北师大版初中七年级数学上册第3章第2节第1课时 代数式教案

合集下载

北师大版七年级上册数学 3.2 第1课时 代数式 优秀教案

北师大版七年级上册数学 3.2 第1课时 代数式 优秀教案

3.2 代数式第1课时 代数式1.在具体情境中,进一步理解字母表示数的意义.2.能解释一些简单代数式的实际背景或几何意义.一、情境导入青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段.列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t 小时呢?1.思考:(1)若正方形的边长为a ,则正方形的面积是 ,体积是 W.(2)设n 表示一个数,则它的相反数是 ;(3)铅笔的单价是x 元,钢笔的单价是铅笔单价的2.5倍,则钢笔的单价是 元.(4)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为 千米.2.观察所列代数式包含哪些运算,有何共同的运算特征.二、合作探究探究点一:代数式的识别有下列式子:x 2,m -n >1,p +q ,12ab ,s =πR 2,2016,代数式有( ) A.3个 B.4个 C.5个 D.6个解析:代数式是用运算符号把数和字母连接而成的式子,m -n >1是用不等号“>”连接而成的式子、s =πR 2是用等号“=”连接而成的式子,它们都不是代数式.而x 2,p +q ,12ab ,2016都是代数式.故选B. 方法总结:明确代数式的意义是正确识别代数式的前提.式子中有关系符号(如等号或不等号)的都不是代数式.探究点二:列代数式用代数式表示:(1)x 与2的平方和;(2)x 与2的和的平方;(3)x 的平方与2的和;(4)x 与2的平方的和.解析:这四个小题,都有关键词“平方”和“和”,但这两个词在四个小题中的语序不一样.(1)中是先平方再求和,即x 2+22;(2)中是先求和再平方,即(x +2)2;(3)中是先x 的平方再求和,即x 2+2;(4)中是先2的平方再求和,即x +22.解:(1)x 2+4;(2)(x +2)2;(3)x 2+2;(4)x +4.方法总结:用代数式表示数量关系时,一般要将句子分层,逐层分析,一步步列出代数式.探究点三:代数式的意义下列代数式可以表示什么?(1)2a -b ;(2)2(a -b ).解析:解释代数式的意义,可以从两个方面入手,一是从字母表示数的角度考虑;二是可以联系生活实际来举例说明.不管采用哪种方式,一定要注意运算形式和运算顺序.解:(1)2a 与b 的差;或a 的2倍与b 的差;或用a 表示一本作业本的价格,用b 表示一只铅笔的价格,则2a -b 表示买两本作业本比买一支铅笔多的钱数;(2)2与a -b 的积;或a 与b 的差的2倍.方法总结:描述一个代数式的意义,可以从字母本身出发来描述字母之间的数量关系,也可以联系生活实际或几何背景赋予其中字母一定的实际意义加以描述.探究点四:根据实际问题列代数式用代数式表示下列各式:(1)王明同学买2本练习册花了n 元,那么买m 本练习册要花多少元?(2)正方体的棱长为a ,那么它的表面积是多少?体积呢?解析:(1)根据买2本练习册花了n 元,得出买1本练习册花n 2元,再根据买了m 本练习册,即可列出算式.(2)根据正方体的棱长为a 和表面积公式、体积公式列出式子.解:(1)∵买2本练习册花了n 元,∴买1本练习册花n 2元,∴买m 本练习册要花12mn 元;(2)∵正方体的棱长为a ,∴它的表面积是6a 2;它的体积是a 3.方法总结:此题考查了列代数式,用到的知识点包括正方体的表面积公式和体积公式,根据题意列出式子是解本题的关键.三、板书设计教学过程中,应拓展学生的思维,培养他们观察、分析及抽象思维能力、语言能力、创造能力和类比联想能力.。

七年级数学上册 第三章《代数式》教案 (新版)北师大版

七年级数学上册 第三章《代数式》教案 (新版)北师大版

第三章《代数式》教案(新版)北师大版一、学生起点分析本节课是教材第三章《字母表示数》的第二节,在此之前,学生对有理数及有理数的运算有了一定的基础,在第一节中对于字母表示数已具有一定的认知水平,并且学生从小学开始就已经和字母有了接触,从小学到初中的数的运算实质就是代数式的运算,在此基础上导入代数式和代数式值的内容,对学生来说无疑是一个良好的时机.学生主动参与意识增强,课堂氛围进一步浓烈,分析能力和综合思维能力都有了一定程度的提高,很多同学都已能够将数学知识与生活实际联系起来,这样将有利于学生掌握代数式和代数式值的意义,解决有关代数式的运用问题.二、教学任务分析本课时的教学内容直奔教学主题――代数式的意义,降低了教学的难度,有效地克服了学生的心里障碍,并结合上一节的内容很自然地引入了代数式值的意义,再通过具体的情境来列代数式并求其值,然后通过反问代数式还能表示哪些实际意义,将教学活动引向高潮,激发学生联想、类比,进一步拓展学生的思维,同时也进一步调动了学生学习的积极性,最后教材提供了一个刻画有趣现象的经验公式――蟋蟀叫的次数与温度的关系,既使学生感悟了数学建模的思想,又使学生在轻松愉快的环境中加深了对代数式和求代数式值的理解.教学中要充分利用实际的背景,争取学生主动参与,通过丰富有趣的活动让学生经历符号化的过程,以及运用它推断代数式所反映规律的过程,同时也可以借助多媒体辅助教学来提供更多的实际背景,从而拓展学生的思维,在进行从语言到代数式、从代数式到语言转化的过程中,要注重培养学生正确运用数学语言进行表达和交流的能力.根据以上分析,确定本节课的教学目标如下:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值.(知识与技能)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.(过程与方法)3.在解决问题的过程中体验类比、联想等思维,体验数学美,增强学习自信心。

3.1 代数式(教案)北师大版(2024)数学七年级上册

3.1 代数式(教案)北师大版(2024)数学七年级上册

第三章整式及其加减3.1代数式第1课时用字母表示数1.能用字母表示数量关系.体会字母表示数的意义,形成初步的符号感,提高应用数学的意识;2.理解代数式的概念,能用代数式表示简单实际问题中的数量关系.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示教材第77页图3-1,提出问题:(1)按图3-1的方式,搭2个正方形需要________根火柴棒,搭3个正方形需要________根火柴棒.(2)搭10个这样的正方形需要多少根火柴棒?(3)搭100个这样的正方形需要多少根火柴棒?你是怎样得到的?(4)如果用x表示所搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?与同伴进行交流.学生小组交流后回答,教师讲评,并进一步讲解第(4)题的两种思考方法:第一个正方形用4根,每增加一个正方形增加3根,那么搭x个正方形就需要火柴棒[4+3(x-1)]根.上面的一排和下面的一排各用了x根火柴棒,竖直方向用了(x+1)根火柴棒,共用了[x+x+(x+1)]根火柴棒.教师:今天这节课,我们就来学习用字母表示数.二、探究新知1.用含字母的式子表示数量关系教师:通过探究,我们发现字母可以表示任何一个数.(1)在上面的活动中,我们借助字母表示正方形的个数与小棒的根数之间的关系,这样做有什么好处?(2)在以前的学习中还有哪些地方用到了字母?这些字母都表示什么?与同伴进行交流.学生汇报答案后,教师讲评:列代数式时,先找出题目中表示运算关系的词,然后理清关系,分清运算顺序,最后按代数式的书写格式规范地列出代数式.2.代数式的概念(1)今年李华m岁,去年李华________岁,5年后李华________岁.(2)a个人n天完成一项工作,那么平均每人每天的工作量为________.(3)某商店上月的收人为a元,本月收人比上月收入的2倍还多10元,本月收人是________元.(4)如果正方体的棱长是a-1,那么正方体的体积是________,表面积是________.学生独立完成后汇报答案.教师点评、分析:像这样用运算符号把数和字母连接而成的式子叫作代数式.课件出示练习:指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.学生思考后举手回答.教师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?学生讨论交流,教师指导、评价.3.代数式的书写要求(1)数字与字母、字母与字母相乘,“×”通常用“·”表示或省略不写,并把数字写在字母的前面.带分数与字母相乘时,应把带分数化为假分数;注:数字与数字相乘,“×”不能用“·”表示,也不可省略.(2)除法运算应写成分数的形式;(3)代数式中相同字母或因式的积用乘方形式表示;(4)代数式为和或差的形式,且后面有单位时,要把代数式用括号括起来.三、课堂练习1.教材第78页“随堂练习”.2.填空.(1)一个三角形的三条边的长分别是a,b,c,则这个三角形的周长为a+b+c;(2)张强比王华大3岁,当张强a岁时,王华的年龄是(a-3)岁;(3)圆的半径是R厘米,它的面积是πR2.四、课堂小结通过本节课的学习,你有什么收获?先让学生举手分享自己的收获,教师再简单归纳:用字母表示数可以简明地表达问题中的数量关系,也可以简明地表达数和公式,这样给我们研究问题带来了很大的方便.五、课后作业教材第82页习题3.1第1,2,3题.本节课的内容是今后进一步学习代数知识的基础.用字母表示数对学生来说比较抽象,在教学过程中,用实物或生活事例讲解,让学生体会、认识到用字母表示数在实际生活和学习中的广泛应用,感受到数学就在身边,体现了数学与生活的联系.同时,重视引导学生经历用字母表示数的过程,初步感受代数的思想,在解决问题的过程中深化了对数学知识的认识.本节课讲练相结合,鼓励学生参与其中,调动他们的学习积极性.第2课时列代数式1.理解代数式的概念,能用代数式表示简单实际问题中的数量关系;2.在具体情境中,能求出代数式的值,并解释它的实际意义.重点理解代数式的概念,能用代数式表示简单实际问题中的数量关系.难点学会求出代数式的值,并解释它的实际含义.一、导入新课课件出示问题:如图为一阶梯的纵截面,一只老鼠沿阶梯的两边A -B -C 的路线逃跑,一只猫同时沿阶梯(折线)A -C -B 的路线去追,结果在距离C 点0.6 m 的D 处猫捉住老鼠,已知老鼠的速度是猫的89 ,你能求出阶梯A -C 的长度吗?教师:要想解决这个问题,让我们先来学习本节课的内容.二、探究新知1.列代数式课件出示问题:列代数式,并求值.某景点的门票价格:成人票每张10元,学生票每张5元.(1)一个旅游团有成人x 人、学生y 人,那么该旅游团应付多少门票费?(2)如果该旅游团有37名成人、15名学生,那么他们应付多少门票费?解:(1)该旅游团应付门票费(10x +5y )元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.因此,他们应付门票费445元.学生思考后汇报答案,教师追问:代数式10x+5y还可以表示什么?.教师:通过上面的练习,同学们思考一下,实际问题中该怎样列代数式呢?关键是什么?学生分小组讨论后汇报答案,教师点评并进一步指出:(1)列代数式,要以不改变原题叙述的数量关系为原则(代数式的形式不唯一);(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;(3)把用日常生活语言叙述的数量关系列成代数式,是为今后学习列方程解应用题做准备,一定要牢固掌握.课件出示问题:营养学家通常用身体质量指数(简称BMI)衡量人体胖瘦程度,这个指数等于人体体重(单位:kg)与人体身高(单位:m)平方的商.对于成年人来说,BMI在18.5与24之间,体重适中;BMI低于18.5,体重过轻;BMI高于24,体重超重.(1)设一个人的体重为w kg,身高为h m,请用含w,h的代数式表示这个人的BMI.(2)张老师的身高为1.75 m,体重为65 kg,他的体重是否适中?(3)BMI对未成年人的胖瘦程度也有一定参考意义,请计算你的BMI.2.求代数式的值填写下表,并观察5n+6和n2这两个代数式的值的变化情况.(1)随着n的值逐渐变大,5n+6和n2这两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生举手回答,教师进一步讲解:我们知道,表示数的字母具有任意性和确定性,如5n+6中n可取任何有理数,当给出未知数(字母)的值时,如n=5,则5n+6就是一个确定的值.一般地,用具体数值代替代数式中的字母,按照代数式中的运算关系计算得出的结果,叫作代数式的值.课件出示练习:当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.学生解答并写出解答过程,教师点评并提出问题:求代数式的值应分哪几步?学生:求代数式的值的步骤:(1)代入;(2)计算.教师点评,并指出求代数式的值时需注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.三、课堂练习1.教材第79页“随堂练习”第1~3题.四、课堂小结1.怎样列代数式?2.怎样求代数式的值?3.列代数式时应该注意哪些事项?五、课后作业1.教材第82页习题3.1第2,3,4题.代数式是以后数学学习的基础.本节课通过生动的实例,导入新课.在教学过程中,讲练相结合,使学生深刻了解列代数及求代数式的值的意义.在课堂上,让学生充分观察、思考、分析和讨论,帮助学生在不断地纠错、归纳、创新中学习新知识.利用实际例子,引出代数式在实际背景下所表示的意义,激发了学生的学习兴趣,让学生感受到现实生活离不开数学,从而进一步调动了学生学习数学的积极性.在解题的过程中,注意规范学生的书写格式,对于发现的问题及时处理.第3课时整式1.理解单项式及单项式的系数、次数的概念,会确定一个单项式的系数和次数;2.掌握多项式及其项、次数的概念,会确定一个多项式的项和次数;3.理解整式的概念,会判断一个代数式是否为整式.重点掌握单项式、多项式及其相关概念和整式的概念.难点单项式的系数和次数,多项式的次数与项数.一、导入新课课件出示问题:请用含字母的式子表示:一个组合柜如图3-2所示,内部用隔板纵向分隔成5个独立的小柜子(如图3-3),柜门由5个完全相同的长方形组成.(1)若要在5个柜门的周边都贴上装饰条,则所需装饰条的总长度是多少?(2)若要给柜门外表面喷漆,则需要喷漆的面积是多少(边框缝隙忽略不计)?(3)设柜子的进深为c(如图3-2),则整个柜子的容积是多少(柜门、隔板及背板的厚度忽略不计)?二、探究新知1.单项式教师:观察上面所列代数式,它们包含哪些运算?有何共同运算特征?学生小组讨论后,派代表回答,教师适当点拨.并讲解单项式的概念:即由数与字母的乘积组成的代数式称为单项式,单独一个数或一个字母也是单项式,如5ab,5abc,3v,6p.课件出示问题:下列代数式中哪些是单项式?(1)abc;(2)b2;(3)-5ab2;(4)y;(5)-xy2;(6)-5.学生完成后举手回答.教师直接引导学生进一步观察单项式的结构,总结出单项式是由数字因数和字母因数两部分组成的.以四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式的系数的概念并板书:单项式中的数字因数叫作这个单项式的系数.接着让学生说出以上几个单项式的字母因数是什么,各字母的指数分别是多少,从而引入单项式的次数的概念并板书:单项式中所有字母的指数和叫作单项式的次数.课件出示练习:判断下列说法是否正确.(1)-7xy2的系数是7;(2)-x 2y 3和x 3都没有系数;(3)-ab 3c 2的次数是0+3+2;(4)-a 3的系数是-1;(5)-32x 2y 3的次数是7;(6)πr 2h 的系数是π.学生完成后汇报答案,教师点评并强调:(1)圆周率π是常数;(2)当一个单项式的系数是1或-1时,“1”通常省略不写,如x 2,-a 2b 等;(3)单项式的次数只与字母的指数有关.指数是1,省略不写,但求和时不能省略.2.多项式课件出示问题:(1)一个数比x 的2倍小3,则这个数是________;(2)x 的13 与y 的12 的差是________.教师:观察以上两小题所得出的代数式,它们与单项式有何区别与联系?学生思考后举手回答,教师补充完善.教师引导学生自己归纳出多项式的概念,并补充完善:像这样,几个单项式的和叫作多项式.在多项式中,每个单项式叫作多项式的项.其中,不含字母的项,叫作常数项.例如,多项式x 2-2x +5有三项,它们是x 2,-2x ,5,其中5是常数项.一个多项式含有几项,就叫作几项式.多项式中次数最高的项的次数,叫作这个多项式的次数.例如,多项式2x2+3x-1是一个二次三项式.单项式和多项式统称为整式.课件出示练习:判断下列说法是否正确.(1)多项式a3-a2b+ab2-b3的项为a3,a2b,ab2,b3,次数为12;(2)多项式3n4-2n2+1的次数为4,常数项为1.学生完成后汇报答案,教师点评并强调:多项式的次数不是所有项的次数之和,而是最高次项的次数.三、课堂练习1.请列出下列问题中的代数式,并指出其中:①哪些是单项式?单项式的系数和次数分别是多少?②哪些是多项式?多项式的次数是多少?(1)如图3-4,一个十字形花坛铺满了草皮,这个花坛草地面积是多少?(2)当水结冰时,其体积大约会比原来增加1/9,x m3的水结成冰后体积是多少?(3)如图3-5,一个长方体的箱子紧靠墙角,它的长、宽、高分别是a ,b ,c .这个箱子露在外面的表面积是多少?(4)某件商品的成本价为a 元,按成本价提高15%标价,后又以八折(即按标价的80%)销售,这件商品的售价为多少元?2.教材第82页“随堂练习”.3.填空.(1)若正方形的边长为a ,则正方形的面积是a 2;(2)若三角形的一边长为a ,且这边上的高为h ,则这个三角形的面积为12 ah ;(3)若正方体的棱长为x ,则正方体的表面积是6x 2;(4)若m 为有理数,则它的相反数是-m ;(5)小明每个月从零花钱中储存x 元钱用来捐款,一年下来小明捐款12x 元.【答案】1.(1)ab -4c 2,多项式,次数是2 (2)109 x ,单项式,次数是1 (3)ab +ac +bc ,多项式,次数是2 (4)0.92a ,单项式,次数是1四、课堂小结1.单项式及单项式的系数、次数分别是什么?2.多项式及其次数、项数、常数项分别是什么?3.什么是整式?五、课后作业教材第82页习题3.1第5,6,8,9题.“整式”属于“代数式”的领域,是在学习了用字母表示数,用代数式表示实际问题中的数量关系的基础上,进一步研究用含字母的式子表示实际问题的数量关系.整式是代数式中最基本的式子,是实际的需要,也是今后学习分式、一元二次方程等知识的基础,起到承前启后的作用.整式中有些概念,学生刚学时不易理解,比如单项式的系数和次数、多项式的项与次数等,教学时可通过简单生动的事例,帮助学生区分、理解和掌握这些概念.对概念和纯文字的叙述,不要仅追求精确的形式,而是更加去注重其实质的理解与领悟.。

北师大版七年级上册数学 3.2 第1课时 代数式 教学课件

北师大版七年级上册数学 3.2 第1课时 代数式 教学课件

(1)5箱苹果重m kg,每箱重
kg ;
m 5
(2)一个数比a的2倍小5,则这个数为
; (2a 5)
(3)全校学生总数是x,其中女生占总数52%,则女生人数

,男生0人.5数2是x

0.48 x
(4)某班有a名学生,现把一批图书分给全班学生阅读,如果每人分
4本,还缺25本,则这批图书
共 (4a 2本5;)
解:(3)三角尺的面积(单位:cm2 )是( (4)这所住宅的建筑面积(单位:m2)是(
). 1 a b π r 2 2
). x2 2x18
归纳:
列式要点: ①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、 差、积、商及大、小、多、少、倍、分、倒数、相反数等; ②理清语句层次明确运算顺序; ③牢记一些概念和公式.
门票价格 成人:每人60元 学生:每人20元
游程4:参观
太和殿占地呈长方形,长m米,宽n米太和殿占地面积有多少平方米 呢?
【 m n 平方米】
游程4:参观 珍宝馆陈列厅呈正方形,边长为a米.地面积有多少平方米呢?

a 2平方米】
游程4:参观 珍宝馆内有一金嵌珍珠宝石塔,宝石塔外边是一个长方体的玻璃 罩,它的长、宽、高分别是3米、p米、q米.此玻璃罩的体积为多少?
2.判断下列式子哪些是代数式,哪些不是?
(1)a2+b2 (3)13
s
(2)
t
(4) x=2
(5)3×(4 -5) (7)x-1≤0
(9)10x+5y=15
(6) 3×4 -5 =7
(8) x+2>3
a
(10) +c
b
(1)(2)(3)(5)(10)是代数式; (4)(6)(7)(8)(9)不是代数式.

北师大版-数学-七年级上册-北京101中学第三章第2节《代数式》教案

北师大版-数学-七年级上册-北京101中学第三章第2节《代数式》教案

一、课题§3.1代数式二、教学目标1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;2、初步培养学生观察、分析及抽象思维的能力;3、通过本节课的教学,教育学生为建设有中国特色社会主义而刻苦学习三、教学重点和难点重点:用字母表示数的意义难点:正确地说出代数式所表示的数量关系四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、引言数学是一门应用非常广泛的学科,是学习和研究现代科学技术必不可少的基础知识和基本工具学好数学对于把我国建设成为有中国特色的社会主义强国具有十分重要的作用中学的数学课,是从学习代数开始的除了学习代数以外,同学们还将陆续地学习平面几何、立体几何、解析几何等内容学习代数与学习其它学科一样,首先要有明确的学习目的和正确的学习态度没有坚持不懈努力,没有顽强的克服困难的精神,是不可能学好代数的在开始学习代数的时候,大家要注意代数与小学数学的联系和区别,自觉地与算术对比:哪些和小学数学相同或类似,哪些有严格的区别,逐步明确代数的特点代数的一个重要特点是用字母表示数,下面我们就从用字母表示数开始初中代数的学习(一)、从学生原有的认知结构提出问题1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律 a+b=b+a;(2)乘法交换律 a·b=b·a;(3)加法结合律 (a+b)+c=a+(b+c);(4)乘法结合律 (ab)c=a(bc);(5)乘法分配律 a(b+c)=ab+ac指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a ,b ,c 都是表示数的字母,它代表我们过去学过的一切数2、(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要025小时,试问步行、骑车、乘汽车的速度分别是多少?3、若用s 表示路程,t 表示时间,ν表示速度,你能用s 与t 表示ν吗?4、(投影)一个正方形的边长是a 厘米,则这个正方形的周长是多少?面积是多少?(用I 厘米表示周长,则I=4a 厘米;用S 平方厘米表示面积,则S=a 2平方厘米)此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a ,5,15÷3,4a ,a+b ,ts 以及a 2等等都叫代数式 那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容三、讲授新课1、代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式 学习代数,首先要学习用代数式表示数量关系,明确代数上的意义2、举例说明例1 填空:(1)每包书有12册,n 包书有__________册;(2)温度由t ℃下降到2℃后是_________℃;(3)棱长是a 厘米的正方体的体积是_____立方厘米;(4)产量由m 千克增长10%,就达到_______千克(此例题用投影给出,学生口答完成)解:(1)12n ; (2)(t-2); (3)a 3; (4)(1+10%)m例2 、说出下列代数式的意义:(1) 2a+3 (2)2(a+3); (3)ab c (4)a-dc (5)a 2+b 2 (6)(a+b) 2 解:(1)2a+3的意义是2a 与3的和;(2)2(a+3)的意义是2与(a+3)的积;(3)ab c 的意义是c 除以ab 的商; (4)a-d c 的意义是a 减去dc 的差; (5)a 2+b 2的意义是a ,b 的平方的和;(6)(a+b)2的意义是a 与b 的和的平方说明:(1)本题应由教师示范来完成;(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a 的2倍加上3”或“a 的2倍与3的和”等等例3 、用代数式表示:(1)m 与n 的和除以10的商;(2)m 与5n 的差的平方;(3)x 的2倍与y 的和;(4)ν的立方与t 的3倍的积 分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面解:(1)10n m ; (2)(m-5n)2 (3)2x+y ; (4)3t ν3 (四)、课堂练习1、填空:(投影) (1)n 箱苹果重p 千克,每箱重_____千克;(2)甲身高a 厘米,乙比甲矮b 厘米,那么乙的身高为_____厘米;(3)底为a ,高为h 的三角形面积是______;(4)全校学生人数是x ,其中女生占48%,则女生人数是____,男生人数是____2、说出下列代数式的意义:(投影)(1)2a-3c ; (2)ba 53; (3)ab+1; (4)a 2-b 2 3、用代数式表示:(投影)(1)x 与y 的和; (2)x 的平方与y 的立方的差;(3)a 的60%与b 的2倍的和; (4)a 除以2的商与b 除3的商的和(五)、师生共同小结首先,提出如下问题:1、本节课学习了哪些内容?2用字母表示数的意义是什么? 3、什么叫代数式?教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号七、练习设计1、一个三角形的三条边的长分别的a ,b ,c ,求这个三角形的周长2、张强比王华大3岁,当张强a 岁时,王华的年龄是多少?3、飞机的速度是汽车的40倍,自行车的速度是汽车的31,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?4、a 千克大米的售价是6元,1千克大米售多少元?5、圆的半径是R 厘米,它的面积是多少?6、用代数式表示:(1)长为a ,宽为b 米的长方形的周长;(2)宽为b 米,长是宽的2倍的长方形的周长;(3)长是a 米,宽是长的31的长方形的周长; (4)宽为b 米,长比宽多2米的长方形的周长八、板书设计§3.1字母能表示什么(一)知识回顾 (三)例题解析 (五)课堂小结例1、例2(二)观察发现 (四)课堂练习 练习设计九、教学后记1、本课所遇的问题,多数应由学生首先口答来完成,但在“说出代数式的意义”这一问题上,应向学生强调:一定要严格按照教师示范的要求去做,如“a-b c ”的意义是“a 减去b c 的差”,而不能说成是“a 与bc 的差” 2、由于这是中学数学的第一课,故设计了一个引言,目的是对学生进行学习目的、学习态度和学习方法的教育在实际教学时,可依据学生的实际情况灵活掌握,原则是多鼓励,严要求。

北师大版七年级数学上册第三章 第二节《代数式的值》教学设计

北师大版七年级数学上册第三章 第二节《代数式的值》教学设计

七年级上册第三章 第二节《代数式的值》教学设计学习内容:代数式的值 学习目标:1、会求代数式的值,感受代数式求值可以理解为一个转换过程或某种算法。

2、会利用代数式求值推断代数式所反映的规律,能解释代数式的实际意义。

3、经历观察、试验、猜想等数学活动过程,发展合情推理能力,能有条理地、清晰地阐述自己的观点,形成解决问题的一些基本策略。

学习重点:会利用代数式求值推断代数式所反映的规律,能解释代数式的实际意义。

学习难点:能解释代数式的实际意义学习过程: 一、 复习旧知,引入新课1.用代数表示:(1).x 与5的和的3倍________ (2)比a 与b 的差的平方多1的数是__________(3)一个两位数,个位上的数字为b,十位上的数字为a ,这个两位数可表示为__________2.说出下列代数式的意义:(1)______________12的意义是-m (2)______________22的意义是b a - (3)______________)(2的意义是b a +3. 遗传是影响一个人身高的因素之一,国外有学者研究得出由父母身高预测子女成年后身高的公式是:儿子身高是父母身高的和的一半的1.08倍;女儿的身高是父亲身高的0.923倍加上母亲身高的和的一半。

(1)已知父亲身高是a 米,母亲身高是b 米,试用代数式表示儿子和女儿的身高;(2)七年级女生小红的父亲身高是1.72米,母亲的身高是1.65米;七年级男生小明的父亲的身高是1.70,母亲的身高是1.62,试预测成年以后小明与小红谁个子高?(3)试预测成年后自己的身高。

目的:通过上面三个不同类型的题目来引导学生逐步深入地思考,前两个题目是为了进一步理解代数式和代数式的意义,第三个题目是与学生的生活息息相关的实例,让学生在这个过程中感受到数学可服务于生活。

同时,让学生体会到解决问题的乐趣。

同时复习上节课列代数式,初步感受代数式求值可以理解为某种算法,导入新课。

北师大版七年级数学上册第三章整式及其加减3.2代数式第1课时代数式教学课件

北师大版七年级数学上册第三章整式及其加减3.2代数式第1课时代数式教学课件
ห้องสมุดไป่ตู้
9.在下列的代数式的写法中,表示正确的一个是( ) A.“负 x 的平方”记作-x2
B.“a 除以 2b 的商”记作2ab C.“x 的 3 倍”记作 x3
D.“y

113的积”记作
1 13y
10.某商店积压了100件某种商品,为了使这批货物尽快脱手,该商店采取了如 下销售方案:将价格提高到原来的2.5倍,再作三次降价处理:
A.5 个 B.4 个 C.3 个 D.2 个
2.下列式子中,符合代数式书写规则的是( )
A.a·3 B.213a2b
x+y C. 4
D.a÷b-c
3.下面所列代数式正确的是( ) A.a 减去 b 的平方的差:(a-b)2 B.m,n 的和乘以 m,n 的差的积:(m+n)(m-n)
C.x 的倒数与 y 的积:x1y D.加上 a 的 2 倍等于 b 的数:b+2a 4.一个三位数,中间的数字是 0,百位数字和个位数字分别是 a 和 b, 这个三位数是( ) A.10a+b B.100a+b C.100a+10b D.a0b
5.为了测算一捆粗细均匀的电线的总长度,小明先称出它的质量为 a kg, 然后从中剪出一段 1 m 长的电线,称得质量为 b kg,这样可求得这捆电线原来 的总长度为( )
A.ab m
B.ba m
C.(ab+1) m D.(ab-1) m
6.农民张大伯因病住院,手术费用为a元,其他费用为b元,由于参加农村合作医疗, 手术费用报销85%,其他费用报销60%,则张大伯此次住院可报销 元.(用代数式表示)
第一次降价30%,标出“亏本价”;第二次降价30%,标出“破产价”;第三次 降价30%,标出“跳楼价”,三次降价处理销售结果如下表:

最新北师大版七年级数学上册《代数式》名师教案

最新北师大版七年级数学上册《代数式》名师教案

3.2 代数式第1课时代数式家作1:第93页的6、7。

练习册:订正、补充完成第51—54页。

完成周练八,须家长签名。

订正第三章家作本及其练习册的错题。

预习:课本第94—97页教学内容、过程安排(包括德育渗透、教学方法、教学手段、学法指导等)分析、评价反思、体会一、从学生原有的认知结构提出问题1.用代数式表示乙数:(投影)(1)乙数比x大5; (x+5)(2)乙数比x的2倍小3; (2x-3)(4)乙数比x大16%. ((1+16%)x)(应用引导的方法启发学生解答本题)2.在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式.本节课我们就来一起学习这个问题.二、讲授新课例1 用代数式表示乙数:(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%.分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。

——马克思2.搞科学研究,不能使用‘大概’、‘也许’这些字眼,也不能用估计和推断代替观察。

——竺可桢3.我扑在书上就像饥饿的人扑在面包上。

——高尔基4.才华是刀刃,辛苦是磨刀石,很锋利的刀刃,若日久不用石磨,也会生锈,成为废物。

——老舍5.人的大脑和肢体一样,多用则灵,不用则废。

——茅以升6.重复是学习之母。

——狄慈根。

数学北师大版七年级上册3.2代数式第一节教案

数学北师大版七年级上册3.2代数式第一节教案

3.2《代数式》第一课时教学设计方案设计者:雷友初2016年11月1日一、教学目标分析知识与技能:1、了解代数式的概念,并在具体情境中,进一步理解字母表示数的意义。

2、能解释一些简单代数式的实际背景或几何意义,发展符号感。

3、在具体情境中,能求出代数式的值,并解释它的实际意义。

过程与方法目标:在探索现实世界数量关系的过程中,体验用字母表示数的简明性和一般性,在探索规律的过程中感受从具体思维到抽象思维过渡的数学思想方法。

情感态度与价值观目标:培养学生的数学意识,渗透归纳猜想、数形结合等数学思想方法。

教学重点:1、解释一些简单代数式的实际背景或几何意义,发展符号感。

2、在具体情境中,能求出代数式的值,并解释它的实际意义。

教学难点:解释一些简单代数式的实际背景或几何意义。

二、学情分析学生对有理数及有理数的运算有了一定的基础,对字母表示数已具有一定的认知水平,并且学生从小开始就已经和字母有了接触。

本课拓展学生的思维,从语言到代数式,从代数式到语言的转化过程中,注重培养学生正确运用数学语言进行表达和交流的能力。

三、教学内容分析本课时的教学内容直奔教学主题――代数式的意义,降低了教学的难度,有效地克服了学生的心里障碍,并结合上一节的内容很自然地引入了代数式值的意义,再通过具体的情境来列代数式并求其值,然后通过反问代数式还能表示哪些实际意义,将教学活动引向高潮,激发学生联想、类比,进一步拓展学生的思维,同时也进一步调动了学生学习的积极性,最后教材提供了一个刻画有趣现象的经验公式――身体质量指数衡量人体胖瘦程度,既使学生感悟了数学建模的思想,又使学生在轻松愉快的环境中加深了对代数式和求代数式值的理解。

四、教学环节与活动本节课主要用讲授式教学,其环节设计流程是:导入——呈现(示范)——练习——巩固(交流)——结束。

通过小组比赛活动:要求学生相互间进行合作交流。

五、教学资源与工具设计用简单的幻灯片制作一些简单的页面,以此来出示本课的教学目标以及学习任务,以便学生有目标的去学习和练习。

《代数式第1课时》公开课教学设计【北师大版七年级数学上册】

《代数式第1课时》公开课教学设计【北师大版七年级数学上册】

第三章整式及加减3. 2代数式第 1 课时教学设计1. 了解代数式的概念,并在具体情境中,进一步理解字母表示数的意义.2. 能解释一些简单代数式的实际背景或几何意义,发展符号感.3.在具体情境中,能求出代数式的值,并解释它的实际意义.【教学重点】1. 解释一些简单代数式的实际背景或几何意义,发展符号感.2. 在具体情境中,能求出代数式的值,并解释它的实际意义.【教学难点】解释一些简单代数式的实际背景或几何意义.课件.一、创设情境,引入新知请同学们看下列问题:如4+3(x-1),x+x+(x-1),a+b,ab,2(m+n),a3 …… 这些式子你熟悉吗?像这样的一些式子都是代数式.单独的一个数或者一个字母也是代数式.二、合作交流,探究新知例1列代数式,并求值.参观花展:门票:成人10元/人;学生5元/人.(1)一个旅游团有成人x 人、学生y 人,请你根据上图确定该旅游团应付多少门票费?◆教学目标◆教学重难点◆◆课前准备◆◆教学过程(2)如果该旅游团有37个成人,15个学生,那么门票费是多少呢?解:(1)该旅游团应付的门票费是(10x+5y)元.(2)把x=37,y=15代入代数式得10x+5y=10×37+5×15 =445.10x+5y还能表示什么?(1)如果用x(元/kg)表示大米的价格,用y(元/kg)表示食油的价格,那么10x+5y 就表示小强的妈妈购买10 kg 大米和5 kg食油所用的费用;(2)如果用x(cm3/个)表示某种正方体的体积,用y(cm3/个)表示某种长方体的体积,那么10x+5y 就表示10 个这样的正方体和 5 个这样的长方体的体积和;(3)如果用x(kg)表示一张课桌的质量,用y(kg)表示一个凳子的质量,那么10x +5y 就表示10 张课桌和5 个凳子的质量和.三、应用新知现代营养学家用身体质量指数衡量人体胖瘦程度以及是否健康,这个指数等于人体质量(千克)与人体身高(米)平方的商.对于成年人来说,身体质量指数在20~25之间,体重适中;身体质量指数低于18,体重过轻;身体质量指数高于30,体重超重.(1)设一个人的体重为w(千克),身高为h(米),求他的身体质量指数.(2)张老师的身高是1.75米,体重是60千克,他的体重是否适中健康?你的身体质量指数呢?四、巩固新知1. 用代数式表示(1) f 的11 倍再加上2 可以表示为;(2)数a 的18与这个数的和可以表示为;(3)一个教室有2 扇门和4 扇窗户,n 个这样的教室有扇门和扇窗户;(4) 产量由m kg增长15% 后,达到_____________kg2. 代数式6p 可以表示什么呢?(按要求填写下表)3.(1)一个两位数的个位数字是a,十位数字是b(b ≠ 0)请用代数式表示这个两位数(2)如何用代数式表示一个三位数?4. 想一想:举例说明下列代数式的意义(1) 8a2 可以解释为;(2)15m可以解释为;(3)(a+b)(a-b)可以解释为;(4)(1+8%)x 可以解释为.五、归纳小结略.◆教学反思。

3.2《代数式第1课时》 北师大版七年级数学上册教案

3.2《代数式第1课时》 北师大版七年级数学上册教案

第三章整式及其加减2 代数式第1课时一、教学目标1.了解代数式的概念,能用代数式表示简单问题中的数量关系.2.能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.3.在代数式求值过程中,初步感受函数的对应思想.4.在具体情境中列代数式,发展学生的符号意识.二、教学重难点重点:了解代数式的概念,能用代数式表示简单问题中的数量关系.难点:能够在具体情境中求出代数式的值,并能结合具体情境解释代数式的意义.三、教学用具电脑、多媒体、课件、教学用具等四、教学过程设计教学环节教师活动学生活动设计意图环节一创设情境【情境导入】教师活动:通过复习用字母表示数,引导学生思考,初步感受代数式.师:还记得吗?拼摆x个这样的正方形需要多少根火柴棒?预设答案:4+3(x-1)1+3xx+x+x+14x-(x-1)师讲解:这些都是代数式!用字母表示出下列数量关系.学生回忆上节课的知识并回答.通过复习用字母表示数或数量关系的知识,初步让学生感知代数式,为接下来学习代数式的知识奠定基础.(1) a与b的和可以表示为______.(2)苹果每千克a元,买5千克需要_____元.(3) 汽车上有a名乘客,中途下去b名,又上来c名,现在汽车上有_________名乘客.预设答案:a+b5a(a-b+c)师讲解:a+b,5a,(a-b+c)也是代数式.这节课我们一起来研究一下代数式的相关知识吧!学生思考并反馈.环节二探究新知【归纳】4+3(x-1),1+3x,x+x+x+14x-(x-1),a+b,5a,(a-b+c)它们都是用运算符号把数和字母连接而成的. 像这样的式子叫做代数式.注意:①单独一个数或一个字母也是代数式.②代数式不含“=”、“>”、“<”、“≤”、“≥”,“≠”.③代数式中可以含有括号.代数式的书写格式:①数与字母,字母与字母相乘时,可以用“·”来代替,或者省略不写,但是数与数之间不可以省略“×”;②1或-1与字母相乘时,1通常省略不写;③数字要写在字母的前面;④除法通常写成分数的形式,如1÷a通常写成.⑤代数式后面有单位时,和、差形式的代数式要在单位前把代数式括起来.认真听讲.通过归纳代数式的基本概念及其注意事项,加深学生对代数式的认识与理解,为接下来用代数式解决具体问题做铺垫.【做一做】列代数式,并求值.(1)某公园的门票价格是:成人票每张10元,学生票每张5元,一个旅游团有成人x人,学生y 人,那么该旅游团应付多少门票费?预设答案:解:(1)该旅游团应付的门票费是(10x+5y)元.注意:和、差形式的代数式要在单位前把代数式括起来.(2)如果该旅游团有37个成人,15个学生,那么他们应付多少门票费?提示:用具体数值代替代数式中的字母,就可以求出代数式的值.预设答案:解:(2)将x=37,y=15代入代数式10x+5y 中,得:10×37+5×15=445答:他们应付445元门票费.【想一想】师:代数式10x+5y还可以表示什么?预设答案:x表示小明跑步的速度,y表示小明走路的速度,10x+5y表示他跑步10s和走路5s所经过的路程;用x和y分别表示1元硬币和5角硬币的枚数,10x+5y就表示x枚1元硬币和y枚5角硬币共多少钱.提问:你还能举出其他的例子吗?【做一做】学生认真思考,列出代数式并交流反馈.代入数值进行计算.让学生结合具体情境列代数式并求值,体会求值是解决实际问题的需要.通过类比,不仅拓宽学生的思维,锻炼了学生联想、类比的能力,同时进一步帮助学生体会字母可以表示任何数,感受一个代数式在不同的情境中可以表示不同的意义.现代营养学家用身体质量指数衡量人体胖瘦程度,这个指数等于人体体重(kg)与人体身高(m)平方的商.对于成年人来说,身体质量指数在18.5~24之间,体重适中;身体质量指数低于18.5,体重过轻;身体质量指数高于24,体重超重.(1)设一个人的体重为w (kg ),身高为h (m),求他的身体质量指数.(2)张老师的身高是1.75m ,体重是65kg ,他的体重是否适中?(3)你的身体质量指数是多少?预设答案:解:(1)他的身体质量指数是:.(2)将w =65,h =1.75代入,得:他的体重适中.(3)根据自己的身高和体重算一下你自己的身体健康指数吧!学生认真思考并作答,然后交流反馈.让学生从比较贴近生活的例子中经历列代数式并求值的过程,使学生进一步理解列代数式和求值的意义,同时让学生感受数学与生活及其他学科之间的紧密联系.环节三应用新知【典型例题】例1 (1)一个两位数的个位数字是a ,十位数字是b (b ≠0),请用代数式表示这个两位数.(2)如何用代数式表示一个三位数?分析:个位上的数字是a ,表示a 个一,十位上的数字是b (b ≠0)表示b 个十.解:(1)这个两位数是10b +a :(2)个位上的数字用a 表示,十位上的数字通过例题,让学生进一步掌握用b表示,百位上的数字用c (c≠0)表示,这个三位数是100c+10b+a:例2 (1)代数式(1+8%)x可以表示什么?(2)用具体数值代替(1+8%)x中的x,并解释所得代数式值的意义.解:(1)若x表示某件物品的原价,那么(1+8%)x表示价格提高8%后的价格.(2)如果x是100元,将x=100代入代数式(1+8%)x,得:(1+8%)×100=108(元)表示原价为100元的衣服,价格提高8%的价格为108元.追问:这个代数式还可以表示什么?学生认真思考并作答.列代数式并求值的知识,让学生进一步熟悉具体情境中各代数式所表示的意义,加强学生的应用意识.环节四巩固新知【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.用代数式表示:(1) f 的11倍再加上2可以表示为__________;(2)一个数a的与这个数的和可以表示为________;(3)一个教室有2扇门和4扇窗户,n个这样的教室有______扇门和_______扇窗户;(4)产量由m kg增长15%后,达到________kg.答案:(1)11f+2(2)自主完成练习,再集体交流评价.通过课堂练习及时巩固本节课所学内容,并考查学生的知识应用能力,培养学生独立完成练习的习惯.(3)2n,4n(4)(1+15%)m2.代数式6a可以表示什么?答案:答案不唯一,合理即可.①如果a表示正六边形的边长,那么代数式6a可以表示正六边形的周长;②如果a表示一本书的价格,那么6a可以表示买6本这种书的价格;③如果1条长凳可以坐6个小朋友,那么6a可以表示a条长凳可以坐6a个小朋友.3.在某地,人们发现在一定温度下某种蟋蟀叫的次数与温度之间有如下的近似关系:用蟋蟀1min叫的次数除以7,然后再加上3,就近似地得到该地当时的温度(℃)(1)用代数式表示该地当时的温度;(2)当蟋蟀1min叫的次数分别是80,100和120时,该地当时的温度约是多少?答案:(1)用x表示蟋蜂1min叫的次数,则该地当时的温度为℃;(2)将x=80,100,120分别代入,求得当地当时的温度大约分别是14℃,17℃和20℃.环节五课堂小结思维导图的形式呈现本节课的主要内容:回顾本节课所讲的内容通过小结总结回顾本节课学习内容,帮助学生归纳、巩固所学知识.环节六布置作业教科书第83页习题3.2第2、3题课后完成练习通过课后作业,教师能及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整.。

北师大版七年级数学上册《代数式(第1课时)》教学教案

北师大版七年级数学上册《代数式(第1课时)》教学教案

《代数式(第1课时)》教学教案学生在上一节的学习中,结合丰富的现实情境,经历了探索规律并用字母表示规律的过程;体会了字母表示数的意义,形成了初步的符号感,这为本节课的学习奠定了基础.同时,学生在小学已经学习过许多数学公式,对代数式有一定的了解,这也为本节课作好铺垫。

1、了解代数式的概念,能用代数式表示简单问题中的数量关系;在具体情境中,能求出代数式的值,并解释它的实际意义。

2、感受字母取值的变化与代数式的值的变化之间的联系,能利用代数式的值推断一些代数式所反映的规律。

3、初步培养学生观察、分析和抽象思维能力,感受数学与日常生活的密切联系,感受数学模型的思想。

2、出示课件试一试:教师引导学生解决问题:像x-4、300s、60a+20b …….的式子都是用运算符号,把数与字母连接而成的,叫做代数式.判断:(1)x+2y-1是代数式 ( √ ) (2)3+5-2不是代数式 ( × ) (3)8x-1>5x-7是代数式 ( × ) (4)a+2b-3=7是代数式 ( × ) 判断要点:用基本的运算符号把数或表示数的字母连接而成的式子叫代数式。

3.出示课件 做一做 :例 列代数式,并求值. 公园参观花展:门票:成人10元/人;学生5元/人.(1)一个旅游团有成人x 人、学生y 人,请你根据上图确定该旅游团应付多少门票费?(2)如果该旅游团有37个成人,15个学生,那么门票费是多少呢? 解:(1)该旅游团应付的门票费是:(10x +5y )元. (2)把x =37,y =15代入代数式得试一试 :例1:设某数为x ,用代数式表示: (1) 比某数的 大1的数; (2) 比某数大10%的数; (3) 某数与 的和的3倍; (4) 某数的倒数与5的差.例2:3月12日嘉积中学校团委组织260 名学生 (其中女生b 人)去市万泉河旁植树,每个男生植树x 棵,每个女生植树y 棵,你能用代数式表示共植树的棵数吗?解:因为女生为b 人,所以男生有 (260- b) 人 男生共植树 (260-b) 棵 女生植树 by 棵 共植树[(260-b)x+by] 棵 教师引导学生总结: 要正确写出代数式要注意 (1)审清题,弄懂一些术语 (2)抓住关键词,弄清运算顺序 (3)一般先读的先写(4)用代数式表示应用问题时,还弄清题中的数量关系。

七年级数学上册 3.2 代数式教学设计 (新版)北师大版

七年级数学上册 3.2 代数式教学设计 (新版)北师大版

代数式第1课时代数式【教学目标】知识与技能1.了解代数式的概念.2.能分析简单问题的数量关系,并用代数式表示,会正确书写代数式.过程与方法1.在探索现实世界数量关系的过程中,建立符号意识.2.初步体会数学中抽象概括的思维方法.情感、态度与价值观1.激发学生从事探索性活动的积极性.2.培养学生自主学习的习惯.【教学重难点】重点:1.根据实际问题列出代数式.2.解释代数式的意义.难点:根据实际问题列出代数式并解释代数式的意义.【教学过程】一、创设情境,引入新课如图为一阶梯的纵截面,一只老鼠沿长方形的两边A-B-D的路线逃跑,一只猫同时沿阶梯(折线)A-C-D的路线去追,结果在距离C点0.6m的D处,猫捉住老鼠,已知老鼠的速度是猫的,你能求出阶梯A-C的长度吗?要想解决这个问题,让我们先来学习本节课的内容——代数式.师:请同学们自主探究,完成下面的问题:1.今日大米x元/千克,食用油y元/千克,妈妈买10千克大米、2千克食用油共需元.【答案】10x+2y2.一隧道长s米,一列火车长180米,如果该火车穿过隧道所花的时间为t分,则列车的速度可表示为米/分.【答案】3.将三个边长为acm的正方体拼成一个长方体,则这个长方体的体积为cm3.【答案】3a34.某瓜子的价格为3千克16元,买n千克需要元.【答案】n学生解答.教师点评、分析:像这样把数和字母用运算符号连接而成的式子,我们称为代数式.注:1.单独一个数或一个字母也是代数式.2.运算符号是指加、减、乘、除、乘方、开方.代数式书写格式的规定,请同学们阅读课本.二、讲授新课1.指出下列各式中哪些是代数式,哪些不是代数式.(1)x-1;(2)-2x=1;(3)π;(4)5<7;(5)m.2.在式子xy+a,-3,abc,3÷a,a·5,(a+b)2中符合代数式书写要求的有个.学生思考,举手回答.师:通过以上练习,同学们进一步了解了代数式的概念,那么它与等式、不等式的区别是什么?书写时要注意哪些要求?学生讨论交流,教师指导、评价.三、例题讲解【例1】用代数式表示:(1)x的3倍与3的差;(2)x的2倍与y的的和;(3)a与b的和的平方;(4)2a的立方根.教师讲解:(1)先理解题目中表示运算关系的词,理清关系;(2)分清运算顺序.补充书写规范:(1)带分数与字母相乘时,应把带分数化为假分数;(2)实际问题中含有单位时,如果运算结果是加或减时,用括号把代数式整个括起来,再写单位.【例2】一辆汽车以80km/h的速度行驶,从A城到B城需t(h).如果该车的行驶速度增加v(km/h),那么从A城到B城需多少时间?解:由题意得,A,B两城之间的路程为80t(km).如果该车的行驶速度增加v(km/h),那么汽车的行驶速度为(80+v)km/h,此时从A城到B城需(h).答:当该车行驶速度增加v(km/h)时,从A城到B城需(h).四、随堂小结用代数式表示:1.比a的倒数多8的数是.2.x的倒数与m除n的商的和.3.与a+b的和是30的数是.4.m、n两个数平方和的3倍是.学生解答:1.+82.+3.30-(a+b)4.3(m2+n2)教师指导、评价.列代数式的一般方法有:(1)依据公式(关系)列代数式;(2)依据实际问题列代数式;(3)依据式子或图形探索规律列代数式.五、巩固练习1.甲、乙两数差的平方与甲、乙两数平方的和的积.2.a与b的和除以a与b的差.3.x千克含盐为10%的盐水中含水千克.4.图形阴影部分的面积为.5.观察下列等式:39×41=402-1,48×52=502-22,56×64=602-42,65×75=702-52,83×97=902-72,……请你把发现的规律用字母表示出来:m·n= .生:()2-()2.师:你能用语言表述3a+5b的意义吗?学生思考,举手回答.教师示范,从两方面考虑:①根据运算顺序的要求去表述,如可以说“a的3倍与b的5倍的和”;②结合具体的实例去表述,如一本笔记本的价格为a元,一支铅笔的价格为b元,3a+5b表示3本笔记本与5支铅笔的价格.六、变式训练用语言表述下列代数式的意义:1.2(a+b)2.ab学生思考,举手回答,教师指导、点评.七、课堂小结师:通过本节课的学习,你获得了哪些新的知识?你认为自己有哪些方面的进步?学生发言,教师予以点评.第2课时代数式的值【教学目标】知识与技能1.会求代数式的值,感受代数式求值可以理解成一个转换过程或某种算法.2.能解释代数式值的实际意义.3.根据代数式求值推断代数式所反映的规律.过程与方法学会从数学的角度提出问题、理解问题,能综合运用所学的知识和技能解决问题.情感、态度与价值观初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的正确性.【教学重难点】重点:会求代数式的值.难点:利用代数式求值推断代数式所反映的规律.【教学过程】一、创设情境,引入新课据报道,一位医生研究得出由父母身高预测子女身高的公式:若父亲的身高为a米,母亲的身高为b米,则儿子成年的身高为×1.08米,女儿的身高为米.七年级男生张小华父亲的身高为1.76米,母亲的身高为1.60米,请你预测张小华成年后的身高是多少.你能通过你父母的身高预测自己成年后的身高吗?学生计算.师:本节课我们来学习如何求代数式的值.活动(一) 代数式的值问题展示:请同学们回答下列问题:1.下图是一组数值转换机,请写出输出的结果.2.你能写出下图的转换步骤吗?学生举手回答.师:我们知道,表示数的字母具有任意性和确定性,如6x-3中x可取任何有理数,当给出未知数(字母)的值时,如x=5,则6x-3就是一个确定的值.一般地,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果,叫做代数式的值.二、讲授新课1.按图(1),输入-2,0,0.26,输出的结果分别为多少?按图(2),输入-2,0,0.26,输出的结果又分别为多少?2.根据所给的x的值,求-5x+1的值.(1)x=4;(2)x=-2.学生解答:(1)当x=4时,原式=-5×4+1=-19;(2)当x=-2时,原式=-5×(-2)+1=11.师评:当代入负值时,要用括号把负数括起来.3.一项调查研究显示:一个10岁~50岁的人,每天所需的睡眠时间th与他的年龄n岁之间的关系为t=h,如30岁的人每天所需的睡眠时间为t==8(h).算一算,你每天需要多少睡眠时间?学生计算回答.活动(二) 巩固新知【例1】堤坝的横截面是梯形,如图,测得梯形上底a=18m,下底b=36m,高h=20m,求这个横截面的面积.解:梯形的面积公式S=(a+b)h.将a=18,b=36,h=20代入上面的公式,得S=×(18+36)×20=540(m2)答:堤坝的横截面面积是540m2.师评:求代数式的值的第一步是“代入”,即用数值替代代数式里的字母,其他的运算符号,原来的数字都不能改变.第二步是“求值”,即按照代数式指明的运算计算出结果.【例2】当n分别取下列值时,求代数式的值.(1)n=-1;(2)n=4;(3)n=0.6.解:(1)当n=-1时,==1.(2)当n=4时,==6.(3)当n=0.6时,==-0.12.【例3】圆柱的体积等于底面积乘高.若用h表示圆柱的高,r表示底面半径(如图),V表示圆柱的体积.(1)请用字母h、r、V写出圆柱的体积公式;(2)求底面半径为50cm、高为20cm的圆柱的体积.解:(1)V=πr2h.(2)∵r=50,h=20,∴V=π×502×20=50000π(cm3).答:所求圆柱的体积为50000πcm3.三、变式训练一辆卡车在行驶时平均每小时耗油8L,行驶前油箱中有油80L.1.用代数式表示行驶xh后,油箱中的剩余油量Q= .2.计算行驶2h,5h,8h后,油箱中的剩余油量.3.这里,能求x=12h时剩余油量Q的值吗?学生解答:师评:代数式的值是由所含字母的值确定的,随代数式中字母的取值的变化而变化的,字母取不同的值,代数式的值可能不同,也可能相同.代数式中字母的取值不能使代数式和它表示的实际问题失去意义.活动(三) 合作探究(1)通过观察计算结果,随着n的值逐渐变大,两个代数式的值如何变化?(2)估计一下,哪个代数式的值先超过100?学生计算,回答.师评:求出代数式的值后,根据值的变代趋势还可以进行预测,推断代数式所反映的规律.四、课堂小结1.某市为鼓励市民节约用水,对自来水用户按如下标准收费,若每月用户用水不超过15m3,则每立方米水价按a元收费;若超过15m3,则超过部分每立方米按2a元收费.(1)某户居民在一个月内用水n(n≥15)立方米,那么他该月应缴水费多少元?(2)该户居民在10月份用水35m3,11月份用水28m3,12月份用水40m3.他在这三个月中各缴水费多少元?【答案】(1)15a+2a(n-15) (2)55a 41a 65a2.已知m2+n-1=3,求m2+n-6的值.【答案】-23.如图所示,边长分别为a、b的两个正方形拼在一起,试用含a、b的代数式表示阴影部分的面积,并求出当a=5cm,b=3cm时,阴影部分的面积.【答案】S阴影=a2+b2+(a-b)b-a2-(a+b)b.当a=5cm,b=3cm时,S阴影=52+32+×(5-3)×3-×52-×(5+3)×3=25+9+3-12.5-12=12.5(cm2).五、课堂小结师:本节课学习了哪些内容?生:(1)“代数式的值”的定义;(2)求代数式的值.师:求代数式的值应分哪几步?应注意哪些问题?生:步骤:(1)代入;(2)计算.注意:(1)格式规范;(2)适当添加括号;(3)灵活运用整体代入.。

3.2代数式(教案)2021-2022学年北师大版数学七年级上册

3.2代数式(教案)2021-2022学年北师大版数学七年级上册
-例如:将“小明买了3个苹果和2个橙子,苹果和橙子的单价分别为x和y,计算小明总共花费了多少钱?”转化为代数式3x+2y。
在教学过程中,教师应针对这些难点进行反复讲解和练习,通过具体例题和变式训练,帮助学生透彻理解核心知识,逐步突破难点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.2代数式”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要用符号来表示数量关系的情况?”比如,用x表示苹果的价格,y表示橙子的价格,那么3个苹果和2个橙子的总价可以表示为3x+2y。这个问题与我们将要学习的代数式密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索代数式的奥秘。
-代数式的识别:对于不同形式的代数式,学生可能难以判断其是否为代数式,特别是含有分数、根号等形式。
-例如:区分3/4x和√x+2是否为代数式。
-代数式的分类:学生可能难以区分单项式、多项式和混合式,特别是当字母的指数和项的数量较多时。
-例如:判断x^2y^3z和2x^3y^2z+3是否正确分类。
-代数式的运算规则:在复杂的代数式运算中,学生可能会混淆运算顺序、忘记运算规则,导致计算错误。
-例如:在计算(2x+3y)(x-4)时,学生可能会忘记分配律。
-代数式的化简:学生可能不熟悉化简方法,难以识别何时应用合并同类项、去括号等化简技巧。
-例如:在化简3(x+2y)-(x-4y)时,学生可能会忘记减号前的括号要变号。
-实际问题的代数表达:将现实问题转化为代数式,学生可能会感到困难,特别是在问题涉及多个变量时。
1.培养学生运用数学语言表达现实问题的能力,提高抽象思维能力,形成代数思维。

北师大版数学七上3.2《代数式(一)》说课稿课件

北师大版数学七上3.2《代数式(一)》说课稿课件

四、说板书设计
我的板书设计将会随着我的 教学过程逐步展开,先有主板、 后有副板,直观形象、一目了 然。
说课完毕。

谢谢大家!
2.先学后教、理解概念。
根据学生自学课本,对代数式有了初步了解, 教师通过引导:①学生概括代数式的概念:“代数 式是用基本运算符号把数字、表示数的字母连接起 的式子。”②教师启发学生补充:单独一个数或者 字母也称代数式,这里的运算是指加、减、乘、除、 乘方和开方。③在这里,教师又特别强调注意两点: 一是单独一个数或一个字母也是代数式。二是式子 中含有“=”、“>”、“<”、“≤”、“≥” 等不是代 数式 。
代数式说课稿
灵武市第五中学:李忠善
一、说教材:
本课时是在了解了用字母表示 数以后,进一步学习代数式及代数 式的意义的一课时。从数到式的变 化对学生来说是认识上的“质”的 飞跃。本节课的内容也是以后学习 一元一次方程的基础,它对学生今 后的数学学习和发展都有非常重要 的意义。
初中生求知欲强,具有较强的好奇心, 并且已经具 了一定的生活经验,有一定的数 感,能够自主学习,具有一定的分析推理能 力,这些对本节课的学习都起了正迁移作用。 但对初中学生来说把具体的实际问题转化为 数学问题,用代数式表示问题中的数量关系 还是有一定的难度的。因此,我根据学生现 有的思维能力,用字母示数的内容过度到代 数式,首先设计了关于青蛙的口诀,一则为 了引起学生的兴趣,使课堂紧张的气氛得到 缓和,再则将数字最后到字母是为学习新知 识做了铺垫。为此,我将确定本节课的学习 目标:“了解代数式的概念,能用代数式表 示简单问题中的数量关系”。


3、对比判断、加深理解
判断下列式子哪些是代数式?

北师大版七年级数学上册教案-第三章第二节 代数式

北师大版七年级数学上册教案-第三章第二节 代数式

北师大版七年级数学教案第二节 代数式【教学目标】1.在具体情境中,进一步理解字母表示数的意义.2.能解释一些简单代数式的实际背景和几何意义.3.在具体情境中,能求出代数式的值,并解释其实际意义.【教学重难点】重点:列代数式,求代数式的值,并能解释代数式的实际背景或几何意义.难点:让学生自己构造现实情景,去解释不同代数式的意义.【教学过程】一、创设情境,导入新课阅读课本,并说出什么是代数式、代数式的值.在上节内容中出现过的4+3(x -1),x +x +(x +1),m -1,3v ,2a +10,1an ,s t ,6(a -1)2等式子,它们都是用运算符号把数和字母连接而成的,像这样的式子叫做代数式.单独一个数或一个字母也是代数式.用具体数值代替代数式中的字母,就可以求出代数式的值.二、师生互动,探究新知1.例题讲解.例1 列代数式,并求值.(1)某公园的门票价格是:成人票每张10元,学生票每张5元.—个旅游团有成人x人、学生y人,那么该旅游团应付多少门票费?(2)如果该旅游团有37个成人、15个学生,那么他们应付多少门票费?解:(1)该旅游团应付的门票费是(10x+5y)元.(2)把x=37,y=15代入代数式10x+5y,得10×37+5×15=445.因此,他们应付445元门票费.例2填空:(1)每包书有12册,n包书有________册;(2)温度由t℃下降了2℃后是________℃;(3)棱长是a厘米的正方体的体积是________立方厘米;(4)产量由m千克增长10%,就达到________千克.解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m.2.代数式的意义.代数式10x+5y还可以表示什么?如果用x(m/s)表示小明跑步的速度,用y(m/s)表示小明走路的速度,那么10x+5y表示他跑步10s和走路5s所经过的路程;如果用x和y分别表示1角硬币和5角硬币的枚数,那么10x+5y就表示x 枚1元硬币和y枚5角硬币共是多少角钱.你还能举出其他的例子吗?3.读课本,师生共同探究如下问题:在计算机上可以设置运算程序,输入一组数据,计算机就会呈现运算结果,就好像一个“数值转换机”.下面是一组“数值转换机”,请填写下表,并写出图(1)的输出结果,写出图(2)的运算过程.像以上问题,用数值代替代数式里的字母,按代数式指明的运算,计算后所得的结果,叫做代数式的值. 4.结合上述例题,思考如下几个问题:(1)求代数式2n +10的值,必须给出什么条件?(2)代数式的值是由什么值的确定而确定的?通过以上问题可以发现“代数式的值是由代数式里字母的取值的确定而确定的”,只要代数式里的字母给定一个确定的值,代数式就有唯一确定的值与它对应.三、运用新知,解决问题1.用代数式表示:(1)m 与n 的和除以10的商; 输入-2-12 0 0.26 错误错误4.5图(1)的输出图(2)的输出(2)m与5n的差的平方;(3)x的2倍与y的和;(4)y的立方与t的3倍的积.分析:用代数式表示用语言叙述的数量关系要注意:(1)弄清代数式中括号的使用;(2)字母与数字做乘积时,习惯上数字要写在字母的前面.2.填空:(1)n箱苹果重p千克,每箱重________千克;(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为________厘米;(3)底为a,高为h的三角形面积是________.四、课堂小结,提炼观点1.本节课学习了哪些内容?2.用字母表示数的意义是什么?3.什么叫代数式?教师在学生回答上述问题的基础上,指出:1.代数式实际上就是算式,字母像数字一样也可以进行运算.2.在代数式和运算结果中,如有单位时,要正确地使用括号.五、布置作业,巩固提升1.一个三角形的三条边的长分别为a,b,c,求这个三角形的周长.2.张强比王华大3岁,当张强a岁时,王华的年龄是多少?3.飞机的速度是汽车的40倍,自行车的速度是汽车的13,若汽车的速度是v 千米/时,那么,飞机与自行车的速度各是多少?【板书设计】代数式1.用运算符号把数和字母连接而成的式子叫做代数式;单独一个数或一个字母也是代数式.2.用具体数值代替代数式中的字母,就可以求出代数式的值.3.代数式的意义.。

北师大版七年级数学上册教案3.2第1课时 代数式2

北师大版七年级数学上册教案3.2第1课时 代数式2

3.2 代数式第1课时代数式教学目标:1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.教法学法:教学方法:引导—探究—发现法.学习方法:自主探究与合作交流相结合.课前准备:多媒体课件、投影仪、电脑教学过程:一、创设情境,引入新课.欣赏视频,导入新课师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.有谁知道胡主席乘坐的是什么品牌的车吗?生:国产红旗大轿车.师:对﹗国产红旗大轿车﹗这是我们民族的骄傲﹗提到造车,有一个人,功不可没,不能不提.同学们知道是谁吗?生:造车鼻祖—奚仲.(官桥镇所在地,是造车鼻祖—奚仲的故里,学生对此了解较多.)师:(多媒体展示一张奚仲造车的图片.)师:那我先来考考同学们:上面的图片中的一辆推车几个轮子?两辆推车几个轮子?x辆推车几个轮子?生:2个,4个,2x个.师:板书2x.设计意图:通过创设教学情境,激发学生的学习兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.引导学生体验把实际问题抽象成数学问题的一般方法,同时在解答问题中形成认知冲突.通过这一情境的引入,让学生感受到祖国的强大,增强爱国的热情,民族的自豪感.了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.师: 上节课,我们学习了字母能表示什么,这节课我们继续学习§3.2代数式.(板书课题) 下面请同学们快速完成导学案的第一题.二、自主探索,合作交流.1.温故而知新填空:⒈边长为a cm的正方形的周长是cm,面积是cm2.2 . 钢笔每支2元,铅笔每支0.5元,m支钢笔和n支铅笔共____________元.⒊温度由2℃下降t℃后是℃.⒋小亮用t秒走了s米,他的速度是为米/秒生:(完成填空,如有疑难可在小组内交流、讨论.)s生1:通过实物投影展示答案:4a, a2, 2m+0.5n, t-2,t生2:第2、3题应该加上括号.师:板书正确答案.师:观察上面的这些式子有什么特点?生:(以小组为单位,进行组内交流、讨论.)生1:含有数、字母、生2:含有运算符号.师:像2x,4a , a 2 , 2m +0.5n , t -2,ts 等式子都是代数式(algebraic e x pression). 单独一个数或一个字母也是代数式.师: 你还能举几个代数式的例子吗?生1:2,m,a ﹢b…生2: m-n,5, 2n…师:真棒.下面再来考考你的眼力,请同学们快速完成导学案 : 自主探索,合作交流的第1题.2.考考你的眼力:师:下列各式中哪些是代数式?哪些不是?(1)m +5 (2)a +b =b +a (3)0(4) x 2+3x +4 (5)x +y >1(6)生: (1)、(3)、(4)、(6)是代数式, (2)、(5)不是.师:小结:(1)代数式中不含“=”,“>”,“<”,“≥”,“≤”,“≠”等符号.(2)单独的一个数或字母也是代数式.师:同学们回答的很好,那我们就来巩固一下吧.生:完成巩固练习:用代数式表示(1) f 的11倍再加上2可以表示为______________.(2)数a 与它的的和可以表示为_________.(3) 一个教室有2扇门和4扇窗户,n 个这样的教室共有___________扇门和_________扇窗户.(4)小华、小明的速度分别为x 米/秒,y 米/秒,6分钟后它们一共走了 米.生:(完成填空并回答,如有疑难可在小组内交流、讨论.)生1: 11f +2 ,a +a,2n,4n,6(x +y )生2:(4)小题也可以写成(6x +6y)生3:第(2)小题也可以写成1a,师: 1a 通常写成a,带分数写成假分数.师:通过前面的练习,同学们想一想,说一说:代数式在书写时应该注意那些问题呢?生: 以小组为单位,进行组内交流、讨论后回答问题.( 同学们在充分交流的过程中,教师可参与其中,听听同学的想法,看看同学们在交流过程中的表现,积极引导不善交流的同学倾吐自己的想法,形成好的合作交流的气氛)生1:数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;数字与数字相乘,乘号不能省略;数字要写在字母前面;生2:在含有字母的除法中,一般不用“÷”号,而写成分数的形式;式子后面有单位时,和差形式的代数式要在单位前把代数式括起来.生3:带分数一定要写成假分数.师:同学们回答的非常好,非常的全面.现在请同学们回过头来看一看,前面你所列的代数式符合要求吗?生:自我检查,同位之间互查.设计意图:让学生从实际问题中抽象出数学问题,学会列代数式,体验数学来源于生活,又为现实生活服务,极大地调动学生学习的主动性、积极性;规定代数式的书写要求,代数式求值的格式并用多媒体展示,目的在于让学生体会数学的规范性,严密性,进一步培养学生的数感和符号感.教学效果:本环节开始就有效地激发了学生的学习兴趣,调动了学生学习的积极性,学生主动学习和合作交流较为充分,学生成功的交流,使学生感受到数学结果的多样性,数学符号的美妙性,同时初步学会了列代数式的方法.师:我们知道了代数式,会列代数式,现在我们就来共同探究一下生活中的数学.请同学们完成导学案的探究一.三、合作探究,拓展新知.内容:讨论教材上的例题.分析需要使用代数式表达信息的原因.通过解决具体问题,让学生感受代数式求值的含义.探究一:学习要求:请认真读题并完成题后的填空:1. (1)某公园的门票价格是:成人票每人10元,儿童票每人5元.一个旅游团有x名成人和y名儿童,用代数式表示这个旅游团应付的门票费.(分析:x名成人的门票费为;y名儿童的门票费为;解:这个旅游团应付的门票费为.(2)如果这个旅游团有37名成人和15名儿童,那么应付门票费多少元?(分析:这个旅游团有37名成人即字母=37;儿童15名即=15;分别把它们代入(1)中的代数式,即可求出应付门票费)解:(学生口述)生: (先独立思考,再小组内交流后回答问题.)生: (通过实物投影展示答案.)生1:(1) x名成人的门票费为10x, y名儿童的门票费为5y,这个旅游团应付的门票费为,(10x+5y)元.生2:(2) 如果这个旅游团有37名成人和15名儿童,那么应付门票费445元.师: 在回答(2)题时,我们要注意解题的格式.(板书解题过程,并加以强调.)师:刚才我们解决了生活中的一个问题,下面我们再来探究一下生物世界的奥秘吧.请同学们快速完成导学案的探究二.探究二:1.请认真读题,参照1题的答题格式,完成下题的解答过程.----相信你能行!在某地,人们发现某种蟋蟀叫的次数与气温之间有如下的近似关系:用蟋蟀1分钟叫的次数除以7,然后加上3,就近似地得到该地当时的气温(℃).(1)用代数式表示该地当时的气温;(2)当蟋蟀1分钟叫的次数分别是80,100和120时,该地当时的气温大约是多少?(结果保留整数)生: 先独立思考,再小组内交流后回答问题.生1: 口答1. 用x 表示蟋蟀1分钟叫的次数,则该地当时的气温为( 7x +3) ℃. 生2: 通过实物投影展示(2)小题答案.设计意图:这里首先展示出学生生活中非常熟悉的小动物――蟋蟀的图片,从而提出蟋蟀每分钟叫的次数与当时温度的关系的问题,目的是刺激学生的感官,引发学生的求知欲望.对第(1)中的蟋蟀1分所叫的次数探求或变式,目的在于帮助学生自设字母来表示有关的量,为学生列代数式铺平道路,同时让学生体会数学建模的思想.求x =80、100、120时,该地当时的温度,目的在于让学生进一步学会求代数式的值,加深对蟋蟀1分叫的次数与当时温度的关系的体会.教学效果:在这个环节中教师首先给出一个实际背景,一下子就引起了学生的注意力,接着通过师生循序渐进的分析,学生很自然地领悟了数学建模的方法,掌握了列代数式的新的方法――先设字母,再列式子,使课堂气氛显得格外轻松.同时在这里通过变式,增强了思维的灵活性,降低了学习的难度,调动了学生学习的积极性.师:同学们完成的非常棒.通过刚才的探究,我们深切体会到了:知识来源于生活,又运用于生活.小组讨论:代数式10x +5y 还可以表示什么?想一想, 比一比!看谁说的既多又准!(要求学生在独立思考的基础之上,做小组交流,随后全班交流.)①如果用x (元)1支铅笔的价格,用y (元)1个练习本的价格,那么10x+5y 可以表示 的总钱数② 如果 ,那么生:(先完成①小题,然后仿照上题完成②小题.)生1:老师有x张10元,有y 张5元的钱,则(10x+5y)元就表示老师有多少钱.生2:一辆车以x千米/小时的速度行驶了10小时,然后又以y千米/小时的速度行驶了5小时,则(10x+5y)千米表示这辆车所走的路程.生3:某种数学资料每本要10元,英语资料每本要5元,小明买了x本数学资料,y本英语资料,则( 10x+5y)元表示共用了多少钱.师:同学们真棒,举出这么多代数式10x+5y所表示的实际背景.设计意图:用多媒体将问题展示后,让学生充分地观察、思考,进而产生联想,针对“10x +5y”所表示的意义让学生各自发表自己观点,并在小组进行交流,通过交流,学生意识到了“10x+5y”可以表示很多不同的问题,接着让各小组长上台进行展示和师生对答案进行综合评价,最后教师又用多媒体展示部分准确答案,目的是帮助学生进一步体会符号表示的意义,同时也是为了拓宽学生的思维,发展学生联想、类比、归纳等能力.四、拓展延伸讨论回答下列问题:1.写出一个你最喜欢的一个两位数.2.一个两位数的个位数字是a,十位数字是2,请用代数式表示这个两位数;3.一个两位数的个位数字是a,十位数字是b,请用代数式表示这个两位数如何用代数式表示一个三位数?生:( 以小组为单位,进行组内交流、讨论后回答问题.)生1: 通过实物投影展示答案1.我喜欢362.这个两位数是20+a3.这个两位数是10b+a4.设这个三位数的个位数字是a,十位数字是b,百位数字是c,这个三位数是100c+10b+a.生2: 通过实物投影展示答案1.我喜欢96 ,第2,3题答案和上面的同学相同,第4题.设这个三位数的个位数字是x,十位数字是y,百位数字是z,这个三位数是100z+10y+x.师: 总结:两位数表示:10十位数字+个位数字三位数表示: 100百位数字+10十位数字+个位数字设计意图:为了检测学生的灵活应变能力,创新思维的能力,以满足不同层次的学生在数学发展方面的需要.选择题目的出发点在于帮助学生学会列代数式,进一步明确代数式的实际背景或几何意义,发展学生的符号感;让学生进一步把握本章的重点,明确学习的方向. 教学效果:学生分层次独立完成,再由教师念答案学生自我评分,按不同的要求统计优秀成绩(基础差的同学做对第1,2,3题就是优秀),让每个学生都有了成就感,增强了学生学习数学的信心,真正做到了面向全体学生.五、小结回顾:师:请同学们谈一谈,通过本节课的学习,你有哪些收获?(生1、生2、生3自发站起来谈学习收获,教师作出点评、补充.)设计意图:鼓励学生结合本节课的学习谈自己的收获,学生交流,互相补充,完成本节知识的梳理.六、作业:1.P108 读一读“代数” 的由来2.P109 第1题板书设计:教学反思:本节课采用导学案的方式,主要讲解代数式的基本知识,并在具体情景中讲解列代数式的方法和简单的求值.通过这些内容,让学生逐渐熟悉代数式的表示方法,并培养符号逻辑思维能力.以具体的事例引入代数式的概念,既形象又浅显易懂.通过两个探究题,使学生感受到数学与日常生活的密切联系.通过学生自己大胆的尝试,让学生在学习中得到乐趣,指导学生在变化中探索规律,培养团结合作精神.通过学生对知识和技能的总结,理清本节的知识结构,使知识系统化,提升分析问题、解决问题的能力,提升与人交往的能力.无论是教学环节设计,还是课外作业的安排上,我都重视知识的产生过程,关注人的发展,意到个体间的差异,让每一个学生在课堂上都有所感悟,都有着各自的数学体验,不同的人在数学上都得到不同的发展.当然本节课在教学过程中也有遗憾的地方,在今后的教学中,我将努力克服自己在教学中的不足之处,争取在今后的教学工作中做到更好.。

北师大版七年级上册3.2代数式第三章:3.2代数式课程设计

北师大版七年级上册3.2代数式第三章:3.2代数式课程设计

北师大版七年级上册3.2代数式第三章:3.2代数式课程设计一、设计背景在初中数学教学中,代数式一直是一个比较重要的知识点。

本次课程设计旨在通过教学让学生掌握代数式的定义、基本性质和运算,提高学生的代数思维能力和代数式的运用能力。

二、设计目标1.了解代数式的定义和基本性质,熟练掌握代数式的运算方法;2.培养学生的代数思维能力,提高其抽象思维和逻辑思维水平;3.提高学生在解决实际问题中运用代数式的能力和应用能力。

三、教学内容1. 代数式的概念和定义通过探究实际例子,引导学生了解代数式的概念和定义,为后续内容打下基础。

2. 代数式的基本性质介绍代数式的常数项、同类项、系数、次数等基本概念和性质,并通过练习巩固。

3. 代数式的加减运算讲解代数式的加减法则和运算方法,带领学生完成相关练习。

4. 代数式的乘法运算讲解代数式的乘法法则和运算方法,带领学生完成相关练习。

5. 代数式的除法运算介绍代数式的除法法则和运算方法,带领学生完成相关练习。

6. 代数式的运用通过实际例子,引导学生掌握代数式的运用方法,提高其在代数式运用中的能力。

四、教学方法1.课堂讲解+互动答疑:适当讲解代数式相关概念和运算法则,提供示例和习题,鼓励学生提问并予以及时解答。

2.个人练习+小组讨论:由学生自主完成选择题、计算题和应用题,并组织小组内的学生互相讨论。

3.小结+巩固练习:总结本节课内容要点,针对学生易错点进行讲解并强化练习。

五、教学重点1.代数式的概念和定义;2.代数式的基本性质,如同类项、常数项、次数、系数等;3.代数式的运算方法。

六、教学难点1.代数式的加减乘除法则和运算方法;2.代数式在实际问题中的运用。

七、教学资源•北师大版初中数学教材;•代数式练习册;•教学视频;•电子白板。

八、评价方式1.个人练习成绩占50%;2.小组讨论和互动答疑成绩占25%;3.课堂表现和参与度占25%。

九、教学安排教学时间:2课时教学内容:•第1课时:代数式的概念和性质;•第2课时:代数式的运算和运用;十、教学反思本次教学中,通过引导学生掌握代数式的定义、基本性质和运算方法,提高其代数思维能力和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2 代数式
第1课时代数式
教学目标:
1.进一步理解字母表示数的意义,能结合具体情景给字母赋于实际意义;理解代数式和代数式的值的意义,能解释一些简单代数式的实际背景或几何意义,在具体情景中能求出代数式的值. (重难点)
2.通过创设实际背景和引用符号,经历观察、体验、验算、猜想、归纳等数学过程,体会数学与现实世界的联系,增强符号感,发展运用符号解决问题和数学探究意识.
教法学法:
教学方法:引导—探究—发现法.
学习方法:自主探究与合作交流相结合.
课前准备:多媒体课件、投影仪、电脑
教学过程:
一、创设情境,引入新课.
欣赏视频,导入新课
师:国庆六十周年大阅兵,同学们看了吗?首先请同学们来欣赏一段视频.(26秒.定格在胡锦涛主席乘坐红旗轿车阅兵的一个瞬间.)
师:这是新中国成立以来,规模最大、装备最新、机械化程度最高的一次大阅兵.
有谁知道胡主席乘坐的是什么品牌的车吗?
生:国产红旗大轿车.
师:对﹗国产红旗大轿车﹗这是我们民族的骄傲﹗提到造车,有一个人,功不可没,不能不提.
同学们知道是谁吗?
生:造车鼻祖—奚仲.(官桥镇所在地,是造车鼻祖—奚仲的故里,学生对此了解较多.)
师:(多媒体展示一张奚仲造车的图片.)
师:那我先来考考同学们:上面的图片中的一辆推车几个轮子?两辆推车几个轮子?x辆推车几个轮子?
生:2个,4个,2x个.
师:板书2x.
设计意图:通过创设教学情境,激发学生的学习兴趣,使学生在注意力集中前提下顺利过渡到本节知识内容.引导学生体验把实际问题抽象成数学问题的一般方法,同时在解答问题中形成认知冲突.通过这一情境的引入,让学生感受到祖国的强大,增强爱国的热情,民族的自豪感.了解到学习这些知识的重要性,极大地调动了学生学习数学的积极性.同时滲透了把实际问题抽象成数学问题的一般思想方法.
师: 上节课,我们学习了字母能表示什么,这节课我们继续学习§3.2代数式.(板书课题) 下面请同学们快速完成导学案的第一题.
二、自主探索,合作交流.
1.温故而知新
填空:
⒈边长为a cm的正方形的周长是cm,面积是cm2.
2 . 钢笔每支2元,铅笔每支0.5元,m支钢笔和n支铅笔共____________元.
⒊温度由2℃下降t℃后是℃.
⒋小亮用t秒走了s米,他的速度是为米/秒
生:(完成填空,如有疑难可在小组内交流、讨论.)
s
生1:通过实物投影展示答案:4a, a2, 2m+0.5n, t-2,
t
生2:第2、3题应该加上括号.
师:板书正确答案.
师:观察上面的这些式子有什么特点?
生:(以小组为单位,进行组内交流、讨论.)
生1:含有数、字母、
生2:含有运算符号.
师:像2x,4a , a 2 , 2m +0.5n , t -2,t
s 等式子都是代数式(algebraic e x pression). 单独一个数或一个字母也是代数式.
师: 你还能举几个代数式的例子吗?
生1:2,m,a ﹢b…
生2: m-n,5, 2n…
师:真棒.下面再来考考你的眼力,
请同学们快速完成导学案 : 自主探索,合作交流的第1题.
2.考考你的眼力:
师:下列各式中哪些是代数式?哪些不是?
(1)m +5 (2)a +b =b +a (3)0
(4) x 2+3x +4 (5)x +y >1(6)
生: (1)、(3)、(4)、(6)是代数式, (2)、(5)不是.
师:小结:(1)代数式中不含“=”,“>”,“<”,“≥”,“≤”,“≠”等符号.
(2)单独的一个数或字母也是代数式.
师:同学们回答的很好,那我们就来巩固一下吧.
生:完成巩固练习:
用代数式表示
(1) f 的11倍再加上2可以表示为______________.
(2)数a 与它的的和可以表示为_________.
(3) 一个教室有2扇门和4扇窗户,n 个这样的教室共有___________扇门和_________扇窗户.
(4)小华、小明的速度分别为x 米/秒,y 米/秒,6分钟后它们一共走了 米. 生:(完成填空并回答,如有疑难可在小组内交流、讨论.)
生1: 11f +2 ,a +a,2n,4n,6(x +y )
生2:(4)小题也可以写成(6x +6y)
生3:第(2)小题也可以写成1a,
师: 1a 通常写成a,带分数写成假分数.
师:通过前面的练习,同学们想一想,说一说:代数式在书写时应该注意那些问题呢?
生: 以小组为单位,进行组内交流、讨论后回答问题.。

相关文档
最新文档