电能转为化学能,与电源正极相连的锌极作阳极,发生氧化反应,电极反应为Zn-2e -=Zn 2+。
答案为:电解池;电能转化为化学能;Zn-2e -=Zn 2+。
(3)若只闭合S 3,该装置为电解池,与电源正极相连的铜极作阳极,电极反应式为:Cu-2e -=Cu 2+;锌为阴极,电极反应式为:2H ++2e -=H 2↑,总反应式为:Cu+H 2SO 4
通电 CuSO 4+H 2↑。
答案为:电解池;阳;2H ++2e -=H 2↑;Cu+H 2SO 4
通电 CuSO 4+H 2↑。
【点睛】
有外接电源的是电解池,没有外接电源的是原电池,原电池里负极发生氧化反应,电解池里阳极发生氧化反应。
3.请根据化学反应与热能的有关知识,填写下列空白:
(1)在Ba(OH)2·8H 2O 和NH 4Cl 晶体反应的演示实验中:反应物混合后需用玻璃棒迅速搅拌,其目的是____________,体现该反应为吸热反应的现象是烧杯变凉和________。
(2)下列过程中不一定释放能量的是____(请填编号)。
A .形成化学键
B .燃料燃烧
C .化合反应
D .葡萄糖在体内的氧化反应
E.酸碱中和
F.炸药爆炸
(3)已知:通常条件下,酸碱稀溶液中和生成1 mol 水放出的热量为中和热。
稀溶液中1 mol H 2SO 4和NaOH 恰好反应时放出Q kJ 热量,则其中和热为____kJ/mol 。
(4)已知H 2和O 2反应放热,且断开1 mol H-H 、1 mol O=O 、 1 mol O-H 键需吸收的能量分别为Q 1、Q 2、Q 3 kJ ,由此可以推知下列关正确的是___(填编号)。
A .Q 1+Q 2>Q 3
B .Q 1+Q 2>2Q 3
C .2Q 1+Q 2<4Q 3
D .2Q 1+Q 2<2Q 3
【答案】搅拌,使反应物充分接触促进反应 玻璃片上水结冰而与烧杯粘在一起 C Q 2 C
【解析】
【分析】
(1)通过玻璃棒的搅拌可使混合物充分接触而促进反应进行;烧杯和玻璃片之间的水结冰会将二者粘在一起;
(2)形成化学键释放能量,燃烧放热、有些化合反应是吸热反应,如碳和二氧化碳反应制一氧化碳,大多数分解反应是吸热反应,氧化反应、酸碱中和、炸药爆炸都是放热反应;
(3)依据中和热的概念是强酸、强碱的稀溶液完全反应生成1 mol 水和可溶性盐放出的热量进行分析;
(4)根据旧键断裂吸收的能量减去新键生成释放的能量的差值即为反应热,结合燃烧反应为放热反应分析解答。
【详解】
(1)固体参加的反应,搅拌可使反应混合物充分接触而促进反应进行,通过玻璃片上水结冰而与烧杯粘在一起,知道氢氧化钡晶体和氯化铵之间的反应是吸热反应;
(2)形成化学键、燃料的燃烧、葡萄糖在体内的氧化反应、酸碱中和反应和炸药的爆炸过程都属于放热反应,而化合反应不一定为放热反应,如CO 2与C 在高温下反应产生CO 的反应属于吸热反应,所以不一定释放能量的为化合反应,故合理选项是C ;
(3)在稀溶液中1 mol H 2SO 4与NaOH 溶液恰好完全反应时生成2 mol H 2O ,放出Q kJ 热量,而中和热是指强酸、强碱在稀溶液中发生中和反应生成可溶性盐和1 mol 水时放出的热量,故H 2SO 4与NaOH 反应的中和热为: 2
Q kJ/mol ; (4)1 mol H 2O 中含2 mol H-O 键,断开1 mol H-H 、1 mol O=O 、1 mol O-H 键需吸收的能量分
别为Q1、Q2、Q3 kJ,则形成1 mol O-H键放出Q3 kJ热量,对于反应H2(g)+1
2
O2(g)=H2O(g),
断开1 mol H-H键和1
2
mol O=O键所吸收的能量(Q1+
1
2
Q2) kJ,生成2 mol H-O新键释放的
能量2Q3 kJ,由于该反应是放热反应,所以2Q3-(Q1+1
2
Q2)>0,2Q1+Q2<4Q3,故合理选项是
C。
【点睛】
本题考查了化学反应与能量变化,注意掌握中和热的概念,反应热为断裂反应物化学键吸收的总能量与形成生成物化学键释放的总能量的差,(4)1 mol H2O中含2 mol H-O键为解答易错点。
4.电化学在化学工业中有着广泛应用。
根据图示电化学装置,
(1)甲池通入乙烷(C2H6)一极的电极反应式为___。
(2)乙池中,若X、Y都是石墨,A是Na2SO4溶液,实验开始时,同时在两极附近溶液中各滴入几滴酚酞溶液,X极的电极反应式为___;一段时间后,在Y极附近观察到的现象是___。
(3)工业上通过电解浓NaOH溶液制备Na2FeO4,其工作原理如图所示,则阳极的电极反应式为__,阴极反应式为___。
【答案】C2H6+18OH--14e-=12H2O+2CO32- 4OH--4e-=O2↑+2H2O 电极表面产生气泡,附近溶液显红色 Fe+8OH--6e-=FeO42-+4H2O 2H2O+2e-=H2↑+2OH-
【解析】
【分析】
甲池为乙烷燃料电池,所以反应过程中乙烷被氧化,则通入乙烷的一极应为负极,通入氧气的一极为正极;乙池为电解池,X与电池正极相连为阳极,Y与负极相连为阴极。
【详解】
(1)通入乙烷的一极为负极,乙烷被氧化,由于电解质溶液KOH,所以生成碳酸根和水,电极方程式为:C2H6+18OH--14e-=12H2O+2CO32-;
(2)X为阳极,硫酸钠溶液中水电离出的OH-在阳极放电生成氧气,电极方程式为:4OH--4e-=O2↑+2H2O;Y电极为阴极,水电离出的氢离子在阴极放电生成氢气,水的电离受到促进电离出更多的氢氧根,Y电极附近显碱性,电极附近滴有酚酞,所以可以观察到Y电极附近有气泡产生且溶液显红色;
(3)阳极是铁,故阳极上铁放电生成FeO42-,由于是碱性环境,故电极方程式为:Fe+8OH--6e-=FeO42-+4H2O;电解时,水电离的H+在阴极放电生成氢气,电极方程式为:2H2O+2e-
=H2↑+2OH-。
【点睛】
陌生电极反应式的书写步骤:①根据题干找出反应物以及部分生成物,根据物质变化分析化合价变化并据此写出得失电子数;②根据电荷守恒配平电极反应式,在配平时需注意题干中电解质的环境;③检查电极反应式的守恒关系(电荷守恒、原子守恒、转移电子守恒等)。
5.请运用原电池原理设计实验,验证 Cu2+、Fe3+氧化性的强弱。
请写出电极反应式。
(1)负极 __________________________
(2)正极 __________________________________
(3)并在方框内画出实验装置图,要求用烧杯和盐桥,并标出外电路中电子流向。
________________________________
【答案】Cu−2e−=Cu2+2Fe3++2e−=2Fe2+
【解析】
【分析】
Fe3+氧化性比Cu2+强,可发生2Fe3++Cu=2Fe2++Cu2+,反应中Cu被氧化,为原电池的负极,则正极可为碳棒或不如Cu活泼的金属,电解质溶液为氯化铁溶液,正极发生还原反应,负极发生氧化反应,以此解答该题。
【详解】
Fe3+氧化性比Cu2+强,可发生2Fe3++Cu=2Fe2++Cu2+,
(1)Cu被氧化,为原电池的负极,负极反应为Cu−2e−=Cu2+;
(2)正极Fe3+被还原,电极方程式为2Fe3++2e−=2Fe2+;
(3)正极可为碳棒,电解质溶液为氯化铁,则原电池装置图可设计为,电子从铜极流向碳极。
【点睛】
设计原电池时,根据具体的氧化还原反应,即2Fe 3++Cu=2Fe 2++Cu 2+,然后拆成两个半反应,化合价升高的发生氧化反应,作负极,化合价降低的发生还原反应,作正极,原电池的本质就是自发进行的氧化还原反应 ,由于反应在一个烧杯中效率不高,所以可以设计为氧化还原反应分别在两极发生。
6.回答下列问题:
(1)铅蓄电池的总反应为:Pb + PbO 2 + 2H 2SO 4 垐垎?噲垐?充电
放电
2PbSO 4 + 2H 2O ,放电时,负极反应式为___________,充电时,阳极反应式为___________。
(2)利用如图装置,可以模拟铁的电化学防护。
①若X 为石墨,为减缓铁的腐蚀,将开关K 置于N处,该电化学防护法称为___________。
②若X 为锌,开关K 置于M 处,该电化学防护法称为__________。
(3)我国的科技人员为了消除SO 2的污染,利用原电池原理,设计如图2装置用SO 2和O 2制备硫酸,电极A 、B 为多孔的材料。
① A 极的电极反应式是________。
② B 极的电极反应式是________。
【答案】Pb + SO 42--2e -= PbSO 4 PbSO 4 + 2H 2O-2e -=PbO 2 + 4H + + SO 42- 外加电流的阴极保护法 牺牲阳极阴极保护法 4H + + O 2 + 4e -=2H 2O SO 2 + 2H 2O - 2e - = SO 42- + 4H +
【解析】
【分析】
(1)放电时,该装置是原电池,负极上铅失电子发生氧化反应,充电时,该装置是电解池,阳极失电子发生氧化反应;
(2)作原电池正极或作电解池阴极的金属被保护;
(3)该原电池中,负极上失电子被氧化,所以负极上投放的气体是二氧化硫,二氧化硫失电子和水反应生成硫酸根离子和氢离子,正极上投放的气体是氧气,正极上氧气得电子和氢离子反应生成水,根据硫酸和水的出口方向知,B 极是负极,A 极是正极,据此书写电极反应式。
【详解】
:(1)放电时,该装置是原电池,负极上铅失电子发生氧化反应,即Pb+SO 42--2e -=PbSO 4,在
充电时,该装置是电解池,阳极上硫酸铅失电子发生氧化反应,即PbSO4+2H2O-2e-
=PbO2+4H++SO42-,故答案为:Pb+SO42--2e-=PbSO4;PbSO4+2H2O-2e-=PbO2+4H++SO42-;(2)①若X为石墨,为减缓铁的腐蚀,将开关K置于N处,该装置构成电解池,铁作阴极而被保护,该电化学防护法称为外加电流的阴极保护法;故答案为:外加电流的阴极保护法;
②若X为锌,开关K置于M处,该装置构成原电池,锌易失电子作负极,铁作正极而被保护,该电化学防护法称为牺牲阳极的阴极保护法,故答案为:牺牲阳极的阴极保护法.(3)该原电池中,负极上失电子被氧化,所以负极上投放的气体是二氧化硫,即B极是负极,负极二氧化硫失电子和水反应生成硫酸根离子和氢离子,电极反应式是SO2+2H2O-2e-=SO42-+4H+,正极上投放的气体是氧气,即A极是正极,正极上氧气得电子和氢离子反应生成水,电极反应式是4H++O2+4e-=2H2O,故答案为:①4H++O2+4e-=2H2O;②SO2+2H2O-2e-=SO42-+4H+。
7.(1)Li-SOCl2电池可用于心脏起搏器。
该电池的电极材料分锂和碳,电解液是LiAlCl4-SOCl2,电池的总反应可表示为4Li+2SOCl2=4LiCl+S+SO2。
请回答下列问题:
①正极发生的电极反应为___。
②SOCl2易挥发,实验室中常用NaOH溶液吸收SOCl2,有Na2SO3和NaCl生成。
如果把少量水滴到SOCl2中,实验现象是___。
(2)用铂作电极电解某金属的氯化物(XCl2)溶液,当收集到1.12L氯气时(标准状况下),阴极增重3.2g。
①该金属的相对原子质量为___。
②电路中通过___个电子。
【答案】2SOCl2+4e-=S+SO2+4Cl-产生白雾,且生成有刺激性气味的气体 64 0.1N A 【解析】
【分析】
(1)①由总反应可知,Li化合价升高,失去电子,发生氧化反应,S化合价降低,得到电子,发生还原反应,因此电池中Li作负极,碳作正极;
②SOCl2与水反应生成SO2和HCl,有刺激性气味的气体生成,HCl与水蒸气结合生成白雾;
(2)①n(Cl2)=n(X2+),根据M=m
n
计算金属的相对原子质量;
②根据电极反应2Cl--2e-=Cl2↑计算转移电子的物质的量,进一步计算转移电子的数目。
【详解】
(1)①由分析可知碳作正极,正极上SOCl2得到电子生成S单质,电极反应为:2SOCl2+4e-=S+SO2+4Cl-;
②SOCl2与水反应生成SO2和HCl,有刺激性气味的气体生成,HCl与水蒸气结合生成白雾;
(2)①n(X2+)=n(Cl2)=
1.12L
22.4L/mol
=0.05mol,M=
m
n
=
3.2g
0.05mol
=64g/mol,因此该金属的
相对原子质量为64;
②由电极反应2Cl--2e-=Cl2↑可知,电路中转移电子的物质的量为
2×n(Cl2)=2×0.05mol=0.1mol,因此转移电子的数目为0.1N A。
8.燃料电池是符合绿色化学理念的新型发电装置。
如图为氢氧燃料电池示意图,该电池电极表面镀一层细小的铂粉,铂吸附气体的能力强,性质稳定,请回答:
(1)氢氧燃料电池的能量转化主要形式是___,在导线中电子流动方向为___(用a、b表示)。
(2)负极反应式为___,正极反应式为___。
(3)用该燃料电池作电源,用Pt作电极电解饱和食盐水:
①写出阴极的电极反应式:___。
②写出总反应的离子方程式:___。
③当阳极产生7.1gCl2时,燃料电池中消耗标况下H2___L。
【答案】由化学能转变为电能由a到b 2H2-4e-+4OH-=4H2O O2+4e-+2H2O=4OH-
2H2O+2e-=H2↑ +2OH-或2H+ +2e-=H2↑ Cl-+2H2O H2↑+2OH-+Cl2↑ 2.24
【解析】
【分析】
(1)原电池是将化学能转变为电能的装置,原电池放电时,电子从负极沿导线流向正极;(2)负极上燃料失电子发生还原反应,正极上氧气得电子生成氢氧根离子;
(3)用惰性电极电解饱和食盐水时,阳极上氯离子放电,阴极上氢离子放电;
根据转移电子守恒计算消耗氢气的物质的量
【详解】
(1)该装置是把化学物质中的能量转化为电能,所以是化学能转变为电能;在原电池中,负极上失电子,正极上得电子,电子的流向是从负极流向正极,所以是由a到b,
故答案为:由化学能转变为电能;由a到b;
(2)碱性环境中,该反应中负极上氢气失电子生成氢离子,电极反应式为2H2-4e-+4OH-
=4H2O,正极上氧气得电子生成氢氧根离子,电极反应式为O2+4e-+2H2O=4OH-,故答案为:2H2-4e-+4OH-=4H2O;O2+4e-+2H2O=4OH-;
(3)用惰性电极电解饱和食盐水时,阴极上氢离子放电,电极反应式为:2H2O+2e-=H2↑ +2OH-或2H+ +2e-=H2↑,阳极上氯离子放电生成氯气,所以总反应离子方程式为:Cl-+
2H2O H2↑+2OH-+Cl2↑ ,根据转移电子守恒计算消耗氢气的物质的量,电解时,阳极上生成氯气,每生成 0.1mol 氯气转移电子的物质的量=0.1mol×(1-0)×2=0.2mol,
燃料电池中消耗氢气的物质的量=0.2mol/2=0.1mol,所以标况下体积为2.24L,
故答案为:2H2O+2e-=H2↑ +2OH-或2H+ +2e-=H2↑ ; Cl-+2H2O H2↑+2OH-+Cl2↑ ;
2.24。
9.某些共价键的键能数据如表(单位:kJ•mol-1):
(1)把1mol Cl2分解为气态原子时,需要___(填“吸收”或“放出”)243kJ能量。
(2)由表中所列化学键形成的单质分子中,最稳定的是___;形成的化合物分子中最不稳定的是___。
(3)发射火箭时用气态肼(N2H4)作燃料,二氧化氮作氧化剂,两者反应生成氮气和气态水。
已知32gN2H4(g)完全发生上述反应放出568kJ的热量,热化学方程式是:____。
【答案】吸收 N2 HI 2N2H4(g)+2NO2(g)═3N2(g)+4H2O(g)△H=﹣1136kJ•mol ﹣1
【解析】
【分析】
(1)化学键断裂要吸收能量;
(2)键能越大越稳定,否则越不稳定,结合表中数据分析;
(3)根据n=m
n
计算32g N2H4的物质的量,再根据热化学方程式书写原则书写热化学方程
式。
【详解】
(1)化学键断裂要吸收能量,由表中数据可知把1mol Cl2分解为气态原子时,需要吸收243kJ 的能量;
(2)因键能越大越稳定,单质中最稳定的是H2,最不稳定的是I2,形成的化合物分子中,最稳定的是HCl,最不稳定的是HI;
(3)32g N2H4(g)的物质的量为
32g
32g/mol
=1mol,与二氧化氮反应生成氮气与气态水放出568kJ
的热量,热化学方程式是:2N2H4(g)+2NO2(g)═3N2(g)+4H2O(g) △H=-1136kJ•mol-1。
10.化学反应中的能量变化,是由化学反应中旧化学键断裂时吸收的能量与新化学键形成时放出的能量不同所致。
(1)键能也可以用于估算化学反应的反应热(ΔH)下表是部分化学键的键能数据:
化学键P—P P—O O=O P=O
键能/(kJ·mol-1)172335498X
已知白磷的燃烧热为2378.0kJ/mol,白磷完全燃烧的产物结构如图所示,则上表中X=________。
(2)1840年,俄国化学家盖斯在分析了许多化学反应热效应的基础上,总结出一条规律:“一个化学反应,不论是一步完成,还是分几步完成,其总的热效应是完全相同的.”这个规律被称为盖斯定律.有些反应的反应热虽然无法直接测得,但可以利用盖斯定律间接计算求得。
①已知:
C(石墨)+O2(g)===CO2(g) ΔH1=-393.5kJ/mol①
2H2(g)+O2(g)===2H2O(l) ΔH2=-571.6kJ/mol②
2C2H2(g)+5O2(g)===4CO2(g)+2H2O(l) ΔH3=-2599.2kJ/mol③
则由C(石墨)和H2(g)反应生成1mol C2H2(g)的焓变为__________________。
②已知3.6g碳在6.4g的氧气中燃烧,至反应物耗尽,并放出x kJ热量。
已知单质碳的燃烧热为y kJ/mol,则1mol C与O2反应生成CO的反应热ΔH为______________。
【答案】470 +226.8kJ/mol -(5x-0.5y) kJ/mol
【解析】
【分析】
(1)白磷燃烧的方程式为P4+5O2=P4O10,根据化学键的断裂和形成的数目进行计算;
(2)①可以先根据反应物和生成物书写化学方程式,根据盖斯定律计算反应的焓变,最后根据热化学方程式的书写方法来书写热化学方程式;
②首先判断碳的燃烧产物,然后依据反应热计算。
【详解】
(1)白磷燃烧的方程式为P4+5O2=P4O10,1mol白磷完全燃烧需拆开6mol P-P、5mol
O=O,形成12molP-O、4mol P=O,所以12mol×335kJ/mol+4mol×xkJ/mol-(6mol×172
kJ/mol+5mol×498kJ/mol)=2378.0kJ,解得x=470;
(2)①已知:①C(s,石墨)+O2(g)=CO2(g)△H1=-393.5kJ•mol-1;②2H2(g)+O2(g)=
2H2O(l)△H2=-571.6kJ•mol-1;③2C2H2(g)+5O2(g)=4CO2(g)+2H2O(l)△H2=-2599kJ•mol-1;
2C(s,石墨)+H2(g)=C2H2(g)的反应可以根据①×2+②×1
2
-③×
1
2
得到,所以反应焓变
△H=2×(-393.5kJ•mol-1)+(-571.6kJ•mol-1)×1
2
-(-2599kJ•mol-1)×
1
2
=+226.7kJ•mol-1;
②碳在氧气中燃烧,氧气不足发生反应2C+O22CO,氧气足量发生反应
C+O2CO2;3.6g碳的物质的量为
3.6
12g/mol
g
=0.3mol,6.4g的氧气的物质的量为
6.4g
32g/mol
=0.2mol,n(C):n(O2)=3:2;介于2:1与1:1之间,所以上述反应都发生.令生成的CO为xmol,CO2为ymol;根据碳元素守恒有x+y=0.3,根据氧元素守恒有
x+2y=0.2×2,联立方程,解得x=0.2,y=0.1;单质碳的燃烧热为Y kJ/mol,所以生成0.1mol二氧化碳放出的热量为0.1mol×Y kJ/mol=0.1YkJ,因此生成0.2molCO放出的热量为XkJ-0.1YkJ。
由于碳燃烧为放热反应,所以反应热△H的符号为“-”,故1mol C与O2
反应生成CO的反应热△H=-XkJ0.1YkJ
0.2mol
=-(5X-0.5Y)kJ/mol。
【点睛】
利用盖斯定律计算反应热,熟悉已知反应与目标反应的关系是解答本题的关键。
应用盖斯定律进行简单计算的基本方法是参照新的热化学方程式(目标热化学方程式),结合原热化学方程式(一般2~3个)进行合理“变形”,如热化学方程式颠倒、乘除以某一个数,然后将它们相加、减,得到目标热化学方程式,求出目标热化学方程式的ΔH与原热化学方程式之间ΔH的换算关系。
11.1g葡萄糖(C6H12O6)完全氧化放出16.7kJ的热量,则1mol葡萄糖完全氧化能放出
_________的热量。
【答案】3006 kJ
【解析】
【分析】
1g葡萄糖完全氧化,放出约16.7 kJ的能量,1mol葡萄糖的质量为180g,据此分析计算。
【详解】
1g葡萄糖完全氧化,放出约16.7 kJ的能量,所以1mol葡萄糖完全氧化,放出的能量是16.7 kJ×180=3006kJ,故答案为:3006 kJ。
12.氢气是一种理想的绿色能源。
在101kP下,1g氢气完全燃烧生成液态水放出142.9kJ 的热量,请回答下列问题:
(1)该反应物的总能量___生成物的总能量(填“大于”“等于”或“小于”)。
(2)氢气的燃烧热为___。
(3)该反应的热化学方程式为___。
(4)氢能的存储是氢能利用的前提,科学家研究出一种储氢合金Mg2Ni,已知:
Mg(s)+H2(g)=MgH2(s) ΔH1=-74.5kJ·mol-1
Mg2Ni(s)+2H2(g)=Mg2NiH4(s) ΔH2
Mg2Ni(s)+2MgH2(s)=2Mg(s)+Mg2NiH4(s) ΔH3=+84.6kJ·mol-1
则ΔH2=___kJ·mol-1
【答案】大于285.8 kJ•mol-1 2H2(g)+O2(g)=2H2O(l)△H=-571.6kJ•mol-1 -64.4
【解析】
【分析】
(2)由①Mg(s)+H2(g)═MgH2(s)△H1=-74.5kJ•mol-1,
②Mg2Ni(s)+2MgH2(s)=2Mg(s)+Mg2NiH4(s)△H3=+84.6kJ•mol-1,结合盖斯定律可知,②+①×2得到Mg2Ni(s)+2H2(g)═Mg2NiH4(s),以此来解答。
【详解】
(1)氢气燃烧是放热反应,则该反应物的总能量大于生成物的总能量;
(2)1g氢气完全燃烧生成液态水放出142.9kJ的热量,则1mol氢气完全燃烧生成液态水放出的热量为142.9kJ×2=285.8kJ,则氢气的燃烧热为285.8 kJ•mol-1;
(3)物质的量与热量成正比,结合焓变及状态可知该反应的热化学方程式为
2H2(g)+O2(g)=2H2O(l)△H=-571.6kJ•mol-1;
(4)由①Mg(s)+H2(g)═MgH2(s)△H1=-74.5kJ•mol-1,
②Mg2Ni(s)+2MgH2(s)=2Mg(s)+Mg2NiH4(s)△H3=+84.6kJ•mol-1,结合盖斯定律可知,②+①×2得到Mg2Ni(s)+2H2(g)═Mg2NiH4(s),△H2=(-74.5kJ•mol-1)×2+(+84.6kJ•mol-1)=-64.4kJ•mol-1。
【点睛】
考查利用盖斯定律计算反应热,熟悉已知反应与目标反应的关系是解答本题的关键。
应用盖斯定律进行简单计算的基本方法是参照新的热化学方程式(目标热化学方程式),结合原热化学方程式(一般2~3个)进行合理“变形”,如热化学方程式颠倒、乘除以某一个数,然后将它们相加、减,得到目标热化学方程式,求出目标热化学方程式的ΔH与原热化学方程式之间ΔH的换算关系。
13.CH4既是一种重要的能源,也是一种重要的化工原料。
(1)甲烷高温分解生成氢气和碳。
在密闭容器中进行此反应时要通入适量空气使部分甲烷燃烧,其目的是________。
(2)以CH4为燃料可设计成结构简单、能量转化率高、对环境无污染的燃料电池,其工作原理如图甲所示,则通入a气体的电极名称为_____,通入b气体的电极反应式为____。
(质子交换膜只允许H+通过)
(3)在一定温度和催化剂作用下,CH4与CO2可直接转化成乙酸,这是实现“减排”的一种研究方向。
①在不同温度下,催化剂的催化效率与乙酸的生成速率如图乙所示,则该反应的最佳温度应控制在__ 左右。
②该反应催化剂的有效成分为偏铝酸亚铜(CuAlO2,难溶物)。
将CuAlO2溶解在稀硝酸中生成两种盐并放出NO气体,其离子方程式为___________ 。
(4)CH4还原法是处理NO x气体的一种方法。
已知一定条件下CH4与NO x气体反应转化为N2和CO2,若标准状况下8.96L CH4可处理22.4L NO x气体,则x值为________。
【答案】提供CH4分解所需的能量负极 O2+4H++4e-=2H2O 250℃ 3CuAlO2+16H++NO3-=3Cu2++3Al3++8H2O+NO↑ 1.6
【解析】
【分析】
(1)甲烷分解需要热量,燃烧可提供部分能量;
(2)由图可知,通入气体a的一端发生氧化反应,故应通入甲烷,该极为负极,通入b为氧气,获得电子,酸性条件下生成水;
(3)①根据乙酸反应速率最大、催化活性最高选择;
②CuAlO2溶解在稀硝酸中生成两种盐并放出NO气体,生成的盐为硝酸铝、硝酸铜,反应还有水生成,配平书写离子方程式;
(4)根据电子转移守恒计算。
【详解】
(1)甲烷高温分解生成氢气和碳。
在密闭容器中进行此反应时要通入适量空气使部分甲烷燃烧,其目的是,提供CH4分解所需的能量,故答案为:提供CH4分解所需的能量;
(2)由图可知,通入气体a的一端发生氧化反应,故应通入甲烷,该极为负极,通入b为氧气,获得电子,酸性条件下生成水,正极电极反应式为:O2+4H++4e-=2H2O,故答案为:负极;O2+4H++4e-=2H2O;
(3)①250℃时乙酸反应速率最大、催化活性,故选择250℃,故答案为:250℃;
②CuAlO2溶解在稀硝酸中生成两种盐并放出NO气体,生成的盐为硝酸铝、硝酸铜,反应还有水生成,反应离子方程式为:3CuAlO2+16H++NO3-=3Cu2++3Al3++8H2O+NO↑,故答案为:3CuAlO2+16H++NO3-=3Cu2++3Al3++8H2O+NO↑;
(4)根据电子转移守恒,则:8.96L×[4−(−4)]=22.4L×2x,解得x=1.6,故答案为:1.6。
14.某反应在体积为5L的恒容密闭的绝热容器中进行,各物质的量随时间的变化情况如图所示(已知A、B、C均为气体)。
(1)该反应的化学方程式为_______________。
(2)反应开始至2分钟时,B的平均反应速率为_______________。
(3)能说明该反应已达到平衡状态的是_______________。
A.v(A)=2v(B)
B.容器内气体密度不变
C.v逆(A)=v正(C)
D.各组分的物质的量相等
E. 混合气体的平均相对分子质量不再改变的状态
(4)由图求得平衡时A 的转化率为_______________。
(5)下表是该小组研究影响过氧化氢H 2O 2分解速率的因素时采集的一组数据:用2210mL?H O 制取2150mLO 所需的时间(秒)
①该研究小组在设计方案时。
考虑了浓度、_______________、_______________等因素对过氧化氢分解速率的影响。
②从上述影响过氧化氢分解速率的因素中任选一个,说明该因素对分解速率有何影响?_______________。
(6)将质量相同但聚集状态不同的2MnO 分别加入到5mL5%的双氧水中,并用带火星的木条测试。
测定结果如下:
①写出22H O 发生分解的化学反应方程式_______________。
②实验结果说明催化剂作用的大小与_______________有关。
【答案】2A(g)+B(g)⇌2C (g) 0.1 mol/(L∙min) C E 40% 温度 催化剂 增大反应物浓度越大,可以加快反应速率;升高温度,可以加快化学反应速率;使用合适的催化剂,可以加快化学反应速率;(答其中一条即可) 2H 2O 2
2MnO ==2H 2O+ O 2↑ 固体的接触面积
【解析】
【分析】
通过各物质的物质的量变化与计量系数呈正比,可得反应式为2A(g)+B(g)⇌2C (g),同时通过变化量可以就算化学反应速率以及反应物的转化率;平衡状态的判定:A.v(A)=2v(B) ,没有体现正逆方向,不能判定是否达到平衡,错误;B.容器内气体密度不变,该体系从开始反应到平衡,密度是定值没有变化,不能判定是否达到平衡状态,错误;C.v 逆(A)=v 正(C),不同物质正逆反应速率呈计量系数比,可以判定达到平衡,正确;D.各组分的物质的量相等,不能作判定,错误,可以改成各物质的量保持不变,可判定平衡;E.混合气体的平均。