丹阳市高中2018-2019学年高二上学期第一次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
丹阳市高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________
一、选择题
1. 若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4 C .3 D .2
2. 棱长为2的正方体的8个顶点都在球O 的表面上,则球O 的表面积为( ) A .π4 B .π6 C .π8 D .π10
3. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪
≤⎨⎪+≤⎩
下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )
A
.(1,1 B
.(1)+∞ C. (1,3) D .(3,)+∞
4. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2
项的系数是( ) A .﹣13 B .6 C .79 D .37
5. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( ) A
.﹣ B
.﹣ C
.﹣ D
.﹣
或﹣
6. 已知高为5的四棱锥的俯视图是如图所示的矩形,则该四棱锥的体积为( )
A .24
B .80
C .64
D .240 7. 已知a
为常数,则使得成立的一个充分而不必要条件是( )
A .a >0
B .a <0
C .a >e
D .a <e
8. 设复数z 满足z (1+i )=2(i 为虚数单位),则z=( ) A .1﹣i B .1+i C .﹣1﹣i D .﹣1+i
9. 下列函数在其定义域内既是奇函数又是增函数的是( ) A .
B .
C .
D .
10.若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥
B .若,//m m n α
γ=,则//αβ
C .若,//m m βα⊥,则αβ⊥
D .若,αγαβ⊥⊥,则βγ⊥
11.已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||
||
PF PA 的值最小时,PAF ∆的 面积为( )
A.
2
B.2
C.
D. 4
【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力. 12.已知PD ⊥矩形ABCD 所在的平面,图中相互垂直的平面有( )
A .2对
B .3对
C .4对
D .5对
二、填空题
13.设全集U={0,1,2,3,4},集合A={0,1,2},集合B={2,3},则(∁U A )∪B= .
14.已知,是空间二向量,若=3,||=2,|﹣|=,则与的夹角为 .
15.抛物线y 2=6x ,过点P (4,1)引一条弦,使它恰好被P 点平分,则该弦所在的直线方程为 . 16.在矩形ABCD 中,
=(1,﹣3),
,则实数k= .
17.在ABC ∆中,角A B C 、、的对边分别为a b c 、、,若1cos 2c B a b ⋅=+,ABC ∆的面积S =, 则边c 的最小值为_______.
【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力.
18.如图,在矩形ABCD 中,AB = 3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________
三、解答题
19.在平面直角坐标系xOy 中,圆C :x 2+y 2=4,A (,0),A 1(﹣
,0),点P 为平面内一动点,以
PA 为直径的圆与圆C 相切.
(Ⅰ)求证:|PA 1|+|PA|为定值,并求出点P 的轨迹方程C 1;
(Ⅱ)若直线PA 与曲线C 1的另一交点为Q ,求△POQ 面积的最大值.
20.(本题满分12分)已知数列}{n a 的前n 项和为n S ,2
3
3-=n n a S (+∈N n ). (1)求数列}{n a 的通项公式;
(2)若数列}{n b 满足143log +=⋅n n n a b a ,记n n b b b b T ++++= 321,求证:2
7
<
n T (+∈N n ). 【命题意图】本题考查了利用递推关系求通项公式的技巧,同时也考查了用错位相减法求数列的前n 项和.重点突出运算、论证、化归能力的考查,属于中档难度.
21.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.
(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n (单位:台,n ∈N )的函数解析式f (n );
(单位:元),求X 的分布列及数学期望.
22.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值; (2)求的值;
(3)解不等式f (x )<f (x+2).
23.已知椭圆C :22
221x y a b
+=(0a b >>),点3(1,)2在椭圆C 上,且椭圆C 的离心率为12.
(1)求椭圆C 的方程;
(2)过椭圆C 的右焦点F 的直线与椭圆C 交于P ,Q 两点,A 为椭圆C 的右顶点,直线PA ,QA 分别
交直线:4x =于M 、N 两点,求证:FM FN ⊥.
24.已知f (x )=lg (x+1)
(1)若0<f (1﹣2x )﹣f (x )<1,求x 的取值范围;
(2)若g (x )是以2为周期的偶函数,且当0≤x ≤1时,g (x )=f (x ),求函数y=g (x )(x ∈[1,2])的反函数.
丹阳市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)
一、选择题
1.【答案】A
【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,
可得b=0,并且1+a=2a,解得a=1,
所以函数为:f(x)=x2+1,x∈[﹣2,2],
函数的最大值为:5.
故选:A.
【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.
2.【答案】B
【解析】
考点:球与几何体
3.【答案】A
【解析】
考点:线性规划.
【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为
z
m
,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨
⎧==+00001m x y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m
的范围.
4. 【答案】 D
【解析】
二项式系数的性质. 【专题】二项式定理.
【分析】由含x 一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m 、n 为正整
数,可得m=3、n=2,从而求得含x 2
项的系数.
【解答】解:由于多项式(1﹣2x )m +(1﹣5x )n
中含x 一次项的系数为(﹣2)+
(﹣5)=﹣16,
可得2m+5n=16 ①.
再根据m 、n 为正整数,可得m=3、n=2,
故含x 2
项的系数是
(﹣2)2
+
(﹣5)2
=37,
故选:D .
【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题. 5. 【答案】B
【解析】解:当a >1时,f (x )单调递增,有f (﹣1)=+b=﹣1,f (0)=1+b=0,无解;
当0<a <1时,f (x )单调递减,有f (﹣1)==0,f (0)=1+b=﹣1,
解得a=,b=﹣2;
所以a+b=
=﹣;
故选:B
6. 【答案】B 【解析】 试题分析:805863
1
=⨯⨯⨯=
V ,故选B. 考点:1.三视图;2.几何体的体积. 7. 【答案】C
【解析】解:由积分运算法则,得
=lnx
=lne ﹣ln1=1
因此,不等式即
即a >1,对应的集合是(1,+∞)
将此范围与各个选项加以比较,只有C 项对应集合(e ,+∞)是(1,+∞)的子集
∴原不等式成立的一个充分而不必要条件是a >e
故选:C
【点评】本题给出关于定积分的一个不等式,求使之成立的一个充分而不必要条件,着重考查了定积分计算公式和充要条件的判断等知识,属于基础题.
8.【答案】A
【解析】解:∵z(1+i)=2,∴
z=
==1﹣i.
故选:A.
【点评】本题考查了复数的运算法则、共轭复数的定义,属于基础题.
9.【答案】B
【解析】【知识点】函数的单调性与最值函数的奇偶性
【试题解析】若函数是奇函数,则故排除A、D;
对C :在(-和(上单调递增,
但在定义域上不单调,故C错;
故答案为:B
10.【答案】C
【解析】
试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.
考点:空间直线、平面间的位置关系.
11.【答案】B
【解析】设
2
(,)
4
y
P y
,则
2
1
||
||
y
PF
PA
+
=.又设
2
1
4
y
t
+=,则244
y t
=-,1
t…
,所以
||
||2
PF
PA
==,当且仅当2
t=,即2
y=±时,等号成立,此时点(1,2)
P±,PAF
∆的面积为
11
||||222
22
AF y
⋅=⨯⨯=,故选B.
12.【答案】D
【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,
∴面PDA⊥面ABCD,面PDC⊥面ABCD,
又∵四边形ABCD为矩形
∴BC⊥CD,CD⊥AD
∵PD⊥矩形ABCD所在的平面
∴PD⊥BC,PD⊥CD
∵PD∩AD=D,PD∩CD=D
∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,
∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,
∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD
综上相互垂直的平面有5对
故答案选D
二、填空题
13.【答案】{2,3,4}.
【解析】解:∵全集U={0,1,2,3,4},集合A={0,1,2},
∴C U A={3,4},
又B={2,3},
∴(C U A)∪B={2,3,4},
故答案为:{2,3,4}
14.【答案】60°.
【解析】解:∵|﹣|=,
∴
∴=3,
∴cos<>==
∵
∴与的夹角为60°.
故答案为:60°
【点评】本题考查平面向量数量积表示夹角和模长,本题解题的关键是整理出两个向量的数量积,再用夹角的表示式.
15.【答案】3x﹣y﹣11=0.
【解析】解:设过点P(4,1)的直线与抛物线的交点
为A(x1,y1),B(x2,y2),
即有y12=6x1,y22=6x2,
相减可得,(y1﹣y2)(y1+y2)=6(x1﹣x2),
即有k AB====3,
则直线方程为y﹣1=3(x﹣4),
即为3x﹣y﹣11=0.
将直线y=3x﹣11代入抛物线的方程,可得
9x2﹣72x+121=0,判别式为722﹣4×9×121>0,
故所求直线为3x﹣y﹣11=0.
故答案为:3x﹣y﹣11=0.
16.【答案】4.
【解析】解:如图所示,
在矩形ABCD中,=(1,﹣3),,
∴=﹣=(k﹣1,﹣2+3)=(k﹣1,1),
∴•=1×(k﹣1)+(﹣3)×1=0,
解得k=4.
故答案为:4.
【点评】本题考查了利用平面向量的数量积表示向量垂直的应用问题,是基础题目.17.【答案】1
18.【答案】212
【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.
因为BE ⊥AC ,AB =3,所以AE =3
2
,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2
-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =21
2
.
三、解答题
19.【答案】
【解析】(Ⅰ)证明:设点P (x ,y ),记线段PA 的中点为M ,则
两圆的圆心距d=|OM|=|PA 1|=R ﹣|PA|, 所以,|PA
1|+|PA|=4>2
,
故点P 的轨迹是以A ,A 1为焦点,以4为长轴的椭圆,
所以,点P 的轨迹方程C 1为:
=1. …
(Ⅱ)解:设P (x
1,y 1),Q (x 2,y 2),直线PQ 的方程为:x=my+,…
代入=1消去x ,整理得:(m 2
+4)y 2+2
my ﹣1=0,
则y 1+y 2=﹣
,y 1y 2=﹣
,…
△POQ 面积S=|OA||y
1﹣y 2|=2…
令t=
(0
,则S=2
≤1(当且仅当t=时取等号)
所以,△POQ 面积的最大值1. …
20.【答案】 【
解
析
】
21.【答案】
【解析】解:(I)当n≥20时,f(n)=500×20+200×(n﹣20)=200n+6000,
当n≤19时,f(n)=500×n﹣100×(20﹣n)=600n﹣2000,
∴.
(II)由(1)得f(18)=8800,f(19)=9400,f(20)=10000,f(21)=10200,f(22)=10400,
∴P (X=8800)=0.1,P (X=9400)=0.2,P (X=10000)=0.3,P (X=10200)=0.3,P (X=10400)=0.1, X
22.【答案】
【解析】解:(1)∵f (5)=3,
∴
,
即log a 27=3 解锝:a=3…
(2)由(1)得函数,
则=
… (3)不等式f (x )<f (x+2),
即为
化简不等式得
…
∵函数y=log 3x 在(0,+∞)上为增函数,且
的定义域为R .
∴x 2+2<x 2
+4x+6…
即4x >﹣4, 解得x >﹣1,
所以不等式的解集为:(﹣1,+∞)…
23.【答案】(1) 22
143
x y +=;(2)证明见解析. 【解析】
试题分析: (1)由题中条件要得两个等式,再由椭圆中c b a ,,的等式关系可得b a ,的值,求得椭圆的方程;(2)可设直线P Q 的方程,联立椭圆方程,由根与系数的关系得122634m y y m -+=
+,12
29
34
y y m -=+,得直线PA l ,直线QA l ,求得点 M 、N 坐标,利用0=⋅FN FM 得FM FN ⊥.
试题解析: (1)由题意得22222191,41,2,a b c a a b c ⎧+=⎪⎪
⎪=⎨⎪
⎪=+⎪⎩
解得2,
a b =⎧⎪⎨=⎪⎩
∴椭圆C 的方程为22
143
x y +=.
又111x my =+,221x my =+, ∴112(4,
)1y M my -,222(4,)1y N my -,则112(3,)1y FM my =-,222(3,)1
y FN my =-,
12122
121212
22499111()y y y y FM FN my my m y y m y y ⋅=+⋅=+---++222
22363499906913434
m m m m m -+=+=-=---+++ ∴FM FN ⊥
考点:椭圆的性质;向量垂直的充要条件.
24.【答案】
【解析】解:(1)f (1﹣2x )﹣f (x )=lg (1﹣2x+1)﹣lg (x+1)=lg (2﹣2x )﹣lg (x+1),
要使函数有意义,则
由解得:﹣1<x<1.
由0<lg(2﹣2x)﹣lg(x+1)=lg<1得:1<<10,
∵x+1>0,
∴x+1<2﹣2x<10x+10,
∴.
由,得:.
(2)当x∈[1,2]时,2﹣x∈[0,1],
∴y=g(x)=g(x﹣2)=g(2﹣x)=f(2﹣x)=lg(3﹣x),
由单调性可知y∈[0,lg2],
又∵x=3﹣10y,
∴所求反函数是y=3﹣10x,x∈[0,lg2].。