【新人教版新人教版九年级数学下册同步测试及答案13份】【第1套,共3套】 29.1 投影同步测试

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

投影与视图
29.1__投影__
第1课时投影[见B本P88]
1.如图所示的物体的影子,不正确的是( B )
【解析】太阳光线是平行的,故B错误.
2.下面哪幅图可能是早上9点钟天安门广场上国旗的影子( D )
图29-1-1
A.(2) B.(3)C.(1) D.(4)
【解析】早上太阳在正东,影子在正西,太阳向南移动,影子向北移动,故选D. 3.某小区的健身广场上南北两端各有一棵水杉,下面哪一幅图可能是它们在灯光下的影子( A )
图29-1-2
A.(1) B.(2)
C.(1)(2)都可能 D.无法判断
【解析】连接树顶端和影子顶端的直线相交于一点即为灯光下的影子.
4.如图29-1-3,如果在阳光下你的身影的方向为北偏东60°方向,那么太阳相对于你的方向是( A )
图29-1-3
A.南偏西60° B.南偏西30°
C.北偏东60° D.北偏东30°
【解析】由于人相对于太阳与太阳相对于人的方位正好相反,∵在阳光下你的身影的方向为北偏东60°方向,∴太阳相对于你的方向是南偏西60°方向.
5.如图29-1-4,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远处移动时,圆形阴影的大小的变化情况是( A )
图29-1-4
A.越来越小 B.越来越大
C.大小不变 D.不能确定
6. 下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序排列正确的是( C )
图29-1-5
A.③①④② B.③②①④
C.③④①② D.②④①③
【解析】西为③,西北为④,东北为①,东为②,
∴将它们按时间先后顺序排列为③④①②.
7. 如图,一束平行太阳光线照射到正五边形上,则∠1=__30°__.
图29-1-6
8. 太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是10 3 cm,则皮球的直径是( B )
A.5 cm B.15 cm C.10 cm D.8 cm
图29-1-7 第8题答图
【解析】由题意得:DC=2R,DE=103,∠CED=60°,∴可得:DC=DE sin60°=15 cm. 9.一天下午,秦老师参加了校运动会女子200 m比赛,然后又参加了女子400 m比赛,摄影师在同一位置拍摄了她参加这两项比赛的照片(如图29-1-8).你认为秦老师参加400 m比赛的照片是__(a)__.
图29-1-8
【解析】太阳东升西落,影子长度和方向都在变化,这两幅照片都是在下午拍摄的,则影子越长拍摄的时间越晚,影子越短的拍摄的时间越早.秦老师参加400 m比赛的照片是(a).
图29-1-9
10. 如图29-1-9,王琳同学在晚上由路灯A走向路灯B,当他行到P处时发现,他在路灯B下的影长为2米,且恰好位于路灯A的正下方,接着他又走了6.5米到Q处,此时他在路灯A下的影子恰好位于路灯B的正下方(已知王琳身高1.8米,路灯B高9米)
(1)标出王琳站在P处在路灯B下的影子;
(2)计算王琳站在Q处在路灯A下的影长;
(3)计算路灯A的高度.
解:(1)线段CP为王琳在路灯B下的影长;
(2)由题意得Rt△CEP∽Rt△CBD,
∴EP
BD

CP
CD

∴1.8
9

2
2+6.5+QD

解得:QD=1.5米;(3)∵Rt△DFQ∽Rt△DAC
∴FQ
AC

QD
CD

∴1.8
AC

1.5
1.5+6.5+2
解得:AC=12米.
答:路灯A的高度为12米.
11.某数学兴趣小组利用树影测量树高,如图29-1-10(1),已知测出树AB的影长AC 为12米,并测出此时太阳光线与地面成30°夹角.(精确到1米,2≈1.4,3≈1.7)
(1)求出树高AB;
(2)因水土流失,此时树AB沿太阳光线方向倒下,在倾倒过程中,树影长度发生了变化,假设太阳光线与地面夹角保持不变.(用图29-1-10(2)解答)
①求树与地面成45°角时的影长;
②求树的最大影长.
图29-1-10
解:(1)AB=AC·tan30°=12×
3
3
=43≈7(米);
(2)①如图(2),B1N=AN=AB1·sin45°=43×
2
2
≈5(米),
NC1=B1N·tan60°=26×3≈8(米),
AC1=AN+NC1≈5+8=13(米).
答:树与地面成45°角时影长约为13米.
②如图(2),当树与地面成60°角时影长AC2最大(或树与光线垂直时影长最大),AC2=2AB2≈14(米).
答:树的最大影长约为14米.
第2课时正投影[见A本P90]
1.如图29-1-11,箭头表示投影的方向,则图中圆柱体的投影是( B )
图29-1-11
A.圆B.矩形
C.梯形 D.圆柱
【解析】根据投影的定义画出投影,此时圆柱体的投影为矩形.
2.一根笔直小木棒(记为线段AB),它的正投影为线段CD,则下列各式中一定成立的是( D )
A.AB=CD
B.AB≤CD
C.AB>CD
D.AB≥CD
【解析】当投影线与木棒垂直时,AB=CD,当投影线与木棒不垂直时,AB>CD,故选D.
3.下列关于正投影的说法正确的是( B )
A.如果一个物体的正投影是圆,那么这个物体一定是球
B.不同的物体正投影可以相同
C.圆锥的正投影是等腰三角形
D.圆纸片的正投影是圆
【解析】球、圆柱、圆锥、圆纸片,后三者在圆面与投影面平行时正投影都是圆.A,C,D三个选项均错在没有考虑物体的正投影与物体相对于投影面的位置有关.
4.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能是图中的( B )
【解析】等边三角形在地面上形成的投影不可能是一个点.
5.如图29-1-12,一根直立于水平地面上的木杆AB在灯光下形成影子,当木杆绕A 按逆时针方向旋转直至到达地面时,影子的长度发生变化.设AB垂直于地面时的影长为AC(假定AC>AB),影长的最大值为m,最小值为n,那么下列结论:
①m>AC;
②m=AC;
③n=AB;
④影子的长度先增大后减小.
其中正确的结论的序号是__①③④__.
图29-1-12
6.春蕾数学兴趣小组用一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影可能是__正方形、菱形(答案不唯一)__(写出符合题意的两个图形即可).
7.如图29-1-13所示,正三棱柱的面EFDC∥平面R且AE=EF=AF=2,AB=6,正三棱柱在平面R的正投影是__矩形__,正投影面积为__12__.
图29-1-13
【解析】由正三棱柱的特征知面EFDC为矩形,当它与投影面平行时,它的正投影与它全等,其面积为2×6=12.
8.如图29-1-14所示,在电视台的演播厅中,1,2,3,4号摄像机分别拍到a,b,c,d四个画面,按画面a,b,c,d的顺序排列摄像机的顺序依次是__2,3,4,1__.
图29-1-14
9.画出如图29-1-15所示物体(正三棱柱)的正投影.
(1)投影线由物体前方射到后方;
(2)投影线由物体左方射到右方;
(3)投影线由物体上方射到下方.
图29-1-15
【解析】仔细观察光线的方向是解本题的关键.(1)从前方射到后方的正投影为两个长方形.(2)从左方射到右方的正投影为一个长方形.(3)由上方射到下方的正投影是一个正三角形.
解:如图所示.
10.指出如图29-1-16所示的立体图各个面的正投影图形,并画出投影线的方向如箭头所示立体图的正投影.
图29-1-16
解:立体图形除正面和后面为五边形外,其他的正投影为矩形.
如何学好初中数学经典介绍
浅谈如何学好初中数学
数学是必考科目之一,故从初一开始就要认真地学习数学。

那么,怎样才能学好数学呢,现介绍几种方法以供参考:
一、课内重视听讲,课后及时复习。

新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。

上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。

特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。

认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。

在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。

要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。

刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题
规律。

对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

在平时要养成良好的解题习惯。

让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。

实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

三、调整心态,正确对待考试。

首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。

特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我****,要有自己不垮,谁也不能打垮我的自豪感。

在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。

对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。

由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

如何提高解数学题的能力
任何学问都包括知识和能力两个方面,在数学方面,能力比具体的知识要重要的多。

当然,我们也不能过分强调能力,而忽视知识的学习,我们应当在学习一定数量知识的同时,还应该学会一些解决问题的能力。

能力是什么,心理学中是这样定义的:能力是指直接影响人的活动效率,使活动顺利完成的个性心理特征。

在数学里,我认为,能力就是解决问题的才智。

一、怎样才能提高自己的解题能力
首先是模仿。

解题是一种本领,就像游泳、滑雪、弹钢琴一样,开始只能靠模仿才能够学到它。

其次是实践。

如果你不亲自下水游泳,你就永远也学不会游泳,因此,要想获得解题能力,就必须要做习题,并且要多做习题。

再次,要提高自己的解题能力,光靠模仿是不够的,你必须要动脑筋。

例如,对于课本的定理的证明,例题的解法、证法能读懂听懂还不够,你必须明白人家是怎样想出那个解题方法的,为什么要那样解题,有没有其它的解题途径,我认为这才是最重要的东西。

如果你真正领会了人家的解题思路,那么在此基础上你就有所创新,就能够提高你的解题能力。

二、学习数学应注意培养什么样的能力
1运算能力。

2空间想象能力。

3逻辑思维能力。

4将实际问题抽象为数学问题的能力。

5形数结合互相转化的能力。

6观察、实验、比较、猜想、归纳问题的能力。

7研究、探讨问题的能力和创新能力。

三、提高数学解题能力的关键是什么?
灵活应用数学思想方法是提高解题能力的关键,我们的先辈数学家们,已经为我们创造出了很多的数学思想方法,我们应该很好地体会它,理解它,并且要灵活地应用它。

对于初中数学主要是以下四类数学思想(所谓思想就是指导我们实践的理论方法,这里主要指想法或方法):1转化思想。

2方程思想。

3形数结合思想。

4函数思想。

5.整体思想6分类讨论思想.7统计思想。

只要我们能够深入地理解上述思想方法,并能灵活地应用到具体的解题实践中,就能极大地提高你的解题能力。

提高你的分类讨论能力
分类讨论是中学数学中一种重要的思想方法,在每年的中考中都会涉及到有关分类讨论方面的试题,而许多同学在解答过程中经常会出现漏解、讨论不完整的现象。

临近中考,将同学中出现的部分漏解现象进行分析,希望能帮助同学们提高分类讨论的能力。

概念不清,导致漏解
对所学知识概念不清,领会不够深刻,导致答题不完整。

例:已知(a-3)x>6,求x的取值范围。

分析:根据不等式的性质“不等式的两边同乘或同除以不为零的负数,不等号的方向要改变”,而此题中(a-3)的符号并未确定,所以要分类讨论(a-3)的正负问题。

例:若y2+(k+2)y+16是完全平方式,求k。

分析:完全平方式中有两种情况:(a?b)2=a2?2ab+b2,而同学们往往容易忽略k+2=-8这一解。

思维固定,导致漏解
在日常解题过程中,许多同学往往受平时学习中习惯性思维的影响,导致解题不全面。

例:若等腰三解形腰上的高等于腰长的一半、求底角。

分析:据题意,由于等腰三解形既不可能是锐角等腰三解形也可能是钝角等腰三角形,所以腰上的高可能在三角形内部,也可能在外部。

而同学们受习惯思维影响,大都忽略了高在三角形外的一种可能。

例:若直角三角形三条边分别为3、4、c,求c的值。

分析:此题中的c并不一定是代表斜边,也可能是直角边,而有些同学错误地将其与勾股定理中的c混淆起来,认为c一定是斜边,导致漏解。

例:圆O的半径为5cm,两条互相平行的弦长分别为6cm、8cm,求两条弦之间的距离。

分析:两条弦在圆中的位置关系可能在圆心的同侧或者在圆心的两侧,因此在解答时不能依据自己的习惯进行思考。

中考数学作辅助线规律总结(巧计口诀) 人说几何很困难,难点就在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

相关文档
最新文档