数轴绝对值练习题
数轴、相反数、绝对值专题练习(含答案)
数轴、相反数、绝对值专题训练1. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m 11 034m(即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.2. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{ …}②负数集合:{ …}③整数集合:{ …}④非正数集合:{ …}⑤非负整数集合:{ …}⑥有理数集合:{ …}3. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )b 0aA .0<a <bB .a <0<bC .b <0<aD .a <b <04. 00.5121,小.5. 在数轴上大于-4.12的负整数有______________________.6. 到原点的距离等于3的数是____________.7. 数轴上表示-2和-101的两个点分别为A ,B ,则A ,B 两点间的距离是______________.8. 已知数轴上点A 与原点的距离为2,则点A 对应的有理数是____________ 点B 与点A 之间的距离为3,则点B 对应的有理数是________________.9. 在数轴上,点M 表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N ,则点N 表示的数是_________.10. 文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西 边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( )A .玩具店B .文具店C .文具店西边40米D .玩具店东边-60米11. 如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.0.5-3-1第11题图 第12题图 12. 上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.13. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-14. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+- C .9.4)]9.4([+=-+- D .[( 4.9)] 4.9+-+=+15. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数16. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b 按照从小到大的顺序排列正确的是( )aA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a17. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数18. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.19. 填空:5.3-=______; 21+=_______; 5--=_______;3+=_______; _______=1; _______=-2.20. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________.21. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤022. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.23. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b , 则a =______.24. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____;(3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____;(6)21433-÷-=____÷____=____×____=_____. 25、化简下列各数的符号: (1)-(-173); (2)-(+233); (3)+(+3); (4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________;27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b的值。
初一数学的绝对值数轴的题
以下是一道关于初一数学绝对值数轴的题目:
1.已知 |a-3| = 5,|b+2| = 3,求 a 和 b 的值,并在数轴上标出这两个数。
解:根据绝对值的定义,我们有以下两种情况:
(1) a-3 = 5 或 a-3 = -5
解得 a = 8 或 a = -2
(2) b+2 = 3 或 b+2 = -3
解得 b = 1 或 b = -5
因此,a 的可能取值为 8 或 -2,b 的可能取值为 1 或 -5。
在数轴上标出这两个数,可以得到四个点:-2,1,-5,8。
2.数轴上点A表示的数是 -5,B、C两点所表示的数分别是 b、c,且 (b+3)^2 与|c-2| 互为相反数。
(1) 求 B、C 两点间的距离;
(2) 点 A、B、C 在数轴上所表示的数分别是 -5、b、c,若 O 为原点,点 D 与点 A 的距离是 10,则线段 CD 的中点所表示的数是多少?
解:(1) 因为 (b+3)^2 与 |c-2| 互为相反数,所以 (b+3)^2 + |c-2| = 0。
由于 (b+3)^2 和 |c-2| 都是非负数,因此它们必须同时为 0。
解得 b = -3,c = 2。
因此,B、C 两点间的距离为 |c-b| = |2-(-3)| = 5。
(2) 点 D 与点 A 的距离是 10,所以点 D 表示的数是 -5+10=5 或 -5-10=-15。
线段 CD 的中点所表示的数是 (c+d)/2 = (2+5)/2 = 3.5 或 (2+(-15))/2 = -6.5。
有理数,数轴,绝对值练习
有理数一、填空题1.如果提高10分表示+10分,那么下降8分表示_______,不升不降用_______表示..如果向南走5 km 记为-5 km ,那么向北走10 km 记为____.如果收入2万元用+2万元表示,那么支出3000元,用_______表示..某乒乓球比赛用+1表示赢一局,那么输2局用_______表示,不输不赢用_______表示..某企业以1996年的利润为标准,2000年增加了10%记为+10%,2001年利润为-5%表示的意义是_______..节约用水,如果节约5.6吨水记作+5.6吨,那么浪费3.8吨水,记作_______.2.大于-5.1的所有负整数为_____.3.分数有_____,_____.4.珠穆朗玛峰高出海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为____.5.请写出3个大于-1的负分数_____.6.某旅游景点一天门票收入5000元,记作+5000元,则同一天支出水、电、维修等各种费用600元,应记作_____.7.某县外贸局一年出口总额人民币1300万元,表示为+1300万.进口某种原料350万应表示为_____.8.在“学雷锋活动月”活动中,甲乙两组同学上街清扫街道,它们分别在街道的两端同时相向开始打扫,街道总长1200米,两组会合时甲组向南清扫了500米,记作+500米,则乙组向北清扫了_____米,应记作_____.9.某下岗职工购进一批苹果,第一天盈利17元,记作+17元,第二天亏损6元应记作_____. 二、选择题1、下面是关于0的一些说法,其中正确说法的个数是( )①0既不是正数也不是负数;②0是最小的自然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.A.0 B.1 C.2 D.32、在0,21,-51,-8,+10,+19,+3,-3.4中整数的个数是( )A.6B.5C.4D.3 3、下列说法正确的是( )A.零上5℃与零下5℃意思一样,都是5℃.B.正整数集合与负整数集合并在一起是整数集合C.收入-2000元表示支出2000元.D.-a 是负数, a 是正数. 4、下列各数中,大于-21小于21的负数是( ) A.-32B.-31C.31D.05、.负数是指( )A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数 6、关于零的叙述错误的是( ) A.零大于所有的负数 B.零小于所有的正数 C.零是整数 D.零既是正数,也是负数 7、非负数是( )A.正数 B.零 C.正数和零 D.自然数8、文具店、书店和玩具店依次座落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在( ) A.文具店 B.玩具 C.文具店西40米处 D.玩具店西60米处三、解答题9、下面是具有相反意义的量,请用箭头标出其对应关系10、某天气预报显示,我国五个地区的最高气温第二天比第一天下降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温11、某同学语、数、外三科的成绩,高出平均分部分记作正数,低出部分记作负数,如表所示请回答,该生成绩最好和最差的科目分别是什么?12、某公司今年第一季度收入与支出情况如表所示(单位:万元)请问:(1)该公司今年第一季度总收入与总支出各多少万元? (2)如果收入用正数表示,则总收入与总支出应如何表示?(3)该公司第一季度利润为多少万元?13、某地气象站测得某天的四个时刻气温分别为:早晨6点为零下3℃,中午12点为零上1℃,下午4点为0℃,晚上12点为零下9℃.1.用正数或负数表示这四个不同时刻的温度.2.早晨6点比晚上12点高多少度.3.下午4点比中午12点低多少度.?14、找规律(1)1,-2,3,-4,5,-6,7,-8 ,………其中第199个数为 ,第2002个数 ,规律是 ;(2)1,2,-3,4,5,-6,7,8 ,-9 ………其中第345个数为 ,第2002个数 ,规律是 ; (3)-1,2,-3,4,-5,6,-7,8 ,-9…… 其中第279个数为 ,第320个数的符号为 ,规律是 .15、小明的爸爸开的小店昨天获利120元,他在每日收支账本上记下“120元”.今天小店亏了20元,记作__.A :20元B :-20元C :-20D :100元进一步来看,一周来他的账本上的数据为周一 周二 周三 周四 周五 周六 周日 120元 -20元 80元 0元 -10元 150元 100元 如此看来他这一周是赚了还是赔了?有多少?16、某日傍晚,项城的气温由中午的零上2℃下降了7℃,这天傍晚项城的气温是多少?数轴一、选择题1.下列所画的数轴中正确的是( ) A .B .C .D . 2、互为相反数是指( )A 、具有相反意义的两个量B 、一个数的前面添上“–”号所得的数C 、数轴上原点两旁的两个点表示的数D 、只有符号不同的两个数 3、在数轴上距离原点4个单位长度的点所表示的数是( ) A 、4 B 、–4 C 、4或–4 D 、2或–24、大于–2.5而不大于3的整数( )A 、4个B 、5个C 、6个D 、7个5、如图所示,根据有理数a ,–b ,–c ,在数轴上的位置,比较a ,b ,c ,的大小, 则有( ) A 、a<b<c B 、a<c<b C 、b<a<c D 、b<c<a6、下列说法错误的是( )A 、所有的有理数都可以用数轴上的点表示B 、数轴上的原点表示零C 、在数轴上表示–3的点于表示+1的点的距离是2D 、数轴上表示413的点,在原单位左边413个单位 二、填空题7、在数轴上表示+3的点在原点的______侧,距原点的距离是______个单位;表示–5的点原点的_____侧,它离原点的距离是_____个单位;表示+3的点位于表示–5的点的_____侧,根据_____,可得–5<38、若数轴上得点M 和N 点表示的两个数互为相反数,并且这两点间的距离为7.2,则这两个点表示的数分别和______和______. 9、已知A ,B 是数轴上的点.(1)如果点A 表示数–3,将A 向右移动7个单位长度,那么终点表示的数是_______; (2)如果点B 表示数3,将B 向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是______.10、正数的相反数是______数,一个数的相反数的相反数是______,0的相反数是______. 11、______的相反数大于它本身,______的相反数小于它本身. 12、在数轴上,点A 对应的数是21,那么在数轴上与点A 相距3个单位长度的点表示的数是______.9.+3的相反数是_____;______的相反数是-1.2;-175与_____互为相反数。
数轴与绝对值含答案
数轴与绝对值一、运用数轴直观的表示数1、点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC=2,则AC 等于( )A. 3B. 2C. 3或5D. 2或6【答案】 D【分析】此题有两种情况,①:点C 在点B 的右侧,即AC=AB+BC=4+2=6;②:点C 在点B 的左侧,即AC=AB-BC=4-2=2.2、如图,数轴上每个刻度为1个单位长,则 A ,B 分别对应数 a ,b ,且b-2a=7,那么数轴上原点的位置在 ( )A. A 点B. B 点C. C 点D. D 点【答案】C【分析】由数轴可知b-a=3,即b=a+3,再由b-2a=7,代入计算可求出a 的值,进而可确定原点的位置.二、运用数轴比较有理数的大小3、实数a 在数轴上的对应点位置如下图所示,把a ,-a ,2按照从小到大的顺序排列,正确的是( )A. -a<a<2B. a<-a<2C. 2<a<-aD. a<2<-a【答案】 B【分析】观察数轴可知:a <0,|a|<2,就可得到2>-a >0,即可得出答案。
4、数轴上有两个实数a ,b ,且a >0,b <0,a+ b <0,则四个数a ,b ,-a ,-b 的大小关系为________(用“<”号连接).【答案】 b<-a<a<-b5、p 在数轴上的位置如图所示, 化简:21-+-p p =________;【答案】 16、有理数a,b,c在数轴上的位置如图所示,则化简|a+b|﹣|b﹣1|﹣|a﹣c|﹣|1﹣c|得到的结果是()A. 0B. ﹣2C. 2aD. 2c【答案】B7、有理数a、b、c 在数轴上对应的点的位置,如图所示:① abc<0;② |a-b|+|b-c|=|a -c|;③ (a-b)(b-c)(c-a)>0;④ |a|<1-bc,以上四个结论正确的有()个A. 4B. 3C. 2D. 1【答案】B【解析】【解答】解:根据题意得:a<-1<0<b<c<1,则:①abc<0正确②∵|a-b|+|b-c|=-a+b-b+c=-a+c,|a-c|=-a+c,∴|a-b|+|b-c|=|a-c|正确③∵a-b<0,b-c<0,c-a>0,∴(a-b)(b-c)(c-a)>0正确④∵|a|>1,1-bc<1,∴|a|>1-bc;故|a|<1-bC不符合题意故正确的结论有①②③三个.三、数轴:数与形的第一次碰撞8、在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?(2)若原点O在图中数轴上点C的右边,且CO=28,求p.【答案】(1)解:若以B为原点,则C表示1,A表示﹣2,∴p=1+0﹣2=﹣1;若以C为原点,则A表示﹣3,B表示﹣1,∴p=﹣3﹣1+0=﹣4(2)解:若原点O在图中数轴上点C的右边,且CO=28,则C表示﹣28,B表示﹣29,A 表示﹣31,∴p=﹣31﹣29﹣28=﹣889、如图,数轴上线段AB=2(单位长度),CD=4(单位长度),点A 在数轴上表示的数是﹣10,点C 在数轴上表示的数是16.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度向左匀速运动.(1)问运动多少时BC=8(单位长度)?(2)当运动到BC=8(单位长度)时,点B 在数轴上表示的数是________;(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式FC AF BD -=3,若存在,求线段PD 的长;若不存在,请说明理由.【答案】(1)解:设运动t 秒时,BC=8单位长度,①当点B 在点C 的左边时,由题意得:6t+8+2t=24解得:t=2(秒);②当点B 在点C 的右边时,由题意得:6t ﹣8+2t=24解得:t=4(秒)(2)解:4或16(3)解:存在关系式FCAF BD - =3. 设运动时间为t 秒,1)当t=3时,点B 和点C 重合,点P 在线段AB 上,0<PC≤2,且BD=CD=4,AP+3PC=AB+2PC=2+2PC ,当PC=1时,BD=AP+3PC ,即FCAF BD - =3; 2)当3<t < 时,点C 在点A 和点B 之间,0<PC <2,①点P 在线段AC 上时,BD=CD ﹣BC=4﹣BC ,AP+3PC=AC+2PC=AB ﹣BC+2PC=2﹣BC+2PC ,当PC=1时,有BD=AP+3PC ,即 =3;点P 在线段BC 上时,BD=CD ﹣BC=4﹣BC ,AP+3PC=AC+4PC=AB ﹣BC+4PC=2﹣BC+4PC , 当PC= 时,有BD=AP+3PC ,即 =3;3°当t= 时,点A 与点C 重合,0<PC≤2,BD=CD ﹣AB=2,AP+3PC=4PC ,当PC= 时,有BD=AP+3PC ,即 =3;4°当<t 时,0<PC<4,BD=CD﹣BC=4﹣BC,AP+3PC=AB﹣BC+4PC=2﹣BC+4PC,PC= 时,有BD=AP+3PC,即=3.∵P在C点左侧或右侧,∴PD的长有3种可能,即5或3.510、阅读理解:若A、B、C为数轴上三点,若点C到A的距离是点C到B的距离2倍,我们就称点C是点是【A,B】的好点.(1)如图1,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是【A,B】的好点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D________【A,B】的好点,但点D________【B,A】的好点.(请在横线上填是或不是)知识运用:(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为﹣2.数________所表示的点是【M,N】的好点;(3)如图3,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当经过________秒时,P、A和B中恰有一个点为其余两点的好点?【答案】(1)不是;是(2)0(3)5或10【解答】解:(1)如图1,∵点D到点A的距离是1,到点B的距离是2,根据好点的定义得:DB=2DA,那么点D不是【A,B】的好点,但点D是【B,A】的好点;⑵如图2,4﹣(﹣2)=6,6÷3×2=4,即距离点M4个单位,距离点N2个单位的点就是所求的好点0;∴数0所表示的点是【M,N】的好点;⑶如图3,由题意得:PB=4t,AB=40+20=60,PA=60﹣4t,点P走完所用的时间为:60÷4=15(秒),当PB=2PA时,即4t=2(60﹣4t),t=10(秒),当PA=2PB 时,即2×4t=60﹣4t ,t=5(秒),∴当经过5秒或10秒时,P 、A 和B 中恰有一个点为其余两点的好点;故答案:(1)不是,是;(2)0;(3)5或10.11、如图1,点A 、B 分别在数轴原点O 的左右两侧,且31OA+50=OB ,点B 对应数是90.(1)求A 点对应的数;(2)如图2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P 向左运动,速度为8个单位长度/秒,设它们运动时间为t 秒,问当t 为何值时,点M 、N 之间的距离等于P 、M 之间的距离;(3)如图3,将(2)中的三动点M 、N 、P 的运动方向改为与原来相反的方向,其余条件不变,设Q 为线段MN 的中点,R 为线段OP 的中点,求22RQ ﹣28RO ﹣5PN 的值.【答案】(1)解:如图1,∵点B 对应数是90,∴OB=90.又∵ 31OA+50=OB ,即 31OA+50=90, ∴OA=120.∴点A 所对应的数是﹣120(2)解:依题意得,MN=|(﹣120+7t )﹣2t|=|﹣120+5t|,PM=|2t ﹣(90﹣8t )|=|10t ﹣90|,又∵MN=PM ,∴|﹣120+5t|=|10t ﹣90|,∴﹣120+5t=10t ﹣90或﹣120+5t=﹣(10t ﹣90)解得t=﹣6或t=14,∵t≥0,∴t=14,点M 、N 之间的距离等于点P 、M 之间的距离(3)解:依题意得RQ=( 45+4t )﹣(﹣60﹣4.5t )=105+8.5t ,RO=45+4t ,PN=(90+8t )﹣(﹣120﹣7t )=210+15t ,则22RQ ﹣28RO ﹣5PN=22(105+8.5t )﹣28(45+4t )﹣5(210+15t )=012、已知,如图A、B分别为数轴上的两点,A点对应的数为-10,B点对应的数为70. (1)请写出AB的中点M对应的数(2)现在有一只电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以2个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C 点相遇,请你求出C点对应的数(3)若当电子蚂蚁P从A点出发,以3个单位/秒的速度向右运动,同时另一只电子蚂蚁Q 恰好从B点出发,以2单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距35个单位长度,并写出此时P点对应的数.【答案】(1)解:M点对应的数是(﹣10+70)÷2=30;(2)解:∵A、B分别为数轴上的两点,A点对应的数为﹣10,B点对应的数为70,∴AB=70+10=80,设t秒后P、Q相遇,∴3t+2t=80,解得t=16;∴此时点Q走过的路程=2×16=32,∴此时C点表示的数为70﹣32=38.答:C点对应的数是38;(3)解:相遇前:(80﹣35)÷(2+3)=9(秒),相遇后:(35+80)÷(2+3)=23(秒).则经过9秒或23秒,2只电子蚂蚁在数轴上相距35个单位长度,9秒对应的数为17,23秒对应的数为59.13、已知A、B两地相距50米,小乌龟从A地出发前往B地,第一次它前进1米,第二次它后退2米,第三次再前进3米,第四次又向后退4米…,按此规律行进,如果A地在数轴上表示的数为﹣16.(1)求出B地在数轴上表示的数;(2)若B地在原点的右侧,经过第七次行进后小乌龟到达点P,第八次行进后到达点Q,点P、点Q到A地的距离相等吗?说明理由?(3)若B地在原点的右侧,那么经过100次行进后,小乌龟到达的点与点B之间的距离是多少?【答案】(1)解:﹣16+50=34,﹣16﹣50=﹣66(2)解:第七次行进后:1﹣2+3﹣4+5﹣6+7=4,第八次行进后:1﹣2+3﹣4+5﹣6+7﹣8=﹣4,因为点P、Q与A点的距离都是4米,所以点P、点Q到A地的距离相等(3)解:当n为100时,它在数轴上表示的数为:﹣16+1﹣2+3﹣4+…+(100﹣1)﹣100==﹣66,34﹣(﹣66)=100(米)一、绝对值基本概念及求法1、下面结论正确的有( )①两个有理数相加,和一定大于每一个加数②一个正数与一个负数相加得正数③两个负数和的绝对值一定等于它们绝对值的和④两个正数相加,和为正数⑤正数加负数,其和一定等于0.A. 0个B. 1个C. 2个D. 3个【答案】C2、若x 的相反数是3,│y│=5,则x +y 的值为( )A. -8B. 2C. 8或-2D. -8或2【答案】 D3、若|a|=3,|b|=2,且a ﹣b >0,则a+b 的值等于( )A. 1或5B. 1或﹣5C. ﹣1或﹣5D. ﹣1或5【答案】A4、己知a=5,|b|=8,且满足a+b <0,则a-b 的值为( )A. 13B. -13C. 3D. -3【答案】 A5、若2a =25, b =3,则a+b=( )A. -8B. ±8C. ±2D. ±8或±2【答案】D6、若a 是负数,且|a|<1,则11--a a 的值是( )A. 等于1B. 大于-1,且小于0C. 小于-1是D. 大于1【答案】C7、a 为有理数,下列各式:⑴ a 2=(−a)2 (2) |a|=|−a| (3) a 3=(−a)3 (4) (−a)3=−∣a 3∣ ⑸ |a+b|=|a|+|b|(6) (a+b)2=a 2+b 2其中一定成立的有( )个.A. 2B. 3C. 4D. 5【答案】 A二、绝对值非负性8、若 | x | =- x ,则 x 一定是( )A. 非正数B. 正数C. 非负数D. 负数【答案】 A9、若|a+2|+(b ﹣1)2=0,那么代数式(a+b )2017的值是( )A. 2009B. ﹣2009C. 1D. ﹣1【答案】 D10、已知a ,b ,c 为非零的实数,则bcbc ac ac ab ab a a +++ 的可能值的个数为( ) A. 4 B. 5 C. 6 D. 7【答案】A11、已知(a +1)2=25 ,且a < 0 ,|a+3|+|b+2|=14,则a+b= ________【答案】3或-19三、绝对值的化简12、若有理数a 、b 、c 在数轴上的位置如图所示,则化简:| a |+| a -b |-| c +b |=________.【答案】2a+c13、已知a 、b 、c 在数轴上的位置如图所示,求|a|+|a ﹣c|﹣|a+b|+|b+c|的值.【答案】解:∵由图可知b <a <c ,|b|>c >|a|,∴a ﹣c <0,a+b <0,b+c <0,∴原式=﹣a+(c ﹣a )+a+b ﹣(b+c )=﹣a+c ﹣a+a+b ﹣b ﹣c=﹣a .14、如图,已知数轴上点A 、B 、C 所表示的数分别为a 、b 、c ,点C 是线段AB 的中点,且AB=2,如果原点O 的位置在线段AC 上,那么c b a 2-+ = ________.【答案】015、化简155332+--+-x x x 63642-+--x x16、代数式|x ﹣1|+|x+2|+|x ﹣3|的最小值为 ( )A. 2B. 3C. 5D. 6【答案】C17、若33-=+x x ,则x 的取值范围是________.【答案】18、当x 变化时,|x -4|+|x -t|有最小值5,则常数t 的值为________.【答案】 -1或9四、绝对值的几何意义19、同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x ,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a 的点位于﹣4与6之间,求|a+4|+|a ﹣6|的值;(4)当a=________时,|a ﹣1|+|a+5|+|a ﹣4|的值最小,最小值是________;(5)当a=________时,|a ﹣1|+|a+2|+|a ﹣3|+|a+4|+|a ﹣5|+…+|a+2n|+|a ﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x 是整数,所以x 的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a 的点位于﹣4与6之间,∴a+4>0,a ﹣6<0,∴|a+4|+|a ﹣6|=a+4-a+6=10;(4)1;9(5)1;4n+1【考点】绝对值及有理数的绝对值【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a 表示的数是1的时候,|a ﹣1|+|a+5|+|a ﹣4|的值最小,当a=1的时候,|a ﹣1|+|a+5|+|a ﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)此题可以理解为数轴上一点到1,-2,3,-4…-2n,(2n+1)的距离和最小,根据两点之间线段最短,故当a=1的时候,|a ﹣1|+|a+2|+|a ﹣3|+|a+4|+|a ﹣5|+…+|a+2n|+|a ﹣(2n+1)|的值最小,最小值是2n+2n+1=4n+1.20、点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB =b a -.利用数轴,根据数形结合思想,回答下列问题: (1)数轴上表示2和6两点之间的距离是________,数轴上表示1和-2 的两点之间的距离为________(2)数轴上表示x 和1两点之间的距离为________,数轴上表示 x 和-3 两点之间的距离为________(3)若 x 表示一个实数,且35<<-x ,化简53++-x x = ,(4) 43-+-x x 的最小值为________,54321-+-+-+-+-x x x x x 的最小值为________.(5)31--+x x 的最大值为________【答案】 (1)4;3(2);(3)8(4)7;6(5)4【考点】数轴及有理数在数轴上的表示,绝对值及有理数的绝对值,整式的加减运算【解析】【解答】解:(1)数轴上表示2和6两点之间的距离,数轴上表示1和 的两点之间的距离 ;( 2 )数轴上表示 和1两点之间的距离, 数轴上表示 和两点之间的距离 ; ( 3 )∵, ∴;初中数学培优专题世上无难事,只怕有心人( 4 )∵的几何意义为到-3与到4的距离和,∴取最小值时,在-3与4之间,即最小值,同理可得的最小值为6;( 5 )∵取最大值时,最小,∴,,∴最大值.21、如图,在数轴上,点A、B表示的数分别是-4、8(A、B两点间的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n(1)AB=________个单位长度;若点M在A、B之间,则|m+4|+|m-8|=________(2)若|m+4|+|m-8|=20,求m的值(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m=________;n=________ 【答案】(1)12;12(2)解:如果m在-4的左边,则-m-4+8-m=20,m=-8.如果m在8的右边,则m+4+m-8=20,m=12所以m=-8或12.(3)11;-9【考点】数轴及有理数在数轴上的表示,绝对值及有理数的绝对值,解含绝对值符号的一元一次方程【解析】【解答】解:(1)12,12.(3 )|m+4|+n=6,|n-8|+m=28当m<-4,n<8时,-m-4+n=6,8-n+m=28,无解.当m<-4,n>8时,-m-4+n=6,n-8+m=28,n=23,m=13,矛盾.当m>-4,n<8时,m+4+n=6,8-n+m=28,m=11,n=-9.当m>-4,n>8时,m+4+n=6,n-8+m=28,无解.11。
绝对值经典练习题
绝对值专项训练一、基础题1、绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.2、绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.3、(1)2-的绝对值等于( )(2)3-等于 ( )(3)设a 是实数,则|a|-a 的值( )A 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数4、(1)任何数都有绝对值,有________个.(2)由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______.(3)绝对值是正数的数有_____个,它们互为_________.(4)两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________.5、(有理数的大小比较)正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小.(5)比较41,31,21--的大小,结果正确的是( )A 、413121<-<-B 、314121-<<-C 、213141-<-<D 、412131<-<- 二、[典型例题]6、若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.2--的倒数是7、化简(4)--+的结果为______3、如果22a a -=-,则a 的取值范围是8、已知a b 、为有理数,且0a <,0b >,a b >,则 ( )A 、a b b a <-<<-B 、b a b a -<<<-C 、a b b a -<<-<D 、b b a a -<<-<三、[自主练习题]一、选择题9、有理数的绝对值一定是 ( )A 、正数B 、整数C 、正数或零D 、自然数10、下列说法中正确的个数有 ( )①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等A 、1个B 、2个C 、3个D 、4个11、如果甲数的绝对值大于乙数的绝对值,那么 ( )A 、甲数必定大于乙数B 、甲数必定小于乙数C 、甲、乙两数一定异号D 、甲、乙两数的大小,要根据具体值确定12、绝对值等于它本身的数有 ( )A 、0个B 、1个C 、2个D 、无数个13、下列说法正确的是( )A 、a -一定是负数B 、只有两个数相等时它们的绝对值才相等C 、若a b =,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数二、填空题14、数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.15、绝对值小于π的整数有______________________16、如果3a >,则3a -=__________,3a -=___________.17、若1x x =,则x 是__ __数;若1x x=-,则x 是_ _(“正”或“负”)数; 18、已知3x =,4y =,且x y <,则x y +=________三、解答题19、比较下列各组数的大小(1)35-,34- (2)56-,45-,115- 20、实数a 、b 在数轴上的位置如图所示,那么化简|a -b|-a 的结果是 A 、2a -b B 、b C 、-b D 、-2a+b21、已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a b m cd a b c++-++的值.22、已知3a =,2b =,1c =且a b c <<,求a b c ++的值23、检查5袋水泥的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如表格所示:(1)最接近标准质量的是几号水泥?(2)质量最多的水泥比质量最少的水泥多多少千克?。
有理数、数轴、相反数、绝对值练习卷
有理数【2 】.数轴.相反数.绝对值检测卷班级:___________姓名:____________一.填空题1.假如向南走5 km记为-5 km,那么向北走10 km记为____2.大于-5.1的所有负整数为__________________.3.珠穆朗玛峰凌驾海平面8848米,表示为+8848米.吐鲁番盆地低于海平面155米,表示为_________.4.原点表示的数是_______,原点右边的数是________,左边的数是________.5.绝对值是2的数有_____个,它们是_________,绝对值是110的数有_____个,它们是________,0的绝对值记作:_____=_____,-100的绝对值是_____,记作:_____=_____.6.一个数与它的相反数之和等于_____.7._______的倒数是它本身,_______的绝对值是它本身.8.-|-67|=_______,-(-110)=_______,-|+13|=_______,-(+25)=_______,+|-12|=_______,9.若|-x|=|12|,则x=_______.10.一个数的绝对值越小,则该数在数轴上所对应的点,离原点越_____.11.比较大小:(1)-35___|-12| (2)|-15|___0(3)|-65|___|-43| (4)-97___-6512.距原点3个单位长度的数是___________二.断定题1.-13的相反数是3. ()2.划定了正偏向的直线叫数轴. ()3.数轴上表示数0的点叫做原点.()4.假如A.B两点表示两个相邻的整数,那么这两点之间的距离是一个单位长度.()5.若两个数的绝对值相等,则这两个数也相等. ()6.一个有理数的绝对值不小于它自身7.-a的绝对值等于a8.一个数的绝对值是它的相反数,则这个数必定是负数. ( )9.若-a是负数,则a是正数. ()10.正整数聚集与负整数集归并在一路是整数聚集.()三.选择题1.|x|=2,则这个数是()A.2B.2和-2C.-2D.以上都错2.|12a|=-12a,则a必定是()A.负数B.正数C.非正数D.非负数3.假如一个数的绝对值等于这个数的相反数,那么这个数是()A.正数B.负数C.正数.零D.负数.零4.每个有理数都可以用数轴上的以下哪项来表示()A.一个点B.线C.单位D.长度5.下列图形中不是数轴的是()6.下列说法错误的是()A.零是最小的整数B.有最大的负整数,没有最大的正整数C.数轴上两点表示的数分离是-213与-2,那么-2在右边D.所有的有理数都可以用数轴上的点表示出来7.下列各数中,大于-12小于12的负数是()A.-23B.-13 C.13 D.08.负数是指()A.把某个数的前边加上“-”号B.不大于0的数C.除去正数的其他数D.小于0的数9.关于零的论述错误的是()A.零大于所有的负数B.零小于所有的正数C.零是整数D.零既是正数,也是负数10.下面是关于0的一些说法,个中准确说法的个数是()①0既不是正数也不是负数;②0是最小的天然数;③0是最小的正数;④0是最小的非负数;⑤0既不是奇数也不是偶数.A.0B.1C.2D.311.下面准确的是()A.数轴是一条划定了原点,正偏向和长度单位的射线B.离原点近的点所对应的有理数较小C.数轴上的点可以表示随意率性有理数D.原点在数轴的正中央12.关于相反数的论述错误的是()A.两数之和为0,则这两个数为相反数B.假如两数所对应的点到原点的距离相等,这两个数互为相反数C.符号相反的两个数,必定互为相反数D.零的相反数为零13.若数轴上A.B两点所对应的有理数分离为a.b,且b在a的右边,则a-b的成果必定()A.大于零B.小于零C.等于零D.无法肯定14.假如点A .B .C .D 所对应的数为a .b .c .d ,则a .b .c .d 的大小关系为( )A.a <c <d <bB.b <d <a <cC.b <d <c <aD.d <b <c <a15.0,12,-15,-8,+10,+19,+3,-3.4中整数的个数是()A.6B.5C.4D.3四.解答题1.某气象预告显示,我国五个地区的最高气温第二天比第一世界降了12℃,这五个地区第一天最高气温如图所示,请填写第二天的最高气温. 2.在给出的数轴上,标出以下各数及它们的相反数.-1,2,0,52,-43.下图是一个长方体纸盒的睁开图,请把-5,3,5,-1,-3,1分离填入六个长方形,使得按虚线折成长方体后,相对面上的两数互为相反数.4.出租车司机李师傅一世界午的营运满是在器械走向的萧绍路长进行的,假如划定向东行驶为正,他这世界午行车的里程(单位:千米)是: +8, -6, -5, +10, -5, +3, -2, +6, +2, -5(1)若把李师傅下昼动身地记为0,他将最后一名乘客送抵目标地时,李师傅距下昼动身地有多远?(2)假如汽车耗油量为0.41升/千米,那么这世界午汽车共耗油若干升?5.(1)已知ab>0,试求ab ab b b aa ||||||++的值. (2)若|x -2|+|y +3|+|z -5|=0,盘算:①x ,y ,z 的值.②求|x |+|y |+|z |的值.。
数轴绝对值练习题
数轴绝对值练习题数轴绝对值练习题在数学学习中,数轴是一个非常重要的概念,它可以帮助我们更好地理解和运用绝对值。
绝对值是一个数的非负值,表示这个数到零的距离。
在解决实际问题中,我们经常会遇到需要计算绝对值的情况。
下面,我将通过一些练习题来帮助大家更好地掌握数轴和绝对值的概念。
1. 问题一:求下列各数的绝对值。
a) |-5|b) |3|c) |-2.5|d) |0|解答:a) |-5| = 5b) |3| = 3c) |-2.5| = 2.5d) |0| = 02. 问题二:用数轴表示下列各数,并求它们的绝对值。
a) -4b) 2c) -1.5d) 0解答:a) -4在数轴上的位置如下图所示: -4 -3 -2 -1 0 1 2 3 4|-4| = 4b) 2在数轴上的位置如下图所示: -4 -3 -2 -1 0 1 2 3 4|2| = 2c) -1.5在数轴上的位置如下图所示: -4 -3 -2 -1 0 1 2 3 4|-1.5| = 1.5d) 0在数轴上的位置如下图所示: -4 -3 -2 -1 0 1 2 3 4|0| = 03. 问题三:求下列各式的值。
a) |3 - 7|b) |5 + 2|c) |-4 - 1|d) |2 - 2|解答:a) |3 - 7| = |-4| = 4b) |5 + 2| = |7| = 7c) |-4 - 1| = |-5| = 5d) |2 - 2| = |0| = 04. 问题四:求下列各式的值。
a) |3 - 5| + |2 - 1|b) |4 - 2| - |3 - 5|c) |2 - 3| + |6 - 5|d) |1 - 2| - |3 - 4|解答:a) |3 - 5| + |2 - 1| = |-2| + |1| = 2 + 1 = 3b) |4 - 2| - |3 - 5| = |2| - |-2| = 2 - 2 = 0c) |2 - 3| + |6 - 5| = |-1| + |1| = 1 + 1 = 2d) |1 - 2| - |3 - 4| = |-1| - |-1| = 1 - 1 = 0通过以上练习题,我们可以看到数轴和绝对值的应用非常广泛。
数轴绝对值练习题
2.1有理数一、 选择题:1.下面说法中正确的是 ( )A .“向东5米”与“向西10米”不是相反意义的量;B .如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;C .如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;D .若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米...2、0是( )A. 正数 B. 负数 C. 整数 D. 正有理数3、 下列说法中正确的是( )A. 整数又叫自然数B. 0是整数C. 一个数不是正数就是负数D. 0不是自然数4、下面说法中,不正确的是 ( )A .在有理数中,零的意义仅表示没有;B .0不是正数,也不是负数,但是有理数;C .0是最小的整数;D .0不是偶数.二、 填空题:1.用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______; (3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______;2、最小的自然数是 ,最大的负整数是 ,最小的非负整数是 。
3. 将下列各数分别填入相应的大括号里:5,-65 ,2013,-0.2,6.8,0,-92 ,-10,85,-2。
正数集合{ } 整数集合{ }负数集合{ } 分数集合{ }4. 不用负数,请讲出下列各题的意义。
(1)某公司在2013年上半年营销情况是-20万元。
(2)向西走了-40米。
(3)运走-60吨大米。
三、 解答题:1、 把下列各数分别填在题后相应的集合中:-15 ,0,-1,0.7,2,-3, 278,-15.1,+28。
(1)正数集合:(2)负数集合:(3)整数集合:(4)分数集合:(5)正整数集合:(6)负整数集合:(7)正分数集合:2、某地一天中午12时的气温是6°C ,傍晚5时的气温比中午12时下降了4°C ,凌晨4时的温度比傍晚5时还低a c 4°C ,问傍晚5时的气温是多少?凌晨4时的气温是多少?2.2数轴一填空题:1.在数轴上表示的两个数中, 的数总比 的数大。
绝对值专项练习60题(有答案)
绝对值专项练习60题(有答案)1.下列说法中正确的是()A.有理数的绝对值是正数B.正数负数统称有理数C.整数分数统称有理数D.a的绝对值等于a2.在数轴上距﹣2有3个单位长度的点所表示的数是()A .﹣5 B.1 C.﹣1 D.﹣5或13.计算:|﹣4|=()A .0 B.﹣4 C.D.44.若x的相反数是3,|y|=5,则x+y的值为()A .﹣8 B.2 C.8或﹣2 D.﹣8或25.如果|a|=﹣a,那么a的取值围是()A .a>0 B.a<0 C.a≤0 D.a≥06.如图,数轴上的点A所表示的是实数a,则点A到原点的距离是()A .a B.﹣a C.±a D.﹣|a|7.如果a是负数,那么﹣a、2a、a+|a|、这四个数中,负数的个数()A .1个B.2个C.3个D.4个8.在﹣(﹣2),﹣|﹣7|,﹣|+3|,,中,负数有()A .1个B.2个C.3个D.4个9.如图,数轴的单位长度为1,如果点A、C表示的数的绝对值相等,则点B表示的数是()A .1 B.0 C.﹣1 D.﹣210.任何一个有理数的绝对值在数轴上的位置是()A .原点两旁B.整个数轴C.原点右边D.原点及其右边11.a,b在数轴位置如图所示,则|a|与|b|关系是()A .|a|>|b| B.|a|≥|b| C.|a|<|b| D.|a|≤|b|12.已知|x|=3,则在数轴上表示x的点与原点的距离是()A .3 B.±3C.﹣3 D.0﹣313.若|a|=﹣a,则数a在数轴上的点应是在()A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧14.下列判断错误的是()A.任何数的绝对值一定是正数B.一个负数的绝对值一定是正数C.一个正数的绝对值一定是正数D.任何数的绝对值都不是负数15.a为有理数,下列判断正确的是()A .﹣a一定是负数B.|a|一定是正数C.|a|一定不是负数D.﹣|a|一定是负数16.若ab<0,且a>b,则a,|a﹣b|,b的大小关系为()A .a>|a﹣b|>bB.a>b>|a﹣b|C.|a﹣b|>a>bD.|a﹣b|>b>a17.若|a|=8,|b|=5,a+b>0,那么a﹣b的值是()A .3或13 B.13或﹣13 C.3或﹣3 D.﹣3或1318.下列说确的是()A.﹣|a|一定是负数B.只有两个数相等时,它们的绝对值才相等C.若|a|=|b|,则a与b互为相反数D.若一个数小于它的绝对值,则这个数为负数19.一个数的绝对值一定是()A .正数B.负数C.非负数D.非正数20.若ab>0,则++的值为()A .3 B.﹣1 C.±1或±3D.3或﹣121.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A .1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a22.若|﹣x|=﹣x,则x是()A .正数B.负数C.非正数D.非负数23.若|a|>﹣a,则a的取值围是()A .a>0 B.a≥0 C.a<0 D.自然数24.若|m﹣1|=5,则m的值为()A .6 B.﹣4 C.6或﹣4 D.﹣6或425.下列关系一定成立的是()A .若|a|=|b|,则a=bB.若|a|=b,则a=b C.若|a|=﹣b,则a=bD.若a=﹣b,则|a|=|b|26.已知a、b互为相反数,且|a﹣b|=6,则|b﹣1|的值为()A .2 B.2或3 C.4 D.2或427.a<0时,化简结果为()A .B.0 C.﹣1 D.﹣2a28.在有理数中,绝对值等于它本身的数有()....29.已知|a|=﹣a、|b|=b、|a|>|b|>0,则下列正确的图形是()A .B.C.D.30.若|a|+|b|=|a+b|,则a、b间的关系应满足()A.b同号B.b同号或其中至少一个为零C.b异号D.b异号或其中至少一个为零31.已知|m|=4,|n|=3,且mn<0,则m+n的值等于()A .7或﹣7 B.1或﹣1 C.7或1 D.﹣7或﹣132.已知a、b、c大小如图所示,则的值为()A .1 B.﹣1 C.±1D.33.下列各式的结论成立的是()A.若|m|=|n|,则m>n B.若m≥n,则|m|≥|n| C.若m<n<0,则|m|>|n| D.若|m|>|n|,则m>n 34.绝对值小于4的整数有()A .3个B.5个C.6个D.7个35.绝对值大于1而小于3.5的整数有()个.A .7 B.6 C.5 D.436.若x的绝对值小于1,则化简|x﹣1|+|x+1|得()A .0 B.2 C.2x D.﹣2x37.3.14﹣π的差的绝对值为()A .0 B.3.14﹣πC.π﹣3.14 D.0.1438.下列说确的是()A.有理数的绝对值一定是正数B.有理数的相反数一定是负数C.互为相反数的两个数的绝对值相等D.如果两个数的绝对值相等,那么这两个数相等39.下面说法错误的是()A.﹣(﹣5)的相反数是(﹣5)B.3和﹣3的绝对值相等C.数轴上右边的点比左边的点表示的数小D.若|a|>0,则a一定不为零40.已知|a|>a,|b|>b,且|a|>|b|,则()A .a>b B.a<b C.不能确定D.a=b41.已知|x|≤1,|y|≤1,那么|y+1|+|2y﹣x﹣4|的最小值是_________ .42.从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有_________ 个.43.最大的负整数是_________ ,绝对值最小的有理数是_________ .44.最大的负整数,绝对值最小的数,最小的正整数的和是0 _________ .45.若x+y=0,则|x|=|y|.(_________ )46.绝对值等于10的数是_________ .47.若|﹣a|=5,则a= _________ .48.设A=|x﹣b|+|x﹣20|+|x﹣b﹣20|,其中0<b<20,b≤x≤20,则A的最小值是_________ .49.﹣3.5的绝对值是_________ ;绝对值是5的数是_________ ;绝对值是﹣5的数是_________ .50.绝对值小于10的所有正整数的和为_________ .51.化简:|x﹣2|+|x+3|,并求其最小值.52.若a,b为有理数,且|a|=2,|b|=3,求a+b的值.53.若|x|=3,|y|=6,且xy<0,求2x+3y的值.54.试求|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|的最小值.55.有理数a、b在数轴上的位置如图所示,化简|a﹣b|+|a+b|.56.已知a=12,b=﹣3,c=﹣(|b|﹣3),求|a|+2|b|+|c|的值.57.已知a、b、c在数轴上的位置如图所示,化简|a|+|c﹣b|+|a﹣c|+|b﹣a|58.小刚在学习绝对值的时候发现:|3﹣1|可表示数轴上3和1这两点间的距离;而|3+1|即|3﹣(﹣1)|则表示3和﹣1这两点间的距离.根据上面的发现,小刚将|x﹣2|看成x与2这两点在数轴上的距离;那么|x+3|可看成x 与_________ 在数轴上的距离.小刚继续研究发现:x取不同的值时,|x﹣2|+|x+3|=5有最值,请你借助数轴解决下列问题(1)当|x﹣2|+|x+3|=5时,x可取整数_________ (写出一个符合条件的整数即可);(2)若A=|x+1|+|x﹣5|,那么A的最小值是_________ ;(3)若B=|x+2|+|x|+|x﹣1|,那么B的最小值是_________ ,此时x为_________ ;(4)写出|x+5|+|x+3|+|x+1|+|x﹣2|的最小值.59.若ab<0,试化简++.60.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.试探索:(1)求|5﹣(﹣2)|= _________ .(2)设x是数轴上一点对应的数,则|x+1|表示_________ 与_________ 之差的绝对值(3)若x为整数,且|x+5|+|x﹣2|=7,则所有满足条件的x为_________ .参考答案:1.A、有理数0的绝对值是0,故A错误;B、正数、0、负数统称有理数,故B错误;C、整数分数统称有理数,故C正确;D、a<0时,a的绝对值等于﹣a,故D错误.故选C.2.依题意得:|﹣2﹣x|=3,即﹣2﹣x=3或﹣2﹣x=﹣3,解得:x=﹣5或x=1.故选D.3.根据一个负数的绝对值是它的相反数,可知|﹣4|=4.故选D.4.x的相反数是3,则x=﹣3,|y|=5,y=±5,∴x+y=﹣3+5=2,或x+y=﹣3﹣5=﹣8.则x+y的值为﹣8或2.故选D5因为一个负数的绝对值是它的相反数;0的绝对值是0或相反数,所以如果|a|=﹣a,那么a的取值围是a≤0.故选C.6.依题意得:A到原点的距离为|a|,∵a<0,∴|a|=﹣a,∴A到原点的距离为﹣a.故选B.7.当a是负数时,根据题意得,﹣a>0,是正数,2a<0,是负数,a+|a|=0,既不是正数也不是负数,=﹣1,是负数;所以,2a、是负数,所以负数2个.故选B.8.∵﹣(﹣2)=2,是正数;﹣|﹣7|=﹣7,是负数;﹣|+3|=﹣3是负数;=,是正数;=﹣是负数;∴在以上数中,负数的个数是3.故选C.9.如图,AC的中点即数轴的原点O.根据数轴可以得到点B表示的数是﹣1.故选C.10. ∵任何非0数的绝对值都大于0,∴任何非0数的绝对值所表示的数总在原点的右侧,∵0的绝对值是0,∴0的绝对值表示的数在原点.故选D.11.∵a<﹣1,0<b<1,∴|a|>|b|.故选A12.∵|x|=3,又∵轴上x的点到原点的距离是|x|,∴数轴上x的点与原点的距离是3;故选A.13.∵|a|=﹣a,∴a≤0,即可得数a在数轴上的点应是在原点或原点的左侧.故选D.14.根据绝对值性质可知,一个负数的绝对值一定是正数;一个正数的绝对值一定是正数;任何数的绝对值都不是负数.B,C,D都正确.A中,0的绝对值是0,错误.故选A.15.A、错误,a=0时不成立;B、错误,a=0时不成立;C、正确,符合绝对值的非负性;D、错误,a=0时不成立.故选C16.∵ab<0,且a>b,∴a>0,b<0∴a﹣b>a>0∴|a﹣b|>a>b故选C.17.∵|a|=8,|b|=5,∴a=±8,b=±5,又∵a+b>0,∴a=8,b=±5.∴a﹣b=3或13.故选A.18.A、﹣|a|不一定是负数,当a为0时,结果还是0,故错误;B、互为相反数的两个数的绝对值也相等,故错误;C、a等于b时,|a|=|b|,故错误;D、若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.故选D.19.一个数的绝对值一定是非负数.故选C.20.因为ab>0,所以a,b同号.①若a,b同正,则++=1+1+1=3;②若a,b同负,则++=﹣1﹣1+1=﹣1.故选D.21.∵a>0,∴|a|=a;∵b<0,∴|b|=﹣b;又∵|a|<|b|<1,∴a<﹣b<1;∴1﹣b>1+a;而1+a>1,∴1﹣b>1+a>﹣b>a.故选D.22.∵|﹣x|=﹣x;∴x≤0.即x是非正数.故选C.23.若|a|>﹣a,则a的取值围是a>0.故选A.24.∵|m﹣1|=5,∴m﹣1=±5,∴m=6或﹣4.故选C.25.选项A、B、C中,a与b的关系还有可能互为相反数.故选D.26.∵a、b互为相反数,∴a+b=0,∵|a﹣b|=6,∴b=±3,|b﹣1|=2或4.故选D.27.∵a<0,∴==0.故选B28.在有理数中,绝对值等于它本身的数为所有非负有理数,而非负有理数有无穷多个.故选D.29.∵|a|=﹣a、|b|=b,∴a<0,b>0,即a在原点的左侧,b在原点的右侧,∴可排除A、B,∵|a|>|b|,∴a到原点的距离大于b到原点的距离,∴可排除C,故选D.30.设a与b异号且都不为0,则|a+b|=||a|﹣|b||,当|a|>|b|时为|a|﹣|b|,当|a|≤|b|时为|b|﹣|a|.不满足条件|a|+|b|=|a+b|,当a与b同号时,可知|a|+|b|=|a+b|成立;当a与b至少一个为0时,|a|+|b|=|a+b|也成立.故选B.31. ∵|m|=4,|n|=3,∴m=±4,n=±3,又∵mn<0,∴当m=4时,n=﹣3,m+n=1,当m=﹣4时,n=3,m+n=﹣1,故选B.32.根据图示,知a<0<b<c,∴=++=﹣1+1+1=1.故选A.33.A、若m=﹣3,n=3,|m|=|n|,m<n,故结论不成立;B、若m=3,n=﹣4,m≥n,则|m|<|n|,故结论不成立;C、若m<n<0,则|m|>|n|,故结论成立;D、若m=﹣4,n=3,|m|>|n|,则m<n,故结论不成立.故选:C34.绝对值小于4的整数有:±3,±2,±1,0,共7个数.故选D35.绝对值大于1而小于3.5的整数有:2,3,﹣2,﹣3共4个.故选D.36.∵x的绝对值小于1,数轴表示如图:从而知道x+1>0,x﹣1<0;可知|x+1|+|x﹣1|=x+1+1﹣x=2.故选B.37.∵π>3.14,∴3.14﹣π<0,∴|3.14﹣π|=﹣(3.14﹣π)=π﹣3.14.故选:C38.A∵0的绝对值是0,故本选项错误.B∵负数的相反数是正数,故本选项错误.C∵互为相反数的两个数的绝对值相等,故本选项正确.D∵如果两个数的绝对值相等,那么这两个数相等或互为相反数,故本选项错误.故选C.39.A、﹣(﹣5)=5,5的相反数是﹣5,故本选项说确;B、3和﹣3的绝对值都为3,故本选项说确;C、数轴上右边的数总大于左边的数,故本选项说法错误;D、绝对值大于0的数可能是正数也可能是负数,故本选项说确.故选C.40.∵|a|>a,|b|>b,∴a、b均为负数,又∵|a|>|b|,∴a<b.故选B41.∵|x|≤1,|y|≤1,∴﹣1≤x≤1,﹣1≤y≤1,故可得出:y+1≥0;2y﹣x﹣4<0,∴|y+1|+|2y﹣x﹣4|=y+1+(4+x﹣2y)=5+x﹣y,当x取﹣1,y取1时取得最小值,所以|y+1|+|2y﹣x﹣4|min=5﹣1﹣1=3.故答案为:342.∵千位数与个位数之差的绝对值为2,可得“数对”,分别是:(0,2),(1,3),(2,4),(3,5),(4,6),(5,7),(6,8),(7,9),∵(0,2)只能是千位2,个位0,∴一共15种选择,∴从1000到9999中,四位数码各不相同,且千位数与个位数之差的绝对值为2的四位数有15×8×7=840个.43.最大的负整数是﹣1 ,绝对值最小的有理数是0 .44.最大的负整数是﹣1,绝对值最小的数0,最小的正整数是1∵﹣1+0+1=0,∴最大的负整数,绝对值最小的数,最小的正整数的和是0正确.故答案为:√45.∵x+y=0,∴x、y互为相反数.∴|x|=|y|.故答案为(√)46.绝对值等于10的数是±10.47.若|﹣a|=5,则a= ±5.48.由题意得:从b≤x≤20得知,x﹣b≥0 x﹣20≤0 x﹣b﹣20≤0,A=|x﹣b|+|x﹣20|+|x﹣b﹣20|=(x﹣b)+(20﹣x)+(20+b﹣x)=40﹣x,49.﹣3.5的绝对值是 3.5 ;绝对值是5的数是±5;绝对值是﹣5的数是不存在.50.绝对值小于10的正整数有:1、2、3、4、5、6、7、8、9,和为:1+2+3+4+5+6+7+8+9=45.故本题的答案是:45.51.①当x≤﹣3时,原式=2﹣x﹣x﹣3=﹣2x﹣1;②当﹣3<x<2时,原式=2﹣x+x+3=5;③当x≥2时,原式=x﹣2+x+3=2x+1;∴最小值为552.∵a,b为有理数,|a|=2,|b|=3,∴a=±2,b=±3,当a=+2,b=+3时,a+b=2+3=5;当a=﹣2,b=﹣3时,a+b=﹣2﹣3=﹣5;当a=+2,b=﹣3时,a+b=2﹣3=﹣1;当a=﹣2,b=+3时,a+b=﹣2+3=1.故答案为:±5、±1.53.∵|x|=3,|y|=6,∴x=±3,y=±6,∵xy<0,∴x=3,y=﹣6,或x=﹣3,y=6,①x=3,y=﹣6时,原式=2×3+3×(﹣6)=6﹣18=﹣12;②x=﹣3,y=6,原式=2×(﹣3)+3×6=﹣6+18=1254.∵2005=2×1003﹣1,∴共有1003个数,∴x=502×2﹣1=1003时,两边的数关于|x﹣1003|对称,此时的和最小,此时|x﹣1|+|x﹣3|+…+|x﹣2003|+|x﹣2005|=(x﹣1)+(x﹣3)…+(1001﹣x)+(1003﹣x)+(1005﹣x)+…+(2005﹣x)=2(2+4+6+ (1002)=2×=503004.故答案为:503004.55.∵在数轴上原点右边的数大于0,左边的数小于0,右边的数总大于左边的数可知,b<a<0,∴|a﹣b|=a﹣b,|a+b|=﹣a﹣b,∴原式=a﹣b﹣a﹣b=﹣2b56. ∵a=12,b=﹣3,∴c=﹣(|b|﹣3)=﹣(3﹣3)=0,∴|a|+2|b|+|c|=12+2×3+0=18.57.由数轴,得b>c>0,a<0,∴c﹣b<0,a﹣c<0,b﹣a>0,∴|a|+|c﹣b|+|a﹣c|+|b﹣a|=﹣a﹣(c﹣b)﹣(a﹣c)+b﹣a=﹣a﹣c+b﹣a+c+b﹣a =2b﹣3a.58.∵|x+3|=|x﹣(﹣3)|,∴|x+3|可看成x与﹣3的点在数轴上的距离;(1)x=0时,|x﹣2|+|x+3|=|﹣2|+|3|=2+3=5;(2)|x+1|+|x﹣5|表示x到点﹣1与到点5的距离之和,当﹣1≤x≤5时,A有最小值,即表示数5的点到表示数﹣1的点的距离,所以A的最小值为6;(3)|x+2|+|x|+|x﹣1|表示x到数﹣2、0、1三点的距离之和,所以当x=0时,它们的距离之和最小,即B的最小值为3,此时x=0;(4)|x+5|+|x+3|+|x+1|+|x﹣2|表示x到数﹣5、﹣3、﹣1、2四点的距离之和,所以当﹣3≤x≤﹣1时,它们的距离之和有最小值9,即|x+5|+|x+3|+|x+1|+|x﹣2|的最小值为9.59.∵ab<0,∴a和b中有一个正数,一个负数,不妨设a>0,b<0,原式=1﹣1﹣1=﹣160.(1)|5﹣(﹣2)|=|5+2|=7;(2)|x+1|表示x与﹣1之差的绝对值;(3)∵|x+5|表示x与﹣5两数在数轴上所对的两点之间的距离,|x﹣2|表示x与2两数在数轴上所对的两点之间的距离,而﹣5与2两数在数轴上所对的两点之间的距离为2﹣(﹣5)=7,|x+5|+|x﹣2|=7,∴﹣5≤x≤2.故答案为7;x,﹣1;﹣5≤x≤2.。
数轴绝对值计算与化简练习题(附答案)
数轴绝对值计算与化简练习题一、单选题1.下列各数:822,7.1,0, 3.14,2022,1840,57---+-,其中整数有m 个,负分数有n 个,则m n +等于( ) A.4 B.5 C.6 D.72.某项科学研究以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如:9:15记为1-,10:45记为1+等,以此类推,上午7:45应记为( )A.7.45-B.2.5C.3-D.33.点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是( )A.2b a <<B.1212a b ->-C.2a b -<<D.2a b <-<- 4.若130a b -++=,则12a b +-的值为( ) A.142- B.122- C.112- D.112 5.如图,下列结论正确的是( )A .c a b >>B .11b c >C .a b <D .0abc >6.有理数a 、b 在数轴上的位置如图所示,则化简a b a -+的结果为( )A.bB.-bC.2a b --D.2a b -7.在数轴上,到原点距离5个单位长度,且在数轴右边的数是( )A .5-B .5+C .5±D .158.如图,数轴上的A ,B 两点所表示的数分别是a ,b ,如果a b >,且0ab >,那么该数轴的原点O 的位置应该在( )A.点A 的左边B.点B 的右边C.点A 与点B 之间,靠近点AD.点A 与点B 之间,靠近点B9.一个数在数轴上所对应的点向左移动2018个单位长度后,得到它的相反数对应的点,则这个数是( )A.2018B.-2018C.1 009D.-100910.如图,数轴上一动点A向左移动2个单位长度到达点B再向右移动5个单位长度到达点C.若点C表示的数为1,则点A表示的数为( )A.-2B.3C.-3D.711.两个有理数,a b在数轴上的位置如图,下列四个式子中运算结果为正数的是( )A.a b+ B.a b- C.ab D.a b12.在数5,2-,7,6-中,任意3个数相加,其中最小的和是( )A.10B.6C.3- D.1-参考答案1.答案:C解析:2.答案:C解析:3.答案:C解析:4.答案:B解析:5.答案:B解析:解:A 、由数轴得:a b c <<,故选项A 不正确;B 、01b c <<<,11b c∴>, 故选项B 正确;C 、由数轴得:a b >,故选项C 不正确;D 、0a <,0b >,0b >,0abc ∴<,故选项D 不正确;故选:B .6.答案:A解析:解:由数轴得:0a b <<,即0a b -<,则原式b a a b =-+=,故选:A .7.答案:B解析:到原点距离5个单位长度的数是5或5-,在数轴右边的是5,故选B.8.答案:B解析:由0ab >知a ,b 同号,即a ,b 同正或同负.由a b >知a 到原点的距离大于b 到原点的距离,所以a ,b 同为负数,且b a >,则数轴的原点O 的位置应该在点B 的右边.故选B9.答案:C解析:因为在数轴上,表示两个互为相反数的点与原点的距离相等,所以这两个点与原点的距离都是201821009÷=,所以这个数是1009.10.答案:A解析:由题意可知,B点可看作C点向左移动5个单位长度得到的,即1 -5=-4,A点可看作B点向右移动2个单位长度得到的,即-4+2=-2,也就是点A表示的数为-2.11.答案:A解析:12.答案:C解析:。
数轴与绝对值练习
+0.0018 -0.0023 +0.0025 -0.0015 +0.0012 +0.0010请用绝对值知识说明:(1)哪几瓶是合乎要求的(即在误差围的)? (2)哪一瓶净含量最接近规定的净含量?【拓展平台】1.7=x ,则______=x ; 7=-x ,则______=x . 2.如果3>a ,则______3=-a ,______3=-a .3.绝对值不大于11.1的整数有……………………………………………………〖 〗 A .11个 B .12个 C .22个 D .23个 4.计算:(1) 7.27.27.2---+ (2) 13616--++-(3) 5327-⨯-÷-(4) ⎪⎪⎭⎫⎝⎛-+÷+-32922121一、填空题1.一个数a 与原点的距离叫做该数的_______.2.-|-76|=_______,-(-76)=_______,-|+31|=_______,-(+31)=_______,+|-(21)|=_______,+(-21)=_______.3._______的倒数是它本身,_______的绝对值是它本身. 4.a+b=0,则a 与b_______.5.若|x|=51,则x 的相反数是_______.6.若|m -1|=m -1,则m_______1.若|m -1|>m -1,则m_______1.若|x|=|-4|,则x=_______. 若|-x|=|21-|,则x=_______.二、选择题1.|x|=2,则这个数是( )A .2B .2和-2绝对值1、(绝对值的意义)1°绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.2°绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.(2006年)(1)2-的绝对值等于( )A 、21- B 、2 C 、2- D 、21(2006年)(2)3-等于 ( ) A 、3 B 、-3 C 、31 D 、31-(2005年)(3)设a 是实数,则|a|-a 的值( )A 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负数 2、(绝对值的性质)(1)任何数都有绝对值,且只有________个.(2)由绝对值的几何意义可知:距离不可能为负数,因此,任何一个数的绝对值都是_____数,绝对值最小的数是______.(3)绝对值是正数的数有_____个,它们互为_________.(4)两个互为相反数的绝对值________;反之,绝对值相等的两个数______或________. (2006年资阳)(4)绝对值为3的数为____________3、(有理数的大小比较)正数_________0,负数________0,正数________负数;两个负数比较大小的时候,__________大的反而小.(2005年)(5)比较41,31,21--的大小,结果正确的是( ) A 、413121<-<- B 、314121-<<- C 、213141-<-< D 、412131<-<-[典型例题]1、(教材变型题)若4x -=,则x =__________;若30x -=,则x =__________;若31x -=,则x =__________.2、(易错题)化简(4)--+的结果为___________3、(教材变型题)如果22a a -=-,则a 的取值围是 ( ) A 、0a > B 、0a ≥ C 、0a ≤ D 、0a <4、(创新题)代数式23x -+的最小值是 ( )A 、0B 、2C 、3D 、55、(章节知识点综合题)已知a b 、为有理数,且0a <,0b >,a b >,则 ( ) A 、a b b a <-<<- B 、b a b a -<<<- C 、a b b a -<<-< D 、b b a a -<<-<[自主练习题] 一、选择题1、有理数的绝对值一定是 ( )A 、正数B 、整数C 、正数或零D 、自然数 2、下列说法中正确的个数有 ( )①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等 A 、1个 B 、2个 C 、3个 D 、4个3、如果甲数的绝对值大于乙数的绝对值,那么 ( ) A 、甲数必定大于乙数 B 、甲数必定小于乙数C 、甲、乙两数一定异号D 、甲、乙两数的大小,要根据具体值确定 4、绝对值等于它本身的数有 ( ) A 、0个 B 、1个 C 、2个 D 、无数个 5、下列说确的是( )A 、a -一定是负数B 、只有两个数相等时它们的绝对值才相等C 、若a b =,则a 与b 互为相反数D 、若一个数小于它的绝对值,则这个数为负数 二、填空题6、数轴上,绝对值为4,且在原点左边的点表示的有理数为___________.7、绝对值小于π的整数有______________________8、当0a >时,a =_________,当0a <时,a =_________, 9、如果3a >,则3a -=__________,3a -=___________.10、若1x x=,则x 是_______(选填“正”或“负”)数;若1x x=-,则x 是_______(选填“正”或“负”)数;11、已知3x =,4y =,且x y <,则x y +=________ 三、解答题12、已知420x y -++=,求x ,y 的值13、比较下列各组数的大小 (1)35-,34- (2)56-,45-,115-一、掌握命题动态1、(2006年)2--的倒数是( )A 、2B 、12 C 、12- D 、-2 2、(2005年)若a 与2互为相反数,则|a +2|等于( )A 、0B 、-2C 、2D 、43、(2005年)实数a 、b 在数轴上的位置如图所示,那么化简|a-b|-a 的结果是A 、2a-bB 、bC 、-bD 、-2a+b二、把握命题趋势1、(信息处理题)已知a b 、互为相反数,c d 、互为倒数,m 的绝对值等于2,求2a bm cda b c++-++的值.2、(章节知识点综合题)有理数a b c 、、在数轴上的位置如图所示,化简0a b c -+--3、(科学探究题)已知3a =,2b =,1c =且a b c <<,求a b c ++的值4、(学科综合题)不相等的有理数a 、b 、c 在数轴上的对应点分别是A 、B 、C ,如果||||||a b b c a c -+-=-,那么点B ( ). A .在A 、C 点的右边 B .在A 、C 点的左边C .在A 、C 点之间 D .上述三种均可能 5、(课标创新题)已知a b c 、、都是有理数,且满足a b c a b c ++=1,求代数式:6abcabc-的值.6、(实际应用题)检查5袋水泥的质量,把超过标准质量的克数记为正数,不足标准质量的克数记为负数,检查结果如表格所示:(1)最接近标准质量的是几号水泥?(2)质量最多的水泥比质量最少的水泥多多少千克?。
数轴+绝对值小练
绝对值一.选择题10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣5 C.﹣6 D.﹣211.化简|a﹣1|+a﹣1=()A.2a﹣2B.0 C.2a﹣2或0 D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或P C.M或N D.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>aB.1+a>a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<aB.|b|>|a| C.a+b>0 D.ab<0 二.填空题17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.三.解答题31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a= ;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a取何值时,|a+4|+|a﹣1|+|a﹣3|的值最小,最小值是多少?请说明理由.32.计算:|x+1|+|x﹣2|+|x﹣3|.35.已知|a|=8,|b|=2,|a﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.参考答案与试题解析一.选择题(共16小题)10. A.11. C.12.A.13. D.14.C.15.C.二.填空题(共10小题)17..18.6或﹣6 .三.解答题(共14小题)31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x ﹣3)=x+1+x﹣2+x﹣3=3x﹣4.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a<b<0,因而a﹣b<0,a+c<0,b﹣c<0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.。
数轴绝对值练习题
2.1有理数一、 选择题:1.下面说法中正确的是 ( )A .“向东5米”与“向西10米”不是相反意义的量;B .如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;C .如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;D .若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米...2、0是( )A. 正数 B. 负数 C. 整数 D. 正有理数3、 下列说法中正确的是( )A. 整数又叫自然数B. 0是整数C. 一个数不是正数就是负数D. 0不是自然数4、下面说法中,不正确的是 ( )A .在有理数中,零的意义仅表示没有;B .0不是正数,也不是负数,但是有理数;C .0是最小的整数;D .0不是偶数.二、 填空题:1.用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______; (3)若-4万表示亏损4万元,那么盈余3万元记作______;(4)+150米表示高出海平面150米,低于海平面200米应记作______;2、最小的自然数是 ,最大的负整数是 ,最小的非负整数是 。
3. 将下列各数分别填入相应的大括号里:5,-65 ,2013,-0.2,6.8,0,-92 ,-10,85,-2。
正数集合{ } 整数集合{ }负数集合{ } 分数集合{ }4. 不用负数,请讲出下列各题的意义。
(1)某公司在2013年上半年营销情况是-20万元。
(2)向西走了-40米。
(3)运走-60吨大米。
三、 解答题:1、 把下列各数分别填在题后相应的集合中:-15 ,0,-1,0.7,2,-3, 278,-15.1,+28。
(1)正数集合:(2)负数集合:(3)整数集合:(4)分数集合:(5)正整数集合:(6)负整数集合:(7)正分数集合:2、某地一天中午12时的气温是6°C ,傍晚5时的气温比中午12时下降了4°C ,凌晨4时的温度比傍晚5时还低a c 4°C ,问傍晚5时的气温是多少?凌晨4时的气温是多少?2.2数轴一填空题:1.在数轴上表示的两个数中, 的数总比 的数大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1有理数 一、 选择题:1.下面说法中正确的是 ( )A .“向东5米”与“向西10米”不是相反意义的量; B .如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米; C .如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃; D .若将高1米设为标准0,高米记作+米,那么米所表示的高是米... 2、0是( )A. 正数 B. 负数 C. 整数 D. 正有理数 3、 下列说法中正确的是( ) A. 整数又叫自然数 B. 0是整数 C. 一个数不是正数就是负数 D. 0不是自然数4、下面说法中,不正确的是 ( )A .在有理数中,零的意义仅表示没有;B .0不是正数,也不是负数,但是有理数;C .0是最小的整数;D .0不是偶数.二、 填空题:1.用正数或负数表示下列各题中的数量:(1)如果火车向东开出400千米记作+400千米,那么火车向西开出4000千米,记作______;(2)球赛时,如果胜2局记作+2,那么-2表示______; (3)若-4万表示亏损4万元,那么盈余3万元记作______; (4)+150米表示高出海平面150米,低于海平面200米应记作______;2、最小的自然数是 ,最大的负整数是 ,最小的非负整数是 。
3. 将下列各数分别填入相应的大括号里:5,-65 ,2013,,,0,-92 ,-10,85 ,-2。
正数集合{ } 整数集合{ }负数集合{ } 分数集合{ } 4. 不用负数,请讲出下列各题的意义。
(1)某公司在2013年上半年营销情况是-20万元。
(2)向西走了-40米。
(3)运走-60吨大米。
三、 解答题: 1、 把下列各数分别填在题后相应的集合中:-15 ,0,-1,,2,-3, 278 ,,+28。
(1)正数集合:(2)负数集合: (3)整数集合: (4)分数集合: (5)正整数集合: (6)负整数集合: (7)正分数集合:2、某地一天中午12时的气温是6°C ,傍晚5时的气温比中午12时下降了4°C ,凌晨4时的温度比傍晚5时还低4°C ,问傍晚5时的气温是多少凌晨4时的气温是多少bac 数轴一填空题:1.在数轴上表示的两个数中, 的数总比 的数大。
2.在数轴上,表示-5的数在原点的 侧,它到原点的距离是 个单位长度。
3.在数轴上,表示+2的点在原点的 侧,距原点 个单位;表示-7的点在原点的 侧, 距原点 个单位;两点之间的距离为 个单位长度。
4.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是 。
5.与原点距离为个单位长度的点有 个,它们表示的有理数是 。
6.到原点的距离不大于3的整数有 个,它们是: 。
4.有理数a ,b ,c 在数轴上的位置如图所示,用“<”将a ,b ,•c•三个数连接起来________. 5.大于-3.5小于4.7的整数有_______个. 6.不小于-4的非正整数有 6.用“>”、“<”或“=”填空.(1)-10______0;(2)32________-23;(3)-110_______-19;(4)-1.26________114; (5) 23________-12;(6)- _______3.14; (7)-0.25______-14; (8)-14________15.7.在数轴上到表示-2的点相距8个单位长度的点表示的数为_________. 二选择题1.图1中所画的数轴,正确的是( )-1A 21543B-1210C 210D2.在数轴上,原点及原点左边的点所表示的数是( ) A .正数 B .负数 C .非负数 D .非正数7.下列说法正确的是( )A.没有最大的正数,却有最大的负数B.数轴上离原点越远,表示数越大 大于一切非负数 D.在原点左边离原点越远,数就越小8.下列结论正确的有( )个:① 规定了原点,正方向和单位长度的直线叫数轴 ② 最小的整数是0 ③ 正数,负数和零统称有理数 ④ 数轴上的点都表示有理数9.在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点 ( ) A.向左移动5个单位 B.向右移动5个单位。
C.向右移动4个单位D.向左移动1个单位或向右移动5个单位 10. 在数轴上画出下列各点,它们分别表示:+3, 0, -314, 112, -3,- 并把它们用“<”连接起来。
三、应用题11.小明的家(记为A )与他上学的学校(记为B ),书店(记为C )依次座落在一条东西走向的大街上,小明家位于学校西边30米处,书店位于学校东边100米处,小明从学校沿这条街向东走40米,接着又向西走了70米到达D 处,试用数轴表示上述A 、、B 、C 、D 的位置。
12.一位同学在写字的时候不慎将一滴墨水滴在数轴上,根据图中的数据,判断墨迹盖住的整数之和为.13.在数轴上,离原点距离等于3的数是。
14.点A 为数轴上表示-2的动点,当点A 沿数轴移动4个单位长到B 时,点B所表示的数是()B.-6C.2或-6D.不同于以上答案.绝对值 一、选择题1、下列说法中正确的有( )①互为相反数的两个数的绝对值相等;②正数和零的绝对值都等于它本身;③只有负数的绝对值是它的相反数;④一个数的绝对值的相反数一定是负数。
A 、1个 B 、2个 C 、3个 D 、4个2、下列判断正确的有( )①|+2|=2 ②|-2|=2 ③-|-5|=5 ④|a |≥0 A 、1个 B 、2个 C 、3个 D 、4个3. 若|x|= -x ,则x 一定是( )A. 负数 B. 负数或零 C. 零 D. 正数4、甲乙丙三地的海拔高度为20米,-15米,-10米,那么最高的地方比最低的地方高 ( ) A .5米 B .10米 C .25米 D .35米5、-2的相反数是 ( )A .2 B .-2 C .21-D .21 6、下列说法不正确的是( )A.有理数的绝对值一定是正数B.数轴上的两个有理数,绝对值大的离原点远C.一个有理数的绝对值一定不是负数D.两个互为相反数的绝对值相等7、已知a 为有理数,下列式子一定正确的是 ( )A .︱a ︱=aB .︱a ︱≥a .C .︱a ︱=-aD . a 2>08、绝对值最小的数是 ( )A .1B .-1C .0D .没有9、关于数0,下列几种说法不正确的是 ( )A .0既不是正数,也不是负数B .0的相反数是0C .0的绝对值是0D .0是最小的数10、设a 是最小的自然数, b 是最大的负整数。
c 是绝对值最小的有理数, 则a b c ++的值为( )。
A -1B 0C 1D 2 11、下列说法正确的是 ( ) A 自然数就是非负 整数 B 一个数不是正数,就是负数C 整数就是自然数D 正数和负数统称有理数12、357,,468---的大小顺序是( )。
A 753864-<-<- B 735846-<-<-, C 573684-<-<- D 357468-<-<-13、M 点在数轴上表示4-,N 点离M 的距离是3,那么N 点表示( )。
A 1-B 7-C 1-或7-D 1-或114、绝对值小于的整数有( )个。
A 5 B 6 C 7 D 815、下列说法正确的是( )A 整数就是正整数和负整数 B 负整数的相反数就是非负整数C 有理数中不是负数就是正数D 零是自然数,但不是正整数 16、在-5,-101,-,-,-2,-212各数中,最大的数是( ) A -12 B -101C -D -517、比-大,而比1小的整数的个数是( )A 6B 7C 8D 9 18. 2--的倒数是( ) A 、2 B 、12 C 、12- D 、-2 19、若a 与2互为相反数,则|a+2|等于( ) A 、0 B 、-2 C 、2D 、420、实数a 、b 在数轴上的位置如图所示,那么化简|a-b|-|a|的结果是( ) A 、2a-b B 、b C 、-b D 、-2a+b21、不相等的有理数a 、b 、c 在数轴上的对应点分别是A 、B 、C ,如果||||||a b b c a c -+-=-,那么点B ( ). A .在A 、C 点的右边 B .在A 、C 点的左边 C .在A 、C 点之间 D .上述三种均可能22、有理数的绝对值一定是 ( )A 、正数B 、整数C 、正数或零D 、自然数23、下列说法中正确的个数有 ( ) ①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等 A 、1个 B 、2个 C 、3个 D 、4个24、如果甲数的绝对值大于乙数的绝对值,那么 ( ) A 、甲数必定大于乙数 B 、甲数必定小于乙数 C 、甲、乙两数一定异号 D 、甲、乙两数的大小,要根据具体值确定 25、绝对值等于它本身的数有 ( )A 、0个B 、1个C 、2个D 、无数个26、下列说法正确的是( ) A 、a -一定是负数 B 、只有两个数相等时它们的绝对值才相等 C 、若a b =,则a 与b 互为相反数 D 、若一个数小于它的绝对值,则这个数为负数27、如果22a a -=-,则a 的取值范围是 ( )A 、0a > B 、0a ≥ C 、0a ≤ D 、0a < 28、代数式23x -+的最小值是 ( ) A 、0 B 、2 C 、3 D 、5 29、已知a b 、为有理数,且0a <,0b >,a b >,则 ( ) A 、a b b a <-<<- B 、b a b a -<<<- C 、a b b a -<<-< D 、b b a a -<<-<30、2-的绝对值等于( )A 、21-B 、2C 、2-D 、2131、3-等于 ( ) A 、3 B 、-3 C 、31 D 、31-32、设a 是有理数,则|a|-a 的值( )A 、可以是负数B 、不可能是负数C 、必是正数D 、可以是正数也可以是负33、比较41,31,21--的大小,结果正确的是( ) A 、413121<-<- B 、314121-<<- C 、213141-<-< D 、412131<-<-.一个数等于它的相反数的绝对值,则这个数是( )(A)正数和零; (B)负数或零; (C)一切正数; (D)所有负数二、填空题:1、绝对值的几何定义:在数轴上表示数a 的点与__________的距离叫做数a 的绝对值,记作__________.2、绝对值的代数定义:一个正数的绝对值是_________;一个负数的绝对值是________;0的绝对值是_________.3、+的相反数的绝对值是 。