2016年高考全国Ⅰ卷文科数学 【答案加解析】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启封并使用完毕前
试题类型:
2016年普通高等学校招生全国统一考试
文科数学
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.
第Ⅰ卷
选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.
(1)设集合

,则
(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} (2)设
的实部与虚部相等,其中a 为实数,则a=
(A )-3 (B )-2 (C )2 (D )3
(3)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是
(A ) (B ) (C ) (D )
(4)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知,,,则
b= (A )
(B )
(C )2 (D )3
(5)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到的l 距离为其短轴长的41
,则该椭圆的离心率为 (A )
3
1 (B )
2
1 (C )
3
2 (D )
4
3
(6)若将函数y =2sin (2x +6π)的图像向右平移41
个周期后,所得图像对应的函数为 (A )y =2sin(2x +

) (B )y =2sin(2x +
3
π
) (C )y =2sin(2x –
4
π
) (D )y =2sin(2x –
3
π
) )
(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是
3
28π,则它的表面积是
(A)17π (B)18π (C)20π (D)28π
(8)若a>b>0,0<c<1,则
(A)log a c<log b c (B)log c a<log c b (C)a c<b c (D)c a>c b
(9)函数y=2x2–e|x|在[–2,2]的图像大致为
(A)(B)
(C)(D)
(10)执行右面的程序框图,如果输入的n=1,则输出的值满足
(A)
(B)
(C)
(D)
(11)平面过正方体ABCD—A1B1C1D1的顶点A,,,
,则m,n所成角的正弦值为
(A)(B)(C)(D)
(12)若函数在单调递增,则a的取值范围是
(A)(B)(C)(D)
第II卷
本卷包括必考题和选考题两部分.第(13)~(21)题为必考题,每个试题考生都必须作答.第(22)~(24)题为选考题,考生根据要求作答.
二、填空题:本大题共4小题,每小题5分
(13)设向量a=(x,x+1),b=(1,2),且a b,则x=
(14)已知θ是第四象限角,且sin(θ+)=,则tan(θ–)=.
(15)设直线y=x+2a与圆C:x2+y2-2ay-2=0相交于A,B两点,若3
2
AB ,则圆C的面积为
(16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料。

生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元。

该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元。

三.解答题:解答应写出文字说明,证明过程或演算步骤.
17.(本题满分12分)
已知是公差为3的等差数列,数列满足,.
(I)求的通项公式;
(II)求的前n项和.
18.(本题满分12分)
如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点D,D在平面PAB内的正投影为点E,连接PE并延长交AB于点G.
(I)证明G是AB的中点;
(II)在图中作出点E在平面PAC内的正投影F(说明作法及
理由),并求四面体PDEF的体积.
(19)(本小题满分12分)
某公司计划购买1台机器,该种机器使用三年后即被淘汰.
机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:
记x 表示1台机器在三年使用期内需更换的易损零件数,y 表示1台机器在购买易损零件上所需的费用(单位:元),表示购机的同时购买的易损零件数. (I )若=19,求y 与x 的函数解析式;
(II )若要求“需更换的易损零件数不大于”的频率不小于0.5,求的最小值;
(III )假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?
(20)(本小题满分12分) 在直角坐标系
中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :
于点P ,M
关于点P 的对称点为N ,连结ON 并延长交C 于点H .
(I )求;
(II )除H 以外,直线MH 与C 是否有其它公共点?说明理由. (21)(本小题满分12分)
已知函数.2)1(2)(-+-=x a e x x f x )(
(I)讨论)(x f 的单调性;
(II)若)(x f 有两个零点,求的取值范围.
请考生在22~24题中任选一题作答,如果多做,则按所做的第一题计分。

(22)(本小题满分10分)选修4-1:几何证明选讲 如图,△OAB 是等腰三角形,∠AOB=120°.以O 为圆心,2
1OA 为半径作圆.
(I)证明:直线AB 与⊙O 相切;
(II)点C,D 在⊙O 上,且A,B,C,D 四点共圆,证明:AB ∥CD.
(23)(本小题满分10分)选修4—4:坐标系与参数方程 在直线坐标系xoy 中,曲线C 1的参数方程为⎩⎨
⎧+==t
a y t a x sin 1cos (t 为参数,a >0)。

在以坐标原点
为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;
(II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a 。

(24)(本小题满分10分),选修4—5:不等式选讲 已知函数f (x )= ∣x +1∣-∣2x -3∣. (I )画出y = f (x )的图像;
(II )求不等式∣f (x )∣﹥1的解集。

2016年普通高等学校招生全国统一考试
文科数学参考答案
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合
题目要求的.
(1)B (2) A (3)C (4)D (5)B (6)D (7)A (8)B (9)D (10)C (11)A (12)C
第II 卷
二、填空题:本大题共3小题,每小题5分. (13)23-
(14)43-
(15)4π (16)216000
三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(I )由已知,1221121,1,,3
a b b b b b +===
得1221121,1,,3
a b b b b b +===
得12a =,所以
数列{}n a 是首项为2,公差为3的等差数列,通项公式为31n a n =-. (II )由(I )和11n n n n a b b n b +++= ,得13
n n b b +=,因此{}n b 是首项为1,公比为
13
的等
比数列.记{}n b 的前n 项和为n S ,则
1
11()
313
.122313
n
n
n S --==-⨯-
(18)(I )因为P 在平面A B C 内的正投影为D ,所以.A B P D ⊥
因为D 在平面P A B 内的正投影为E ,所以.A B D E ⊥ 所以A B ⊥平面P E D ,故.A B P G ⊥
又由已知可得,P A P B =,从而G 是A B 的中点.
(II )在平面P A B 内,过点E 作P B 的平行线交P A 于点F ,F 即为E 在平面P A C 内的正投影.
理由如下:由已知可得P B P A ⊥,⊥P B P C ,又//E F P B ,所以E F P C ⊥,因此E F ⊥
平面P A C ,即点F 为E 在平面P A C 内的正投影.
连接C G ,因为P 在平面A B C 内的正投影为D ,所以D 是正三角形A B C 的中心. 由(I )知,G 是A B 的中点,所以D 在C G 上,故2.3=
C D C G
由题设可得⊥P C 平面P A B ,⊥D E 平面P A B ,所以//D E P C ,因此
21,.3
3=
=
P E P G D E P C
由已知,正三棱锥的侧面是直角三角形且6=P A ,可得2,==D E P E 在等腰直角三角形E F P 中,可得 2.==E F P F 所以四面体P D E F 的体积114222.32
3=
⨯⨯⨯⨯=
V
(19)(I )分x ≤19及x.19,分别求解析式;(II )通过频率大小进行比较;(III )分别求出您9,
n=20的所需费用的平均数来确定。

试题解析:(Ⅰ)当19
≤x 时,
380
=y ;当19>x 时,
570
500)19(5003800
-=-+=x x y ,所以y 与x 的函数解析式为
)(,
19,5700500,19,
3800N x x x x y ∈⎩⎨⎧>-≤=.
(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n 的最小值为19.
(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为
4050)104500904000(100
1=⨯+⨯.
比较两个平均数可知,购买1台机器的同时应购买19个易损零件. (20)(Ⅰ)由已知得),0(t M ,),2(
2
t p
t
P .
又N 为M 关于点P 的对称点,故),(
2
t p
t
N ,ON 的方程为x t
p y =
,代入px y
22
=整
理得022
2=-x t px ,解得01=x ,p
t x 2
22=
,因此)2,2(
2
t p
t H .
所以N 为OH 的中点,即
2|
|||=ON OH .
(Ⅱ)直线MH 与C 除H 以外没有其它公共点.理由如下: 直线MH 的方程为x t
p t y 2=
-,即)(2t y p
t x -=
.代入px y
22
=得0442
2=+-t
ty y ,
解得t y y 221==,即直线MH 与C 只有一个公共点,所以除H 以外直线MH 与C 没有其它公共点.
(21) (I)()()()()()'12112.x x f x x e a x x e a =-+-=-+
(i)设0a ≥,则当(),1x ∈-∞时,()'0f x <;当()1,x ∈+∞时,()'0f x >. 所以在(),1-∞单调递减,在()1,+∞单调递增. (ii)设0a <,由()'0f x =得x=1或x=ln(-2a). ①若2e a =-,则()()()'1x f x x e e =--,所以()f x 在(),-∞+∞单调递增. ②若2
e a >-
,则ln(-2a)<1,故当()()
(),ln 21,x a ∈-∞-+∞时,()'0f x >;
当()()ln 2,1x a ∈-时,()'0f x <,所以()f x 在()()(),ln 2,1,a -∞-+∞单调递增,在
()()ln 2,1a -单调递减.
③若2
e a <-
,则()21ln a ->,故当()()(),1ln 2,x a ∈-∞-+∞时,()'0f x >,当
()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在
()()1,l n 2a -单调递减.
(II)(i)设0a >,则由(I)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增. 又()()12f e f a =-=,,取b 满足b <0且
ln
2
2
b a <,
则()()()
2
3
32102
2a f b b a b a b b ⎛⎫>-+-=-> ⎪⎝
⎭,所以()f
x 有两个零点.
(ii)设a =0,则()()2x
f x x e =-所以()f x 有一个零点. (iii)设a <0,若2
e a ≥-
,则由(I)知,()f x 在()1,+∞单调递增.
又当1x ≤时,()f x <0,故()f x 不存在两个零点;若2
e a <-,则由(I)知,()
f x 在
()()1,ln 2a -单调递减,在()()ln 2,a -+∞单调递增.又当1x ≤时()f x <0,故()f x 不存
在两个零点.
综上,a 的取值范围为()0,+∞. (22)(Ⅰ)设E 是A B 的中点,连结O E ,
因为,120O A O B A O B =∠=︒,所以O E A B ⊥,60A O E ∠=︒.
在R t A O E ∆中,12
O E A O =,即O 到直线A B 的距离等于圆O 的半径,所以直线A B 与
⊙O 相切.
E
O'D
C
O B
A
(Ⅱ)因为2O A O D =,所以O 不是,,,A B C D 四点所在圆的圆心,设'O 是,,,A B C D 四点所在圆的圆心,作直线'O O .
由已知得O 在线段A B 的垂直平分线上,又'O 在线段A B 的垂直平分线上,所以
'O O A B ⊥.
同理可证,'O O C D ⊥.所以//A B C D . (23)⑴c o s 1s in x a t y a t
=⎧⎨
=+⎩ (t 均为参数)
∴()
2
2
2
1x y a
+
-= ①
∴1C 为以()01,为圆心,a 为半径的圆.方程为22
2
210
x y y a
+-+-=
∵22
2
sin x y
y ρ
ρθ
+==, ∴2
2
2sin 10
a
ρρθ-+-=
即为1C 的极坐标方程
⑵ 2
4c o s C ρθ
=:
两边同乘ρ得2
2
22
4c o s c o s x y x
ρρθ
ρ
ρθ==+=,
2
2
4x y
x
∴+=
即()2
2
24
x
y
-+= ②
3
C :化为普通方程为2y x
=
由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:2
4210
x y a
-+-=,即为3C
∴2
10
a
-=
∴1a
=
(24)⑴如图所示:

()413321
2
342
x x f x x x x x ⎧
⎪--⎪⎪
=--<<⎨⎪⎪
-⎪⎩,≤,,≥
()
1f
x >
当1x -≤,41x ->,解得5
x
>或3x <
1x -∴≤
当312x -<
<
,321x ->,解得1x >或13
x <
113
x -<<
∴或312
x <
<
当32
x ≥

41
x ->,解得5
x >或3x <
33
2
x <∴≤或5
x
>
综上,13
x
<
或13x <
<或5
x
> ()
1
f
x >∴,解集为()
()11353⎛
⎫-∞
+

⎪⎝

,,,。

相关文档
最新文档