上海高三数学专题复习训练:矩阵

合集下载

沪教版(上海)高三年级新高考辅导与训练第七章矩阵与行列式、算法初步、复数三、复数

沪教版(上海)高三年级新高考辅导与训练第七章矩阵与行列式、算法初步、复数三、复数

沪教版(上海)高三年级新高考辅导与训练第七章矩阵与行列式、算法初步、复数三、复数学校:___________姓名:___________班级:___________考号:___________一、解答题1.已知复数226(310)z m m m m i =--+--.当实数m 为何值时,复数z 为 (1)实数;(2)纯虚数;(3)零.2.设复数z 满足4z R z+∈,且22z -=,求z .3.若z 为虚数,且||1z =,求证11z z -+为纯虚数. 4.已知||1z =.求21z z -+的模的最大值与最小值.5.关于x 的方程()222150x ax a a R --+=∈的两个根分别是α、β,且8αβ+=,求a 的值,并求方程的根. 6.计算下列各题:(1)55(1)(1)11i i i i +-+-+;(2)201920191111i i i i +-⎛⎫⎛⎫- ⎪ ⎪-+⎝⎭⎝⎭;;(4) 23201920202320192020i i i i i +++++.7.已知复数()2262153m m z m m i m --=++-+,当m 为何实数时,复数z 是:(1)实数;(2)虚数;(3)纯虚数;(4)对应点在实轴的上方.8.若关于x 的方程22470x zx i -++=有实根,求复数z 的模的最小值和此时z 的值. 9.解答下列各题:(1)已知|2|z -=, |3|4z -=,求z ; (2)已知11z z +-为纯虚数,|1|1z -=,求z . 10.下列方程至少有一个实根,求实数t 的值与相应方程的根.(1)2(2)(2)0x t i x ti ++++=;(2)2(21)(3)0x i x t i --+-=.11.方程21(4)02x m x m --+=的两根为α,β,且||||αβ+=,求实数m 的值.二、单选题12.复数z 满足22|2||1|5z i z ---=,则它在复平面内对应点的轨迹是( ). A .圆B .直线C .双曲线D .椭圆13.复数3z ai =+满足条件|2|2-<z ,则实数a 的取值范围是( ). A .(1,1)-B.(-C .(2,2)-D.(14.若复数z 满足|34|2z i +-=,则|||z 的最小值和最大值分别是( ). A .1和9B .4和10C .5和11D .3和715.使11+⎛⎫ ⎪-⎝⎭ni i 为正实数的最小自然数n 是( ).A .2B .4C .6D .816.若复数312a ii++(a R ∈,i 为虚数单位)是纯虚数,则实数a 的值为( ) A .-6B .13C .32D17.满足条件12011z i ii+=-+的复数z 对应的点在( ).A .第一象限B .第二象限C .第三象限D .第四象限三、填空题18.如果复数z 满足关系式2z z i +=+,那么z 等于 . 19.已知复数z 满足||1z i -=,则|1|z -的取值范围是________. 20.若z a bi =+,21zR z∈+,则实数a ,b 应满足的条件为________. 21.在复数范围内分解因式:44x y +=________.22.方程2(12)2(1)0ax i x a i ++--=有实根,则实数a 的取值为________. 23.复数z 满足0zz z z ++=,则z 对应点的轨迹是________.参考答案1.(1)2m =-或5m =;(2)3m =;(3)2m =-. 【分析】(1)根据z 为实数,则虚部为0,即可求出m ;(2)根据z 为纯虚数,则虚部不为0,而实部为0,即可求出m ; (3)根据z 为零,则实部与虚部同时为零,即可求出m . 【详解】(1)z 为实数的充要条件是z 的虚部为0,即23100m m --=,解得2m =-或5m =,所以当2m =-或5m =时,z 为实数.(2)z 为纯虚数的充要条件是z 的虚部不为0,而实部为0,即22603100m m m m ⎧--=⎨--≠⎩,解得3m =, 所以当3m =时,z 为纯虚数.(3)z 为零的充要条件是z 的实部与虚部同时为零,即22603100m m m m ⎧--=⎨--=⎩,解得2m =-, 所以当2m =-时,0z =. 【点睛】本题主要考查复数的概念,复数的分类,属于基础题.2.4z =,1z =-或1=+z 【分析】设(),z a bi a b R =+∈,利用复数的四则运算将复数4z z+化为一般形式,可得其虚部为零,再由22z -=,可得出关于实数a 、b 的方程组,解出a 、b 的值,由此可得出复数z . 【详解】设(),z a bi a b R =+∈,则0z ≠,即a 、b 不同时为零,224444a bi z a bi a bi R z a bi a b -+=++=++∈++,2240b b a b∴-=+,① 由22z -=,得()2224a b -+=.②解由①、②所组成的联立方程组()22224024b b a b a b ⎧-=⎪+⎨⎪-+=⎩,解得40a b =⎧⎨=⎩或1a b =⎧⎪⎨=⎪⎩1a b =⎧⎪⎨=⎪⎩4z ∴=,1=+z或1z =-.【点睛】本题考查复数的求解,考查复数的概念以及复数的模等基础知识,根据题意列出方程组是解答的关键,考查计算能力,属于中等题. 3.证明见解析 【分析】设(,)z a bi a b R =+∈,可得221a b +=,且0b ≠,代入11z z -+化简即可得证. 【详解】证法1:设(,)z a bi a b R =+∈,则221a b +=,且0b ≠.所以2211(1)(1)11(1)z a bi a bi a bi z a bi a b -+--++-==+++++22221(1)(1)2(1)22()a b a bi a bi bi a b a+-++--==+++. 因为0b ≠,221a b +=,所以1a ≠-,所以11z z -+为纯虚数. 证法2:由||1z =,得1=zz .所以11111111z z zz z z z z z zz z z z -----⎛⎫===-=- ⎪+++++⎝⎭.因为||1z =,z 为虚数,所以1z ≠±,由非零复数z 为纯虚数的充要条件证明了11z z -+为纯虚数. 【点睛】本题主要考查复数的模,复数的代数形式的乘除运算及纯虚数的概念,属于基础题. 4.最大值为3,最小值为0 【分析】设(1,1)z a bi a b =+-≤≤,则221a b +=,代入21z z -+,可得2221(21)z z a -+=-,根据a 的范围即可得最值. 【详解】设(1,1)z a bi a b =+-≤≤,则221a b +=,即221b a =-,222221()()11(2)2(2)z z a bi a bi a b a ab b i a a ab b i-+=+-++=--++-=-+-,∴()222222222212(2)(21)(21)(21)z z a aab b a a b a a -+=-+-=-+-=-,因为11a -≤≤,所以3211a -≤-≤,所以22019z z ≤-+≤, 即21z z -+的模最大为3,最小为零. 【点睛】本题考查复数的代数运算及模的运算,考查学生的计算能力,是基础题.5.当4a =时,方程的根为11x =,27x =;当12a =-时,方程的根为1x =,2x =. 【分析】分0∆≥和∆<0两种情况讨论,在0∆≥时,由8αβ+=结合韦达定理可求得实数a 的值,并可求得原方程的根;在∆<0时,由8αβ+=结合韦达定理求得实数a 的值,进而求得原方程的根. 【详解】对于二次方程()222150x ax a a R --+=∈,()()()244152435a a a a ∆=--=-+.(1)当0∆≥,即5a ≤-或3a ≥时,由韦达定理得2a αβ+=,152a αβ=-.又αβ+==当1520a αβ=->时,即当5a ≤-或1532a ≤<时,则28a αβαβ+=+==,解得4a =,此时原方程为2870x x -+=,该方程的两根分别为11x =,27x =; 当1520a αβ=-≤时,即当152a ≥时,则αβ+===8==,整理得22310a a +-=,解得1a =-±;(2)当∆<0,即53a -<<时,由韦达定理得2a αβ+=,152a αβ=-.28αβα+=====,解得12a =-,此时,原方程为2160x x ++=,解得1x =,2x =.综上,当4a =时,方程的根为11x =,27x =;当12a =-时,方程的根为1x =,2x =. 【点睛】本题考查实系数一元二次方程的求解,考查了韦达定理的应用,考查计算能力,属于中等题. 6.(1)0;(2)2i -;(3)516;(4)10101010i - 【分析】根据复数的乘除运算法则及乘方运算,即可计算出(1)(2)的值;利用复数模的运算性质可求出(3)的值;利用分组求和及i 的运算性质可求出(4)的值. 【详解】(1) 5566232322(1)(1)(1)(1)[(1)][(1)]11(1)(1)(1)(1)11i i i i i i i i i i i i i i +-+-+-+=+=+-+-++---3333(2)(2)44022i i i i -=+=-=.(2)因为21(1)21(1)(1)2i i ii i i i ++===--+,21(1)21(1)(1)2i i i i i i i ---===-++-, 所以20192019201945043201920319111(22221)i i i i i i i i i i ⨯+-=--==+-⎛⎫⎛⎫ ⎪ ⎪-+=⎝⎭=-⎝⎭.(3) ==5454845252516⨯====⨯. (4) 23201920202320192020i i i i i +++++(234)(5678)(2017201820192020)i i i i i i =--++--+++--+(22)(22)(22)+i i i =-+-+-505(22)i =⨯-10101010i =-.【点睛】本题主要考查复数的乘除运算,乘方运算,复数的模的运算性质及i 的运算性质,属于中档题.7.(1)5m =-或3;(2)5m ≠-且3m ≠±;(3)2m =-;(4)3m >或5m <-. 【分析】(1)根据题意得出复数z 的虚部为零,进而可求得实数m 的值; (2)根据题意得出复数z 的虚部不为零,由此可解得实数m 的取值范围; (3)根据题意得出复数z 的实部为零,虚部不为零,由此可解得实数m 的值; (4)根据题意得出复数z 的虚部为正数,由此可解得实数m 的取值范围. 【详解】(1)若复数z 为实数,则2215030m m m ⎧+-=⎨+≠⎩,解得5m =-或3;(2)若复数z 为虚数,则2215030m m m ⎧+-≠⎨+≠⎩,解得5m ≠-且3m ≠±;(3)若复数z 为纯虚数,则226032150m m m m m ⎧--=⎪+⎨⎪+-≠⎩,解得2m =-;(4)若复数z 在复平面内对应的点位于实轴的上方,则2215030m m m ⎧+->⎨+≠⎩,解得5m <-或3m >.【点睛】本题考查利用复数的类型求参数,解题时要结合已知条件对复数的实部和虚部进行限制,考查计算能力,属于基础题. 8.49755z i ⎛⎫=±+ ⎪⎝⎭,||z最小值为【分析】设z a bi =+,根据复数运算得到224070x ax bx ⎧-+=⎨-=⎩,利用均值不等式计算模的最值得到答案. 【详解】22470x zx i -++=,设z a bi =+,则()22470x a bi x i -+++=,即()22470x ax bx i -++-=,x ∈R ,则224070x ax bx ⎧-+=⎨-=⎩,则2497240a b b -+=,即7247b a b =+,222222272449625484898749b b z a b b b b ⎛⎫=+=++=++≥= ⎪⎝⎭, 当且仅当224962549b b =,即75b =±时等号成立,min z =75b =时,495a =,75b =-时,495a =-,故49755z i ⎛⎫=±+⎪⎝⎭. 【点睛】本题考查了复数的运算,复数的模,均值不等式,意在考查学生的计算能力和综合应用能力.9.(1)34i ±;(2)12z =± 【分析】(1)设(,)z a bi a b R =+∈代入已知求出复数的模,解方程组即可求出,a b ; (2)设(,)z a bi a b R =+∈代入11z z +-及|1|1z -=化简,联立方程即可求出,a b . 【详解】(1) 设(,)z a bi a b R =+∈,则z a bi =-,所以|2||(2)|z a bi -=-+=|3||(3)|4z a bi -=--= 所以22(2)17a b -+=,22(3)()16a b -+-= 解得3a =,4b =±,所以34z i =±. (2) 设(,)z a bi a b R =+∈,则2222222211(1)(1)(1)1211(1)(1)(1)(1)z a bi a bi a bi a bi a b biz a bi a bi a bi a b a b +++++---++--====--+-+---+-+ 22222212(1)(1)a b b i a b a b +-=--+-+为纯虚数, 所以2210a b +-=且0b ≠,①由|1|1z -=得|1|1a bi -+=,所以22(1)1a b -+=,②由①②解得12a =,2b =±,所以122z =±. 【点睛】本题主要考查复数的概念,复数代数形式的乘除运算,复数的模及共轭复数,考查运算求解能力,属于中档题.10.(1)t =,1x =22x i =,或t =-1x =,22x i =-;(2)112t =,112x =-,2122x i =- 【分析】(1)根据复数运算得到22020x tx x t ⎧++=⎨+=⎩,解得t =±.(2)根据复数运算得到230210x x t x ⎧++=⎨+=⎩,解得112t =,再代入原方程解得答案.【详解】(1)2(2)(2)0x t i x ti ++++=,则()2202x x t i tx +++=+,则22020x tx x t ⎧++=⎨+=⎩,则222042t t -+=,解得t =±当t =时,(2202x x i +++=+即()20x x i =,解得1x =22x i =-;当t =-(2202x x i +-+=-即()20x x i =,解得1x =,22x i .(2)2(21)(3)0x i x t i --+-=,则2(2103)x x x t i +-+=+,则230210x x t x ⎧++=⎨+=⎩,则12112x t ⎧=-⎪⎪⎨⎪=⎪⎩,当112t =时,2(21014)x x x i ++-=+,即112022x x i ⎛⎫⎛⎫++-= ⎪⎪⎝⎭⎝⎭, 故112x =-,2122x i =-. 【点睛】本题考查了复数范围内解方程,意在考查学生的计算能力和应用能力,漏解是容易发生的错误.11.4m =-72m =. 【分析】由韦达定理得出,αβαβ+,把||||αβ+=平方后用,αβαβ+表示并代入后可求得m .【详解】 由题意若方程有两个实数根,则21(4)402m m ∆=--⨯≥,解得2m ≤或8m ≥, 4m αβ+=-,12m αβ=,又||||αβ+=,∴()2222||||2()227αβααββαβαβαβ+=++=+-+=, 即2(4)7m m m --+=,0m ≥时,2(4)7m -=,4m =4m =+0m <时,2(4)27m m --=,21090m m -+=,解得1m =或9m =.全舍去.所以4m =-若方程是两个虚数根,4m αβ+=-,12m αβ=,设(,)a bi a b R α=+∈,则a bi β=- αβ=2212a b m +=,αβ+==2274a b +=,2272()2m a b =+=.综上4m =-72m =. 【点睛】 本题考查韦达定理,属于基础题,解题时要注意如果是实系数二次方程的实数解,则判别式0≥,如果是虚数根,则可设根为(,)a bi a b R +∈,代入后用实数的知识求解(或用复数相等的定义转化).12.B【分析】设(,)z x yi x y R =+∈,代入已知式化简整理后,由方程可得轨迹曲线.【详解】设(,)z x yi x y R =+∈,则222222221(2)(1|2)||1|5z i x yi i x yi x y x z y ⎡⎤=+--+-=+--+--⎣-=⎦-, 整理得210x y --=,它是一条直线.故选:B .【点睛】本题考查复数的几何意义,设(,)z x yi x y R =+∈,代入计算得出轨迹方程,由方程得轨迹是求复平面 上点的轨迹的常用方法.13.D【分析】由模长公式和已知条件可得a 的不等式,解不等式可得.【详解】解:∵3z ai =+满足条件|2|2-<z ,|1|2ai ∴+<2<,平方可得23a <,解得a <<故选:D.【点睛】本题考查复数的模长公式,涉及不等式的解法,属基础题.14.D【分析】 由342z i +-=可得z 在复平面内的轨迹是以()3,4-为圆心,以2为半径的圆,利用z 表示圆上的点到原点的距离,结合圆的几何性质可得结果.【详解】因为复数z 满足,342z i +-=,所以z 在复平面内的轨迹是以()3,4-为圆心,以2为半径的圆, z 表示圆上的点到原点的距离,5=,所以z 的最大值是527+=,z 的最小值是523-=,故选:D.【点睛】本题考查复数的模的几何意义,点的轨迹,复数的模的几何意义是复平面内两点间的距离,所以若z x yi =+,则z a bi --表示点(),x y 与点(),a b 的距离,z a bi r --=表示以(),a b 为圆心,以r 为半径的圆,属于中档题.15.B【分析】 化简得11nn i i i +⎛⎫ ⎪⎭=-⎝,再逐个分析即可.【详解】 因为()()()()111111n n n i i i i i i i ⎡⎤+++⎛⎫⎢⎥ ⎪--+⎝⎭⎣⎦==,又1234,1,,1i i i i i i ==-=-=,故使11+⎛⎫ ⎪-⎝⎭n i i 为正实数的最小自然数n 是4.故选:B【点睛】本题主要考查了n i 的周期性.属于基础题.16.A【解析】解答: ∵()()()()312363212121255a i i a i a a i i i i +-++-==+++-是纯虚数, ∴605{3205a a +=-≠,解得a=−6. 本题选择A 选项.17.A【分析】根据行列式可得(1)(1)(12)0z i i i +--+=,再根据复数的乘除运算即可出复数z ,进而可求出z 即可得到答案.【详解】由已知得(1)(1)(12)0z i i i +--+=,所以(1)3z i i +=+, 所以3(3)(1)4221(1)(1)2i i i i z i i i i ++--====-++-, 所以2z i =+,所以复数z 对应的点坐标为(2,1)在第一象限.故选:A【点睛】本题主要考查二阶行列式的运算,复数的乘除运算及共轭复数,属于基础题.18.34i + 【解析】试题分析:设(,)z a bi a b R =+∈,则z a bi =-,z =2a bi i +=+,所以得:2{1a b ==,解得:3{41a b ==,所以34z i =+. 考点:复数的运算.19.1]【分析】利用复数的几何意义求解,||1z i -=表示复平面内到点(0,1)距离为1的所有复数对应的点,|1|z -表示复平面内到点(1,0)的距离,结合两点间距离公式可求范围.【详解】因为在复平面内,||1z i -=表示到点(0,1)距离为1的所有复数对应的点,即复数z 对应的点都在以(0,1)为圆心,半径为1的圆上;|1|z -表示复数z 对应的点到点(1,0)11=,11=,所以|1|z -的取值范围是1].故答案为:1].【点睛】本题主要考查复数的几何意义,明确几何意义是求解的关键,侧重考查直观想象的核心素养. 20.0b =或221a b +=【分析】 根据复数的运算得出21+z z ()()()222222222212114a a b ab b b a i a b a b +-++--=+--,再由复数是实数的条件得出实数a ,b 应满足的条件.【详解】()22222211()1212z a bi a bi a bi z a bi a abi b a b abi +++===+++++-+-+()()222222212()14ab abi a bi a b a b +--=++-- ()()()22222222222112214a a b b a b i a bi ab a b a b+-++--+=+-- ()()()2222322222212214a a b ab b a b b a b i a b a b+-+++--=+-- ()()()222222222212114a a b ab b b a i a b a b+-++--=+-- 因为21z R z ∈+,故有()2210b b a --=,所以0b =或2210b a --=,即0b =或221a b +=是a ,b 应满足的条件.故答案为:0b =或221a b +=.【点睛】本题考查复数的运算和复数的概念,属于中档题.21.2222x y x y x y x y ⎛⎫⎛⎫⎛⎫⎛⎫+---++ ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭【分析】利用2222()x y x yi +=-分解因式.【详解】2244222222()()22x y x y i x y i x yi x y ⎡⎤⎡⎤⎛⎫⎛⎫⎢⎥⎢⎥+=+-=-⋅-⋅ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎣⎦⎣⎦2222x y x y x y x y ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+ ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭. 【点睛】本题考查在复数范围内因式分解.在复数范围内每个n 次多项式都可以分解成n 个一次因式之积.22.0或【分析】根据方程2(12)2(1)0ax i x a i ++--=有实根,设实根为x ,转化为()22220ax x a x a i +-++=,利用复数相等求解.【详解】因为方程2(12)2(1)0ax i x a i ++--=有实根,设实根为x ,则()22220ax x a x a i +-++=, 所以220220ax x a x a ⎧+-=⎨+=⎩, 化简得:()230a a -=,解得0a =或a =故答案为:0或【点睛】本题主要考查复系数方程的解法以及复数相等的应用,还考查了运算求解的能力,属于基础题.23.圆2220x y x ++=【分析】设z x yi =+,代入0zz z z ++=整理化简即可.【详解】解:设z x yi =+,则()()()()0x yi x yi x yi x yi +--+++=, 整理得2220x y x ++=,即z 对应点的轨迹是圆2220x y x ++=. 故答案为:圆2220x y x ++=.【点睛】本题考查共轭复数的概念,复数的运算及复数的几何意义,是基础题.。

沪教版(上海) 高三年级 新高考辅导与训练 第二部分 走近高考 第七章 矩阵与行列式算法初步复数高考

沪教版(上海) 高三年级 新高考辅导与训练 第二部分 走近高考 第七章 矩阵与行列式算法初步复数高考

沪教版(上海) 高三年级新高考辅导与训练第二部分走近高考第七章矩阵与行列式、算法初步、复数高考题选一、单选题(★★) 1. i是虚数单位,若集合S= ,则A.B.C.D.(★★★) 2. 是虚数单位,复数为纯虚数,则实数为( )A.B.C.D.(★) 3. 如果执行如图所示的程序框图,输入正整数和实数,,…,,输出,,则()A.+为,,…,的和B.为,,…,的算术平均数C.和分是,,…,中最大的数和最小的数D.和分是,,…,中最小的数和最大的数(★★★) 4. 若是关于的实系数方程的一个复数根,则()A.B.C.D.(★★) 5. 设复数,在复平面内的对应点关于虚轴对称,,则()A.- 5B.5C.- 4+ i D.- 4 - i(★★) 6. 执行如图1所示的程序框图,如果输入的,则输出的的最大值为()A.B.C.D.(★★★) 7. 右边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入分别为14,18,则输出的()A.0B.2C.4D.14(★★) 8. 右图是用模拟方法估计圆周率的程序框图,表示估计结果,则图中空白框内应填入()A.B.C.D.二、填空题(★★★) 9. 若执行如图所示的框图,输入,则输出的数等于.(★★★) 10. 行列式()的所有可能值中,最大的是。

(★★) 11. 若复数 z满足 | z-i|≤ (i为虚数单位),则 z在复平面内所对应的图形的面积为_____________ .(★) 12. 设,(i为虚数单位),则的值为.(★★) 13. 阅读如图所示的程序框图,运行相应的程序,输出的结果i=_________ .(★) 14. 若,则(★★) 15. 设m∈R,m 2+m﹣2+(m 2﹣1)i是纯虚数,其中i是虚数单位,则m= .(★★★) 16. 设是一个各位数字都不是0且没有重复数字的三位数.将组成的3个数字按从小到大排成的三位数记为,按从大到小排成的三位数记为(例如,则,).阅读如图所示的程序框图,运行相应的程序,任意输入一个,输出的结果.三、解答题(★★) 17. 已知矩阵,向量.求向量,使得.(★★★) 18. 已知复数满足(为虚数单位),复数的虚部为,是实数,求.。

高三数学矩阵行列式试题

高三数学矩阵行列式试题

高三数学矩阵行列式试题1.矩阵与变换:已知a,b∈R,若所对应的变换把直线变换为自身,求实数,并求的逆矩阵.【答案】【解析】根据矩阵乘法求变换:设为直线上任意一点其在M的作用下变为则代入得:其与完全一样得则矩阵则解:设为直线上任意一点其在M的作用下变为则代入得: 3分其与完全一样得则矩阵 6分则 10分【考点】矩阵变换,逆矩阵2.已知矩阵,点,.求线段在矩阵对应的变换作用下得到线段的长度.【答案】【解析】先根据逆矩阵公式求逆矩阵:,即,再根据矩阵运算求出对应点的坐标,由,,知点,最后根据两点间距离公式求长度,.设,则,所以,解得,即.由,,知点,所以.【考点】逆矩阵,矩阵运算3.关于方程的解为.【答案】2【解析】原方程为,即,,所以,.【考点】行列式,指数方程.4.已知矩阵M=,N=.(1)求矩阵MN;(2)若点P在矩阵MN对应的变换作用下得到Q(0,1),求点P的坐标.【答案】(1)MN==;(2)P(, 1).【解析】(1)利用矩阵乘法公式计算即可;(2)两种方法:法一,利用=,转化为关于的二元一次方程,解出,即点P的坐标;法二,求出MN的逆矩阵,直接计算. 试题解析:(1)MN==; 5分(2)设P(x,y),则解法一:=,即解得即P(, 1). 10分解法二:因为=.所以==.即P(, 1). 10分【考点】矩阵与变换、逆矩阵的求法、矩阵的计算.5.已知,,则y=.【答案】1【解析】由已知,,所以x﹣2=0,x﹣y=1所以x=2,y=1.【考点】二阶行列式的定义点评:本题考查了二阶行列式的展开式,考查了方程思想,是基础题6.对于任意一个非零实数,它的倒数的倒数是它的本身.也就是说,连续施行两次倒数变换后又回到施行变换前的对象,我们把这样的变换称为回归变换.在中学数学范围内写出这样的变换(写对一个变换给2分,最多得4分).【答案】相反数的相反数是它本身,集合A的补集的补集是它本身,一个复数的共轭的共轭是它本身,等等.【解析】一个非零向量的反向量的反向量是它本身;一个命题的否命题的否命题是它本身;一个函数的反函数的反函数是它本身。

沪教版(上海) 高三年级 新高考辅导与训练 第七章 矩阵与行列式、算法初步、复数 本章测试

沪教版(上海) 高三年级 新高考辅导与训练 第七章 矩阵与行列式、算法初步、复数 本章测试

沪教版(上海) 高三年级新高考辅导与训练第七章矩阵与行列式、算法初步、复数本章测试一、单选题(★★) 1. 如果执行如图所示的程序框图,那么输出的().A.1B.C.D.(★★) 2. 图1是某县参加2007年高考的学生身高条形统计图,从左到右的各条形图表示学生人数依次记为A 1、A 2、…A 10(如A 2表示身高(单位:cm)在[150,155 内的人数].图2是统计图1中身高在一定范围内学生人数的一个算法流程图.现要统计身高在160~180cm(含160cm,不含180cm)的学生人数,那么在流程图中的判断框内应填写的条件是A.i<6B.i<7C.i<8D.i<9(★★★) 3. 关于,的方程组,则下列说法错误的是().A.一定有解B.可能有唯一解C.可能有无穷多解D.可能无解(★★★) 4. 设为复数,且,则().A.B.C.D.为虚数(★) 5. 若复数是纯虚数,则实数的值为()A.1B.2C.1或2D.-1(★★★) 6. 当时,()A.1B.-1C.D.(★★) 7. 设,方程的根有().A.1个B.2个C.3个D.4个(★★) 8. 设,那么为纯虚数的充要条件是()A.B.且C.D.且(★) 9. 已知,,则三个不同点,,共线是的().A.充要条件B.充分非必要条件C.必要非充分条件D.既非充分又非必要条件(★) 10. 设的共轭复数是,若,,则等于()A.B.C.D.(★★★) 11. 某店一个月的收入和支出总共记录了个数据,,…,,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入和月净盈利,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的().A.,B.,C.,D.,(★★★) 12. 方程在复数集中的解有( )A.2个B.4个C.6个D.8个(★★) 13. 对一元二次方程下列命题中不正确的是().A.两根,满足,B.两根,满足C.若,则方程有两个不等实根D.若,则方程有两个等根(★★★) 14. 方程的根的情况是().A.有两个不等实根B.有一对共轭虚根C.有一个实根,一个虚根D.有两个不共轭虚根二、填空题(★) 15. 若复数 z 满足z (1+i) =1-i( 是虚数单位),则其共轭复数=____________ (★★★) 16. 关于,的方程组无实数解,则________.(★) 17. 若行列式中,元素4的代数余子式大于0,则 x满足的条件是________________________ .(★★★) 18. ,,则________.(★★★) 19. 分解因式:________.(★★) 20. ________.(★★) 21. 方程的解为________.(★) 22. 若关于的方程有实根,为虚数单位,则实数的取值为________.(★) 23. 某算法的程序框图如图所示,则输出量与输入量满足的函数关系是________ .(★★) 24. 若是纯虚数,则实数的值是 _____ .(★★) 25. 实数取________时,方程组有非零解.(★) 26. 在行列矩阵中,记位于第行第列的数为.当时,________.三、解答题(★) 27. 已知,试求实数,的值.(★★★) 28. 若满足,则判断的形状.(★★★) 29. 设复数集合,求集合中元素的模的范围.(★★) 30. 已知方程有两根,,且,,满足,求实数.(★★) 31. 直线与双曲线交于点,,点的坐标为,求的面积.(★★★)32. 已知分别为中角,,的对边,若满足,试判别的形状.(★★★) 33. 已知复数,,,,,满足,.(1)若所对应点在圆上,求所对应点的轨迹;(2)是否存在这样的直线,对应点在上,所对应点也在直线上?若存在,求出所有这些直线;若不存在,请说明理由.四、双空题(★★) 34. 随机抽取某产品件,测得其长度分别为,则如图所示的程序框图输出的 _______ ,表示的样本的数字特征是 ________ .(注:框图上(右)中的赋值符号“=”也可以写成“←”“:=”)。

沪教版(上海) 高三年级 新高考辅导与训练 第七章 矩阵与行列式、算法初步、复数 一、矩阵与行列式

沪教版(上海) 高三年级 新高考辅导与训练 第七章 矩阵与行列式、算法初步、复数 一、矩阵与行列式

沪教版(上海) 高三年级新高考辅导与训练第七章矩阵与行列式、算法初步、复数一、矩阵与行列式一、解答题(★★) 1. 已知,,.求(1);(2);(3);(4).(★★★) 2. 关于,的二元线性方程的增广矩阵经过变换,最后得到的矩阵为,求,.(★★★) 3. 解关于的方程组:.(★★) 4. 求矩阵,满足.(★) 5. 判别关于,的二元一次方程组解的情况,并解方程组:.(★★) 6. 已知,不等式的解为,试求,的值.(★★) 7. 已知三角形三边的和,又,求各边之长.(★★★) 8. 化简:.(★★) 9. 解关于,,的方程组:.二、单选题(★) 10. 两个3×2的矩阵的乘积为().A.一个的矩阵B.一个的矩阵C.一个的矩阵D.以上都不对(★★)11. “三阶行列式的第二行和第三行的元素对应相等”是“该行列式的值为零”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件(★★) 12. 三阶行列式中,的代数余子式是().A.B.C.D.(★★) 13. 已知直线方程为,则下列各点不在这条直线上的是()A.B.C.D.(★) 14. 已知,,则△ 的面积为().A.B.C.D.(★★) 15. 以下向量中,能成为以行列式形式表示的直线方程的一个法向量的是().A.B.C.D.三、填空题(★★) 16. 行列式的值是________.(★) 17. 若行列式,则.(★) 18. 不等式的解为________.(★) 19. 当实数________时,方程组有唯一解.(★) 20. 计算:________.(★★) 21. 已知,,则与两个矩阵的积为________.(★★) 22. 关于,的二元一次方程组,有无穷多组解,则________.(★★) 23. 已知三阶行列式的元素,,,,,,,,按顺序成等差数列,则________.(★★★) 24. 行列式中,第3行第2列的元素的代数余子式记作.则函数的零点是 ________ .(★) 25. 各项都为正数的无穷等比数列,满足,且是增广矩阵为的线性方程组的解,则无穷等比数列各项和的数值是________.。

高考数学压轴专题上海备战高考《矩阵与变换》单元汇编及解析

高考数学压轴专题上海备战高考《矩阵与变换》单元汇编及解析

【高中数学】数学《矩阵与变换》复习知识点一、151.已知等比数列{}n a 的首项11a =,公比为()0q q ≠.(1)求二价行列式1324a a a a 的值; (2)试就q 的不同取值情况,求解二元一次方程组132432a x a y a x a y +=⎧⎨+=⎩.【答案】(1)0;(2)当23q =时,方程组无数解,且439x t y t⎧=-⎪⎨⎪=⎩,t R ∈;当23q ≠且0q ≠时,方程组无解.【解析】 【分析】(1)由行列式定义计算,再根据等比数列的性质得结论; (2)由二元一次方程组解的情况分析求解. 【详解】(1)∵{}n a 是等比数列,∴1423a a a a =, ∴1324a a a a 14230a a a a =-=. (2)由(1)知方程组无解或有无数解. 当241323a a q a a ===时,方程组有无数解,此时方程组中两个方程均为439x y +=, 解为439x t y t⎧=-⎪⎨⎪=⎩,当23q ≠且0q ≠时,方程组无解. 【点睛】本题考查行列式的概念,考查等比数列的性质,考查二元一次方程组的解的情况.掌握二元一次方程组的解的情况的判断是解题基础.2.解关于x ,y ,z 的方程组()1213x my z x y z m x y z ⎧-+=⎪++=⎨⎪-++=⎩.【答案】(1)2m ≠且1m ≠-时,2212112432x m y m m m z m m ⎧=⎪-⎪⎪=⎨+⎪⎪-++=⎪-++⎩;(2)2m =或1m =-时,无解. 【解析】 【分析】先根据方程组中,,x y z 的系数及常数项计算计算出D ,D x ,D y ,D z 下面对m 的值进行分类讨论,并求出相应的解. 【详解】()()21D m m =--+,()1x D m =-+,()2y D m =--,2243z D m m =-++.所以(1)2m ≠且1m ≠-时,2212112432x m y m m m z m m ⎧=⎪-⎪⎪=⎨+⎪⎪-++=⎪-++⎩;(2)2m =或1m =-时,无解. 【点睛】本题考查三元一次方程组的行列式、线性方程组解得存在性,唯一性、三元一次方程的解法等基础知识,考查运算能力与转化思想,属于中档题.3.求证:sin cos 1sin 2cos 21sin 22sin sin 3cos31xx xx x x xx =-. 【答案】证明见解析【解析】 【分析】先利用三阶矩阵的计算方法,化简等式的左边,再结合两角差的正弦公式化简即可证明. 【详解】sin cos 1sin 2cos 2sin cos sin cos sin 2cos 21sin 3cos3sin 3cos3sin 2cos 2sin 3cos31x x x x x x x x x x x x x x x xxx =-+=sin (-x )-sin(-2x )+sin (-x )=sin 2x -sin 2x . 【点睛】本题考查行列式的运算法则及性质的应用,变换的能力及数学分析能力,涉及两角和差的正弦公式,属于中档题.4.利用行列式讨论关于,x y 的方程组1323ax y ax ay a +=-⎧⎨-=+⎩解的情况.【答案】①当03a a ≠≠-且时,方程组有唯一解12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,方程组无解;③当3a =-时,方程组有无穷多解,可表示为()31x tt R y t =⎧∈⎨=-⎩.【解析】 【分析】由题,可得()()()3,3,23x y D a a D a D a a =-+=-+=+,分别讨论方程组有唯一解,无解,无穷多解的情况即可 【详解】()21333a D a a a a a a==--=-+-, ()()11233323x D a a a a a a-==-+=--=-++-, ()()212332623323y aD a a a a a a a a a -==++=+=++,①当03a a ≠≠-且时,方程有唯一解,()()()()3132323xy a D x D a a a D a a y D a a ⎧-+===⎪-+⎪⎨+⎪===-⎪-+⎩,即12x a y ⎧=⎪⎨⎪=-⎩;②当0a =时,0D =,30x D =-≠,方程组无解;③当3a =-时,0x y D D D ===,方程组有无穷多解,设()x t t R =∈,则原方程组的解可表示为()31x tt R y t =⎧∈⎨=-⎩.【点睛】本题考查利用行列式解方程组,考查运算能力,考查分类讨论思想5.用行列式解关于的二元一次方程组:12(1)x y x k y k +=⎧⎨++=⎩.【答案】1k =时,方程组无解; 1k ≠时,12,11k x y k k -==-- 【解析】【分析】由题方程组中x ,y 的系数及常数项求出D,D ,D X y ,然后再讨论k 的值进行求解方程组的解. 【详解】由题意可得:11D 21k =+= 1k -,11D 11X kk ==+,11 D 22y k k==-,∴当D ?10k =-≠即1k ≠时,方程组有唯一解即D 1D 1X x k ==-,D 2 D 1y k y k -==-; 当D ?10k =-=即1k =时,方程组无解.综上所述: 1k ≠时,方程组有唯一解1121x k k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩; 1k =时,方程组无解. 【点睛】本题考查了二元一次方程组的矩阵形式、线性方程组解得存在性、唯一性以及二元方程解法等基础知识,考查了学生的运算能力,属于中档题.6.[选修4-2:矩阵与变换]已知矩阵11a A b ⎡⎤=⎢⎥-⎣⎦的一个特征值为2,其对应的一个特征向量为21α⎡⎤=⎢⎥⎣⎦. 若x a A y b ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,求x ,y 的值.【答案】x ,y 的值分别为0,1.【解析】试题分析:利用矩阵的乘法法则列出方程,解方程可得x ,y 的值分别为0,1. 试题解析:由条件知,2A αα=,即][1222111a b ⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦,即][2422a b +⎡⎤=⎢⎥-+⎣⎦, 所以24,{22,a b +=-+= 解得2,{ 4.a b == 所以1214A ⎡⎤=⎢⎥-⎣⎦. 则][][][12221444xx x y A y y x y +⎡⎤⎡⎤===⎢⎥⎢⎥--+⎣⎦⎣⎦,所以22,{44,x y x y +=-+= 解得0,{ 1.x y == 所以x ,y 的值分别为0,1.7.已知命题P :lim 0n n c →∞=,其中c 为常数,命题Q :把三阶行列式5236418x c x ⎛⎫ ⎪- ⎪ ⎪⎝⎭中第一行,第二列元素的代数余子式记为()f x ,且函数()f x 在1,4⎛⎤-∞ ⎥⎝⎦上单调递增,若命题P 是真命题,而命题Q 是假命题,求实数c 的取值范围.【答案】112c -<< 【解析】 【分析】先由已知命题P 是真命题,得:11c -<<,根据三阶行列式中第一行、第二列元素的代数余子式写出2()4f x x cx =-+-,结合函数()f x 在上单调递增.求得c 的取值范围,最后即可解决问题. 【详解】由已知命题:lim 0nn P c →∞=,其中c 为常数,是真命题,得:11c -<<。

上海市华东师范大学第二附属中学实验班用高三数学习题详解 第十章 矩阵与行列式初步 含解析

上海市华东师范大学第二附属中学实验班用高三数学习题详解 第十章 矩阵与行列式初步 含解析

第十章 矩阵与行列式初步10.1 矩阵的定义及其运算1.设矩阵121052312432563241⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪===⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎩⎭,,,A B C 求(1)+A B ,(2)()++A B C ,(3)2-+A B C ,(4)32-B A .解:(1)225588⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,(2)7487129⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,(3)10671106⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭,(4)1401016-⎧⎫⎪⎪⎨⎬⎪⎪--⎩⎭.2.设矩阵24241236-⎧⎫⎧⎫==⎨⎬⎨⎬---⎩⎭⎩⎭,A B ,求AB 和BA .解:242416322424001236816361200----⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫=⋅==⋅=⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬------⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭,AB BA . 3.求下列矩阵的乘积:(1)()317156425⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭.(2)212103032141⎧⎫⎧⎫⎪⎪⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭.(3)301601054234215321⎧⎫⎧⎫⎪⎪⎪⎪⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭. 解:(1){}3736.(2)72164⎧⎫⎨⎬⎩⎭.(3)2124222324291311⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭. 4.设矩阵215031400306760213221215624--⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪===-⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪---⎩⎭⎩⎭⎩⎭,,A B C . 求(1)()2-A B C .(2)3+A BC . 解:(1)30335422557383618-⎧⎫⎪⎪--⎨⎬⎪⎪-⎩⎭.(2)188104913634314-⎧⎫⎪⎪⎨⎬⎪⎪--⎩⎭. 5.在一次校运会中,高二年级的三个夺冠热门班级获得前六名的项目数如表1所示,而每一种名次可获得如表2所示相应的积分.表1 名次第一名 第二名 第三名 第四名 第五名 第六名 A 班 5 2 3 4 5 3 B 班187212如果现在要求按前6名的得分统计各个班的团体总分,进而决定各班在年级中的名次,那么,哪个班级最终获胜了呢?(要求用矩阵运算)解:()10645224535012121210399321⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==+++++=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭A S ;()106418721210482862292321⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==+++++=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭B S ;()10646124366068126698321⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪==+++++=⎨⎬⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭C S ;所以A 班最终获胜了. 6.设矩阵1001⎧⎫=⎨⎬-⎩⎭A ,⎧⎫=⎨⎬⎩⎭x B y ,求AB ;并说出矩阵A 对矩阵B 产生了怎样的变换? 解:⎧⎫=⎨⎬-⎩⎭x AB y ,产生了一个镜像变换,类似于直角坐标系中关于X 轴对称.10.2 矩阵变换求解线性方程组1.写出方程123123121232152232353-+=⎧⎪--=⎪⎨+=⎪⎪-+=⎩x x x x x x x x x x x 的系数矩阵和增广矩阵.解:系数矩阵112151203315-⎧⎫⎪⎪--⎪⎪⎨⎬⎪⎪⎪⎪-⎩⎭,增广矩阵1121151220323153-⎧⎫⎪⎪--⎪⎪⎨⎬⎪⎪⎪⎪-⎩⎭. 2.对下列方阵施以初等变换,使之成为单位方阵: (1)113327133-⎧⎫⎪⎪-⎨⎬⎪⎪-⎩⎭,(2)321111111⎧⎫⎪⎪-⎨⎬⎪⎪--⎩⎭解:(1)()122113113113327101101133133110----⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪-−−−−−−−−→−−−−−−→−−−−−−→⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪--⎩⎭⎩⎭⎩⎭第一行加到第三行第三行乘以第一行乘以加到第二行第三行加到第一行第三行不变第二行不变第二行不变 ()()()211203001001101101100110110110---⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪−−−−−−−−→−−−−−−−−→−−−−−−−−→⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪⎩⎭⎩⎭⎩⎭三一第二行乘以加到第一行第一行乘以加到第二行第一行乘以加到第行第三行不变第三行不变第行不变001100100010010001⎧⎫⎧⎫⎪⎪⎪⎪−−−−−−−→⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎩⎭交换第一行和第二行交换第二行和第三行(2)()()()21115112321321321111111110111001001---⎛⎫- ⎪⎝⎭⎧⎫⎧⎫⎧⎫⎪⎪⎪⎪⎪⎪-−−−−−−−−→-−−−−−−−−→-−−−−−−−→⎨⎬⎨⎬⎨⎬⎪⎪⎪⎪⎪⎪--⎩⎭⎩⎭⎩⎭三第二行乘以加到第一行第一行乘以第二行乘以加到第三行第行乘以加到第一行第三行乘以加到第二行第三行不变第三行乘以 ()()11100100110010001001--⎧⎫⎧⎫⎪⎪-⎪⎪⎪⎪−−−−−−−−→⎨⎬⎨⎬⎪⎪⎪⎪⎩⎭⎪⎪⎩⎭第二行乘以加到第二行第二行乘以第三行不变3.把矩形23822122121314A -⎧⎫⎪⎪=-⎨⎬⎪⎪⎩⎭化为行最简形矩阵.解:10322201330000⎧⎫⎪⎪⎪⎪-⎨⎬⎪⎪⎪⎪⎩⎭.4.用矩形的初等变换解下列线性方程组:(1)1212323312234115x x x x x x x +=-⎧⎪+-=⎨⎪-=⎩.(2)12312312321352752x x x x x x x x x ++=⎧⎪-++=-⎨⎪-++=⎩.(3)1212123232328233x x x x x x x +=⎧⎪-=-⎨⎪++=⎩.(4)12312312322313250x x x x x x x x x --=⎧⎪--=⎨⎪--+=⎩.解:(1)8757x y ⎧=⎪⎪⎨⎪=-⎪⎩.(2)无解.(3)212x y z =-⎧⎪=⎨⎪=⎩.(4)503x y z =⎧⎪=⎨⎪=⎩.5.线性方程组21202x z x y y z -=-⎧⎪+=⎨⎪+=⎩的增广矩阵是__________.解:201112000112--⎧⎪⎨⎪⎩. 6.设A 是一个n n ⨯的矩阵()11*k k A AA A A k +⎧=⎪⎨=⋅∈⎪⎩N .若1101A ⎧⎫=⎨⎬⎩⎭,求: (1)2A ,3A .(2)猜测()*n A n ∈N ,并用数学归纳法证明.解:(1)223111213010101A A ⎧⎫⎧⎫⎧⎫===⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,.(2)()*101n n A n N ⎧⎫=∈⎨⎬⎩⎭.10.3 二阶行列式与二元线性方程组1.计算下列二阶行列式的值: (1)35571--.(2)sin cos cos sin αααα--.解:(1)()3553535071-=---=-. (2)22sin cos sin cos cos 2cos sin ααααααα-=-+=-.2.用二阶行列式求解方程组12123234x x x x +=⎧⎨-=-⎩.解:1131135510234324x y D D D ==-==-==-----,,; 1212y xD D x x D D ====,,所以方程组的解为1212x x =⎧⎨=⎩. 3.设a ∈R ,若方程组()()120320a x y x a y ⎧-+=⎪⎨+-=⎪⎩除00x y ==,外,还有其他解,求a 的值.解:120432a a-=⇒-或1-.4.已知方程组()()()11232a x ay a a x a y ⎧-+=⎪∈⎨+++=⎪⎩R ,恰有一解,求x y +的最小值,并求此时a 的范围. 解:()()()1132323a aD a a a a a a -==-+-+=-++, 1113,42322x y a a D a D a a a -==-==-++. 3433a a x y --==--,. ()()()()7203341341343332743aa a a x y a a a a a -⎧<⎪⎪--⎪+=+=-+-=⎨⎪-⎪>⎪⎩≤≤.x y +的最小值为13,此时a 的范围是34a ≤≤.10.4 三阶行列式1.用对角线法计算下列行列式: (1)623251469----.(2)a cb ba c cba. 解:(1)182.(2)3333a b c abc ++-. 2.利用行列式解下列方程组:(1)()()415332x y y y z z⎧+=-⎪⎨+=-⎪⎩.(2)25314510x y x z y z +=⎧⎪-=-⎨⎪-=⎩.(3)123123123323154329547x x x x x x x x x ++=⎧⎪-+=⎨⎪-+=⎩.解:(1)1524513x k y k z k ⎧=-+⎪⎪⎪=-⎨⎪⎪=⎪⎩.(2)000x y z =⎧⎪=⎨⎪=⎩.(3)435215325x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩.3.利用行列式性质,化简并计算下列行列式: (1)682152056341---.(2)111a b cbc a c a b+++.(3)215326121236132623--解:(1)()()6821520566083026060480341--=-⋅-⋅-+⋅+=-.(2)()()()()2211110111ab cbc a c a bb c a a b c ab b ac c a b c b c c b ca b a b cca b++++=-++=+---+++-=+++.(3)2153261212411115311272363942336649108132623-⎛⎫⎛⎫⎛⎫=-⋅---⋅--+⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭-.4.展开行列式,证明下列行列式的值为零: (1)000ma nab c nb c m ---.(2)254123131352323143--+. 解:(1)000000ma nabcnb c cnb ma nab mnabc mnabc cc mc m ---=+=+=---. (2)()()2541231313522756411727370323143--+=⋅-⋅-+⋅---⋅+⋅=.5.用行列式性质证明:(1)111111*********2222b c c a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++(2)()()()222111a a bb a b bc c a cc =---. 证明:(1)11111111111111111222222222222222222222b c c a a b b c a b a b b ca ab bc c a a b b c a b a b b c a a b b c c a a b b c a b a b b c a a b ++++-++++++=+-+=++++++-+++111111111111111122222222222222222232a b c a b a b c b a b b c a b ca b c a b a b c b a b b c a b c a b c a b a b c b a b b c a b c ++++=-++=-+=+=++++.(2)()()()()()()()222222222111a ab b bc b c a c b a c b b c bc ab ac a a b b c c a c c =---+-=--++-=---.6.[]0πθ∈,,且1cos sin 0cos sin 01sin cos θθθθθθ-=,,则θ=__________. 解:1cos sin π00cos sin 12sin cos 1sin 241sin cos θθθθθθθθθθ=-=-=-⇒=,.7.设行列式111222333a b c D a b c a b c =,则111111222222333333223223223c b c a b c c b c a b c c b c a b c ++++++=+++( ). A .D -B .DC .2D D .2D - 解:111111111111111112222222222222222233333333333333333223232232322323c b c a b c c b a b c c b a a b c c b c a b c c b a b c c b a a b c D c b c a b c c b a b c c b a a b c ++++++++=++==--=-+++++,选A.8.如行列式111213212223313233a a a a a a D a a a =,则313233212223111213333222a a a a a a a a a =---( ).A .6D -B .6DC .4D D .4D -解:313233313233111213212223212223212223111213111213313233333222666a a a a a a a a a a a a a a a a a a D a a a a a a a a a =-==---,选B . 9.一位同学对三元一次方程组111122223333a x b y c z d a x b y c z d a x b y c z d++=⎧⎪++=⎨⎪++=⎩(其中()123i i i a b c i =,,,,不全为零)的解的情况进行研究后得到下列结论:结论1:当0D =,且0x y z D D D ===时,方程组有无穷个解; 结论2:当0D =,且x y z D D D ,,都不为零时,方程组有无穷个解; 结论3:当0D =,且0x y z D D D ===时,方程组无解.但是上述结论均不正确.下面给出的方程组可以作为结论1、2和3的反例依次为( ). (1)230231232x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩;(2)2020240x y x y z x y +=⎧⎪++=⎨⎪+=⎩;(3)212032x y x y z x y z +=⎧⎪-++=⎨⎪++=⎩.A .(1)(2)(3)B .(1)(3)(2)C .(2)(1)(3)D .(3)(2)(1)解:带入逐一检验即可,选B .10.在ABC △中,A 、B 、C 所对的边分别为a 、b 、c ,已知2a c ==,且sin sin 0020cos 01C B b c A -=,求ABC △的面积. 解:sin sin 0002sin sin 2cos cos 01C B b c b C B c A A =-=-, ()1π2sin sin 2sin sin cos 0cos 23R C B C B A A A -=⇒==,,2221cos 422b c a A b bc +-==⇒=,1sin 2ABC S bc A ==△10.5 三阶行列的展开与三元齐次线性方程组1.利用代数余子式展开下列三阶行列式并求值,并用对角线法验算:(1)122451314-.(2)584345463---. 解:(1)()12245112121321921263843314=⋅-⋅+⋅-=--=--.(2)()()()584345512308920418162102328450463--=⋅---⋅+-⋅-=---=--. 2.利用行列式按行或按列展开式计算三阶行列式:104014131D =.解:1041201014145493113131=⋅+⋅=--=-. 3.计算下列行列式:(1)837504922---.(2)152552515552515---.(3)64227828362035135-.解:(1)()837504883467104922-=⋅-⋅-⋅-=---.(2)()()()1525525155152251252537525562575200052515--=⋅++⋅--+⋅-=--.(3)6422782836226802035135-=-.4.解下列齐次线性方程组:(1)023204540x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.(2)202020x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.(3)670510504370x y z x y z x y z --=⎧⎪++=⎨⎪--=⎩.解:(1)0x k y z k =-⎧⎪=⎨⎪=⎩.(2)000x y z =⎧⎪=⎨⎪=⎩.(3)x k y k z k =⎧⎪=-⎨⎪=⎩.5.已知1023142x x 的代数余子式120A =,则代数余子式21A =__________.解:12211023124022442x A x x A x x =--=⇒==-=-,.6.1010411a a 大于零的充要条件为__________.解:()()210101011411a a a a =->∈-∞-+∞,,,∪. 7.问λμ,取何值时,齐次线性方程组1231231220020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解?解:111101121λμλμ=⇒=或0μ=.9.()2*4n n n ∈N ,≥个正数排成一个n 行n 列的矩阵111212122212.....................n n n n nn a a a a a a A a a a ⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪⎪⎪⎩⎭,其中()11ik a i n k n ,≤≤≤≤表示该数阵中位于第i 行第k 列的数,已知该数阵每一行的数成等差数列,每一列的数成公比为2的等比数列,且2134820a a ==,. (1)求11a 和ik a . (2)计算行列式11122122a a a a 和im ik jm jka a a a .(3)设()()112132...n n n n n A a a a a --=++++,证明:当n 是3的倍数时,n A n +能被21整除.解:(1)()211122212i i ik k a a a k --===+.(2)1112212223046a a a a ==. ()()()()1111121212120im iki j i j jm jk a a m k k m a a ----=++-++=;(3)()()()()2123......12122221221222n n n n A n n n A n n n -=++⋅+-⋅++⋅=+⋅+⋅+-⋅++⋅,. 两式相减,得()()323321n n n n A n A n =⋅-++=-,.当*3n m m =∈N ,时,()381m n A n +=-. ①1m =时,()38121n -=显然能被21整除; ②假设m k =时,()381k -能被21整除,结论也成立. 由①、②可知,当n 是3的倍数时,n A n +能被21整除.。

高三数学必做题--矩阵与变换

高三数学必做题--矩阵与变换

专题一 矩阵与变换二.主要内容解读 1.矩阵变换注意:矩阵AB 与矩阵BA 意义不同AB 是先施加矩阵B 对应的变换,再施加矩阵A 对应的变换; BA 是先施加矩阵A 对应的变换,再施加矩阵B 对应的变换. 2.矩阵的运算、逆矩阵逆矩阵的求法:(1)定义法;(2)公式法1-=A d b ad bc ad bc c a ad bcad bc -⎡⎤⎢⎥--⎢⎥-⎢⎥⎢⎥--⎣⎦. 3.特征值和特征向量设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得A λ=αα,那么称λ为α的一个特征值,而α称为A 的属于特征值λ的一个特征向量.特征值和特征向量的求法:(1)写出A 的特征多项式()f λ,(2)求出()0f λ=的根,(3)将λ代入λ=A αα的二元一次方程组,(4)写出满足条件的一组非零解. 三.高考试题展示1.(08年江苏)在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵2001⎡⎤⎢⎥⎣⎦对应的变换作用下得到曲线F ,求F 的方程.[解析]本题主要考察曲线在矩阵变换下的变化特点,考察运算求解能力.满分10分. 解:设00(,)P x y 是椭圆上任意一点,点00(,)P x y 在矩阵2001⎡⎤⎢⎥⎣⎦对应的变换下变为点 00(,)P x y ''',则有00002001x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,即00002x x y y ⎧'=⎪⎨'=⎪⎩,所以00002x x y y ⎧'=⎪⎨⎪'=⎩又因为点P 在椭圆上,故220041x y +=,从而2200()()1x y ''+=,所以,曲线F 的方程是:221x y +=.2.(09年江苏)求矩阵3221⎡⎤=⎢⎥⎣⎦A 的逆矩阵.[解析] 本题主要考查逆矩阵的求法,考查运算求解能力.满分10分. 解:设矩阵A 的逆矩阵为,x y z w ⎡⎤⎢⎥⎣⎦则3210,2101x y z w ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦即323210,2201x z y w x z y w ++⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦故321,320,20,21,x z y w x z y w +=+=⎧⎧⎨⎨+=+=⎩⎩解得:1,2,2,3x z y w =-===-, 从而A 的逆矩阵为11223--⎡⎤=⎢⎥-⎣⎦A . 3.(10年江苏)在平面直角坐标系xOy 中,A (0,0),B (-3,0),C (-2,1),设k ≠0,k ∈R ,M =⎥⎦⎤⎢⎣⎡100k ,N =⎥⎦⎤⎢⎣⎡0110,点A 、B 、C 在矩阵MN 对应的变换下得到点A 1,B 1,C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求实数k 的值.[解析] 本题主要考查矩阵的乘法运算及变换.满分10分.解:0010011010k k ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦MN , 由00320010001032k k --⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,知A 1(0,0),B 1(0,-3),C 1(k ,-2). ∵1322ABC C S AB y ∆=⋅=,∴111111132322A B C C ABC S A B x k S ∆∆=⋅===,∴2k =±.4.(11年江苏)已知矩阵1121⎡⎤=⎢⎥⎣⎦A ,向量12⎡⎤=⎢⎥⎣⎦β.求向量α,使得2=A αβ. [解析] 本题主要考查矩阵的乘法运算.满分10分.解:设x y α⎡⎤=⎢⎥⎣⎦,由2A =αβ得:321432x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,321432x y x y +=⎧∴⎨+=⎩,12x y =-⎧∴⎨=⎩,12-⎡⎤∴=⎢⎥⎣⎦α.四.试题分类汇总 1.矩阵变换 题1:(2010南京一模)在直角坐标系中,已知△ABC 的顶点坐标为A (0,0),B (2,0),C (2,1),求△ABC 在矩阵MN 作用下变换所得到的图形的面积,这里矩阵:2002⎡⎤=⎢⎥⎣⎦M ,0110-⎡⎤=⎢⎥⎣⎦N .题2:(2009年南京一模)已知矩阵0110⎡⎤=⎢⎥⎣⎦M ,0110-⎡⎤=⎢⎥⎣⎦N .在平面直角坐标系中,设直线012=+-y x 在矩阵M N 对应的变换作用下得到曲线F ,求曲线F 的方程.题3:(2011年苏、锡、常、镇二模)求圆22:4C x y +=在矩阵2001⎡⎤=⎢⎥⎣⎦A 对应变换作用下的曲线方程.题4:(2011年南京二模)求曲线C 1xy =:在矩阵1111⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到的曲线1C 的方程.题5:(2011年南通二模)已知圆C :221x y +=在矩阵0=(0,0)0a a b b ⎡⎤>>⎢⎥⎣⎦A 对应的变换作用下变为椭圆22194x y +=,求a ,b 的值.题6:(2010年南京二模)如果曲线2243x xy y ++在矩阵11a b ⎛⎫⎪⎝⎭的作用下变换得到曲线221x y -=,求a b +的值.题7:(2011年苏、锡、常、镇一模)已知直角坐标平面xOy 上的一个变换是先绕原点逆时针旋转45,再作关于x 轴反射变换,求这个变换的逆变换的矩阵.2.矩阵的运算、逆矩阵题8:(2009南通二模)已知1 0 4 31 2 4 1-⎡⎤⎡⎤=⎢⎥⎢⎥-⎣⎦⎣⎦B , 求矩阵B .题9:(2010盐城二模)求使等式 2 4 2 0 1 03 50 10 -1⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦M 成立的矩阵M .题10:(2009南京二模)已知二阶矩阵M 满足1112,0012⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦M M ,求211⎡⎤⎢⎥-⎣⎦M .题11:(2010南通一模)若点A (2,2)在矩阵cos sin sin cos αααα-⎡⎤=⎢⎥⎣⎦M 对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.题12:(2010年盐城一模)已知二阶矩阵A 有特征值31=λ及其对应的一个特征向量111⎡⎤=⎢⎥⎣⎦α,特征值12-=λ及其对应的一个特征向量211⎡⎤=⎢⎥-⎣⎦α,求矩阵A 的逆矩阵1-A .3.特征值和特征向量题13:(2010年南通二模)求矩阵2112⎡⎤⎢⎥⎣⎦的特征值及对应的特征向量.题14:(2009年苏、锡、常、镇二模)已知矩阵M 221a ⎡⎤=⎢⎥⎣⎦,其中a ∈R ,若点(1,2)P - 在矩阵M 的变换下得到点(4,0)P '-,(1)求实数a 的值; (2)求矩阵M 的特征值及其对应的特征向量.题15:(2011年盐城一模)已知矩阵M =⎥⎦⎤⎢⎣⎡x 221的一个特征值为3,求其另一个特征值.题16:(2011年南京一模)已知21⎡⎤=⎢⎥⎣⎦α为矩阵114a ⎡⎤=⎢⎥-⎣⎦A 属于λ的一个特征向量,求实数a ,λ的值及2A .题17:(2010年苏、锡、常、镇二模)一个22⨯的矩阵M 有两个特征值:128,2λλ==,其中1λ对应的一个特征向量111⎡⎤=⎢⎥⎣⎦e ,2λ对应的一个特征向量212⎡⎤=⎢⎥-⎣⎦e ,求M .参考答案: 题1:解:200102021020MN --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,由0203200220001064----⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,知1(0,0)A ,1(0,6)B -,1(2,4)C --,11111162A B C C S A B x ∆∴=⋅=.题2:解:由题设得⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡=100101100110MN ,设),(y x 是直线012=+-y x 上任意一点,点),(y x 在矩阵MN 对应的变换作用下变为),(y x '',则有⎥⎦⎤⎢⎣⎡''=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-y x y x 1001, 即⎥⎦⎤⎢⎣⎡''=⎥⎦⎤⎢⎣⎡-y x y x ,所以⎩⎨⎧'-='=y y x x .因为点),(y x 在直线012=+-y x 上,从而01)(2=+'--'y x ,即:012=+'+'y x ,所以曲线F 的方程为 012=++y x .题3:解:设(,)P x y 是圆22:4C x y +=上的任意一点,设(,)P x y '''是(,)P x y 在矩阵2001⎡⎤=⎢⎥⎣⎦A 对应变换作用下的新曲线上的对应点, 则20201x x x y y y '⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦⎣⎦, …………………………………3分 则2x x y y '=⎧⎨'=⎩,所以2x x y y '⎧=⎪⎨⎪'=⎩, …………………………………6分将2x x y y '⎧=⎪⎨⎪'=⎩代入224x y +=,得22()()44x y ''+=. …………………………………8分 所以所求曲线方程为221164x y +=. …………………………………10分 题4:解:设00(,)P x y 为曲线C 1xy =:上任意一点,它在矩阵⎥⎦⎤⎢⎣⎡-=1111M 对应的变换作用下得到点(,)Q x y ,由001111x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,得0000x y x x y y +=⎧⎨-+=⎩,解得0022x y x x yy -⎧=⎪⎪⎨+⎪=⎪⎩, ………………………5分 因为00(,)P x y 在曲线C 1xy =:上,所以001x y =,所以122x y x y -+⨯=,即224x y -=. 所以所求曲线1C 的方程为:224x y -=. …………………………………10分题5:解:设(,)P x y 为圆C 上的任意一点,在矩阵A 对应的变换下变为另一个点(,)P x y ''',则 00x a x y b y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎣⎦,即,.x a x y b y '=⎧⎨'=⎩ …………………………………4分 又因为点(,)P x y '''在椭圆22194x y +=上,所以 2222194a xb y +=.由已知条件可知,221x y += ,所以 a 2=9,b 2=4.因为 a >0 ,b >0,所以 a =3,b =2. ………………………………10分题6:解:设00(,)P x y 是曲线22431x xy y ++=上的任意一点,点00(,)P x y 在矩阵11a b ⎡⎤⎢⎥⎣⎦对应的变换作用下,得到的点(,)Q x y 都在曲线221x y -=上. 由0011x a x b y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,得0000x ay x bx y y +=⎧⎨+=⎩, 代入221x y -=,得:22220000(1)(22)(1)1b x a b x y a y -+-+-=, 又因为00(,)P x y 在22431x xy y ++=上,所以220000431x x y y ++=,所以221122413b a b a ⎧-=⎪-=⎨⎪-=⎩,解得20a b =⎧⎨=⎩,所以2a b +=.题7:解:这个变换的逆变换是先作关于x 轴反射变换,再作绕原点顺时针45旋转变换,…2分其矩阵是10cos(45)sin(45)01sin(45)cos(45)⎡⎤---⎡⎤⋅⎢⎥⎢⎥---⎣⎦⎣⎦ …………………………………6分22⎡-⎢⎢=⎢⎢⎣ 。

上海第期高三名校数学理试题分省分项汇编 专题 行列式与矩阵解析含解析

上海第期高三名校数学理试题分省分项汇编 专题 行列式与矩阵解析含解析

一.基础题组
1. 【上海市黄浦区2014届高三上学期期末考试(即一模)数学(理)试题】三阶行列式0
45sin 2cos 61
0sin ---x
x x ()R x ∈中元素4的代数余子式的值记为()x f ,则函数()x f 的最小值为
2. 【上海市十三校2013年高三调研考数学试卷(理科)】已知二元一次方程组的增广矩阵是421m m m
m +⎛⎫ ⎪⎝⎭,若该方程组无解,则实数m 的值为___________. 3. 【2013学年第一学期徐汇区学习能力诊断卷高三年级数学学科(理科)】计算:
122423432⎛⎫⎛⎫⋅+ ⎪ ⎪⎝⎭⎝⎭
=
.
4. 【上海市杨浦区2013—2014学年度第一学期高三年级学业质量调研数学试卷(理科)】
若行列式124012
x -=,则x = .
5. 【上海市黄浦区2014届高三上学期期末考试(即一模)数学(理)试题】各项都为正数的无穷等比数列{}n a ,满足,,42t a m a ==且⎩⎨⎧==t y m x 是增广矩阵⎪⎪⎭⎫ ⎝⎛-2221103的线性方程组⎩⎨⎧=+=+2
222111211c y a x a c y a x a 的解,则无穷等比数列{}n a 各项和的数值是 _________.。

沪教版2022届高考数学一轮复习讲义专题13:矩阵和行列式初步复习与检测(含答案)

沪教版2022届高考数学一轮复习讲义专题13:矩阵和行列式初步复习与检测(含答案)

学习目标1.理解矩阵的意义,2.会进行矩阵的数乘、加法、乘法运算。

3.掌握行列式的意义,理解二元、三元线性方程组的矩阵表示形式,4.掌握二阶、三阶行列式的对角线展开法则,5.掌握三阶行列式按照某一行(列)的代数余子式展开的方法,6.会运用行列式解二元、三元线性方程组知识梳理重点1矩阵:n m ⨯个实数n j m i a ij ,,2,1;,,2,1, ==排成m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn n m n n a a a a a a a a a A212221211211叫做矩阵。

记作n m A ⨯,n m ⨯叫做矩阵的维数。

矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。

重点2线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。

⎩⎨⎧=+=+222111c y b x a c y b x a线性方程组矩阵的三种变换: ①互换矩阵的两行;①把某一行同乘(除)以一个非零的数; ①某一行乘以一个数加到另一行。

重点3矩阵运算:加法、减法及乘法(1)矩阵的和(差):记作:A+B (A -B ).运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C )(2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘积矩阵,记作:αA.运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==;(3)矩阵的乘积:设A 是k m ⨯阶矩阵,B 是n k ⨯阶矩阵,设C 为n m ⨯矩阵。

如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m×n =A m×k B k×n .运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠.重点4二阶行列式的有关概念及二元一次方程组的解法: 设二元一次方程组(*)⎩⎨⎧=+=+222111c y b x a c y b x a (其中y x ,是未知数,2121,,,b b a a 是未知数的系数且不全为零,21,c c 是常数项) 用加减消元法解方程组(*):当01221≠-b a b a 时,方程组(*)有唯一解:⎪⎪⎩⎪⎪⎨⎧--=--=1221122112211221b a b a c a c a y b a b a b c b c x ,引入记号21a a21b b 表示算式1221b a b a -,即21a a21b b 1221b a b a -=.从而引出行列式的相关概念,包括行列式、二阶行列式、行列式的展开式、行列式的值、行列式的元素、对角线法则等。

沪教版高三一轮学案——9.1矩阵、行列式

沪教版高三一轮学案——9.1矩阵、行列式

矩阵、行列式一、矩阵例1 若线性方程组的增广矩阵为122301c c ⎛⎫⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= .练习:1.写出方程组350260x y x y --=⎧⎨++=⎩的系数矩阵与增广矩阵.2. 已知方程组03ax y x by +=⎧⎨+=⎩的增广矩阵可化为101012⎛⎫ ⎪ ⎪⎝⎭,则______a b ⎛⎫= ⎪⎝⎭.3.线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛--43311a ,若该线性方程组的解为⎪⎪⎭⎫⎝⎛-21,则实数a = .二、行列式(1)二阶行列式展开法则:1212a ab b =________.克莱姆法则(用二阶行列式判别二元一次方程组解的情况): 二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩中,____________x y D D D ===.0D ≠⇔____________0D =且0x y D D ≠或⇔______________ 0D =且0x y D D ==⇔_______________例2 若42021xx=,则x = .练习1.行列式6cos3cos6sin3sinππππ的值是__________. 2.lg 312lg 1lg 3x x x ≥-+解集为________________.例3 1.若二元一次方程组2365x y abx y +=⎧⎨-=⎩有无穷多解,则____,____a b ==.2.设0a >,0b >. 若关于,x y 的方程组1,1ax y x by +=⎧⎨+=⎩无解,则a b +的取值范围练习1.若二元一次方程组32271x my x y -=⎧⎨+=⎩无解,则____m =.2.若数列{}n a (*n N ∈)是等比数列,则矩阵124568a a a a a a ⎛⎫⎪⎝⎭所表示方程组的解的个数 是( )A. 0个B. 1个C. 无数个D. 不确定例4 讨论方程组322(1)0mx y x m y m +=⎧⎨+--=⎩解的情况;如果有解,写出对应的解.例5 已知P 1(a 1,b 1)与P 2(a 2,b 2)是直线y=kx+1(k 为常数)上两个不同的点,则关于x 和y 的方程组的解的情况是( )A .无论12,,k P P 如何,总是无解 B.无论12,,k P P 如何,总有唯一解 C.存在12,,k P P ,使之恰有两解 D.存在12,,k P P ,使之有无穷多解(2)三阶行列式 ①按对角线法则展开:111222333a b c a b c a b c =__________________________________________ ②按某行(列)展开,即按(代数)余子式展开:111222333a b c a b c a b c =_____________________________________________ 1b 的余子式为___________________;1b 的代数余子式为____________________例6 已知24135143D -=---,元素5的代数余子式的值是_________.练习.若关于x 、y 的二元一次线性方程组111222a xb yc a x b y c +=⎧⎨+=⎩的增广矩阵是1302m n ⎛⎫⎪⎝⎭,且11x y =⎧⎨=-⎩是该线性方程组的解,则三阶行列式1010321m n -中第3行第2列元素的代数余子式的值是例7 已知行列式112007932k =,则k =_________.练习1.三阶行列式4325026D n -=的值等于20,求n .2.若行列式124cossin022sin cos822x x x x 中元素4的代数余子式的值为12,则实数x 取值集合为。

高三数学矩阵试题

高三数学矩阵试题

高三数学矩阵试题1.已知矩阵A=(k≠0)的一个特征向量为α=,A的逆矩阵A-1对应的变换将点(3,1)变为点(1,1).求实数a,k的值.【答案】.【解析】根据矩阵特征值,特征向量的意义:可设特征向量为对应的特征值为,则,即;再由逆矩阵的有关运算:,转化为,即,得到一组方程即可求出:.试题解析:设特征向量为对应的特征值为,则,即因为,所以. 5分因为,所以,即,所以,解得.综上,. 10分【考点】1.特征值和特征向量的意义;2.逆矩阵的运用2.求矩阵N=的特征值及相应的特征向量.【答案】特征值为λ1=-3,λ2=8,【解析】矩阵N的特征多项式为f(λ)==(λ-8)·(λ+3)=0,令f(λ)=0,得N的特征值为λ1=-3,λ2=8,当λ1=-3时一个解为故特征值λ1=-3的一个特征向量为;当λ2=8时一个解为故特征值λ2=8的一个特征向量为.3.已知矩阵M=有特征向量=,=,相应的特征值为λ1,λ2.(1)求矩阵M的逆矩阵M-1及λ1,λ2;(2)对任意向量=,求M100.【答案】(1)λ1=2,λ2=-1.(2)【解析】(1)由矩阵M=变换的意义知M-1=,又M=λ1,即=λ1,故λ1=2,同理M=λ2,即=λ2,故λ2=-1.(2)因为==x+y,所以M100=M100(x+y·)=xM100+yM100=x+yλ2100=.4.已知变换T是将平面内图形投影到直线y=2x上的变换,求它所对应的矩阵.【答案】【解析】将平面内图形投影到直线y=2x上,即是将图形上任意一点(x,y)通过矩阵M作用变换为(x,2x),则有=,解得∴T=.5.已知矩阵M=,其中a∈R,若点P(1,-2)在矩阵M的变换下得到点P'(-4,0),(1)求实数a的值.(2)求矩阵M的特征值及其对应的特征向量.【答案】(1)3 (2) 矩阵M的属于特征值4的特征向量为(t≠0)【解析】(1)由=,得2-2a=-4⇒a=3.(2)由(1)知M=,则矩阵M的特征多项式为(λ-2)(λ-1)-6=λ2-3λ-4.令λ2-3λ-4=0,得矩阵M的特征值为-1或4.当λ=-1时,⇒x+y=0,∴(x,y)="(t,-" t),当t≠0时,矩阵M的属于特征值-1的特征向量为(t≠0);当λ=4时,⇒2x-3y=0,∴矩阵M的属于特征值4的特征向量为(t≠0).6.设M是把坐标平面上的点的横坐标伸长到2倍,纵坐标伸长到3倍的伸缩变换.(1)求矩阵M的特征值及相应的特征向量.(2)求逆矩阵M-1以及椭圆+=1在M-1的作用下的新曲线的方程.【答案】(1) 特征值为2和3,对应的特征向量分别为及(2) M-1= x2+y2=1【解析】(1)由条件得矩阵M=,它的特征值为2和3,对应的特征向量分别为及.(2)M-1=,椭圆+=1在M-1的作用下的新曲线的方程为x2+y2=1.7.已知2×2矩阵M=有特征值λ=-1及对应的一个特征向量e=.1(1)求矩阵M.(2)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.【答案】(1) (2) 22x2+4xy+y2=1【解析】(1)依题意得,=(-1),即解得所以M=.(2)设曲线C上一点P(x,y)在矩阵M的作用下得到曲线x2+2y2=1上一点P'(x',y'), 则=,即又因为(x')2+2(y')2=1,所以(2x+y)2+2(3x)2=1,整理得曲线C的方程为22x2+4xy+y2=1.8.已知M=.(1)求逆矩阵M-1.(2)若向量X满足MX=,试求向量X.【答案】(1) (2)【解析】(1)设M-1=,依题意有=,即=,故∴∴M-1=.(2)∵向量X满足MX=,∴向量X=M-1==9.若=,求α的值.【答案】α=2kπ,k∈Z【解析】==,所以,则α=2kπ,k∈Z.10.已知在一个2×2矩阵M的变换作用下,点A(1,2)变成了点A'(4,5),点B(3,-1)变成了点B'(5,1).(1)求2×2矩阵M.(2)若在2×2矩阵M的变换作用下,点C(x,0)变成了点C'(4,y),求x,y.【答案】(1) M= (2) x=2,y=2【解析】(1)设该2×2矩阵为M=,由题意得=,=,所以解得a=2,b=1,c=1,d=2,故M=.(2)因为==,解得x=2,y=2.11.如果曲线x2+4xy+3y2=1在2×2矩阵的作用下变换为曲线x2-y2=1,试求a+b的值.【答案】2【解析】设(x,y)是x2+4xy+3y2=1上任意一点,在矩阵变换作用下的对应点为(x',y'),有=得因点(x',y')在曲线x2-y2=1上,故(x+ay)2-(bx+y)2=1,即(1-b2)x2+(2a-2b)xy+(a2-1)y2=1,此方程与x2+4xy+3y2=1相同,从而解得从而a+b=2.12.已知曲线C1:x2+y2=1,对它先作矩阵A=对应的变换,再作矩阵B=对应的变换得到曲线C2:+y2=1,求实数b的值.【答案】b=±1【解析】从曲线C1变到曲线C2的变换对应的矩阵BA==,在曲线C1上任意选一点P(x,y),设它在矩阵BA对应的变换作用下变为P'(x',y'),则有=,故解得代入曲线C1方程得,y'2+(x')2=1,即曲线C2方程为:(x)2+y2=1,与已知的曲线C2的方程:+y2=1比较得(2b)2=4,所以b=±1.13.已知矩阵,若矩阵属于特征值6的一个特征向量为,属于特征值1的一个特征向量.(1)求矩阵的逆矩阵;(2)计算【答案】(1);(2)【解析】(1)因为已知矩阵,若矩阵属于特征值6的一个特征向量为,属于特征值1的一个特征向量.通过特征向量与特征值的关系,可求矩阵A中的相应参数的值,再通过逆矩阵的含义可求出矩阵A的逆矩阵.同样可以从通过特征根的方程方面入手,求的结论. (2)因为向量可由向量及向量表示,所以即可转化为矩阵A的特征向量来表示.即可求得结论.同样也可以先求出A3,再运算即可.试题解析:(1)法一:依题意,..所以法二:的两个根为6和1,故d=4,c=2. 所以-(2)法一:=2-A3=2×63-13=法二:A3=【考点】1.矩阵的性质.2.矩阵的运算.14.已知矩阵A=,B=,求矩阵A-1B.【答案】【解析】解设矩阵A的逆矩阵为,则=,即=故a=-1,b=0,c=0,d=,从而A的逆矩阵为A-1=,所以A-1B==15.已知矩阵A=,向量β=.求向量α,使得A2α=β.【答案】【解析】A2==,设α=,由A2α=β得,=,从而,解得所以α=16.已知矩阵M=.(1)求矩阵M的逆矩阵;(2)求矩阵M的特征值及特征向量.【答案】(1)(2)【解析】(1)设M-1=.则==,∴解得∴M-1=.(2)矩阵A的特征多项式为f(x)==(λ-2)·(λ-4)-3=λ2-6λ+5,令f(λ)=0,得矩阵M的特征值为1或5,当λ=1时,由二元一次方程得x+y=0,令x=1,则y=-1,所以特征值λ=1对应的特征向量为α1=;当λ=5时,由二元一次方程得3x-y=0,令x=1,则y=3,所以特征值λ=5对应的特征向量为α2=17..已知矩阵A=,A的一个特征值λ=2,其对应的特征向量是α1=.设向量β=,试计算A5β的值.【答案】【解析】由题设条件可得,=2,即解得得矩阵A=.矩阵A的特征多项式为f(λ)==λ2-5λ+6,令f(λ)=0,解得λ1=2,λ2=3.当λ1=2时,得α1=;当λ2=3时,得α2=,由β=mα1+nα2,得得m=3,n=1,∴A5β=A5(3α1+α2)=3(A5α1)+A5α2=3(α1)+α2=3×25+35=18.若点A(1,1)在矩阵M=对应变换的作用下得到的点为B(-1,1),求矩阵M的逆矩阵.【答案】【解析】M=,即=,所以得所以M=.由M-1M=,得M-1=.19.设矩阵M= (其中a>0,b>0).(1)若a=2,b=3,求矩阵M的逆矩阵M-1;(2)若曲线C:x2+y2=1在矩阵M所对应的线性变换作用下得到曲线C′:+y2=1,求a,b的值.【答案】(1)(2)【解析】(1)设矩阵M的逆矩阵M-1=,且M=.则MM-1=.所以=.所以2x1=1,2y1=0,3x2=0,3y2=1,即x1=,y1=0,x2=0,y2=,故所求的逆矩阵M-1=.(2)设曲线C上任意一点P(x,y),它在矩阵M所对应的线性变换作用下得到点P′(x′,y′),则=,即又点P′(x′,y′)在曲线C′上,所以+y′2=1,则+b2y2=1为曲线C的方程.又已知曲线C 的方程为x2+y2=1,故又a>0,b>0,所以20.各项都为正数的无穷等比数列,满足且是增广矩阵的线性方程组的解,则无穷等比数列各项和的数值是 _________.【答案】32【解析】本题增广矩阵的线性方程组为,其解为,即,因此,,故无穷递缩等比数列的和为.【考点】无穷递缩等比数列的和.21.各项都为正数的无穷等比数列,满足且是增广矩阵的线性方程组的解,则无穷等比数列各项和的数值是 _________.【答案】32【解析】本题增广矩阵的线性方程组为,其解为,即,因此,,故无穷递缩等比数列的和为.【考点】无穷递缩等比数列的和.22.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量并有特征值λ2=-1及属于特征值-1的一个特征向量(1)求矩阵M.(2)求M5α.【答案】(1)(2)【解析】(1)根据特征值λ1=4即特征向量列出关于的方程组.同样根据特征值λ2=-1即特征向量列出列出关于的方程组.通过解四元一次方程组可得.从而求出矩阵M.(2)由矩阵可表示为特征向量即所以.即填.试题解析:(1)设M=则∴①又∴②由①②可得a=1,b=2,c=3,d=2,∴M= 4分(2)易知∴ 7分【考点】1.矩阵的特征向量的表示.2.矩阵的乘法运算.23.已知矩阵,,求矩阵.【答案】【解析】设矩阵的逆矩阵为,则,即,∴,,,,从而,的逆矩阵为,∴.【考点】本小题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.24.已知,则cos2α=.【答案】﹣【解析】∵cos()=cos[2π﹣(﹣)]=cos()=sin=﹣∴cosα=1﹣2sin2=1﹣2×(﹣)2=cos2α=2cos2α﹣1=2×()2﹣1=﹣故答案为:﹣【考点】二倍角的余弦;诱导公式的作用点评:此题考查了二倍角公式和诱导公式,熟记公式是解题的关键,属于中档题.25.求使等式成立的矩阵.【答案】【解析】解:设,则由(5分)则,即. (10分)【考点】矩阵点评:主要是考查了矩阵的求解的运用,属于基础题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矩阵
一、单选题
1.已知直角坐标平面上两条直线方程分别为1111:0L a x b y c ++=,22220L a x b y c ++=:,那么

11
22
0a b a b =”是“两直线1L 、2L 平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件
2.若矩阵12a b -⎛⎫

⎝⎭是线性方程组321
x y x y -=⎧⎨-=⎩的系数矩阵,则( ) A .1,1a b ==-
B .1,1a b ==
C .1,1a b =-=
D .1,1a b =-=-
3.已知实数0,a >0b >,且2ab =,则行列式
11
a b
-的( )
A .最小值是2
B
.最小值是
C .最大值是2
D
.最大值是4.已知向量,OA AB ,O 是坐标原点,若AB k OA =,且AB 方向是沿OA 的方向绕着A 点按逆时针方向旋转θ角得到的,则称OA 经过一次(,)k θ变换得到AB ,现有向量(1,1)OA =经过一次()11,k θ变换后得
到1AA ,1AA 经过一次()22,k θ变换后得到12A A ,…,如此下去,21n n A A --经过一次(),n
n k θ变换后得到1n n A A -,设1(,)n n A A x y -=,112n n θ-=,1cos n
n k θ=,则y x -等于( ) A .121
12sin 22111
sin1sin sin sin 222n n --⎡⎤
⎛⎫-⎢⎥
⎪⎝⎭⎢⎥⎣⎦ B .121
12sin 22111
cos1cos cos cos 222n n --⎡⎤⎛⎫-⎢⎥
⎪⎝⎭⎢⎥⎣⎦ C .121
12cos 22111
sin1sin sin sin 222
n n --⎡⎤⎛⎫-⎢⎥
⎪⎝⎭⎢⎥⎣⎦ D .121
12cos 22111
cos1cos cos cos 222
n n --⎡⎤⎛⎫-⎢⎥
⎪⎝⎭⎢⎥⎣⎦
二、填空题 5.线性方程组25
38
x y x y -=⎧⎨
+=⎩的增广矩阵为_________.
6.行列式2
35580
=_______. 7.计算行列式的值,
01
23
=______. 8.已知线性方程组的增广矩阵为11302a ⎛⎫ ⎪
⎝⎭,若该线性方程组的解为12⎛⎫
⎪⎝⎭
,则实数a =__________ 9.已知函数21()1
1
x f x =
,则1(0)f -=__________
10.行列式
1234
的值等于____________
11.直线l 的方程为1
02
2
3012
x
y =-,则直线l 的一个法向量是________.
12.设数列{}n a 的前n 项和为n S ,且对任意正整数n ,都有010
1101
2n
n
a n S -=-,则1a =___ 13.已知数列{}n a 满足()1*12452
n n n
n a a n N a a ++--=∈-,则使20192019a >成立的正整数1a 的最小值为
__________.
14.行列式1
012
1
313
1
---中的代数余子式的值为________
15.己知1112
22a x b y c a x b y c +=⎧⎨+=⎩的增广矩阵是111113-⎛⎫
⎪⎝⎭,则此方程组的解是________.
16.矩阵的一种运算a b x ax by c d y cx dy +⎛⎫⎛⎫⎛⎫=
⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭
,该运算的几何意义为平面上的点(,)x y 在矩阵a b c d ⎛⎫
⎪⎝⎭的作用下变换成点(,)ax by cx dy ++,若曲线2
2
421x xy y ++=在矩阵11a b ⎛⎫
⎪⎝⎭
的作用下变换成曲线
2221x y -=,则ab =________.
17.已知
51
λ=-,则λ=________ 18.设集合A 共有6个元素,用这全部的6个元素组成的不同矩阵的个数为________.
19.在行列式2744
346
51
x
x
--中,第3行第2列的元素的代数余子式记作()f x ,则1()y f x =+的零点是________.
20.若行列式(
)
5
1sin 0
cos 24x x ππ+⎛⎫
+ ⎪⎝⎭
的第1行第2列的元素1的代数余子式为1-,则实数x 的取值集合为
_____________.
参考答案
1.B 2.A 3.B 4.B 5.125318-⎛⎫
⎪⎝⎭
.
6.10 7.2- 8.2 9.0 10.2- 11.(1,2) 12.1- 13.2019 14.-5 15.2
1
x y =⎧⎨
=⎩
16.0 17.3 18.2880 19.1x =-
20.{}
2,x x k k Z ππ=+∈.。

相关文档
最新文档