平方的求和方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平方的求和方法
宝子,今天咱们来唠唠平方求和的方法呀。

咱先说说自然数的平方和。

有个超酷的公式哦,1² + 2² + 3² + … + n² = n(n + 1)(2n + 1)/6。

你看这个公式,就像一个魔法咒语一样。

比如说,要求1到5
的平方和。

那n就是5啦,把5代到公式里,5×(5 + 1)×(2×5 + 1)÷6 = 5×6×11÷6 = 55。

是不是很神奇呀 。

那这个公式是咋来的呢?其实有好几种推导方法呢。

有一种比较有趣的是用数学归纳法。

先验证当n = 1的时候,公式成立。

1² = 1,而1×(1 + 1)×(2×1 + 1)
÷6 = 1,对啦。

然后假设当n = k的时候公式成立,再去证明n = k + 1的时候也成立。

这就像是搭积木,一块一块稳稳地搭起来呢。

要是遇到不是从1开始的连续自然数的平方和呢?比如说3² + 4² + 5²。


可以先求出1² + 2² + 3² + 4² + 5²的和,再减去1²+2²。

按照前面的公式,1² + 2² + 3² + 4² + 5² = 5×(5 + 1)×(2×5 + 1)÷6 = 55,1²+2² = 1+4 = 5,那3² + 4² + 5² = 55 - 5 = 50啦。

还有哦,如果是一些有规律的数的平方和,比如说奇数的平方和或者偶数的平方和。

奇数的平方和公式是n(2n - 1)(2n + 1)/3,偶数的平方和公式是2n(n + 1)(2n + 1)/3。

这就像是给不同的小群体量身定制的小法宝呢。

宝子呀,平方求和虽然看起来有点小复杂,但是只要掌握了这些小窍门,就像拥有了魔法棒一样,不管啥样的平方求和问题都能轻松搞定啦。

你要是在做数学题的时候遇到平方求和,可别忘了这些小妙招哦。

加油,数学小能手就是你啦 。

相关文档
最新文档