河北省衡水中学2015届高三上学期期中考试数学(理)试题
河北省衡水市重点中学2015届高三数学上学期第五次调研试卷理含解析
河北省衡水市重点中学2015届高三上学期第五次调研数学试卷(理科)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设集合A={x|﹣1≤x≤2,x∈N},集合B={2,3},则A∪B=()A.{1,2,3} B.{0,1,2,3} C.{2} D.{﹣1,0,1,2,3} 2.(5分)已知复数1﹣i=(i为虚数单位),则z等于()A.﹣1+3i B.﹣1+2i C.1﹣3i D.1﹣2i3.(5分)公比为2的等比数列{a n}的各项都是正数,且a4a10=16,则a6=()A.1 B.2 C.4 D.84.(5分)某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为()A.8万元B.10万元C.12万元D.15万5.(5分)命题甲:f(x)是 R上的单调递增函数;命题乙:∃x1<x2,f(x1)<f(x2).则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件6.(5分)运行如图所示的程序,若结束时输出的结果不小于3,则t的取值范围为()A.B.C.D.7.(5分)为得到函数y=sin(x+)的图象,可将函数y=sinx的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数),则|m﹣n|的最小值是()A.B.C.D.8.(5分)如图,=,=,且BC⊥OA,C为垂足,设=λ,则λ的值为()A.B.C.D.9.(5分)已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2x﹣y的最大值是()A.6 B.0 C.2 D.210.(5分)将一张边长为6cm的纸片按如图1所示的阴影部分截去四个全等的等腰三角形,将剩余下部分沿虚线折叠并拼成一个有底的正四棱锥(底面是正方形,顶点在底面的射影为正方形的中心)模型,如图2放置,若正四棱锥的正视图是正三角形(如图3),则正四棱锥的体积是()A.cm3B.cm3C.cm3D.cm311.(5分)已知O为原点,双曲线﹣y2=1上有一点P,过P作两条渐近线的平行线,交点分别为A,B,平行四边形OBPA的面积为1,则双曲线的离心率为()A.B.C.D.12.(5分)已知函数f(x)=,若关于x的方程f(x)=|x﹣a|有三个不同的实根,则实数a的取值范围是()A.(﹣,0)B.(0,)C.(﹣,)D.(﹣,0)或(0,)二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.(5分)二项式(﹣)5的展开式中常数项为(用数字作答)14.(5分)已知f(x)是定义在R上的偶函数,f(2)=1且对任意x∈R都有f(x+3)=f(x),则f=.15.(5分)已知三棱锥P﹣ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为2,则三棱锥P﹣ABC的内切球的体积为.16.(5分)已知等差数列{a n}的通项公式为a n=3n﹣2,等比数列{b n}中,b1=a1,b4=a3+1,记集合A={x|x=a n,n∈N},B={x|x=b,n∈N},U=A∪B,把集合U中的元素按从小到大依次排列,构成数列{c n},则数列{c n}的前50项和S50=.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC(1)求cosA的值(2)若a=1,,求边c的值.18.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300 500概率0.5 0.5作物市场价格(元/kg) 6 10概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,四边形A1ABB1为菱形,∠A1AB=45°,四边形BCC1B1为矩形,若AC=5,AB=4,BC=3(1)求证:AB1⊥面A1BC;(2)求二面角C﹣AA1﹣B的余弦值.20.(12分)以椭圆C:=1(a>b>0)的中心O为圆心,以为半径的圆称为该椭圆的“伴随”.已知椭圆的离心率为,且过点.(1)求椭圆C及其“伴随”的方程;(2)过点P(0,m)作“伴随”的切线l交椭圆C于A,B两点,记△AOB(O为坐标原点)的面积为S△AOB,将S△AOB表示为m的函数,并求S△AOB的最大值.21.(12分)设函数f(x)=x2+aln(x+1)(a为常数)(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单凋递增函数,求实数a的取值范围;(Ⅱ)若函数y=f(x)有两个极值点x1,x2,且x1<x2,求证:.一、选修4-1:几何证明选讲22.(10分)如图所示,圆O的直径为BD,过圆上一点A作圆O的切线AE,过点D作DE⊥AE 于点E,延长ED与圆O交于点C.(1)证明:DA平分∠BDE;(2)若AB=4,AE=2,求CD的长.一、选修4-4:坐标系与参数方程23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.一、选修4-5:不等式选讲24.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.河北省衡水市重点中学2015届高三上学期第五次调研数学试卷(理科)参考答案与试题解析一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设集合A={x|﹣1≤x≤2,x∈N},集合B={2,3},则A∪B=()A.{1,2,3} B.{0,1,2,3} C.{2} D.{﹣1,0,1,2,3}考点:并集及其运算.专题:计算题.分析:把集合A的所有元素和集合B的所有元素合并到一起,得到集合A∪B.由此根据集合A={x|﹣1≤x≤2,x∈N},集合B={2,3},能求出A∪B.解答:解:∵集合A={x|﹣1≤x≤2,x∈N}={0,1,2},集合B={2,3},∴A∪B={0,1,2,3}.故选B.点评:本题考查集合的并集的定义及其运算,解题时要认真审题,仔细解答,注意并集中相同的元素只写一个.2.(5分)已知复数1﹣i=(i为虚数单位),则z等于()A.﹣1+3i B.﹣1+2i C.1﹣3i D.1﹣2i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:利用复数的运算法则即可得出.解答:解:∵复数1﹣i=,∴==﹣1+3i.故选:A.点评:本题考查了复数定义是法则,属于基础题.3.(5分)公比为2的等比数列{a n}的各项都是正数,且a4a10=16,则a6=()A.1 B.2 C.4 D.8考点:等比数列的通项公式.专题:等差数列与等比数列.分析:由题意结合等比数列的性质可得a7=4,由通项公式可得a6.解答:解:由题意可得=a4a10=16,又数列的各项都是正数,故a7=4,故a6===2故选B点评:本题考查等比数列的通项公式,属基础题.4.(5分)某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为()A.8万元B.10万元C.12万元D.15万考点:频率分布直方图.专题:计算题;概率与统计.分析:由频率分布直方图得0.4÷0.1=4,也就是11时至12时的销售额为9时至10时的销售额的4倍.解答:解:由频率分布直方图得0.4÷0.1=4∴11时至12时的销售额为3×4=12故选C点评:本题考查频率分布直方图,关键是注意纵坐标表示频率比组距,属于基础题.5.(5分)命题甲:f(x)是 R上的单调递增函数;命题乙:∃x1<x2,f(x1)<f(x2).则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:规律型.分析:根据函数单调性的定义和性质,利用充分条件和必要条件的定义进行判断.解答:解:根据函数单调性的定义可知,若f(x)是 R上的单调递增函数,则∀x1<x2,f (x1)<f(x2)成立,∴命题乙成立.若:∃x1<x2,f(x1)<f(x2).则不满足函数单调性定义的任意性,∴命题甲不成立.∴甲是乙成立的充分不必要条件.故选:A.点评:本题主要考查充分条件和必要条件的判断,利用函数单调性的定义和性质是解决本题的关键,比较基础.6.(5分)运行如图所示的程序,若结束时输出的结果不小于3,则t的取值范围为()A.B.C.D.考点:循环结构.专题:计算题.分析:第一次执行循环结构:n←0+2,第二次执行循环结构:n←2+2,第三次执行循环结构:n←4+2,此时应终止循环结构.求出相应的x、a即可得出结果.解答:解:第一次执行循环结构:n←0+2,x←2×t,a←2﹣1;∵n=2<4,∴继续执行循环结构.第二次执行循环结构:n←2+2,x←2×2t,a←4﹣1;∵n=4=4,∴继续执行循环结构,第三次执行循环结构:n←4+2,x←2×4t,a←6﹣3;∵n=6>4,∴应终止循环结构,并输出38t.由于结束时输出的结果不小于3,故38t≥3,即8t≥1,解得t.故答案为:B.点评:理解循环结构的功能和判断框的条件是解决问题的关键.属于基础题.7.(5分)为得到函数y=sin(x+)的图象,可将函数y=sinx的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数),则|m﹣n|的最小值是()A.B.C.D.考点:函数y=Asin(ωx+φ)的图象变换.专题:三角函数的图像与性质.分析:依题意得m=2k1π+,n=2k2π+(k1、k2∈N),于是有|m﹣n|=|2(k1﹣k2)π﹣|,从而可求得|m﹣n|的最小值.解答:解:由条件可得m=2k1π+,n=2k2π+(k1、k2∈N),则|m﹣n|=|2(k1﹣k2)π﹣|,易知(k1﹣k2)=1时,|m﹣n|min=.故选:B.点评:本题考查函数y=Asin(ωx+φ)的图象变换,得到|m﹣n|=|2(k1﹣k2)π﹣|是关键,考查转化思想.8.(5分)如图,=,=,且BC⊥OA,C为垂足,设=λ,则λ的值为()A.B.C.D.考点:平面向量数量积的运算.分析:利用向量垂直数量积为零找出λ满足的方程解之解答:解:=﹣,,∴,∴即===0∴λ=故选项为A点评:向量垂直的充要条件.9.(5分)已知P(x,y)为区域内的任意一点,当该区域的面积为4时,z=2x﹣y的最大值是()A.6 B.0 C.2 D.2考点:简单线性规划.专题:数形结合;不等式的解法及应用.分析:由约束条件作出可行域,求出使可行域面积为4的a值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.解答:解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),由,得a=2.∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.故选:A.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.10.(5分)将一张边长为6cm的纸片按如图1所示的阴影部分截去四个全等的等腰三角形,将剩余下部分沿虚线折叠并拼成一个有底的正四棱锥(底面是正方形,顶点在底面的射影为正方形的中心)模型,如图2放置,若正四棱锥的正视图是正三角形(如图3),则正四棱锥的体积是()A.cm3B.cm3C.cm3D.cm3考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:根据图形正四棱锥的正视图是正三角形,正视图的底面边长为a,高为a,正四棱锥的斜高为a,运用图1得出;×6=,a=2,计算计算出a,代入公式即可.解答:解:∵正四棱锥的正视图是正三角形,正视图的底面边长为a,高为a,∴正四棱锥的斜高为a,∵图1得出:∵将一张边长为6cm的纸片按如图1所示的阴影部分截去四个全等的等腰三角形∴×6=,a=2,∴正四棱锥的体积是a2×a=,故选:A点评:本题综合考查了空间几何体的性质,展开图与立体图的结合,需要很好的空间思维能力,属于中档题.11.(5分)已知O为原点,双曲线﹣y2=1上有一点P,过P作两条渐近线的平行线,交点分别为A,B,平行四边形OBPA的面积为1,则双曲线的离心率为()A.B.C.D.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:求出|OA|,P点到OA的距离,利用平行四边形OBPA的面积为1,求出a,可得c,即可求出双曲线的离心率.解答:解:渐近线方程是:x±ay=0,设P(m,n)是双曲线上任一点,过P平行于OB:x+ay=0的方程是:x+ay﹣m﹣an=0与OA方程:x﹣ay=0交点是A(,),|OA|=||,P点到OA的距离是:d=∵|OA|•d=1,∴||•=1,∵,∴a=2,∴c=,∴e=.故选:C.点评:本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.12.(5分)已知函数f(x)=,若关于x的方程f(x)=|x﹣a|有三个不同的实根,则实数a的取值范围是()A.(﹣,0)B.(0,)C.(﹣,)D.(﹣,0)或(0,)考点:根的存在性及根的个数判断.专题:计算题;作图题;函数的性质及应用.分析:由题意,关于x的方程f(x)=|x﹣a|有三个不同的实根转化为函数图象的交点问题,从而作图解答.解答:解:直线y=x﹣a与函数f(x)=e x﹣1的图象在x≥0处有一个切点,切点坐标为(0,0);此时a=0;直线y=|x﹣a|与函数y=﹣x2﹣2x的图象在x<0处有两个切点,切点坐标分别是(﹣,)和(﹣,);此时相应的a=,a=﹣;观察图象可知,方程f(x)=|x﹣a|有三个不同的实根时,实数a的取值范围是(﹣,0)或(0,);故选D.点评:本题考查了函数的图象与方程的根的关系,属于中档题.二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上.. 13.(5分)二项式(﹣)5的展开式中常数项为﹣10(用数字作答)考点:二项式系数的性质.专题:二项式定理.分析:先求出二项式展开式的通项公式,再令x的幂指数等于0,求得r的值,即可求得展开式中的常数项的值.解答:解:二项式(﹣)5的展开式的通项公式为 T r+1=•(﹣1)r•,令=0,求得r=3,可得展开式中常数项为﹣=﹣10,故答案为:﹣10.点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.14.(5分)已知f(x)是定义在R上的偶函数,f(2)=1且对任意x∈R都有f(x+3)=f(x),则f=1.考点:函数奇偶性的性质.专题:计算题;函数的性质及应用.分析:由f(x+3)=f(x)知,f(x)是以周期为3的周期函数.可得f=f(1)=f(﹣2),再由偶函数的定义,结合条件,即可得到所求值.解答:解:由f(x+3)=f(x)知,f(x)是以周期为3的周期函数.所以f=f(671×3+1)=f(1)=f(3﹣2)=f(﹣2)由于f(x)是定义在R上的偶函数,则有f(﹣2)=f(2)=1.故答案为:1.点评:本题考查函数的奇偶性和周期性的运用:求函数值,考查运算能力,属于基础题.15.(5分)已知三棱锥P﹣ABC的所有棱长都相等,现沿PA,PB,PC三条侧棱剪开,将其表面展开成一个平面图形,若这个平面图形外接圆的半径为2,则三棱锥P﹣ABC的内切球的体积为π.考点:球内接多面体.专题:计算题;空间位置关系与距离.分析:根据平面图形外接圆的半径求出三棱锥的棱长,再根据棱长求出高,然后根据体积公式计算即可.解答:解:三棱锥P﹣ABC展开后为一等边三角形,设边长为a,则4=,∴a=6,∴三棱锥P﹣ABC棱长为3,三棱锥P﹣ABC的高为2,设内切球的半径为r,则4×=,∴r=,∴三棱锥P﹣ABC的内切球的体积为=π.故答案为:π.点评:本题考查锥体的体积,考查等体积的运用,比较基础.16.(5分)已知等差数列{a n}的通项公式为a n=3n﹣2,等比数列{b n}中,b1=a1,b4=a3+1,记集合A={x|x=a n,n∈N},B={x|x=b,n∈N},U=A∪B,把集合U中的元素按从小到大依次排列,构成数列{c n},则数列{c n}的前50项和S50=3321.考点:数列的求和.专题:等差数列与等比数列.分析:由已知得b n=2n﹣1.数列{a n}的前50项所构成的集合为{1,4,7,10,…,148},数列{b n}的前8项构成的集合为{1,2,4,8,16,32,64,128},数列{c n}的前50项应包含数列{a n}的前46项和数列{b n}中的2,8,32,128这4项.由此能求出S50.解答:解:设等比数列{b n}的公比为q,∵b1=a1=1,b4=a3+1=8,则q3=8,∴q=2,∴b n=2n﹣1.根据数列{a n}和数列{b n}的增长速度,数列{c n}的前50项至多在数列{a n}中选50项,数列{a n}的前50项所构成的集合为{1,4,7,10,…,148},由2n﹣1<148得,n≤8,数列{b n}的前8项构成的集合为{1,2,4,8,16,32,64,128},其中1,4,16,64是等差数列{a n}中的项,2,8,32,128不是等差数列中的项,a46=136>128,∴数列{c n}的前50项应包含数列{a n}的前46项和数列{b n}中的2,8,32,128这4项.∴S50=+2+8+32+128=3321.故答案为:3321.点评:本题考查数列的前50项和的求法,是中档题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(12分)在△A BC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC(1)求cosA的值(2)若a=1,,求边c的值.考点:正弦定理;同角三角函数基本关系的运用.专题:计算题.分析:(1)利用正弦定理分别表示出cosB,cosC代入题设等式求得cosA的值.(2)利用(1)中cosA的值,可求得sinA的值,进而利用两角和公式把cosC展开,把题设中的等式代入,利用同角三角函数的基本关系求得sinC的值,最后利用正弦定理求得c.解答:解:(1)由余弦定理可知2accosB=a2+c2﹣b2;2abcosc=a2+b2﹣c2;代入3acosA=ccosB+bcosC;得cosA=;(2)∵cosA=∴sinA=cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣cosC+sinC ③又已知 cosB+cosC=代入③cosC+sinC=,与cos2C+sin2C=1联立解得 sinC=已知 a=1正弦定理:c===点评:本题主要考查了余弦定理和正弦定理的应用.考查了基础知识的综合运用.18.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300 500概率0.5 0.5作物市场价格(元/kg) 6 10概率0.4 0.6(Ⅰ)设X表示在这块地上种植1季此作物的利润,求X的分布列;(Ⅱ)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.考点:离散型随机变量及其分布列;相互独立事件的概率乘法公式.专题:概率与统计.分析:(Ⅰ)分别求出对应的概率,即可求X的分布列;(Ⅱ)分别求出3季中有2季的利润不少于2000元的概率和3季中利润不少于2000元的概率,利用概率相加即可得到结论.解答:解:(Ⅰ)设A表示事件“作物产量为300kg”,B表示事件“作物市场价格为6元/kg”,则P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格﹣成本,∴X的所有值为:500×10﹣1000=4000,500×6﹣1000=2000,300×10﹣1000=2000,300×6﹣1000=800,则P(X=4000)=P()P()=(1﹣0.5)×(1﹣0.4)=0.3,P(X=2000)=P()P(B)+P(A)P()=(1﹣0.5)×0.4+0.5(1﹣0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,则X的分布列为:X 4000 2000 800P 0.3 0.5 0.2(Ⅱ)设C i表示事件“第i季利润不少于2000元”(i=1,2,3),则C1,C2,C3相互独立,由(Ⅰ)知,P(C i)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512,3季的利润有2季不少于2000的概率为P(C2C3)+P(C1C3)+P(C1C2)=3×0.82×0.2=0.384,综上:这3季中至少有2季的利润不少于2000元的概率为:0.512+0.384=0.896.点评:本题主要考查随机变量的分布列及其概率的计算,考查学生的计算能力.19.(12分)如图,在三棱柱ABC﹣A1B1C1中,四边形A1ABB1为菱形,∠A1AB=45°,四边形BCC1B1为矩形,若AC=5,AB=4,BC=3(1)求证:AB1⊥面A1BC;(2)求二面角C﹣AA1﹣B的余弦值.考点:与二面角有关的立体几何综合题.专题:综合题;空间位置关系与距离;空间角.分析:(1)证明AB1⊥面A1BC,只需证明AB1⊥A1B,CB⊥AB1,证明CB⊥平面AA1B1B,利用四边形A1ABB1为菱形可证;(2)过B作BD⊥AA1于D,连接CD,证明∠CDB就是二面角C﹣AA1﹣B的平面角,求出DB,CD,即可求二面角C﹣AA1﹣B的余弦值.解答:(1)证明:在△ABC中AC=5,AB=4,BC=3,所以∠ABC=90°,即CB⊥AB,又因为四边形BCC1B1为矩形,所以CB⊥BB1,因为AB∩BB1=B,所以CB⊥平面AA1B1B,又因为AB1⊂平面AA1B1B,所以CB⊥AB1,又因为四边形A1ABB1为菱形,所以AB1⊥A1B,因为CB∩A1B=B所以AB1⊥面A1BC;(2)解:过B作BD⊥AA1于D,连接CD因为CB⊥平面AA1B1B,所以CB⊥AA1,因为CB∩BD=B,所以AA1⊥面BCD,又因为CD⊂面BCD,所以AA1⊥CD,所以,∠CDB就是二面角C﹣AA1﹣B的平面角.在直角△ADB中,AB=4,∠DAB=45°,∠ADB=90°,所以DB=2在直角△CDB中,DB=2,CB=3,所以CD=,所以cos∠CDB==.点评:本题考查线面垂直的判定,考查面面角,考查学生分析解决问题的能力,正确运用线面垂直的判定,作出面面角是关键.20.(12分)以椭圆C:=1(a>b>0)的中心O为圆心,以为半径的圆称为该椭圆的“伴随”.已知椭圆的离心率为,且过点.(1)求椭圆C及其“伴随”的方程;(2)过点P(0,m)作“伴随”的切线l交椭圆C于A,B两点,记△AOB(O为坐标原点)的面积为S△AOB,将S△AOB表示为m的函数,并求S△AOB的最大值.考点:直线与圆锥曲线的综合问题.专题:计算题;直线与圆;圆锥曲线的定义、性质与方程;圆锥曲线中的最值与范围问题.分析:(1)由椭圆C的离心率,结合a,b,c的关系,得到a=2b,设椭圆方程,再代入点,即可得到椭圆方程和“伴随”的方程;(2)设切线l的方程为y=kx+m,联立椭圆方程,消去y得到x的二次方程,运用韦达定理和弦长公式,即可得到AB的长,由l与圆x2+y2=1相切,得到k,m的关系式,求出三角形ABC 的面积,运用基本不等式即可得到最大值.解答:解:(1)椭圆C的离心率为,即c=,由c2=a2﹣b2,则a=2b,设椭圆C的方程为,∵椭圆C过点,∴,∴b=1,a=2,以为半径即以1为半径,∴椭圆C的标准方程为,椭圆C的“伴随”方程为x2+y2=1.(2)由题意知,|m|≥1.易知切线l的斜率存在,设切线l的方程为y=kx+m,由得,设A,B两点的坐标分别为(x1,y1),(x2,y2),则,.又由l与圆x2+y2=1相切,所以,k2=m2﹣1.所以=,则,|m|≥1.(当且仅当时取等号)所以当时,S△AOB的最大值为1.点评:本题考查椭圆的方程和性质,考查联立直线方程和椭圆方程,消去未知数,运用韦达定理和弦长公式的运用,考查直线与圆相切的条件,考查运算能力,属于中档题.21.(12分)设函数f(x)=x2+aln(x+1)(a为常数)(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单凋递增函数,求实数a的取值范围;(Ⅱ)若函数y=f(x)有两个极值点x1,x2,且x1<x2,求证:.考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:转化思想.分析:(Ⅰ)已知原函数的值为正,得到导函数的值非负,从而求出参量的范围;(Ⅱ)利用韦达定理,对所求对象进行消元,得到一个新的函数,对该函数求导后,再对导函数求导,通过对导函数的导导函数的研究,得到导函数的最值,从而得到原函数的最值,即得到本题结论.解答:解:(Ⅰ)根据题意知:f′(x)=在[1,+∞)上恒成立.即a≥﹣2x2﹣2x在区间[1,+∞)上恒成立.∵﹣2x2﹣2x在区间[1,+∞)上的最大值为﹣4,∴a≥﹣4;经检验:当a=﹣4时,,x∈[1,+∞).∴a的取值范围是[﹣4,+∞).(Ⅱ)在区间(﹣1,+∞)上有两个不相等的实数根,即方程2x2+2x+a=0在区间(﹣1,+∞)上有两个不相等的实数根.记g(x)=2x2+2x+a,则有,解得.∴,.∴令.,记.∴,.在使得p′(x0)=0.当,p′(x)<0;当x∈(x0,0)时,p′(x)>0.而k′(x)在单调递减,在(x0,0)单调递增,∵,∴当,∴k(x)在单调递减,即.点评:本题考查的是导数知识,重点是利用导数法研究函数的单调性、究极值和最值,难点是多次连续求导,即二次求导,本题还用到消元的方法,难度较大.一、选修4-1:几何证明选讲22.(10分)如图所示,圆O的直径为BD,过圆上一点A作圆O的切线AE,过点D作DE⊥AE 于点E,延长ED与圆O交于点C.(1)证明:DA平分∠BDE;(2)若AB=4,AE=2,求CD的长.考点:相似三角形的判定.专题:立体几何.分析:(1)由于AE是⊙O的切线,可得∠DAE=∠ABD.由于BD是⊙O的直径,可得∠BAD=90°,因此∠ABD+∠ADB=90°,∠ADE+∠DAE=90°,即可得出∠ADB=∠ADE..(2)由(1)可得:△ADE∽△BDA,可得,BD=2AD.因此∠ABD=30°.利用DE=AEtan30°.切割线定理可得:AE2=DE•CE,即可解出.解答:(1)证明:∵AE是⊙O的切线,∴∠DAE=∠ABD,∵BD是⊙O的直径,∴∠BAD=90°,∴∠ABD+∠ADB=90°,又∠ADE+∠DAE=90°,∴∠ADB=∠ADE.∴DA平分∠BDE.(2)由(1)可得:△ADE∽△BDA,∴,∴,化为BD=2AD.∴∠ABD=30°.∴∠DAE=30°.∴DE=AEtan30°=.由切割线定理可得:AE2=DE•CE,∴,解得CD=.点评:本题考查了弦切角定理、圆的性质、相似三角形的性质、直角三角形的边角公式、切割线定理,考查了推理能力与计算能力,属于中档题.一、选修4-4:坐标系与参数方程23.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.(1)求点Q的轨迹C2的直角坐标方程;(2)直线l与直线C2交于A,B两点,若|AB|≥2,求实数a的取值范围.考点:简单曲线的极坐标方程;参数方程化成普通方程.专题:坐标系和参数方程.分析:(1)首先,将曲线C1化为直角坐标方程,然后,根据中点坐标公式,建立关系,从而确定点Q的轨迹C2的直角坐标方程;(2)首先,将直线方程化为普通方程,然后,根据距离关系,确定取值范围.解答:解:(1)根据题意,得曲线C1的直角坐标方程为:x2+y2﹣4y=12,设点P(x′,y′),Q(x,y),根据中点坐标公式,得,代入x2+y2﹣4y=12,得点Q的轨迹C2的直角坐标方程为:(x﹣3)2+(y﹣1)2=4,(2)直线l的普通方程为:y=ax,根据题意,得,解得实数a的取值范围为:[0,].点评:本题重点考查了圆的极坐标方程、直线的参数方程,直线与圆的位置关系等知识,考查比较综合,属于中档题,解题关键是准确运用直线和圆的特定方程求解.一、选修4-5:不等式选讲24.已知函数f(x)=|2x+1|,g(x)=|x|+a(Ⅰ)当a=0时,解不等式f(x)≥g(x);(Ⅱ)若存在x∈R,使得f(x)≤g(x)成立,求实数a的取值范围.考点:绝对值不等式的解法;带绝对值的函数.专题:不等式的解法及应用.分析:(Ⅰ)当a=0时,由f不等式可得|2x+1|≥x,两边平方整理得3x2+4x+1≥0,解此一元二次不等式求得原不等式的解集.(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令 h(x)=|2x+1|﹣|x|,则 h(x)=,求得h(x)的最小值,即可得到从而所求实数a的范围.解答:解:(Ⅰ)当a=0时,由f(x)≥g(x)得|2x+1|≥x,两边平方整理得3x2+4x+1≥0,解得x≤﹣1 或x≥﹣∴原不等式的解集为(﹣∞,﹣1]∪[﹣,+∞)(Ⅱ)由f(x)≤g(x)得a≥|2x+1|﹣|x|,令 h(x)=|2x+1|﹣|x|,即 h(x)=,故 h(x)min=h (﹣)=﹣,故可得到所求实数a的范围为[﹣,+∞).点评:本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题.- 21 -。
【解析】河北省衡水中高三上期第四次联考数理(1)
【思路点拨】由三视图及题设条件知,此几何体为一个三棱柱,底面是等腰直角三角形,且其高为
2,
故先求出底面积,求解其表面积即可.
【 题 文 】 5 . 若 函 数 f ( x) 同 时 具 有 以 下 两 个 性 质 : ① f (x) 是 偶 函 数 ; ② 对 任 意 实 数 x, 都 有
f ( x) f ( x ) 。则 f ( x) 的解析式可以是 ( )
4
4
故不满足图象关于直线 x= 对称,故排除 D ,
4
【思路点拨】先判断三角函数的奇偶性,再考查三角函数的图象的对称性,从而得出结论. 【题文】 6.已知命题 p︰ ? x0∈ R, e x- m x=0, q︰ ? x∈ R, x2+m x+1 ≥ 0若, p∨( q) 为假命题 ,则实数 取值范围是 ( )
x2 系数为 2 5 m4 =250, m= 5 .
【思路点拨】利用二项式定理通项公式求出。
【题文】 11.与向量 a
71 ( , ), b
1 (,
7 ) 的夹角相等 , 且模为 1 的向量是
(
)
22
22
43 A. ( , )
55
43
43
B. ( , ) 或 ( , )
55
55
C. ( 2 2 , 1) 33
1,列出方程,解出坐标.
【题文】12.在平面直角坐标系 x O y 中 , 圆 C 的方程为 x2+y2-8 x+1 5=0, 若直线 y=k x+2 上至少存在一点 , 使
得以该点为圆心 , 半径为 1 的圆与圆 C 有公共点 , 则 k 的最小值是 ( )
4
A.-
3
【真题】15年河北省衡水中学高三(上)数学期中试卷含答案(理科)
2014-2015学年河北省衡水中学高三(上)期中数学试卷(理科)一、选择题(每小题5分,共60分.下列每小题只有一项符合题意,请将正确答案)1.(5分)设集合A={x|x>﹣1},B={x|x≥1},则“x∈A且x∉B”成立的充要条件是()A.﹣1<x≤1 B.x≤1 C.x>﹣1 D.﹣1<x<12.(5分)已知实数1,m,9依次构成一个等比数列,则圆锥曲线的离心率为()A.B.C.D.或23.(5分)已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是()A.m⊂α,n∥m⇒n∥α B.m⊂α,n⊥m⇒n⊥αC.m⊂α,n⊂β,m∥n⇒α∥βD.n⊂β,n⊥α⇒α⊥β4.(5分)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.5.(5分)要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度6.(5分)如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.由增加的长度决定7.(5分)如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后x分钟,瓶内液面与进气管的距离为h厘米,已知当x=0时,h=13.如果瓶内的药液恰好156分钟滴完.则函数h=f(x)的图象为()A.B.C.D.8.(5分)已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有,那么k的取值范围是()A.B.C.D.9.(5分)函数在[﹣2,2]上的最大值为2,则a的范围是()A.B.C.(﹣∞,0]D.10.(5分)抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为()A.B.p2C.2p2D.4p211.(5分)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD 是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4πB.12πC.16πD.32π12.(5分)若定义在R上的函数f(x)满足f(﹣x)=f(x),f(2﹣x)=f(x),且当x∈[0,1]时,f(x)=,则函数H(x)=|xe x|﹣f(x)在区间[﹣5,1]上的零点个数为()A.4 B.8 C.6 D.10二、填空题(每题5分,共20分,把答案填在横线上)13.(5分)已知,3sin2α=2cosα,则cos(α﹣π)=.14.(5分)如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是.15.(5分)设x,y满足约束条件,若目标函数z=ax+2by(a>0,b >0)的最大值为1,则+的最小值为.16.(5分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C 的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为.三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或验算步骤)17.(12分)如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos ∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M﹣BQ﹣C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.19.(12分)设不等式组所表示的平面区域为D n,记D n内整点的个数为a n(横纵坐标均为整数的点称为整点).(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;(2)求数列{a n}的通项公式;(3)记数列{a n}的前n项的和为S n,试证明:对任意n∈N*恒有++…+<成立.20.(12分)定圆M:=16,动圆N过点F且与圆M相切,记圆心N的轨迹为E.(I)求轨迹E的方程;(Ⅱ)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC 的面积最小时,求直线AB的方程.21.(12分)已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+x2﹣bx.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)﹣g (x2)的最小值.四、选修4-1:几何证明选讲22.(10分)如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.五、选修4-5:不等式选讲23.已知函数f(x)=|x﹣1|.(Ⅰ)解不等式:f(x)+f(x﹣1)≤2;(Ⅱ)当a>0时,不等式2a﹣3≥f(ax)﹣af(x)恒成立,求实数a的取值范围.2014-2015学年河北省衡水中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共60分.下列每小题只有一项符合题意,请将正确答案)1.(5分)设集合A={x|x>﹣1},B={x|x≥1},则“x∈A且x∉B”成立的充要条件是()A.﹣1<x≤1 B.x≤1 C.x>﹣1 D.﹣1<x<1【解答】解:∵集合A={x|x>﹣1},B={x|x≥1},又∵“x∈A且x∉B”,∴﹣1<x<1;又由﹣1<x<1时,满足x∈A且x∉B.故选:D.2.(5分)已知实数1,m,9依次构成一个等比数列,则圆锥曲线的离心率为()A.B.C.D.或2【解答】解:∵实数1、m、9依次构成一个等比数列,∴m2=1×9,解之得m=±3①当m=3时,圆锥曲线的方程为,表示椭圆a2=3,b2=2,可得a=,c==∴椭圆的离心率e==②当m=﹣3时,圆锥曲线的方程为,表示双曲线a2=1,b2=3,可得a=1,c==2∴双曲线的离心率e==2故选:C.3.(5分)已知m,n为不同的直线,α,β为不同的平面,则下列说法正确的是()A.m⊂α,n∥m⇒n∥α B.m⊂α,n⊥m⇒n⊥αC.m⊂α,n⊂β,m∥n⇒α∥βD.n⊂β,n⊥α⇒α⊥β【解答】解:在A选项中,可能有n⊂α,故A错误;在B选项中,可能有n⊂α,故B错误;在C选项中,两平面有可能相交,故C错误;在D选项中,由平面与平面垂直的判定定理得D正确.故选:D.4.(5分)一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是()A.B.C.D.【解答】解:本题中给出了正视图与左视图,故可以根据正视图与俯视图长对正,左视图与俯视图宽相等来找出正确选项A中的视图满足三视图的作法规则;B中的视图满足三视图的作法规则;C中的视图不满足三视图的作法规则中的宽相等,故其为错误选项;D中的视图满足三视图的作法规则;故选:C.5.(5分)要得到函数的图象,只需将函数的图象()A.向左平移个单位长度B.向右平移个单位长度C.向左平移个单位长度D.向右平移个单位长度【解答】解:=,故把的图象向左平移个单位,即得函数的图象,即得到函数的图象.故选:C.6.(5分)如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.由增加的长度决定【解答】解:设增加同样的长度为x,原三边长为a、b、c,且c2=a2+b2,c为最大边;新的三角形的三边长为a+x、b+x、c+x,知c+x为最大边,其对应角最大.而(a+x)2+(b+x)2﹣(c+x)2=x2+2(a+b﹣c)x>0,由余弦定理知新的三角形的最大角的余弦=>0,则为锐角,那么它为锐角三角形.故选:A.7.(5分)如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下液体(滴管内液体忽略不计),设输液开始后x分钟,瓶内液面与进气管的距离为h厘米,已知当x=0时,h=13.如果瓶内的药液恰好156分钟滴完.则函数h=f(x)的图象为()A.B.C.D.【解答】解:由题意知,每分钟滴下πcm3药液,当4≤h≤13时,xπ=π•42•(13﹣h),即h=13﹣,此时0≤x≤144;当1≤h<4时,xπ=π•42•9+π•22•(4﹣h),即,此时144<x≤156.∴函数单调递减,且144<x≤156时,递减速度变快.故选:A.8.(5分)已知直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,O是坐标原点,且有,那么k的取值范围是()A.B.C.D.【解答】解:设AB中点为D,则OD⊥AB∵,∴∴∵∴∵直线x+y﹣k=0(k>0)与圆x2+y2=4交于不同的两点A、B,∴∴4>∴4>∵k>0,∴故选:C.9.(5分)函数在[﹣2,2]上的最大值为2,则a的范围是()A.B.C.(﹣∞,0]D.【解答】解:先画出分段函数f(x)的图象,如图.当x∈[﹣2,0]上的最大值为2;欲使得函数在[﹣2,2]上的最大值为2,则当x=2时,e2a的值必须小于等于2,即e2a≤2,解得:a故选:D.10.(5分)抛物线的弦与过弦的端点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上.设抛物线y2=2px(p>0),弦AB过焦点,△ABQ为其阿基米德三角形,则△ABQ的面积的最小值为()A.B.p2C.2p2D.4p2【解答】解:法一:取倾斜角为:450,600,900,经计算可知,当倾斜角为900时,△ABQ的面积的最小,此时AB=2p,又焦点到准线的距离=p,此时三角形的面积最小为p2故选B.法二:由于若抛物线的弦过焦点,则过弦的端点的两条切线的交点在其准线上,且△PAB为直角三角型,且角P为直角.,由于AB是通径时,AB最小,故选B.11.(5分)四面体ABCD的四个顶点都在球O的表面上,AB⊥平面BCD,△BCD 是边长为3的等边三角形.若AB=2,则球O的表面积为()A.4πB.12πC.16πD.32π【解答】解:取CD的中点E,连结AE,BE,∵在四面体ABCD中,AB⊥平面BCD,△BCD是边长为3的等边三角形.∴Rt△ABC≌Rt△ABD,△ACD是等腰三角形,△BCD的中心为G,作OG∥AB交AB的中垂线HO于O,O为外接球的中心,BE=,BG=,∴R=2.四面体ABCD外接球的表面积为:4πR2=16π.故选:C.12.(5分)若定义在R上的函数f(x)满足f(﹣x)=f(x),f(2﹣x)=f(x),且当x∈[0,1]时,f(x)=,则函数H(x)=|xe x|﹣f(x)在区间[﹣5,1]上的零点个数为()A.4 B.8 C.6 D.10【解答】解:定义在R上的函数f(x)满足f(﹣x)=f(x),f(2﹣x)=f(x),∴函数是偶函数,关于x=1对称,∵函数f(x)=xe x的定义域为R,f′(x)=(xe x)′=x′e x+x(e x)′=e x+xe x令f′(x)=e x+xe x=e x(1+x)=0,解得:x=﹣1.列表:由表可知函数f(x)=xe x的单调递减区间为(﹣∞,﹣1),单调递增区间为(﹣1,+∞).当x=﹣1时,函数f(x)=xe x的极小值为f(﹣1)=﹣.y=|xe x|,在x=﹣1时取得极大值:,x∈(0,+∞)是增函数,x<0时有5个交点,x>0时有1个交点.共有6个交点故选:C.二、填空题(每题5分,共20分,把答案填在横线上)13.(5分)已知,3sin2α=2cosα,则cos(α﹣π)=.【解答】解:∵,3s in2α=2cosα,∴6sinα•cosα=2cosα,解得sinα=,∴cosα=﹣.故cos(α﹣π)=cos(π﹣α)=﹣cosα=,故答案为.14.(5分)如图,F1,F2是双曲线C1:x2﹣=1与椭圆C2的公共焦点,点A是C1,C2在第一象限的公共点.若|F1F2|=|F1A|,则C2的离心率是.【解答】解:由双曲线C1:x2﹣=1可得a1=1,b1=,c=2.设椭圆C2的方程为=1,(a>b>0).则|F1A|﹣|F2A|=2a1=2,|F1A|+|F2A|=2a,∴2|F1A|=2a+2∵|F1F2|=|F1A|=2c=4,∴2×4=2a+2,解得a=3.则C2的离心率==.故答案为:.15.(5分)设x,y满足约束条件,若目标函数z=ax+2by(a>0,b >0)的最大值为1,则+的最小值为8.【解答】解:由约束条件作可行域如图.由图可知,使目标函数数z=ax+2by(a>0,b>0)取得最大值的点为B(1,1),∴a+2b=1,则+(当且仅当a=2b时取等号),由,解得:.∴+的最小值为.故答案为:8.16.(5分)在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4,设圆C 的半径为1,圆心在l上.若圆C上存在点M,使|MA|=2|MO|,则圆心C的横坐标a的取值范围为[0,] .【解答】解:设点M(x,y),由MA=2MO,知:=2,化简得:x2+(y+1)2=4,∴点M的轨迹为以(0,﹣1)为圆心,2为半径的圆,可记为圆D,又∵点M在圆C上,∴圆C与圆D的关系为相交或相切,∴1≤|CD|≤3,其中|CD|=,∴1≤≤3,化简可得0≤a≤,故答案为:[0,].三、解答题(本大题共5小题,共70分,解答应写出文字说明,证明过程或验算步骤)17.(12分)如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos ∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.【解答】解:(Ⅰ)由题意,因为sinB=,所以cosB=…(2分)又cos∠ADC=﹣,所以sin∠ADC=…(4分)所以sin∠BAD=sin(∠ADC﹣∠B)=×﹣(﹣)×=…(7分)(Ⅱ)在△ABD中,由正弦定理,得,解得BD=…(10分)故BC=15,CD=从而在△ADC中,由余弦定理,得AC2=9+225﹣2×3××(﹣)=,所以AC=…(14分)18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q是AD的中点.(1)若PA=PD,求证:平面PQB⊥平面PAD;(2)若平面APD⊥平面ABCD,且PA=PD=AD=2,在线段PC上是否存在点M,使二面角M﹣BQ﹣C的大小为60°.若存在,试确定点M的位置,若不存在,请说明理由.【解答】(1)证明:∵PA=PD,Q为AD的中点,∴PQ⊥AD,又∵底面ABCD为菱形,∠BAD=60°,∴BQ⊥AD,又PQ∩BQ=Q,∴AD⊥平面PQB,又∵AD⊂平面PAD,∴平面PQB⊥平面PAD.(2)解:∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PQ⊥AD,∴PQ⊥平面ABCD,以Q为坐标原点,分别以QA,QB,QP为x,y,z轴,建立空间直角坐标系,如图则Q(0,0,0),P(0,0,),B(0,,0),C(﹣2,,0)设,0<λ<1,则M(﹣2λ,,),平面CBQ的一个法向量=(0,0,1),设平面MBQ的法向量为=(x,y,z),由,得=(,0,),∵二面角M﹣BQ﹣C的大小为60°,∴cos60°=|cos<>|=||=,解得,∴=,∴存在点M为线段PC靠近P的三等分点满足题意.19.(12分)设不等式组所表示的平面区域为D n,记D n内整点的个数为a n(横纵坐标均为整数的点称为整点).(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;(2)求数列{a n}的通项公式;(3)记数列{a n}的前n项的和为S n,试证明:对任意n∈N*恒有++…+<成立.【解答】解:(1)D2如图中阴影部分所示,∵在4×8的矩形区域内有5×9个整点,对角线上有5个整点,∴a2==25.(3分)(另解:a2=1+3+5+7+9=25)(2)直线y=nx与x=4交于点P(4,4n),据题意有a n==10n+5.(6分)(另解:a n=1+(n+1)+(2n+1)+(3n+1)+(4n+1)=10n+5)(3)S n=5n(n+2).(8分)∵==•<,∴++…+<++…+=(﹣+…+﹣)=(+﹣﹣)<(13分)20.(12分)定圆M:=16,动圆N过点F且与圆M相切,记圆心N的轨迹为E.(I)求轨迹E的方程;(Ⅱ)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC 的面积最小时,求直线AB的方程.【解答】解:(Ⅰ)因为点在圆内,所以圆N内切于圆M,因为|NM|+|NF|=4>|FM|,所以点N的轨迹E为椭圆,且,所以b=1,所以轨迹E的方程为.…(4分)(Ⅱ)(i)当AB为长轴(或短轴)时,依题意知,点C就是椭圆的上下顶点(或左右顶点),此时|AB|=2.…(5分)(ii)当直线AB的斜率存在且不为0时,设其斜率为k,直线AB的方程为y=kx,联立方程得,所以|OA|2=.…(7分)由|AC|=|CB|知,△ABC为等腰三角形,O为AB的中点,OC⊥AB,所以直线OC 的方程为,由解得,=,,…(9分)S△ABC=2S△OAC=|OA|×|OC|=,由于,所以,…(11分)当且仅当1+4k2=k2+4,即k=±1时等号成立,此时△ABC面积的最小值是,因为,所以△ABC面积的最小值为,此时直线AB的方程为y=x或y=﹣x.…(12分)21.(12分)已知函数f(x)=x+alnx在x=1处的切线与直线x+2y=0垂直,函数g(x)=f(x)+x2﹣bx.(1)求实数a的值;(2)若函数g(x)存在单调递减区间,求实数b的取值范围;(3)设x1,x2(x1<x2)是函数g(x)的两个极值点,若b≥,求g(x1)﹣g (x2)的最小值.【解答】解:(1)∵f(x)=x+alnx,∴f′(x)=1+,∵f(x)在x=1处的切线l与直线x+2y=0垂直,∴k=f′(x)|x=1=1+a=2,解得a=1.(2)∵g(x)=lnx+﹣(b﹣1)x,∴g′(x)=,x>0,由题意知g′(x)<0在(0,+∞)上有解,即x++1﹣b<0有解,∵定义域x>0,∴x+≥2,x+<b﹣1有解,只需要x+的最小值小于b﹣1,∴2<b﹣1,解得实数b的取值范围是{b|b>3}.(3)∵g(x)=lnx+﹣(b﹣1)x,∴g′(x)==0,∴x1+x2=b﹣1,x1x2=1∴g(x1)﹣g(x2)=ln﹣(﹣)∵0<x1<x2,∴设t=,0<t<1,令h(t)=lnt﹣(t﹣),0<t<1,则h′(t)=﹣<0,∴h(t)在(0,1)上单调递减,又∵b≥,∴(b﹣1)2≥,∵0<t<1,∴4t2﹣17t+4≥0,∴0<t≤,h(t)≥h()=﹣2ln2,故所求的最小值为﹣2ln2.四、选修4-1:几何证明选讲22.(10分)如图,点A是以线段BC为直径的圆O上一点,AD⊥BC于点D,过点B作圆O的切线,与CA的延长线相交于点E,点G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF;(2)求证:PA是圆O的切线.【解答】证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.可得△BFC∽△DGC,△FEC∽△GAC.∴,得.∵G是AD的中点,即DG=AG.∴BF=EF.(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°.由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB.又∵OA=OB,∴∠ABO=∠BAO.∵BE是圆O的切线,∴∠EBO=90°,得∠EBO=∠FBA+∠ABO=∠FAB+∠BAO=∠FAO=90°,∴PA⊥OA,由圆的切线判定定理,得PA是圆O的切线.五、选修4-5:不等式选讲23.已知函数f(x)=|x﹣1|.(Ⅰ)解不等式:f(x)+f(x﹣1)≤2;(Ⅱ)当a>0时,不等式2a﹣3≥f(ax)﹣af(x)恒成立,求实数a的取值范围.【解答】解:(Ⅰ)原不等式等价于:当x ≤1时,﹣2x +3≤2,即≤x ≤1.当1<x ≤2时,1≤2,即 1<x ≤2. 当x >2时,2x ﹣3≤2,即2<x ≤.综上所述,原不等式的解集为{x |≤x≤}.(Ⅱ)当a >0时,f (ax )﹣af (x )=|ax ﹣1|﹣|ax ﹣a |=|ax ﹣1|﹣|a ﹣ax |≤|ax ﹣1+a ﹣ax |=|a ﹣1|,所以,2a ﹣3≥|a ﹣1|,解得a ≥2.赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则yxo[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.。
河北省衡水市冀州中学2015届高三上学期第四次月考理科数学试题Word版含答案
河北冀州中学高三年级第四次月考理科数学试题考试时间120分钟 试题分数150分第Ⅰ卷(选择题 共60分)一.选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1、设复数z 满足i i21=+z,则 z =( ) A 、i 2+- B 、i 2-- C 、i 2+D 、i 2-2、设集合P ={x |⎰>=+-x02006103x dt t t ,)(},则集合P 的非空子集个数是( )A 、2B 、3C 、7D 、8 3、下列说法中正确的是 ( )A 、若命题:p x R ∀∈有20x >,则:p x R ⌝∀∈有20x ≤;B 、若命题1:01p x >-,则1:01p x ⌝≤-;C 、若p 是q 的充分不必要条件,则p ⌝是q ⌝的必要不充分条件;D 、方程20ax x a ++=有唯一解的充要条件是12a =±4、已知某几何体的三视图(单位:cm )如图所示,则该 几何体的体积是 ( ) A 、48cm 3 B 、78cm 3 C 、88cm 3 D 、98cm 35、函数125)(-+-=x x x f 的零点所在的区间是( )A 、)1,0(B 、)2,1(C 、)3,2(D 、)4,3(6、将函数x y 2sin =的图像向右平移4π个单位,再向上平移1个单位,所得函数图像对应的解析式为 ( ) A 、x y 2sin 2= B 、x y 2cos 2=C 、1)42sin(+-=πx y D 、x y 2cos -=7、运行如图所示的程序,若结束时输出的结果不小于3, 则t 的取值范围为( )A 、1t ≥B 、1t ≥C 、1t ≤D 、18t ≤8)的图象在1x =处的切线 ,且当1n =时,其图象经过()2,8,则 5 C 、6 D 、7( 9、已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c 的最大值是A 、1 B 、2 C 、2 D 、22( ) 10、将A ,B ,C ,D ,E 五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A 、B 必须放入相邻的抽屉内,文件C 、D 也必须放在相邻的抽屉内,则所有不同的放法有 ( ) A 、192 B 、144 C 、288 D 、24011、若椭圆22221(0)x y a b a b+=>>的离心率12e =,右焦点为(,0)F c ,方程220ax bx c ++= 的两个实数根分别是12,x x ,则点12(,)P x x 到原点的距离为( )AB、2C 、2D 、7412、已知偶函数(),y f x x R =∈满足:2()3(0)f x x x x =-≥,若函数2log ,0()1,0x x g x x x>⎧⎪=⎨-<⎪⎩,则()()y f x g x =-的零点个数为 ( ) A 、1 B 、3 C 、2 D 、4第Ⅱ卷 (非选择题)二、填空题(本题共4小题,每小题5分,共20分。
河北省衡水中学2015届高三上学期四调考试数学(理)(附答案) (1)
河北省衡水中学2015届高三上学期四调考试数学(理)试题【试卷综述】试题在重视基础,突出能力,体现课改,着眼稳定,实现了新课标高考数学试题与老高考试题的尝试性对接.纵观新课标高考数学试题,体现数学本质,凸显数学思想,强化思维量,控制运算量,突出综合性,破除了试卷的八股模式,以全新的面貌来诠释新课改的理念,无论是在试卷的结构安排方面,还是试题背景的设计方面,都进行了大胆的改革和有益的探索,应当说是一份很有特色的试题.一、选择题(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)【题文】1.已知向量=【知识点】平面向量的数量积;向量模的运算. F3 【答案】【解析】C 解析:∵222()2()50a b a a b b +=+⋅+=,又(2,1),10a a b =⋅=,∴()250520255b b =--=⇒=,故选C.【思路点拨】把向量的模转化为数量积运算. 【题文】2.已知的共轭复数,复数A .B .c .1 D .2【知识点】复数的基本概念与运算.L4【答案】【解析】A 解析:∵114i z i====,∴144z i =--,∴221144z z ⎛⎛⎫⋅=+= ⎪ ⎝⎭⎝⎭.【思路点拨】化简复数z ,根据共轭复数的定义得z ,进而求得结论.【题文】3.某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有 A .80种 B .90种 C .120种D .150种【知识点】排列与组合. J2【答案】【解析】 D 解析:有二类情况:(1)其中一所学校3名教师,另两所学校各一名教师的分法有335360C A =种,(2)其中一所学校1名教师,另两所学校各两名教师的分法有213453902C C A =种,∴共有150种.故选D. 【思路点拨】先根据分到各学校的教师人数分类,再根据去各学校教师人数将教师分成三组,然后将这三组教师全排列即可. 【题文】4.曲线处的切线方程为 A .B .C .D .【知识点】导数的几何意义. B11【答案】【解析】A 解析:∵22222(2)(2)x x x y y x x x +-'=⇒==+++,∴曲线在点(-1,-1)处切线的斜率为2,∴所求切线方程为21y x =+,故选A.【思路点拨】根据导数的几何意义,得曲线在点(-1,-1)处切线的斜率,然后由点斜式得所求切线方程. 【题文】5.等比数列A .62B . 92 C .152 D .122【知识点】等比数列;积得导数公式. D3 B11 【答案】【解析】D 解析:因为182,4a a ==,又()()()()()()128128()f x x a x a x a x x a x a x a ''=---+---⎡⎤⎣⎦所以()441212818(0)82f a a a a a '====,故选D.【思路点拨】根据积得导数公式求解. 【题文】6.经过双曲线:的右焦点的直线与双曲线交于两点A,B ,若AB=4,则这样的直线有几条A .4条B .3条C .2条D .1条【知识点】直线与双曲线. H6 H8【答案】【解析】B 解析:因为AB=4而双曲线的实轴长是4,所以直线AB 为x 轴时成立,即端点在双曲线两支上的线段AB 只有一条,另外端点在双曲线右支上的线段AB 还有两条,所以满足条件得直线有三条.【思路点拨】设出过焦点的直线方程,代入双曲线方程,由弦长公式求得满足条件得直线条数.【题文】7.设函数,则A .在单调递增B .在单调递减 C .在单调递增 D .在单调递增【知识点】两角和与差的三角函数;函数的周期性;奇偶性;单调性. C5 C4【答案】【解析】D解析:())4f x x πωϕ=+-,因为T π=,所以2ω=,又因为()(),2f x f x πϕ-=<,所以4πϕ=,所以()f x x =,经检验在单调递增,故选 D.【思路点拨】根据已知条件求得函数()f x x ,然后逐项检验各选项的正误. 【题文】8.某产品的广告费用x 与销售额y 的统计数据如下表:根据下表可得回归方程中的b =10.6,据此模型预报广告费用为10万元时销售额为A . 112.1万元B .113.1万元C .111.9万元D .113.9万元 【知识点】变量的相关性;回归直线方程的性质与应用. I4【答案】【解析】C 解析:把样本中心点(7,432)代入回归方程得 5.9a =,所以广告费用为10万元时销售额为10.610 5.9111.9⨯+=(万元),故选C.【思路点拨】根据回归方程过样本中心点得a 值,从而求得广告费用为10万元时销售额.【题文】9.椭圆C的两个焦点分别是F1,F2若C上的点P 满足,则椭圆C的离心率e的取值范围是【知识点】椭圆的性质. H5【答案】【解析】C 解析:∵12233,2PF F F c==∴223PF a c=-,由三角形中,两边之和大于第三边得232311 223342c c a c cc a c c a+≥-⎧⇒≤≤⎨+-≥⎩,故选C.【思路点拨】利用椭圆定义,三角形的三边关系,椭圆离心率计算公式求得结论. 【题文】10.已知直三棱柱,的各顶点都在球O的球面上,且,若球O 的体积为,则这个直三棱柱的体积等于【知识点】几何体的结构;球的体积公式;柱体的体积公式. G1【答案】【解析】B 解析:由球的体积公式得球的半径R= AB=AC=1,ABC是顶角是120°的等腰三角形,其外接圆半径r=1,所以球心到三棱柱底面的距离为2,所以此三棱柱的体积为111sin12042⨯⨯⨯⨯=B.【思路点拨】本题重点是求三棱锥的高,而此高是球心到三棱柱底面距离h的二倍,根据此组合体的结构,球半径R,△ABC的外接圆半径r及h构成直角三角形,由此求得结果. 【题文】11.在棱长为1的正方体中,着点P是棱上一点,则满足的点P的个数为A .4B .6C .8D .12【知识点】几何体中的距离求法. G11【答案】【解析】 B 解析:若点P 在棱AD 上,设AP=x ,则()222212CP PD DC x =+=-+,所以2x =,解得12x =,同理点P 可以是棱,,,,AB AA C C C B C D ''''''的中点,显然点P 不能在另外六条棱上,故选B.【思路点拨】构建方程,通过方程的解求得点P 的个数. 【题文】12.定义在实数集R 上的函数的图像是连续不断的,若对任意实数x ,存在实常数t 使得恒成立,则称是一个“关于£函数”.有下列“关于t 函数”的结论:①()0f x =是常数函数中唯一一个“关于t 函数”;②“关于12函数”至少有一个零点;③2()f x x =是一个“关于t 函数”.其中正确结论的个数是 A .1B .2C .3D .0【知识点】函数中的新概念问题;函数的性质及应用. B1【答案】【解析】A 解析:①不正确,()0f x c =≠,取t= -1则f(x-1)-f(x)=c-c=0,即()0f x c =≠是一个“关于-1函数”; ②正确,若f(x)是“关于12函数”,则11()()022f x f x ++=,取x=0,则1()(0)02f f +=,若1(),(0)2f f 任意一个为0,则函数f(x)有零点,若1(),(0)2f f 均不为0,则1(),(0)2f f 异号,由零点存在性定理知在10,2⎛⎫ ⎪⎝⎭内存在零点;③不正确,若2()f x x =是一个“关于t 函数”,则22()x t tx +=-()22120t x tx t ⇒+++=恒成立,则210200t t t ⎧+=⎪=⎨⎪=⎩所以t 不存在. 故选A.【思路点拨】举例说明①不正确;由函数零点存在性定理及新定义说明②正确;把2()f x x =代入新定义得t 不存在,所以③不正确.【典例剖析】本小题是新概念问题,解决这类题的关键是准确理解新概念的定义,并正确利用新概念分析问题.【题文】第Ⅱ卷(非选择题共90分)【题文】二、填空题(本题共4个小题,每小题5分,共20分。
河北衡水中学高三上学期期中考试数学理试题
2013~2014学年度上学期期中考试 高三年级数学(理科)试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)1.平面向量a 与b 的夹角为60°,(2,0),1,==a b 则2+=a b ( ) (A(B)(C )4 (D )122.若集合{}{}2540;1,A x x x B x x a =-+=-<<则“(2,3)a ∈”是“B A ⊆”的( ) (A )充分不必要条件 (B )必要不充分条件(C )充要条件(D )既不充分也不必要条件3.已知平面向量,m n u r r 的夹角为,6π2,3==,在ABC ∆中,22AB m n =+uu u r u r r ,26AC m n =-uuu r u r r,D 为BC 中点,则AD =( )A.2B.4C.6D.84.某几何体的三视图如右图(其中侧视图中的圆弧是半圆), 则该几何体的表面积为( ) (A )9214+π (B )8214+π (C )9224+π (D )8224+π5.已知等差数列{}n a 中,37101140,4a a a a a +-=-=,记12n n S a a a =+++L ,S 13=( ) A .78B .68C .56D .526.已知双曲线22221x y a b-= (0,0)a b >>的左、右焦点分别为12,F F ,以12||F F 为直径的圆与双曲线渐近线的一个交点为(3,4),则此双曲线的方程为( )A .221169x y -= B .22134x y -= C .221916x y -= D .22143x y -=侧视正视图俯视图7.在△ABC 中,角,,A B C 所对的边分别为,,a b c ,且满足sin cos a B b A =,则2sin cos B C -的最大值是( )A .1 B. 3 C. 7 D. 278.若函数1()e (0,)ax f x a b b=->>0的图象在0x =处的切线与圆221x y +=相切,则a b +的最大值是( ) (A )4 (B )22(C )2 (D )29. 在椭圆22221(0)x y a b a b+=>>中,12,F F 分别是其左右焦点,若椭圆上存在一点P 使得122PF PF =,则该椭圆离心率的取值范围是( )A .1,13⎛⎫ ⎪⎝⎭B .1,13⎡⎫⎪⎢⎣⎭ C .10,3⎛⎫ ⎪⎝⎭D .10,3⎛⎤⎥⎝⎦10.已知A 、B 、C 是球O 的球面上三点,三棱锥O ﹣ABC 的高为2且∠ABC=60°,AB=2,BC=4,则球O 的表面积为( )A .24π B. 32π C. 48π D. 192π11.已知定义在R 上的函数()y f x =对任意的x 都满足(1)()f x f x +=-,当11x -≤< 时,3()f x x =,若函数()()log a g x f x x =-至少6个零点,则a 取值范围是( )(A )10,5,5+∞U (]() (B )10,[5,5+∞U ()) (C )11,]5,775U (() (D )11,[5,775U ())12.对于定义域为D 的函数()y f x =和常数c ,若对任意正实数ξ,,x D ∃∈使得0|()|f x c ξ<-<恒成立,则称函数()y f x =为“敛c 函数”.现给出如下函数: ①()()f x x x Z =∈; ②()()112xf x x Z ⎛⎫=+∈ ⎪⎝⎭;③ ()2log f x x =; ④()1x f x x -=.其中为“敛1函数”的有A .①②B .③④C . ②③④D .①②③Ⅱ卷 非选择题 (共90分)二、填空题(本题共4个小题,每小题5分,共20分. 把每小题的答案填在答题纸的相应位置)13. 过点(1,1)-的直线与圆2224110x y x y +---=截得的弦长为43,则该直线的方程为 。
河北省衡水中学高三(上)期中数学试卷(理科)
7.【答案】D
【解析】解: ∵ 푓(푥) = |12−4푠푖푛푥푐표푠푥| = |12−2푠푖푛2푥| ∴ 푓(푥)的最小正周期为푇 = 휋; 又 ∵ 푓(푥−푎) = −푓(푥 + 푎)恒成立, ∴ 푓(푥) = −푓(푥 + 2푎)⇒−푓(푥) = 푓(푥 + 2푎), 而−푓(푥) = 푓(푥−2푎), ∴ 푓(푥 + 2푎) = 푓(푥−2푎)⇒푓(푥) = 푓(푥 + 4푎),
第 3 页,共 21 页
18. 已知等差数列{푎푛}前 n 项和푆푛,等比数列{푏푛}前 n 项和为푇푛,푎1 = 1,푏1 = 1,푎 +
2
푏2 = 4.
(1)若푎3 + 푏3 = 7,求数列{푏푛}的通项公式;
(2)若푇3 = 13,求푆5.
19.
已知圆
D:(푥−2)2
+(푦−1)2
=
1 ,点
显然 PM 最小时,四边形面积最小,此时 PC 最小. ∵ 푃是直线푦 = 2 2푥−4上的动点,
∴
푃퐶最小值
=
|0−1−4| 8+1
=
53,
∴ 푃푀最小值 = ( 53)2−12 = 43,
∴
四边形
PMCN
面积的最小值为:2
×
1 2
×
4 3
×
1
=
43.
故选:A.
6.【答案】C
【解析】解:由函数푓(푥) = 퐴푠푖푛(휔푥 + 휑)(퐴 > 0,휔 > 0,0 < 휑 < 휋2)的部分图象,
在定点 P,使得以弦 AB 为直径的圆恒过 P 点?若存在,求出 P 点的坐标和 △ 푃퐴퐵
衡水中学2015届高三上学期期中考试修改版
河北省衡水中学2015届高三上学期期中考试阅读理解AMy father had always been an alert observer of human character. Within seconds of meeting someone, he could sum up their strengths and weaknesses. It was always a challenge to see if any of my boyfriends could pass Dad’s test. None did. Dad was always right---they didn’t pass my test either. After Dad died, I wondered how I’d figure it out on my own.That’s when Jack arrived on the scene.He was different from any other guy I’d dated. He could sit for hours on the piano bench with my mother, discussing some composers. My brother Rick loudly announced that Jack wasn’t a turkey like the other guys I’d brought home. Jack passed my family’s te st. But what about Dad’s?Then came my mother’s birthday. The day he was supposed to drive, I got a call. “Don’t worry,” he said, “but I’ve been in an accident. I’m fine, but I need you to pick me up.”When I got there, we rushed to a flower shop for somet hing for Mom. “How about gardenias?” Jack said, pointing at a beautiful white corsage(胸花). The florist put the corsage in a box.The entire ride, Jack was unusually quiet. “Are you all right?” I asked. “I’ve been doing a lot of thinking,” he said. “I might be moving.” Moving? Then he added, “Moving in with you.” I nearly put the car on the sidewalk. “What?” I asked. “I think we should get married,” he said. He told me he’d planned his proposal in a fancy restaurant, but after the accident, he decided to do it right away. “Yes,” I whispered. We both sat dumbfounded, tears running down our cheeks. I’d never known such a tender moment. If only Dad were here to give his final approval.“Oh, let’s just go inside.” Jack laughed. My mother opened the door. “Happy Birthday!” we shouted. Jack handed the box to her. She opened it up. Suddenly, her eyes were filled with tears. “Mom, what’s wrong?” I asked. “I’m sorry,” she said, wiping her eyes. “This is only the second gardenia corsage I’ve ever received. I was given o ne years ago, long before you kids were born.” “From who?” I asked. “Your father,” Mom said. “He gave me one right before we were engaged.” My eyes locked on Jack’s as I blinked away(眨掉) tears. Dad’s test? I knew Jack had passed.21. According to the text, we know the writer’s father was __________.A. interested in observing things aroundB. good at judging one’s characterC. strict with her boyfriendD. fond of challenges22. What is the main idea of Paragraph 2?A. Jack got the family’s approval except Dad’s.B. Jack was different from any other boy.C. Jack was getting on well with Mother.D. Jack knew a lot about piano.23. The underlined word “proposal” in Paragraph 5 means __________.A. piece of adviceB. wedding ceremonyC. celebration of birthdayD. offer of marriage24. On hearing “moving in with you”, the writer felt _________.A. pleasedB. worriedC. surprisedD. disappointedWASHINGTON—Laura Straub is a very worried woman. Her job is to find families for foreign teenagers who expect to live with American families in the summer.It is not easy, even desperate.“We have many children left to place—40 out of 75,” said Straub, who works f or a foreign exchange programme called LEC.When foreign exchange programmes started 50 years ago, more families were accommodating. For one thing, more mothers stayed at home. But now, increasing numbers of women work outside the home. Exchange-student programmes have struggled in recent years to sign up host families for the 30, 000 teenagers who come from abroad every year to spend an academic year in the United States, as well as the thousands more who take part in summer programmes.School systems in many parts of the U.S., unhappy about accepting non-taxpaying students, have also strictly limited the number of exchange students they accept. At the same time, the idea of hosting foreign students is becoming less exotic(有异国情调的).In search for host families, who usually receive no pay, exchange programmes are increasingly broadening their requests to include everyone from young couples to the retired.“We are open to many different types of families,” said Vickie Weiner, eastern regional director for ASSE, a 25-year-old programme that sends about 30,000 teenagers on academic-year exchange programmes worldwide.For elderly people, exchange students “keep us young—they really do”, said Jen Foster, who is hosting 16-year-old Nina Post from Denmark.25. Viekie Weiner is the person who ____.A. works for a programme called LECB. works for a programme called ASSEC. is 25 years oldD. hosts foreign students.26. According to the text, why was it easier for Laura Straub to find American families for foreign students?A.American school systems were better than now.B.The government was happy because it could gain tax.C.Foreign students paid hosting families a lot of money.D.More mothers didn’t work outside and could look after children.27. To deal with the problem in recent years, exchange programmes have to ______.A.extend the range of host families B.limit the number of the exchange students C.borrow much money to pay for the costs D.make hosting foreign students more exotic28. Which of the following is the best title of this passage?A. Exchange Students Keep Old People Young.B. Idea of Hosting Students is Different.C. Foreign-exchange Program Is Going on. D U.S. Struggle to Find host Families.Last year, A Bite of China, made by CCTVs Documentary Channel, sparked discussion not only on Chinese food, but also on locally made documentary programs.When you think of documentaries, you may think of them as long, boring programs. But documentaries can be wonderful and bring stories from the real world into our homes. With fascinating footage(影片片段)and stories, documentaries encourage us to think about interesting issues we wouldn’t necessarily know about.So, what makes a good documentary, and what should we pay attention to when we watch one? Here, we offer a few easy strategies to help you get the most out of watching documentaries.Pay attention to the themesWhile watching a documentary, keep your eyes and ears peeled for the themes people talk about and what ideas they focus on. Is it meant to be informative or raise a certain emotional response?Think criticallyListen to what the people in the documentary are saying and ask yourself the following questions: If you were debating with someone or introducing a new concept, would you say the things the people in the documentary are saying? Do the arguments make sense?Check the sourcesIf you’re sitting at the computer and can’t think of anything to do, why not look up the points the documentary made and see if they are accurate? You could even read more about what is presented in the documentary.Who are the creators?The creators or financial backers of a film will usually be involved with how the subject matter is presented. For instance, a s the documentary 2016: Obama’s America was directed in large part by a conservative writer, it’s not surprising that it’s critical of President Obama from the beginning.29. Which of the following is the most proper to describe documentaries?A. non-fictionalB. controversialC. subjectiveD. thoughtful30. The passage is mainly written to ______.A. inform us of factors of good documentaries.B. help us enjoy documentaries better.C. introduce ways of making documentaries.D. help us figure out themes of documentaries.31. Why is 2016: Obama’s America mentioned in the article?A. Because the author dislikes Obama.B. Because it is directed by a writer.C. Because it is quite popular in China.D. Because it is a persuasive example.32. According to the passage, ______.A. it is always difficult to get the themes of documentaries.B. financial backers often appear in documentaries.C. it’s better to think twice about what is in documentaries.D. many points of documentaries are not accurate.DWhen it comes to success in business and success in life, there are few qualities as important as confidence.People naturally have different levels of confidence.Some have a higher level of confidence than others do, but even those whose confidence is lacking can learn to build their level of confidence and reach their most important goals.Increasing self confidence is one of the most common reasons people give for seeking the help of psychologists and other professionals.One of the many places where a greater level of confidence is useful is in the workplace.We all know how difficult it can be, for instance, to ask the boss for a raise.This process can be extremely difficult for those who lack confidence in their own abilities.After all, if you are unsure about your own abilities, how will you ever convince your boss that you deserve more money for the work you do?Even if you are not asking for that big raise, having plenty of confidence in your abilities is important to success.If you are certain of your abilities, chances are that those around you, whether they are your coworkers, your colleagues or your superiors, will see that confidence, and that will help to assure them that you aree the best at what you do.Having a high level of confidence, after all, does not mean overlooking the places where you could improve.Knowing what you do well and where you need help will help you enjoy increased success and confidence.33.What is the passage mainly about?A.The influence of confidence on one's life.B.The difference of people's confidence..C.The importance of confidence to successD.The judgment on one's confidence.34.Psychologists and other professionals can offer help to those ______.A.who dream to be recognized expertsB.who expect to give guidance to othersC.who want to ask the boss for a raiseD.who think their goals are hard to reach35.What does the underlined word "indispensable" in Paragraph 5 probably mean?A.outgoing B.attractive C.important D.energetic 36.What message does the author want to convey(传递)in the last paragraph?A.To overlook one's disadvantages.B.To make full use of one's advantages.C.To have great confidence in one's abilities.D.To make objective evaluations of one's abilities七选五1. What Teenagers Can Do To Earn More RespectAs teenagers continue to grow and develop into young adults, the transition(过渡) into adulthood has begun. With so many physical and emotional changes going on, certain manners are often forgotten and other adult traits are not yet accepted as a way of life. 36 By doing the following things, you will earn more respect.Contribute to the householdAt the very least, clean up after yourself. As a teenager, you are old enough to clean up after yourself. When you make a mess, clean it up. 37 All chores that you do help to reduce the load of the person who did them before. Now that you’re old enough and capable, why shouldn’t you contribute to the household? 38Be responsible39 Whether they are basic things, like brushing your teeth or doing your homework , or more involved chores that contribute to the household, simply fulfill your responsibilities on time. When adults know that they can rely on you, their trust and respect for you will increase.3. Solve more of your own problem without asking for helpInstead of taking the easy approach and asking for help, make an effort to solve your problems on your own first. The “easy way ” is only easy for you, but it is an extra task for the person from whom you are seeking help. Seek help only after you have make an honest effort to solve your own problems. 40 When you become a good problem solver, you increase your valve to the community.A. Everyone has certain responsibilities.B. By being aware of these manners and traits, you can manage them sooner.C. The people doing the chores before will greatly appreciate the help.D. This includes. But is not limited to, your dishes and your room.E. It will make your life more pleasant.F. Depending on the problem, 15 minutes of effort is usually a good guideline.G. When speaking to a group, speak loud enough.Once many years ago, I pulled a family out of a burning car somewhere in Wyoming. Last week I __41___ a telephone call from a woman who could not stop __42___ as she told me that one of my stories had saved her son from committing suicide. In closing she called me a __43___.That __44___ me thinking about what a hero is. Was I a hero __45___ I pulled a family from a burning car? If so, how could I be a hero just because I __46___ a story that saved someone's life?Today I decided to look up the word "hero" in the dictionary to see __47___ what it meant. It __48___ "a person who does something brave". As I read on, it also said "a person who is good and noble ".That statement __49___ me more than the part about being __50___. So I thought about something very important. Say I was walking into the local Wal-Mart Store and I __51___ to open, and hold the door for someone as a courtesy. As they passed me by, I say, "How are you today?" Most of the time that would be no big deal, __52___this time let's say it was for someone who was deeply __53___ and near the end of the rope. That may have very well been the only kindness or courtesy shown to them in a very long time.Having been near "the end of my rope", after my marriage of twenty years ended, I was in such a condition. I was within hours trying to get enough __54___ to end the pain and misery. When I returned home, someone had __55___ me a card in the mail which told me how __56___ they would appreciate me as a friend. That wonderful card probably saved my life. That person, without even knowing it, saved a life and became a hero.Similarly many children come out of the orphanages__57___ a very hard and bitter attitude against the world, but the gifts we send them let them know that they have not been forgotten. __58___ , most of them will never hurt anyone because of the __59___ shown to them by those of us who cared. If it __60___ , we will also become “heroes”.41. A. made B. received C. gave D. accepted42. A. crying B. laughing C. thinking D. talking43. A. writer B. player C. gentleman D. hero44. A. helped B. let C. got D. made45. A. while B. if C. though D. because46. A. said B. wrote C. made D. recalled47. A. exactly B. easily C. directly D. obviously48. A. wrote B. told C. read D. described49. A. helped B. gave C. touched D. impressed50. A. brave B. good C. kind D. noble51. A. happened B. wanted C. intended D. meant52. A. though B. since C. because D. but53. A. depressed B. excited C. moved D. frightened54. A. money B. energy C. ability D. courage55. A. sent B. carried C. brought D. took56. A. deeply B. completely C. well D. much57. A. without B. for C. with D. within58. A. Hopefully B. However C. Besides D. Unfortunately59. A. luck B. respect C. confidence D. kindness60. A. matters B. works C. acts D. doesWere you the first or the last child in your family? Or were you a middle or an only child? Some people think 61.__________ matters where you were born in your family. But there are different ideas about what birth order means. Some people say that oldest children, 62.___________ are smart and strong-willed, are very likely 63.__________ (succeed). The reason 64.___________ this is simple. Parents have a lot of time for their first child and give him or her a lot of attention. An only child will succeed for 65.____________ same reason. What happens to the 66._____________ children in the family? Middle children don't get so much attention, so they don't feel that important. If a family has many children, the middle one sometimes gets lost in the crowd. The youngest child, 67.____________, often gets special treatment. Often this child grows up to be funny. But a recent study saw things quite 68.____________ (difference). The study found that first children believed in family rules. They didn't take many chances in 69.___________ lives. They usually 70._____________ (follow) orders. Rules didn't mean as much to later children in the family. They took chances and they often did better in life.短文改错My niece Mary is a Senior 3 student, who devoted herself to her lessons every day. Last Saturday, as usual, she went to several class. In the evening, she continued to study at home until deeply into the night. She was too sleepy and tired that she couldn’t work effectively. In Sunday morning, she was about to do her lessons while her father came up and advised her take a break. Soon they came up a good idea. They decided to go cycling in the countryside. Mary enjoyed herself, competing and chatting with her father, and felt relaxing in the open air. On the Monday,Mary was energetic but active in class. She spent the whole day in the countryside, and Mary said what she had done was worthwhile.第二节:书面表达(满分25分)假设你是李华,你上周刚刚参加了你校举办的第十届英语演讲比赛,并从三十名选手中脱颖而出,荣获“十佳奖”。
河北省衡水市2015 -2016学年度第一学期期末试卷(衡水中学使用)高三理科数学分析
某某省某某市2015 -2016学年度第一学期期末试卷(某某中学使用)高三理科数学分析一、试卷整体分析说明从整体分析,某某中学高三上学期七调考试数学(理)试题(以下简称“某某七调”)总体而言完全符合2015年新课标一数学考试说明的要求,同时延续了新课标Ⅰ数学高考改革方向和特点,即以中等难度的题目为主,并注重对数学基础知识的考查,试题考察点既全面又突出重点,是一份很成功的试卷。
(一)注重对基础知识和基本概念的考查.某某七调理科卷的第1题考查集合,第2题考查复数,第3题考查数列,第4题考查三角函数,第5题考查程序框图,第6题考查二项式定理,第7题考查正、余弦定理,第8题考查三视图,第9题考查向量,第10题考查外切球问题,第11题考查双曲线,第12题考查函数性质,第13题考查二项式定理,第14题考查正态分布,第15题考查圆的方程。
.第17题的立体几何题出现求最值X试题,基础部分的分值达到118分左右,考查到了学生基本概念的掌握,有助于引导学生备考复习.(二)注重对知识本质理解的考查.第9题对判断三角形形状考查,学生可能记住判断三角形的结论,必须从条件出发分解向量,逐步变形,得到结论.第16题考查了不等式的解集问题也是如此,如果学生在备考这类题目中只注重计算而不注重理解概念的本质原理,就会无从下手.此题必须会根据不等式形式构造函数,用导数解决解集问题。
掌握最本质的方法是以不变应万变的硬道理(三)试卷在平稳中有创新,让人眼前一亮.第19题概率、统计跟以往风格也有所不同,题目并没只考概率、期望、方差,而是侧重考查学生独立性检验与几何概型,在前两问的基础上易得出第三问的结论。
(四)一些值得商榷的地方1.对于一些知识点的考查略显不足.如对基本不等式、线性规划、命题与简易逻辑、二项分布等知识点的考查略显不足.2.第6题与第13题均考查了多项式的展开问题,属于考查重复;3.对于存在性问题与恒成立问题的涉及较多.4.选择题和填空题最后一题均以函数与导数的综合应用为背景,对于难点问题的处理过于集中在同一知识点上.二、亮点试题分析本套试题注重知识点的综合运用,比较典型的题目有7、9、11、17、19、20题等.其中第6、9、11、12、16、19、20、21题容易出错.【考试原题】16.()f x 是定义在R 上的函数,其导函数为()'f x ,若()()'1f x f x -<,()02016f =,则不等式()20151x f x e >⋅+(其中e 为自然对数的底数)的解集为.【解析】【考查方向】本题主要考查了导数及其应用、构造辅助函数.【易错点】无法联系已知条件和结论,构造辅助函数,从而解决问题受阻. 【解题思路】()()'1f x f x -<和()20151xf x e >⋅+构造新函数()()1x f xg x e -=.()g x 的单调性,结合原函数的性质和函数值即可求解.【解析】设()()1x f x g x e -=,(x ∈R ), 则()()1()xf x f xg x e '+-'= ∵()()'1f x f x -<,∴()()'10f x f x +->∴()0g x '>,∴y =g (x )在定义域上单调递增, ∵()20151xf x e >⋅+,∴g (x )>2015, 又∵0(0)1(0)2015f g e -==, ∴g (x )>g (0),∴x >0.∴不等式()20151xf x e >⋅+的解集为(0, +∞).【举一反三】【相似易错试题】2015年新课标Ⅱ高考题第12题设函数'()f x 是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,'()()0xf x f x -<,则使得()0f x >成立的x 的取值X 围是( ) A .(,1)(0,1)-∞- B .(1,0)(1,)-+∞ C .(,1)(1,0)-∞--D .(0,1)(1,)+∞【解析】试题分析:记函数()()f x g x x=,则''2()()()xf x f x g x x -=,因为当0x >时,'()()0xf x f x -<,故当0x >时,'()0g x <,所以()g x 在(0,)+∞单调递减;又因为函数()()f x x R ∈是奇函数,故函数()g x 是偶函数,所以()g x 在(,0)-∞单调递减,且(1)(1)0g g -==.当01x <<时,()0g x >,则()0f x >;当1x <-时,()0g x <,则()0f x >,综上所述,使得()0f x >成立的x 的取值X 围是(,1)(0,1)-∞-,故选A .【答案】A【考试原题】()2222:10x y C a bb +=>>的离心率为12,以原点为圆心,椭圆的短半轴长120+=相切.(1)求椭圆C 的方程;(2)设()4,0A -,过点()3,0R 作与x 轴不重合的直线l 交椭圆C 于,P Q 两点,连接,AP AQ 分别交直线163x =于,M N 两点,若直线,MR NR 的斜率分别为12,k k ,试问:12k k 是否为定值?若是,求出该定值,若不是,请说明理由. 【考查方向】考查直线与圆锥曲线的综合应用;定值问题.【易错点】无法建立12,k k 之间的关系,计算能力不过关,无法看出几何图形之间的关系. 【解题思路】1.由已知条件求出椭圆C 的方程.2.设P (x 1,y 1),Q (x 2,y 2),设直线PQ :x=my+3,与椭圆方程联立,得(3m 2+4)y 2+18my-21=0,由此利用韦达定理结合已知条件能求出直线MR 、NR 的斜率为定值.【解析】(1)由题意得2221242c a a b b c a b c ⎧=⎪=⎧⎪⎪=∴=⎨⎪=⎩⎪=+⎪⎩C 的方程为2211612x y += (2)设()()1122,,,P x y Q x y ,直线PQ 的方程为3x my =+,由2216123x y x my ⎧+⎪⎨⎪=+⎩,()223418210m y my ∴++-=,1221834m y y m -∴+=+,1222134y y m -=+,由,,A P M 三点共线可知()1111281643443M M y y y y x x =∴=+++, 同理可得()222834N y y x =+,所以()()121212916161649443333N M N M y y y y y y k k x x =⨯==++-- ()()()()()2121212124477749x x my my m y y m y y ++=++=+++()12122121216127497y y k k m y y m y y ∴==-+++【举一反三】【相似易错试题】2014年某某(理科)高考题第20题如图,已知双曲线C :x 2a2-y 2=1(a >0)的右焦点F ,点A ,B 分别在C 的两条渐近线上,AF⊥x 轴,AB ⊥OB ,BF ∥OA (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点P (x 0,y 0)(y 0≠0)的直线l :x 0x a 2-yy =1与直线AF 相交于点M ,与直线x=32相交于点N ,证明:当点P 在C 上移动时,|MF ||NF |恒为定值,并求此定值. 【解析】(1)设F (c,0),因为b =1,所以c =a 2+1,直线OB 的方程为y =-1a x ,直线BF 的方程为y =1a (x -c ),解得B ⎝ ⎛⎭⎪⎫c 2,-c 2a .又直线OA 的方程为y =1ax ,则A ⎝ ⎛⎭⎪⎫c ,c a ,k AB =c a -⎝ ⎛⎭⎪⎫-c 2a c -c 2=3a .又因为AB ⊥OB ,所以3a ·⎝ ⎛⎭⎪⎫-1a =-1,解得a 2=3,故双曲线C 的方程为x 23-y 2=1.(2)由(1)知a =3,则直线l 的方程为x 0x3-y 0y =1(y 0≠0),即y =x 0x -33y 0.因为直线AF 的方程为x =2,所以直线l 与AF 的交点M ⎝ ⎛⎭⎪⎫2,2x 0-33y 0; 直线l 与直线x =32的交点为N ⎝ ⎛⎭⎪⎫32,32x 0-33y 0. 则|MF |2|NF |2=2x 0-323y 0214+⎝ ⎛⎭⎪⎫32x 0-323y 02=2x 0-329y 204+94x 0-22=43·2x 0-323y 20+3x 0-22,因为P (x 0,y 0)是C 上一点,则x 203-y 20=1,代入上式得|MF |2|NF |2=43·2x 0-32x 20-3+3x 0-22=43·2x 0-324x 20-12x 0+9=43.所求定值为|MF ||NF |=23=233. 【考试原题】17.(本小题满分12分)已知数列{a n }的前n 项和为S n ,向量a= (S n ,1),b= (2n — 1,21),满足条件a ∥b, (1)求数列{a n }的通项公式, (2)设函数f(x)= (21)x,数列{b n }满足条件b 1=1,f(b n+1) =)1(1--n b f .①求数列{bn}的通项公式,②设 =n nab ,求数列{ }的前n 项和Tn.【考查方向】数列的通项公式和求和 【易错点】1、利用定义求通项公式 2、第二问中错位相减法计算的准确性;【解题思路】(1)利用12nn n n a S S -=-=求出通项(2)①利用11()(1)n n f b f b +=--得到11n n b b ++=,利用定义求出通项公式;②利用错位相减法求出前n 项和【解析】(1)∵a //b∴1121222n n n n S S +=-⇒=- 当1n =时,2n a =当2n ≥时,12;nn n n a S S -=-= ∴2nn a =(2)①∵1()2xf x ⎛⎫= ⎪⎝⎭,11()(1)n nf b f b +=--∴1111212n nb b +--⎛⎫=⎪⎝⎭⎛⎫ ⎪⎝⎭,即111122n nb b ++⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭∴11n n b b ++=,即{}n b 是以1为首项,1为公差的等差数列,n b n =②2n n n n b n c a ==,1231232222n n n T =+++⋅⋅⋅ 2341112322222n n n T +=+++⋅⋅⋅ ∴222n n n T +=-【举一反三】【相似易错试题】2015年新课标Ⅰ(理科)高考题第17题n S 为数列{n a n a >0,2nn a a +=43n S +. (Ⅰ)求{n a }的通项公式: (Ⅱ)设,求数列}的前n 项和【解析】(Ⅰ)当1n =时,211112434+3a a S a +=+=,因为0n a >,所以1a =3, 当2n ≥时,2211n n n n a a a a --+--=14343n n S S -+--=4n a ,即111()()2()n n n n n n a a a a a a ---+-=+,因为0n a >,所以1n n a a --=2,所以数列{n a }是首项为3,公差为2的等差数列, 所以n a =21n +;(Ⅱ)由(Ⅰ)知,n b =1111()(21)(23)22123n n n n =-++++,所以数列{n b }前n 项和为12n b b b +++=1111111[()()()]235572123n n -+-++-++ =11646n -+. 【考点】数列前n 项和与第n 项的关系;等差数列定义与通项公式;拆项消去法 【考试原题】18.(本小题满分12分)如图,在四棱锥S —ABCD 中,底面ABCD 是直角梯形,侧棱SA 丄底面ABCD ,AB 垂直于AD 和BC ,SA=AB = BC=2,AD = 1.M 是棱SB 的中点.(1)求证:AM//平面SCD,(2)求平面SCD 与平面SAB 所成的二面角的余弦值, 【考查方向】用空间向量求平面间的夹角;直线与平面平行的判定;直线与平面所成的角;二面角的平面角及求法.菁优网所有 【易错点】1、利用定义求通项公式 2、第二问中错位相减法计算的准确性;【解题思路】建立空间直角坐标系利用平面SCD 的法向量即可证明AM∥平面SCD 、平面SCD 与平面SAB 的法向量的夹角求出二面角、线面角的夹角公式、二次函数的单调性是解题的关键.【解析】试题分析:(Ⅰ)通过建立空间直角坐标系,利用平面SCD的法向量即可证明AM∥平面SCD;(Ⅱ)分别求出平面SCD与平面SAB的法向量,利用法向量的夹角即可得出;(Ⅲ)利用线面角的夹角公式即可得出表达式,进而利用二次函数的单调性即可得出.解:(Ⅰ)以点A为原点建立如图所示的空间直角坐标系,则A(0,0,0),B(0,2,0),D(1,0,0,),S(0,0,2),M(0,1,1).则,,.设平面SCD的法向量是,则,即令z=1,则x=2,y=﹣1.于是.∵,∴.又∵AM⊄平面SCD,∴AM∥平面SCD.(Ⅱ)易知平面SAB的法向量为.设平面SCD与平面SAB所成的二面角为α,则==,即.∴平面SCD与平面SAB所成二面角的余弦值为.【举一反三#】【相似易错试题】2015年新课标Ⅰ(理科)高考题第18题如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.【解析】(1)如图,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC .又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22.在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322.从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长度,建立空间直角坐标系G xyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎪⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF→|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.三、与新课标全国卷Ⅰ理科卷的比较某某七调与新课标全国卷Ⅰ在考试的题型结构、考查方向和新课标Ⅰ出题方向一致,但在考查侧重方面存在不同.具体体现在以下几个方面: (1)考查题型、出题模式一致“12个选择+4个填空+6个解答(含三选一)”的标准新课标全国卷Ⅰ模式. (2)考查考试原则、难度一致与新课标全国卷Ⅰ相对比,选择题,填空题难度仍然设置在最后,尤其以选择题12题,填空题16题,解答题21题为代表,有的学生平时此类型的题目见得少,需要在考场紧X 的状态下独立解决,这考查了学生在压力状态下分析,解决问题的能力。
【解析版】2015届河北省衡水中学高三一模考试数学理科试卷
2014-2015学年度下学期高三年级三调考试数学试卷(理科)【试卷综述】试题试卷结构稳定,考点分布合理,语言简洁,设问坡度平缓,整体难度适中. 注重基础. 纵观全卷,选择题、填空题比较平和,立足课本,思维量和运算量适当.内容丰富,考查了重点内容,渗透课改,平稳过渡.针对所复习的内容进行考查,是优秀的阶段性测试卷.【题文】第Ⅰ卷【题文】一、选择题(本大题共12小题,每小题5分,共6分,在每小题给出的四个选项中,只有一项是符合题目要求的)【题文】1、已知集合2{|11},{|560}A x x B x x x =-≤≤=-+≥,则下列结论中正确的是( )A .AB B = B .A B A =C .A B ⊂D .R C A B =【知识点】集合的运算;集合的关系A1【答案】【解析】C 解析:因为{}2{|560}|32B x x x x x x =-+≥=≥≤或,又因为 {|11}A x x =-≤≤,故易知A B ⊂,故选C.【思路点拨】先求出集合B ,再进行判断即可。
【题文】2、复数122i i+-的共轭复数是( ) A .35i B .35i - C .i D .i - 【知识点】复数代数形式的乘除运算.L1 【答案】【解析】D 解析:复数===i .所以复数的122i i +-的共轭复数是:﹣i .故选D【思路点拨】复数的分母实数化,化简为a+bi 的形式,然后求出它的共轭复数即可.【题文】3、某工厂生产,,A B C 三种不同的型号的产品,产品数量之比依次为:5:3k ,现用分层抽样的方法抽出一个容量为120的样本,已知A 种型号产品共抽取了24件,则C 种型号产品抽取的件数为( )A .24B .30C .36D .40【知识点】分层抽样方法.I1【答案】【解析】C 解析:∵新产品数量之比依次为:5:3k ,∴由,解得k=2,则C 种型号产品抽取的件数为120×,故选:C 【思路点拨】根据分层抽样的定义求出k ,即可得到结论.【题文】4、如图给出的是计算111124620++++的值的一个框图, 其中菱形判断框内应填入的条件是( )A .8?i >B .9?i >C .10?i >D .11?i >【知识点】程序框图.L1【答案】【解析】C 解析:∵S=111124620++++并由流程图中S=S+,故循环的初值为1,终值为10、步长为1,故经过10次循环才能算出S=111124620++++的值,故i≤10,应不满足条件,继续循环∴应i >10,应满足条件,退出循环,填入“i>10”.故选C.【思路点拨】由本程序的功能是计算111124620++++的值,由S=S+,故我们知道最后一次进行循环时的条件为i=10,当i >10应退出循环输出S 的值,由此不难得到判断框中的条件. 【题文】5、将函数()3sin cos f x x x =-的图象向左平移m 个单位(0)m >,若所得图象对应的函数为偶函数,则m 的最小值是( )A .23πB .3πC .8π D .56π 【知识点】函数y=Asin (ωx+φ)的图象变换;正弦函数的奇偶性.C3 C4 【答案】【解析】A 解析:y=sinx ﹣cosx=2sin (x ﹣)然后向左平移m (m >0)个单位后得到y=2sin (x+m ﹣)的图象为偶函数,关于y 轴对称, ∴2sin(x+m ﹣)=2sin (﹣x+m ) ∴sinxcos(m)+cosxsin (m )=﹣sinxcos (m )+cosxsin (m ) ∴sinxcos(m)=0∴cos(m )=0 ∴m =2k π+,m=.∴m 的最小值为.故选A .【思路点拨】先根据左加右减的原则进行平移得到平移后的解析式,再由其关于y 轴对称得到2sin (x+m ﹣)=2sin (﹣x+m ﹣),再由两角和与差的正弦公式展开后由三角函数的性质可求得m 的值,从而得到最小值.【题文】6、已知等比数列{}n a 中,3462,16a a a ==,则101268a a a a --的值为( ) A .2 B .4 C .8 D .16【知识点】等比数列的性质D3【答案】【解析】B 解析:因为3462,16a a a ==,所以2446316a a a q ==,即44q =, 则()4684101268684q a a a a q a a a a --===--,故选B. 【思路点拨】结合已知条件得到44q =,再利用等比数列的性质即可。
河北省衡水中学2015届高三第一次模拟考试-数学理试题-Word版包含答案
2014~2015学年度第二学期高三年级一模考试数学(理科)试卷(A 卷)本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:(本题共12个小题,每小题5分,共60分,在四个选项中,只有一项是符合要求的)1.设全集为实数集R ,{}{}24,13M x x N x x =>=<≤,则图中阴影部分表示的集合是( )A .{}21x x -≤< B .{}22x x -≤≤C .{}12x x <≤ D .{}2x x < 2.设,a R i ∈是虚数单位,则“1a =”是“a ia i+-为纯虚数”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件3.若{}n a 是等差数列,首项10,a >201120120a a +>,201120120a a ⋅<,则使前n 项和0n S >成立的最大正整数n 是( )A .2011B .2012C .4022D .40234. 在某地区某高传染性病毒流行期间,为了建立指标显示疫情已受控制,以便向该地区居众显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是( ) ①平均数3x ≤;②标准差2S ≤;③平均数3x ≤且标准差2S ≤; ④平均数3x ≤且极差小于或等于2;⑤众数等于1且极差小于或等于1。
A .①②B .③④C .③④⑤D .④⑤5.在长方体ABCD —A 1B 1C 1D 1中,对角线B 1D 与平面A 1BC 1相交于点E ,则点E 为△A 1BC 1的( )A .垂心B .内心C .外心D .重心6.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥+-≤--,0,,02,063y x y x y x 若目标函数y b ax z +=)0,(>b a 的最大值是12,则22a b +的最小值是( )A .613 B . 365 C .65 D .36137.已知三棱锥的三视图如图所示,则它的外接球表面积为( )A .16πB .4πC .8πD .2π8.已知函数()2sin()f x x =+ωϕ(0,)ω>-π<ϕ<π图像的一部分(如图所示),则ω与ϕ的值分别为( )A .115,106π- B .21,3π-C .7,106π-D .4,53π- 9. 双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为( )AB.1C.1D.2+10. 已知函数)(x f 是定义在R 上的奇函数,若对于任意给定的不等实数12,x x ,不等式)()()()(12212211x f x x f x x f x x f x +<+恒成立,则不等式0)1(<-x f 的解集为( )A. )0,(-∞B. ()+∞,0C. )1,(-∞D. ()+∞,111.已知圆的方程422=+y x ,若抛物线过点A (0,-1),B (0,1)且以圆的切线为准线,则抛物线的焦点轨迹方程是( )A.x 23+y 24=1(y ≠0)B.x 24+y 23=1(y ≠0)C.x 23+y 24=1(x ≠0) D.x 24+y 23=1 (x ≠0) 12. 设()f x 是定义在R 上的函数,若(0)2008f = ,且对任意x ∈R ,满足 (2)()32x f x f x +-≤⋅,(6)()632x f x f x +-≥⋅,则)2008(f =( )1A.200722006+ B .200622008+ C .200722008+ D .200822006+第Ⅱ卷 非选择题 (共90分)二、填空题(本题共4个小题,每小题5分,共20分. 把每小题的答案填在答题纸的相应位置)13.在区间[-6,6],内任取一个元素x O ,若抛物线y=x 2在x=x o 处的切线的倾角为α,则3,44ππα⎡⎤∈⎢⎥⎣⎦的概率为 。
河北衡水中学高三数学上学期第五次调研考试试题 理(含
河北衡水中学2015届高三数学上学期第五次调研考试试题理(含解析)【试卷综析】本试卷是高三理科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、复数、向量、程序框图、导数、数列、三角函数的性质,统计概率等;考查学生解决实际问题的能力。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.设集合A={xI-l<x≤2,x∈N},集合B={2,3),则AUB等于A.{2} B.{1,2,3) C.{-1,0,1,2,3)D.{0,1,2,3)【知识点】集合及其运算A1【答案】D【解析】由题意得A={0,1,2},则A⋃B={0,1,2,3)。
【思路点拨】根据题意先求出A,再求出并集。
【题文】2.已知复数1-i=(i为虚数单位),则z等于A.一1+3i B.一1+2i C.1—3i D.1—2i【知识点】复数的基本概念与运算L4【答案】A【解析】由题意得z=241i i+-= (24)(1)(1)(1)i ii i++-+=-1+3i【思路点拨】化简求出结果。
【题文】3.公比为2的等比数列{an)的各项都是正数,且=16,则a6等于A.1 B.2 C.4 D.8【知识点】等比数列及等比数列前n项和D3【答案】B【解析】由题意可得a72=a4a10=16,又数列的各项都是正数,故a7=4,故a6=72a=2【思路点拨】由题意结合等比数列的性质可得a7=4,由通项公式可得a6.【题文】4某商场在今年端午节的促销活动中,对6月2日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为A.8万元 B.10万元 C.12万元 D.15万元【知识点】用样本估计总体I2【答案】C【解析】由频率分布直方图得0.4÷0.1=4∴11时至12时的销售额为3×4=12【思路点拨】由频率分布直方图得0.4÷0.1=4,也就是11时至12时的销售额为9时至10时的销售额的4倍.【题文】5.甲:函数,f(x)是R 上的单调递增函数;乙:x1<x2,f(x2)<f(x2),则甲是乙的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【知识点】充分条件、必要条件A2【答案】A【解析】根据函数单调性的定义可知,若f(x)是R上的单调递增函数,则∀x1<x2,f(x1)<f(x2)成立,∴命题乙成立.若:∃x1<x2,f(x1)<f(x2).则不满足函数单调性定义的任意性,∴命题甲不成立.∴甲是乙成立的充分不必要条件.【思路点拨】根据函数单调性的定义和性质,利用充分条件和必要条件的定义进行判断.【题文】6.运行如图所示的程序,若结束时输出的结果不小于3,则t的取值范围为A .t≥B .t≥ c.t ≤ D .t≤【知识点】算法与程序框图L1【答案】B【解析】第一次执行循环结构:n←0+2,x←2×t,a←2-1∵n=2<4,∴继续执行循环结构.第二次执行循环结构:n←2+2,x←2×2t,a←4-1;∵n=4=4,∴继续执行循环结构,第三次执行循环结构:n←4+2,x←2×4t,a←6-3;∵n=6>4,∴应终止循环结构,并输出38t.由于结束时输出的结果不小于3,故38t≥3,即8t≥1,解得t≥1 8.【思路点拨】第一次执行循环结构:n←0+2,第二次执行循环结构:n←2+2,第三次执行循环结构:n←4+2,此时应终止循环结构.求出相应的x、a即可得出结果.【题文】7.为得到函数y=sin(x+)的图象,可将函数.Y=sin x 的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数),则Im-nI 的最小值是 A Bc .D .【知识点】函数sin()y A x ωϕ=+的图象与性质C4 【答案】B【解析】由条件可得m=2k1π+3π,n=2k2π+53π(k1、k2∈N ),则|m-n|=|2(k1-k2)π-43π|, 易知(k1-k2)=1时,|m-n|min=23π.【思路点拨】依题意得m =2k1π+3π,n=2k2π+53π(k1、k2∈N ),于是有|m-n|=|2(k1-k2)π-43π|,从而可求得|m-n|的最小值.【题文】8.已知非零向量=a ,=b ,且BC OA ,c 为垂足,若,则等于【知识点】平面向量基本定理及向量坐标运算F2 【答案】B【解析】由于OC u u u r =λa r ,根据向量投影的定义,得λ就是向量OB uuu r 在向量OA u u u r方向上的投影,即λ=2a b a⋅r rr 。
河北衡水中学2015届高三上学期第五次调研考试数学理试题 Word版含答案
河北衡水中学第五次调研考试【试卷综析】本试卷是高三理科试卷,以基础知识和基本能力为载体,,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,试题重点考查:集合、不等式、复数、向量、程序框图、导数、数列、三角函数的性质,统计概率等;考查学生解决实际问题的能力。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.【题文】1.设集合A={xI-l<x≤2,x∈N},集合B={2,3),则AUB等于A.{2} B.{1,2,3) C.{-1,0,1,2,3)D.{0,1,2,3)【知识点】集合及其运算A1【答案】D【过程】由题意得A={0,1,2},则A⋃B={0,1,2,3)。
【方法】根据题意先求出A,再求出并集。
【题文】2.已知复数1-i=(i为虚数单位),则z等于A.一1+3i B.一1+2i C.1—3i D.1—2i【知识点】复数的基本概念与运算L4【答案】A【过程】由题意得z= 241ii+-=(24)(1)(1)(1)i ii i++-+=-1+3i【方法】化简求出结果。
【题文】3.公比为2的等比数列{an)的各项都是正数,且=16,则a6等于A.1 B.2 C.4 D.8【知识点】等比数列及等比数列前n项和D3【答案】B【过程】由题意可得a72=a4a10=16,又数列的各项都是正数,故a7=4,故a6=72a=2【方法】由题意结合等比数列的性质可得a7=4,由通项公式可得a6.【题文】4某商场在今年端午节的促销活动中,对6月2日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为A.8万元B.10万元C.12万元D.15万元【知识点】用样本估计总体I2【答案】C【过程】由频率分布直方图得0.4÷0.1=4∴11时至12时的销售额为3×4=12【方法】由频率分布直方图得0.4÷0.1=4,也就是11时至12时的销售额为9时至10时的销售额的4倍.【题文】5.甲:函数,f(x)是R 上的单调递增函数;乙:x1<x2,f(x2)<f(x2),则甲是乙的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【知识点】充分条件、必要条件A2 【答案】A【过程】根据函数单调性的定义可知,若f (x )是 R 上的单调递增函数,则∀x1<x2,f (x1)<f (x2)成立,∴命题乙成立.若:∃x1<x2,f (x1)<f (x2).则不满足函数单调性定义的任意性,∴命题甲不成立.∴甲是乙成立的充分不必要条件.【方法】根据函数单调性的定义和性质,利用充分条件和必要条件的定义进行判断. 【题文】6.运行如图所示的程序,若结束时输出的结果不小于3,则t 的取值范围为 A .t≥ B .t≥c .t ≤ D .t≤【知识点】算法与程序框图L1 【答案】B【过程】第一次执行循环结构:n←0+2,x←2×t ,a←2-1∵n=2<4,∴继续执行循环结构. 第二次执行循环结构:n←2+2,x←2×2t ,a←4-1;∵n=4=4,∴继续执行循环结构, 第三次执行循环结构:n←4+2,x←2×4t ,a←6-3;∵n=6>4,∴应终止循环结构,并输出38t .由于结束时输出的结果不小于3,故38t≥3,即8t≥1,解得t≥18.【方法】第一次执行循环结构:n←0+2,第二次执行循环结构:n←2+2,第三次执行循环结构:n←4+2,此时应终止循环结构.求出相应的x 、a 即可得出结果.【题文】7.为得到函数y=sin(x+)的图象,可将函数.Y=sin x 的图象向左平移m 个单位长度,或向右平移n 个单位长度(m ,n 均为正数),则Im-nI 的最小值是AB c . D .【知识点】函数sin()y A x ωϕ=+的图象与性质C4 【答案】B【过程】由条件可得m=2k1π+3π,n=2k2π+53π(k1、k2∈N ),则|m-n|=|2(k1-k2)π-43π|,易知(k1-k2)=1时,|m-n|min=23π.【方法】依题意得m=2k1π+3π ,n=2k2π+53π(k1、k2∈N ),于是有|m-n|=|2(k1-k2)π-43π|,从而可求得|m-n|的最小值. 【题文】8.已知非零向量=a ,=b ,且BC OA ,c 为垂足,若,则等于【知识点】平面向量基本定理及向量坐标运算F2 【答案】B【过程】由于OC =λa ,根据向量投影的定义,得λ就是向量OB 在向量OA 方向上的投影,即λ=2a ba⋅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省衡水中学2015届高三上学期期中考试数学(理)试题
第Ⅰ卷(选择题 共60分)
一、选择题(每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合{|1},{|1}A x x B x x =>-=≥,则“x A ∈且x B ∉”成立的充要条件是( ) A .11x -<≤ B .1x ≤ C .1x >- D .11x -<<
2、已知实数1,,9m 成等比数列,则圆锥曲线2
21x y m
-=的离心率为( )
A .2 C 2 D 3、已知,m n 为不同的直线,,αβ为不同的平面,则下列说法正确的是( ) A .,////m n m n αα⊂⇒
B .,m n m n αα⊂⊥⇒⊥
C .,,////m n n m αβαβ⊂⊂⇒
D .,n n βααβ⊂⊥⇒⊥
4、一个锥体的正视图和侧视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )
A B C D 5、要得到函数()cos(2)3f x x π
=+的图象,只需将函数()sin(2)3
g x x π
=+的图象( )
A .向左平移
2π个单位长度 B .向右平移2π
个单位长度 C .向左平移4π个单位长度 D .向右平移4
π
个单位长度
6、如果把直角三角形的三边都增加同样的长度,则得到的这个新三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定
7、如图所示,医用输液瓶可以视为两个圆柱的组合体,开始输液时,滴 管内匀速滴下液体(滴管内液体忽略不计),设输液开始后x 分钟,瓶内 液面与进气管的距离为h 厘米,已知当0x =时,13h =,如果瓶内的药
液恰好156分钟滴完,则函数()h f x =的图象为( )
8、已知直线0(0)x y k k +-=>与圆224x y +=交于不同的两点,,A B O 是坐标点,
且有3
OA OB AB +≥
,那么k 的取值范围是( )
A .)+∞
B .
C .
)
+∞ D .
9、函数()32
42310
0x x x x f x e
x ⎧++≤⎪=⎨>⎪⎩,在[]2,2-上的最大值为2,则a 的取值范围是( )
A .1
ln 2,2⎡⎫+∞⎪⎢⎣⎭ B .10,
ln 22⎡⎤⎢⎥⎣⎦ C .(),0-∞ D .1,ln 22⎛⎤
-∞ ⎥⎝⎦
10、抛物线的弦与过弦的断点的两条切线所围成的三角形常被称为阿基米德三角形,阿基米德三角形有一些有趣的性质,如:若抛物线的弦过焦点,则过弦的断点的来两条切线的交点在其准线上,设抛物线
22(0)y px x =>,弦AB 过焦点,ABQ ∆且其阿基米德三角形,则ABQ ∆的面积的最小值为( )
A .22
p B .2p C .22p D .2
4p
11、四面体ABCD 的四个顶点都在球O 的表面上,AB ⊥平面,ABCD BCD ∆是边长为3的等边三角形,若2AB =,则球O 的表面积为( )
A .4π
B .12π
C .16π
D .32π
12、若定义在R 上的函数()f x 满足()()()(),2f x f x f x f x -=-=,且当[]0,1x ∈时,()f x =则函数()2
()H x xe f x =-在区间[]5,1-上的零点个数为( )
A .4
B .6
C .8
D .10
第Ⅱ卷(非选择题 共90分)
二、填空题:每小题5分,共20分,把答案填在答题卷的横线上。
. 13、已知
,sin 22cos 2
e π
απαα<<=,则cos()απ-=
14、已知12,F F 是双曲线2
2
1:13
y C x -=与椭圆2C 的公共焦点,点A 是12,C C 在第一象限的公共点,若
121F F F A =,则2C 的离心率是
15、设,x y 满足约束条件32000,0x y x y x y --≤⎧⎪
-≥⎨⎪≥≥⎩
,若目标函数2(0,0)z ax by a b =+>>的最大值为1,
则
22
114a b +的最小值为 16、在平面直角坐标系xOy 中,点(0,3)A ,直线:24l y x =-,设圆C 的半径为1,圆心在l 上,若圆C 上存在点M ,使2MA MO =,则圆心C 的横坐标a 的取值范围为
三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤 17、(本小题满分12分)
如图,在ABC ∆中,BC 边上的中线AD 长为3
,且cos B =1cos 4ADC ∠=,
(1)求sin BAD ∠的值; (2)求AC 边的长。
18、(本小题满分12分)
如图,四棱锥P ABCD -中,底面ABCD 为菱形,60,BAD Q ∠=是AD 的中点 (1)若PA PD =,求证:平面PQB ⊥平面PAD ; (2)若平面APD ⊥平面ABCD ,且2PA PD AD ===, 在线段PC 上是否存在点M ,使二面角M BQ C --的大小为60, 若存在,试确定点M 的位置,若不存在,请说明理由。
19、(本小题满分12分)
设不等式组4
0()x y y nx n N *⎧≤⎪
≥⎨⎪≤∈⎩
所表示的平面区域n D ,记n D 内整点的个数为n a (横纵坐标均为整数的
点称为整点)。
(1)2n =式,先在平面直角坐标系中做出平面区域n D ,在求2a 的值; (2)求数列{}n a 的通项公式;
(3)记数列{}n a 的前n 项和为n S ,试证明:对任意n N *
∈,恒有
12
2212
23S S S S +
+
2
5
(1)12
N N S n S +<+成立。
20、(本小题满分12分)
已知定圆22:(16M x y +=,动圆N
过点F 且与圆M 相切,记圆心N 的轨迹为E (1)求轨迹E 的方程;
(2)设点,,A B C 在E 上运动,A 与B 关于原点对称,且AC CB =,当ABC ∆的面积最小时,求直线AB 的方程。
21、(本小题满分12分)
已知函数()ln f x x a x =+,在1x =处的切线与直线20x y +=垂直,函数()()2
12
g x f x x bx =+- (1)求实数a 的值;
(2)若函数()g x 存在单调递减区间,求实数b 的取值范围; (3)设1212,()x x x x <是函数()g x 的两个极值点,若7
2
b ≥,求()()12g x g x -的最小值。
请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22、(本小题满分10分)
如图,点A 是线段BC 为直径的圆O 上一点,AD BC ⊥于点D ,过点B 作圆O 的切线与CA 的延长线交于点E ,点G 是AD 的中点,连接CG 并延长与BE 相交于点F ,延长AF 与CB 的延长线相交于点P 。
(1)求证:BF EF = (2)求证:PA 是圆O 的切线。
23、(本小题满分10分) 已知函数()1f x x =-
(1)解不等式()()12f x f x +-≤;
(2)当0a >时,不等式()()23a f ax af x -≥-恒成立,求实数a 的取值范围。