(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值
(全国通用)2014届高考数学总复习(考点引领+技巧点拨)矩阵与变换第1课时 线性变换、二阶矩阵及其乘法
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法1. (选修42P 34习题第1题改编)求点A(2,0)在矩阵⎣⎢⎡⎦⎥⎤1 00-2对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤1 00-2表示横坐标保持不变,纵坐标沿y 轴负方向拉伸为原来的2倍的伸压变换,故点A(2,0)变为点A′(2,0)2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4.3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2, ∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y y′=x .因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. 求直线x +y =5在矩阵⎣⎢⎡⎦⎥⎤0011 对应的变换作用下得到的图形.解:设点(x ,y)是直线x +y =5上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0011的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0011⎣⎢⎡⎦⎥⎤x y=⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=0y′=x +y .因为点(x ,y)在直线x +y =5上,所以y′=x +y =5,故得到的图形是点(0,5).1. 变换一般地,对于平面上的任意一个点(向量)(x ,y),若按照对应法则T ,总能对应唯一的一个平面点(向量)(x′,y ′),则称T 为一个变换,简记为T :(x ,y )→(x′,y ′)或T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′. 一般地,对于平面向量的变换T ,如果变换规则为T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ax +by cx +dy ,那么根据二阶矩阵与列向量的乘法规则,可以改写为⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y (a 、b 、c 、d∈R )的矩阵形式,反之亦然.2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k(k>0)确定的变换T M 称为(垂直)伸压变换. (3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 变换的复合与矩阵的乘法(1) 一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律. (2) 矩阵的乘法满足结合律,即(AB )C =A (BC ). (3) 矩阵的乘法不满足消去律. [备课札记]题型1 求变换前后的曲线方程例1 设椭圆F :x 22+y24=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一个图形F′,试求F′的解析式.解:变换矩阵为⎣⎢⎡⎦⎥⎤1201,任取椭圆上一点(x 0,y 0),则⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0+2y 0y 0,令⎩⎪⎨⎪⎧x′=x 0+2y 0,y ′=y 0, 则⎩⎪⎨⎪⎧x 0=x′-2y′,y 0=y′. 又点(x 0,y 0)在椭圆F 上,故(x′-2y′)22+y′24=1,所以2x′2-8x′y′+9y′2-4=0,即F′的解析式为2x 2-8xy +9y 2-4=0. 变式训练设M =⎣⎢⎡⎦⎥⎤1002,N =⎣⎢⎢⎡⎦⎥⎥⎤12001,试求曲线y =sinx 在矩阵MN 变换下的曲线方程. 解:MN =⎣⎢⎡⎦⎥⎤1002⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设(x ,y)是曲线y =sinx 上的任意一点,在矩阵MN 变换下对应的点为(x′,y ′). 则⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤xy =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x′=12x ,y ′=2y ,即⎩⎪⎨⎪⎧x =2x′,y =12y′,代入y =sinx 得12y ′=sin2x ′,即y′=2sin2x ′.即曲线y =sinx 在矩阵MN 变换下的曲线方程为y =2sin2x. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x 0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型2 根据变换前后的曲线方程求矩阵例2 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6). (1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1a b 4对应的变换作用下得到直线m :x -y -4=0,求实数a 、b 的值.解:(解法1)在直线l :x +y +2=0上取两点A(-2,0),B(0,-2),A 、B 在矩阵M 对应的变换作用下分别对应于点A′、B′,因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤-2-2b ,所以A′的坐标为(-2,-2b); ⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以B′的坐标为(-2a ,-8).由题意A′、B′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧(-2)-(-2b )-4=0,(-2a )-(-8)-4=0,解得a =2,b =3.(解法2)设直线l :x +y +2=0上任意一点(x ,y)在矩阵M 对应的变换作用下对应于点(x′,y ′).因为⎣⎢⎡⎦⎥⎤1a b 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以x′=x +ay ,y ′=bx +4y.因为(x′,y ′)在直线m 上,所以(x +ay)-(bx +4y)-4=0,即(1-b)x +(a -4)y -4=0.又点(x ,y)在直线x +y +2=0上,所以1-b 1=a -41=-42,解得a =2,b =3.题型3 平面变换的综合应用例3 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34. (1) 验证:(MN )α=M (N α);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012,所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为N α=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (N α)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (N α).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012, 所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0),B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤100-1,N =⎣⎢⎢⎡⎦⎥⎥⎤12222. 解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1220-22,∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20, ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′, 所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2013·福建)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤1201对应的变换作用下变为直线l′:x +by =1.(1) 求实数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l :ax +y =1上任意一点M(x ,y)在矩阵A 对应的变换作用下的象是M′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y y , 得⎩⎪⎨⎪⎧x′=x +2y ,y ′=y. 又点M′(x′,y ′)在l′上, 所以x′+by′=1,即x +(b +2)y =1.依题意⎩⎪⎨⎪⎧a =1.b +2=1,解得⎩⎪⎨⎪⎧a =1,b =-1. (2) 由A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0.又点P(x 0,y 0)在直线l 上,所以x 0=1,故点P 的坐标为(1,0). 4. 在线性变换⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y 下,直线x +y =k(k 为常数)上的所有点都变为一个点,求此点坐标.解:由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1122⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x′=x +y ,y ′=2x +2y ,而x +y =k ,所以⎩⎪⎨⎪⎧x′=k ,y ′=2k (k 为常数),所以直线x +y =k(k 为常数)上的所有点都变为一个点(k ,2k).1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→MC ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤-1-2-34,向量α=⎣⎢⎡⎦⎥⎤57,β=⎣⎢⎡⎦⎥⎤68.(1) 求向量3α+12β在T M 作用下的象;(2) 求向量4M α-5M β.解:(1) 因为3α+12β=3⎣⎢⎡⎦⎥⎤57+12⎣⎢⎡⎦⎥⎤68=⎣⎢⎡⎦⎥⎤1521+⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1825,所以M ⎝ ⎛⎭⎪⎫3α+12β=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤1825=⎣⎢⎡⎦⎥⎤-6846.(2) 4M α-5M β=M (4α-5β)=⎣⎢⎡⎦⎥⎤-1-2-34⎣⎢⎡⎦⎥⎤-10-12=⎣⎢⎡⎦⎥⎤34-18. 3. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).设直线l 在变换M 作用下得到了直线m :2x -y =4,求l 的方程.解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,∴ ⎩⎪⎨⎪⎧a -b =-1c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2,解得⎩⎪⎨⎪⎧a =1b =2和⎩⎪⎨⎪⎧c =3d =4 ,∴ M =⎣⎢⎡⎦⎥⎤1234, ∵ ⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y ,且m :2x′-y′=4, ∴ 2(x +2y)-(3x +4y)=4,即x +4 =0,∴ 直线l 的方程为x +4 =0.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换:反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称;M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-1 0 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝⎛⎭⎪⎫x +y 2,x +y 2.请使用课时训练(A )第1课时(见活页).。
江苏省2014年高考数学(文)二轮复习简易通配套课件:常考问题20 矩阵与变换
M 对应的变换将点(-1,2)变换成(9,15),求矩阵 M.
a b1 1 3 b a+b=3, ,则 =3 = ,故 d c d 1 1 3 c+d=3.
x 1 方程 y -2+1=0 比较得,a=0,b=1,c=2,d=1 或 a=0,
2
0 -1 1 - b=-1,c=2,d=-1.所以 M 1= 1 , -1 2 0 - 或 M 1= 1 2 1 . 1
热点三
特征值与特征向量
【例 3】 已知二阶矩阵 M 有特征值 λ=3 及对应的一个特征向量 e1
0 B= 1
2
2
1 A= 0
0 对 2
b 对应的变换,得 0
x2 2 到曲线 C2: +y =1.求实数 b 的值. 4 解 从曲线 C1 变到曲线 C2 的变换对应的矩阵为
0 BA= 1 b 1 0 0 2b 0 2=1 0 . 0
6.记忆特征多项式,和这类问题的求解步骤: 理解特征值与特征向量理论
a c x x λ-ax-by=0, b =λ ⇔ d y y -cx+λ-dy=0.
热点与突破
热点一 二阶矩阵与平面变换 【例 1】 若直线 y=kx
-
解 设曲线 2y2-x+2=0 上一点 P(x, y)在 M-1 对应变化下变
x′=ax+by, b 成 P(x′,y′),设 M , c d y′=cx+dy,
-1
a
代入 x2+x-y+1=0 得, 方程(ax+by)2+(ax+by)-(cx+dy)+1=0, 即 b2y2+(a-c)x+(b-d)xy+2abxy+a2x2+1=0,
高中数学选修42矩阵与变换知识点复习课课件苏教
坐标变换:通过矩阵运算实 现图形的平移、旋转、缩放 等变换
动画制作:通过矩阵运算实 现图形的动画效果,如变形、
运动等
矩阵在其他领域中的应用
物理:在力学、电磁学、量子力学等领域,矩阵被用来描述物理系统的状态和变化
计算机科学:在计算机图形学、人工智能、数据挖掘等领域,矩阵被用来处理和表示数据
高中数学选修4-2矩阵 与变换知识点复习课 课件
,
汇报人:
目录
CONTENTS
01 添加目录标题 02 矩阵与变换概述 03 矩阵的逆与行列式 04 矩阵的秩与特征值 05 矩阵的几何意义与线性变换的矩阵表示
06 矩阵的应用举例
单击添加章节标题
第一章
矩阵与变换概述
第二章
矩阵的定义与性质
矩阵的定义:由m行n列的数组 成的m*n个数阵
矩阵与线性变换的关系
矩阵是线性变换的一种表示方法 线性变换可以通过矩阵乘法来实现 矩阵的逆矩阵表示线性变换的逆操作 矩阵的秩表示线性变换的维数
矩阵的逆与行列式
第三章
矩阵的逆
逆矩阵的定义:满足AB=BA=I的矩阵B称为矩阵A的逆矩阵 逆矩阵的性质:逆矩阵的唯一性、逆矩阵的线性性、逆矩阵的乘法性质 逆矩阵的求法:利用初等行变换求逆矩阵、利用伴随矩阵求逆矩阵 逆矩阵的应用:求解线性方程组、求解矩阵方程、求解线性规划问题
行列式的定义与性质
行列式的定义: 矩阵中主对角线 元素的乘积
行列式的性质: 行列式等于其转 置行列式的值
行列式的计算方 法:利用行列式 的性质进行计算
行列式的应用: 求解线性方程组、 判断矩阵是否可 逆等
行列式的计算方法
初等变换法:通过行变换或列变换 将矩阵化为行阶梯形或列阶梯形, 然后计算行列式
高三数学一轮复习精品课件2:矩阵及其变换
时沿 x 轴负方向移动,当 ky=0 时原地不动.
1.点 A(3,-6)在矩阵10 12-1对应的变换作用下得到的点的坐
标是
.
解析:∵10 12-1 -36=-39.
∴变换作用下得到的点的坐标是(9,-3).
答案:(9,-3)
2.设04
-2 3
yx=-01,则它表示的方程组为
.
解析:∵04
-2 3
路漫漫其修远兮,吾将上下而求索!
1.矩阵的相关概念
(1)由
4 个数 a,b,c,d 排成的正方形数表
a
c
b
称为二阶矩dຫໍສະໝຸດ 阵,数 a,b,c,d 称为矩阵的元素.在二阶矩阵中,横的叫行,从
上到下依次称为矩阵的第一行、第二行;竖的叫列,从左到右依次
称为矩阵的第一列、第二列.矩阵通常用大写的英文字母 A,B,C,…
(4)两个二阶矩阵的乘法满足结合律,但不满足交换律和消去律
即(AB)C=A(BC),
AB≠BA,
由 AB=AC 不一定能推出 B=C.
一般地两个矩阵只有当前一个矩阵的列数与后一个矩阵的行数
相等时才能进行乘法运算.
3.线性变换的相关概念 (1)我们把形如yx′′==caxx++dbyy (*)的几何变换叫做线性变换,(*)式 叫做这个线性变换的坐标变换公式,P′(x′,y′)是 P(x,y)在这个线性 变换作用下的像. (2)对同一个直角坐标平面内的两个线性变换 σ、ρ,如果对平面 内任意一点 P,都有 σ(P)=ρ(P),则称这两个线性变换相等,简记为 σ=ρ,设 σ,ρ 所对应的二阶矩阵分别为 A,B,则 A=B .
阵 M1=10
00,M2=11
00,M3=00
2014高考数学一轮复习课件:选修4.2.2 逆矩阵、矩阵的.
0 1
=I,故选 A.
答案:A
1 2.已知 M=0 1 A. 2 3 C. 2
0 1,α=0,Mα=λα,则 λ=( 1 2 B.1 D.2
)
1 0 0 10 0 1= , 解析:∵0 1 = 1 2 1 2 2 1 ∴λ=2.
解析:设
a c 2 3
a A= c
a b1 2 b a=2, ,由 = ,得 由 d c d 0 3 c = 3.
1 3 b a+b=3, b=1, 1 =3 = ,得 所以 所以 A= d 1 1 3 c+d=3. d=0.
-1
0 = -1
1 , 0
0 = -1
∴(AB) =B A
-1
-1
-1
1 1 0 0
0 1 = 2
.
答案:
(2)解:①设矩阵 M 的逆矩阵 M 则 MM 又
-1
-1
x1 = x 2
y1 , y2
1 = 0
• 2.逆矩阵 • (1)逆矩陈的定义 AB=BA=E ,则称A是可 • 对于二阶矩阵A,B若有 逆的,B称为A的逆矩阵,记作B=A-1,这时矩 阵A也是B的逆矩阵,即A=B-1. • (2)逆矩阵的性质 E -1A= • ①若矩阵A有可逆矩阵A-1,则AA-1=A 且唯一 A-1是 的.
• ②若矩阵A是可逆的,则有(A-1A )-1= . 不可逆 • ③单位矩阵一定是可逆 的,零矩阵是 的. 不同 • ④在可逆矩阵 M作用下,平面上不同向量(或点) 的象必 . • ⑤把平面上两个不同向量 (或点)变成相同向量 逆矩阵 (或点)的矩阵,一定没有 .
【最高考系列】(教师用书)高考数学一轮总复习 矩阵与变换课堂过关 理(选修4-2)
选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法(对应学生用书(理)185~187页)1. 已知A =⎣⎢⎡⎦⎥⎤x +2y x +3y x -y x +y ,B =⎣⎢⎡⎦⎥⎤34ab ,若A =B ,求ax +by 的值.解:∵ A =B ,∴ ⎩⎪⎨⎪⎧x +2y =3,x +3y =4,x -y =a ,x +y =b ,∴ x =1,y =1,a =0,b =2,则ax +by =0+2=2.2. 点(-1,k)在伸压变换矩阵⎣⎢⎡⎦⎥⎤m 001之下的对应点的坐标为(-2,-4),求m 、k 的值.解:⎣⎢⎡⎦⎥⎤m 001⎣⎢⎡⎦⎥⎤-1 k =⎣⎢⎡⎦⎥⎤-2-4,⎩⎪⎨⎪⎧-m =-2,k =-4. 解得⎩⎪⎨⎪⎧m =2,k =-4. 3. 已知变换T 是将平面内图形投影到直线y =2x 上的变换,求它所对应的矩阵. 解:将平面内图形投影到直线y =2x 上,即是将图形上任意一点(x ,y)通过矩阵M 作用变换为(x ,2x),则有⎣⎢⎡⎦⎥⎤a 0b 0⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 2x ,解得⎩⎪⎨⎪⎧a =1,b =2,∴ T =⎣⎢⎡⎦⎥⎤1020.4. 求曲线y =x 在矩阵⎣⎢⎡⎦⎥⎤0110作用下变换所得的图形对应的曲线方程.解:设点(x ,y)是曲线y =x 上任意一点,在矩阵⎣⎢⎡⎦⎥⎤0110的作用下点变换成(x′,y ′),则⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=y ,y ′=x. 因为点(x ,y)在曲线y =x 上,所以x′=y′,即x =y.5. (2014·无锡期末)求使等式⎣⎢⎡⎦⎥⎤1 23 4=⎣⎢⎡⎦⎥⎤1 00 2M ⎣⎢⎡⎦⎥⎤1 00 -1成立的矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤a b 2c 2d ,∴ ⎣⎢⎡⎦⎥⎤a b 2c 2d ⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎡⎦⎥⎤a -b 2c -2d .∴ ⎣⎢⎡⎦⎥⎤1 234=⎣⎢⎡⎦⎥⎤a -b 2c-2d ,∴ ⎩⎪⎨⎪⎧1=a ,2=-b ,3=2c ,4=-2d ,∴ ⎩⎪⎨⎪⎧a =1,b =-2,c =32,d =-2.∴ M =⎣⎢⎢⎡⎦⎥⎥⎤1-232-2.1. 二阶矩阵与平面向量 (1) 矩阵的概念在数学中,把形如⎣⎢⎡⎦⎥⎤13,⎣⎢⎡⎦⎥⎤2 31 5,⎣⎢⎡⎦⎥⎤1,3, 42,0,-1这样的矩形数字(或字母)阵列称为矩阵,其中,同一横排中按原来次序排列的一行数(或字母)叫做矩阵的行,同一竖排中按原来次序排列的一列数(或字母)叫做矩阵的列,而组成矩阵的每一个数(或字母)称为矩阵的元素.(2) 二阶矩阵与平面列向量的乘法① [a 11 a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11×b 11+a 12×b 21];② ⎣⎢⎡⎦⎥⎤a 11 a 12a 21 a 22⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 2. 几种常见的平面变换(1) 当M =⎣⎢⎡⎦⎥⎤1001时,则对应的变换是恒等变换.(2) 由矩阵M =⎣⎢⎡⎦⎥⎤k 001或M =⎣⎢⎡⎦⎥⎤100k (k>0)确定的变换T M 称为(垂直)伸压变换.(3) 反射变换是轴对称变换、中心对称变换的总称.(4) 当M =⎣⎢⎡⎦⎥⎤cos θ-sin θsin θ cos θ时,对应的变换叫旋转变换,即把平面图形(或点)逆时针旋转θ角度.(5) 将一个平面图投影到某条直线(或某个点)的变换称为投影变换.(6) 由矩阵M =⎣⎢⎡⎦⎥⎤1k 01或⎣⎢⎡⎦⎥⎤10k 1确定的变换称为切变变换.3. 线性变换的基本性质(1) 设向量α=⎣⎢⎡⎦⎥⎤x y ,则λα=⎣⎢⎡⎦⎥⎤λx λy .(2) 设向量α=⎣⎢⎡⎦⎥⎤x 1y 1,β=⎣⎢⎡⎦⎥⎤x 2y 2,则α+β=⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2.(3) A 是一个二阶矩阵,α、β是平面上任意两个向量,λ是任一实数,则A (λα)=λA α,A (α+β)=A α+A β.(4) 二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点). 4. 二阶矩阵的乘法(1) A =⎣⎢⎡⎦⎥⎤a 1 b 1c 1 d 1,B =⎣⎢⎡⎦⎥⎤a 2b 2c 2d 2,则AB =⎣⎢⎡⎦⎥⎤a 1a 2+b 1c 2 a 1b 2+b 1d 2c 1a 2+d 1c 2 c 1b 2+d 1d 2(2) 矩阵乘法满足结合律(AB )C =A (BC ). [备课札记]题型1 二阶矩阵的运算, 1) 已知⎣⎢⎡⎦⎥⎤1 01 2B =⎣⎢⎡⎦⎥⎤-4 3 4 -1,求矩阵B . 解:设B =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤1 01 2B =⎣⎢⎡⎦⎥⎤ab a +2c b +2d ,故⎩⎪⎨⎪⎧a =-4,b =3,a +2c =4,b +2d =-1,解得⎩⎪⎨⎪⎧a =-4,b =3,c =4,d =-2.故B =⎣⎢⎡⎦⎥⎤-4 3 4 -2.备选变式(教师专享)已知矩阵A =⎣⎢⎡⎦⎥⎤1 01 2,B =⎣⎢⎡⎦⎥⎤-4 3 4 -2且α=⎣⎢⎡⎦⎥⎤34,试判断(AB )α与A (B α)的关系.解:AB =⎣⎢⎡⎦⎥⎤-4 3 4 -1,∴ (AB )α=⎣⎢⎡⎦⎥⎤-4 3 4 -1⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤08,A (B α)=⎣⎢⎡⎦⎥⎤1 01 2⎣⎢⎡⎦⎥⎤-4 3 4 -2⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤1012⎣⎢⎡⎦⎥⎤04=⎣⎢⎡⎦⎥⎤08. ∴ (AB )α=A (B α).题型2 求变换前后的曲线方程, 2) (2014·南京、盐城期末)已知曲线C :xy =1,若矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤22 -2222 22对应的变换将曲线C 变为曲线C′,求曲线C′的方程.解:设曲线C 上一点(x′,y ′)对应于曲线C′上一点(x ,y),所以⎣⎢⎢⎡⎦⎥⎥⎤22 -2222 22⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤x y ,所以22x ′-22y ′=x ,22x ′+22y ′=y. 所以x′=x +y 2,y ′=y -x2,所以x′y′=x +y 2·y -x2=1,所以曲线C′的方程为y 2-x 2=2. 备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1,矩阵MN 对应的变换把曲线y =12sin 12x 变为曲线C ,求曲线C 的方程.解: MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12001=⎣⎢⎢⎡⎦⎥⎥⎤12002, 设P(x ,y)是所求曲线C 上的任意一点,它是曲线y =sinx 上点P 0(x 0,y 0)在矩阵MN 变换下的对应点,则有⎣⎢⎡⎦⎥⎤x y =⎣⎢⎢⎡⎦⎥⎥⎤12002⎣⎢⎡⎦⎥⎤x 0y 0,即⎩⎪⎨⎪⎧x =12x 0,y =2y 0,所以⎩⎪⎨⎪⎧x0=2x ,y 0=12y.又点P(x 0,y 0)在曲线y =12sin 12x 上,故y 0=12sin 12x 0,从而12y =12sinx.所求曲线C 的方程为y =sinx.题型3 根据变换前后的曲线方程求矩阵, 3) 二阶矩阵M 对应变换将(1,-1)与(-2,1)分别变换成(5,7)与(-3,6).(1) 求矩阵M ;(2) 若直线l 在此变换下所变换成的直线的解析式l′:11x -3y -68=0,求直线l 的方程.解:(1) 不妨设M =⎣⎢⎡⎦⎥⎤a b c d ,则由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤57,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤-3 6,所以⎩⎪⎨⎪⎧a =-2,b =-7,c =-13,d =-20,故M =⎣⎢⎡⎦⎥⎤-2-7-13-20. (2) 取直线l 上的任一点(x ,y),其在M 作用下变换成对应点(x′,y ′),则 ⎣⎢⎡⎦⎥⎤-2-7-13-20⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-2x -7y -13x -20y =⎣⎢⎡⎦⎥⎤x′y′, 即⎩⎪⎨⎪⎧x′=-2x -7y ,y ′=-13x -20y ,代入11x -3y -68=0,得x -y -4=0,即l 的方程为x -y -4=0.变式训练(2014·苏州期末)已知a 、b∈R ,若M =⎣⎢⎡⎦⎥⎤-1 a b 3所对应的变换T M 把直线2x -y =3变换成自身,试求实数a 、b.解:设⎣⎢⎡⎦⎥⎤-1 a b 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,则⎩⎪⎨⎪⎧x′=-x +ay ,y ′=bx +3y.∵ 2x ′-y′=3,∴ 2(-x +ay)-(bx +3y)=3. 即(-2-b)x +(2a -3)y =3.此直线即为2x -y =3, ∴ -2-b =2,2a -3=-1,解得a =1,b =-4.题型4 平面变换的综合应用, 4) 已知M =⎣⎢⎡⎦⎥⎤1101,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,向量α=⎣⎢⎡⎦⎥⎤34.(1) 验证:(MN )α=M (N α);(2) 验证这两个矩阵不满足MN =NM .解:(1) 因为MN =⎣⎢⎡⎦⎥⎤1101⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤112012, 所以(MN )α=⎣⎢⎢⎡⎦⎥⎥⎤112012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤52. 因为N α=⎣⎢⎢⎡⎦⎥⎥⎤10012⎣⎢⎡⎦⎥⎤34=⎣⎢⎡⎦⎥⎤32,所以M (N α)=⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤32=⎣⎢⎡⎦⎥⎤52,所以(MN )α=M (N α).(2) 因为MN =⎣⎢⎢⎡⎦⎥⎥⎤112012,NM =⎣⎢⎢⎡⎦⎥⎥⎤11012,所以这两个矩阵不满足MN =NM . 备选变式(教师专享)在直角坐标系中,已知△ABC 的顶点坐标为A ()0,0,B ()-1,2,C ()0,3.求△ABC 在矩阵⎣⎢⎡⎦⎥⎤0-110作用下变换所得到的图形的面积.解:因为⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2-1,⎣⎢⎡⎦⎥⎤0-11 0⎣⎢⎡⎦⎥⎤03=⎣⎢⎡⎦⎥⎤-3 0,所以A ()0,0,B ()-1,2,C ()0,3在矩阵⎣⎢⎡⎦⎥⎤0 -11 0作用下变换所得到的三个顶点坐标分别为A′()0,0,B ′()-2,-1,C ′()-3,0.故S △A ′B ′C ′=12A ′C ′|y B ′|=32.1. 在直角坐标系中,△OAB 的顶点坐标O(0,0)、A(2,0)、B(1,2),求△OAB 在矩阵MN 的作用下变换所得到的图形的面积,其中矩阵M =⎣⎢⎡⎦⎥⎤1 00-1,N =⎣⎢⎢⎡⎦⎥⎥⎤122022. 解:由题设得MN =⎣⎢⎢⎡⎦⎥⎥⎤1 220-22,∴ ⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20,⎣⎢⎢⎡⎦⎥⎥⎤1 220-22·⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O 、A 、B 三点在矩阵MN 作用下变换所得的点分别为O′(0,0)、A′(2,0)、B′(2,-1).可得△O′A′B′的面积为1.2. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0,在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤0-11 0=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x -y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡ ⎦⎥⎤x′y′,即⎣⎢⎡ ⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x -y +1=0上,从而2x′-(-y′)+1=0,即2x′+y′+1=0.所以曲线F 的方程为2x +y +1=0.3. (2014·常州期末)已知直线l :ax -y =0在矩阵A =⎣⎢⎡⎦⎥⎤0 11 2对应的变换作用下得到直线l′,若直线l′过点(1,1),求实数a 的值.解:设P(x ,y)为直线l 上任意一点,在矩阵A 对应的变换下变为直线l′上的点P′(x′,y ′),则⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤0 11 2⎣⎢⎡⎦⎥⎤x y ,化简,得⎩⎪⎨⎪⎧x =-2x′+y′,y =x′ 代入ax -y =0,整理,得-(2a +1)x′+ay′=0.将点(1,1)代入上述方程,解得a =-1.4. 变换T 1是逆时针旋转π2的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=⎣⎢⎡⎦⎥⎤1 10 1.(1) 求点P(2,1)在变换T 1作用下的点P′的坐标;(2) 求函数y =x 2的图象依次在T 1、T 2变换的作用下所得曲线的方程.解:(1) M 1=⎣⎢⎡⎦⎥⎤0 -11 0,M 1⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-1 2,所以点P(2,1)在T 1作用下的点P′的坐标是(-1,2).(2) M =M 2M 1=⎣⎢⎡⎦⎥⎤1 -11 0,设⎣⎢⎡⎦⎥⎤x y 是变换后图象上任一点,与之对应的变换前的点是⎣⎢⎡⎦⎥⎤x 0y 0,则M ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,也就是⎩⎪⎨⎪⎧x 0-y 0=x ,x 0=y ,即⎩⎪⎨⎪⎧x 0=y ,y 0=y -x.所以,所求曲线的方程是y -x =y 2.1. 如图所示,四边形ABCD 和四边形AB′C′D 分别是矩形和平行四边形,其中各点的坐标分别为A(-1,2)、B(3,2)、C(3,-2)、D(-1,-2)、B′(3,7)、C′(3,3).求将四边形ABCD 变成四边形AB′C′D 的变换矩阵M .解:该变换为切变变换.设矩阵M =⎣⎢⎡⎦⎥⎤10k 1,由图知,C ――→MC ′,则⎣⎢⎡⎦⎥⎤10k 1⎣⎢⎡⎦⎥⎤3-2=⎣⎢⎡⎦⎥⎤33.所以3k -2=3,解得k =53.所以,M =⎣⎢⎢⎡⎦⎥⎥⎤10531. 2. 已知在一个二阶矩阵M 的变换作用下,点A(1,2)变成了点A′(4,5),点B(3,-1)变成了点B′(5,1).(1) 求矩阵M ;(2) 若在矩阵M 的变换作用下,点C(x ,0)变成了点C ′(4,y),求x ,y.解:(1) 设该二阶矩阵为M =⎣⎢⎡⎦⎥⎤a b c d ,由题意得⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤45,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 3-1=⎣⎢⎡⎦⎥⎤51,所以⎩⎪⎨⎪⎧a +2b =4,c +2d =5,3a -b =5,3c -d =1,解得a =2,b =1,c =1,d =2,故M =⎣⎢⎡⎦⎥⎤2 11 2.(2) 因为⎣⎢⎡⎦⎥⎤2 11 2⎣⎢⎡⎦⎥⎤x 0=⎣⎢⎡⎦⎥⎤2x x =⎣⎢⎡⎦⎥⎤4y ,解得x =2,y =2.3. (2014·苏北三市期末)设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a >0,b >0),若曲线C :x 2+y 2=1在矩阵M 所对应的变换作用下得到曲线C′:x 24+y 2=1,求a +b 的值.解:设曲线C :x 2+y 2=1上任意一点P(x ,y)在矩阵M 所对应的变换作用下得到点P 1(x 1,y 1),则⎣⎢⎡⎦⎥⎤a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 1y 1,即⎩⎪⎨⎪⎧ax =x 1,by =y 1. 又点P 1(x 1,y 1)在曲线C′:x 24+y 2=1上,所以x 214+y 21=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又曲线C 的方程为x 2+y 2=1,故a 2=4,b 2=1. 因为a >0,b >0,所以a +b =3.4. 二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变换成点(-1,-1)与(0,-2).(1) 求矩阵M ;(2) 设直线l 在变换M 作用下得到了直线m :x -y =4,求l 的方程.解:(1) 设M =⎣⎢⎡⎦⎥⎤a b c d ,则有⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-21=⎣⎢⎡⎦⎥⎤0-2,所以⎩⎪⎨⎪⎧a -b =-1,c -d =-1, 且⎩⎪⎨⎪⎧-2a +b =0,-2c +d =-2,解得⎩⎪⎨⎪⎧a =1,b =2,c =3,d =4,所以M =⎣⎢⎡⎦⎥⎤1234. (2) 因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤1234⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x +2y 3x +4y 且m :x′-y′=4,所以(x +2y)-(3x +4y)=4,即x +y +2=0,即直线l 的方程为x +y +2=0.几种特殊的变换 反射变换:M =⎣⎢⎡⎦⎥⎤1 00-1:点的变换为(x ,y )→(x,-y),变换前后关于x 轴对称; M =⎣⎢⎡⎦⎥⎤-10 01:点的变换为(x ,y )→(-x ,y),变换前后关于y 轴对称;M =⎣⎢⎡⎦⎥⎤-10 0-1:点的变换为(x ,y )→(-x ,-y),变换前后关于原点对称; M =⎣⎢⎡⎦⎥⎤0110:点的变换为(x ,y )→(y,x),变换前后关于直线y =x 对称. 投影变换:M =⎣⎢⎡⎦⎥⎤1000:将坐标平面上的点垂直投影到x 轴上,点的变换为(x ,y )→(x,0); M =⎣⎢⎡⎦⎥⎤0001:将坐标平面上的点垂直投影到y 轴上,点的变换为(x ,y )→(0,y); M =⎣⎢⎡⎦⎥⎤1010:将坐标平面上的点垂直于x 轴方向投影到y =x 上,点的变换为(x ,y )→(x,x);M =⎣⎢⎡⎦⎥⎤0101:将坐标平面上的点平行于x 轴方向投影到y =x 上,点的变换为(x ,y )→(y,y);M =⎣⎢⎢⎡⎦⎥⎥⎤12121212:将坐标平面上的点垂直于y =x 方向投影到y =x 上,点的变换为(x ,y )→⎝ ⎛⎭⎪⎫x +y 2,x +y 2. 请使用课时训练(A )第1课时(见活页).第2课时 逆变换与逆矩阵、矩阵的特征值 与特征向量(对应学生用书(理)188~190页)1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1.解:∵ AB =⎣⎢⎡⎦⎥⎤0 -12 0,设(AB )-1=⎣⎢⎡⎦⎥⎤a b c d ,∴ (AB )(AB )-1=⎣⎢⎡⎦⎥⎤1 00 1.∴ ⎣⎢⎡⎦⎥⎤0 -12 0⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, 即[]-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1 00 1.∴ ⎩⎪⎨⎪⎧-c =1,-d =0,2a =0,2b =1,故a =0,b =12,c =-1,d =0.即(AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤ 012-10. 2. 已知矩阵M =⎣⎢⎡⎦⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤b-2-7a ,求a 、b 的值.解:由题意,知MM -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎡⎦⎥⎤b -2-7a =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001, 即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[16-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)(λ+3),令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. 已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为α1=⎣⎢⎡⎦⎥⎤1-1,属于特征值λ2=4的一个特征向量为α2=⎣⎢⎡⎦⎥⎤32.求矩阵A .解:由特征值、特征向量定义可知,A α1=λ1α1,即⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤1-1,得⎩⎪⎨⎪⎧a -b =-1,c -d =1. 同理可得⎩⎪⎨⎪⎧3a +2b =12,3c +2d =8,解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2 32 1.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使A α=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.题型1 求逆矩阵与逆变换, 1) 若点A(2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B(-2,2),求矩阵M 的逆矩阵.解:由题意知,M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.(解法1)由M -1M =⎣⎢⎡⎦⎥⎤1 00 1,解得M -1=⎣⎢⎡⎦⎥⎤ 0 1-1 0.(解法2)矩阵M 的行列式det(M )=⎪⎪⎪⎪⎪⎪0 -11 0=1≠0,所以M -1=⎣⎢⎡⎦⎥⎤ 01-10.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎡⎦⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎡⎦⎥⎤-13-12.从而由⎣⎢⎡⎦⎥⎤2-31-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135,得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-13-12⎣⎢⎡⎦⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3).题型2 求特征值与特征向量, 2) 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4a =3.(2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =02x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32. 变式训练(2014·镇江期末)已知矩阵⎣⎢⎡⎦⎥⎤x 32 1的一个特征值为4,求另一个特征值及其对应的一个特征向量.解:矩阵的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-x -3-2λ-1=(λ-1)(λ-x)-6.因为λ1=4是方程f(λ)=0的一个根,所以x =2. 由(λ-1)(λ-2)-6=0,得λ2=-1.设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y ,则⎩⎪⎨⎪⎧3x +3y =0,2x +2y =0,得x =-y ,令x =1,则y =-1,则矩阵的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤1-1.题型3 根据特征值或特征向量求矩阵, 3) 矩阵M =⎣⎢⎡⎦⎥⎤1102有特征向量为e 1=⎣⎢⎡⎦⎥⎤11,e 2=⎣⎢⎡⎦⎥⎤10. (1) 求e 1和e 2对应的特征值;(2) 对向量α=⎣⎢⎡⎦⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α.解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤11=λ1⎣⎢⎡⎦⎥⎤11,⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤10=λ2⎣⎢⎡⎦⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e 2=⎣⎢⎡⎦⎥⎤1916,M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎡⎦⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤20 0-1有特征向量e 1=⎣⎢⎡⎦⎥⎤10,e 2=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α=⎣⎢⎡⎦⎥⎤x y ,求M 100α.解:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤2 00-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1=λ1e 1,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2,同理Me 2=λ2e 2,即⎣⎢⎡⎦⎥⎤2 00-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1. (2) 因为α=⎣⎢⎡⎦⎥⎤x y =x e 1+y e 2,所以M 100α=M 100(x e 1+y·e 2)=x M 100e 1+y M 100e 2=x λ1001e1+y λ2100e 2=⎣⎢⎡⎦⎥⎤2100x y .1. 求矩阵⎣⎢⎡⎦⎥⎤2112的特征值及对应的特征向量.解:特征多项式f(λ)=⎪⎪⎪⎪⎪⎪λ-2-1-1λ-2=(λ-2)2-1=λ2-4λ+3,由f(λ)=0,解得λ1=1,λ2=3,将λ1=1代入特征方程组,得⎩⎪⎨⎪⎧-x -y =0,-x -y =0,x +y =0,可取⎣⎢⎡⎦⎥⎤1-1为属于特征值λ1=1的一个特征向量.同理,当λ2=3时,由⎩⎪⎨⎪⎧x -y =0,-x +y =0,x -y =0,所以可取⎣⎢⎡⎦⎥⎤11为属于特征值λ2=3的一个特征向量.综上所述,矩阵⎣⎢⎡⎦⎥⎤2 11 2有两个特征值λ1=1,λ2=3;属于特征值λ1=1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1,属于特征值λ2=3的一个特征向量为⎣⎢⎡⎦⎥⎤11.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,求矩阵A 的特征值. 解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,∴ A =(A -1)-1=⎣⎢⎡⎦⎥⎤2321.∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4.3. (2014·南通期末)设二阶矩阵A 、B 满足A -1=⎣⎢⎡⎦⎥⎤1 23 4,(BA )-1=⎣⎢⎡⎦⎥⎤1 001,求B -1. 解:设B -1=⎣⎢⎡⎦⎥⎤a b c d ,因为(BA )-1=A -1B -1,所以⎣⎢⎡⎦⎥⎤1 00 1=⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤a b c d ,即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,3a +4c =0,3b +4d =1,解得⎩⎪⎨⎪⎧a =-2,b =1,c =32,d =-12,所以B -1=⎣⎢⎢⎡⎦⎥⎥⎤-2 132-12. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值;(2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =[]ax bx +y ,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y. 因为P′(x′,y ′)在圆x 2+y 2=1上,所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1,依题意可得a 2+b 2=2,2b =2a =1,b =1或a =-1,b =1, 而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎡⎦⎥⎤1011,得A 2=⎣⎢⎡⎦⎥⎤1011⎣⎢⎡⎦⎥⎤1011=⎣⎢⎡⎦⎥⎤1021|A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤ 10-21.1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值; (2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-8,得a +1=-8,所以a =-9.(2) 由(1)知A =⎣⎢⎡⎦⎥⎤ 1 -1-9 1,则矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. 已知矩阵A =⎣⎢⎡⎦⎥⎤a 21 b 有一个属于特征值1的特征向量α=⎣⎢⎡⎦⎥⎤2-1.(1) 求矩阵A ;(2) 矩阵B =⎣⎢⎡⎦⎥⎤1 -10 1,点O(0,0),M(2,-1),N(0,2),求△OMN 在矩阵AB 的对应变换作用下所得到的△O′M′N′的面积.解:(1) 由已知得⎣⎢⎡⎦⎥⎤a 21 b ⎣⎢⎡⎦⎥⎤ 2-1=1·⎣⎢⎡⎦⎥⎤2-1,∴ ⎩⎪⎨⎪⎧2a -2=22-b =-1.解得⎩⎪⎨⎪⎧a =2,b =3,故A =⎣⎢⎡⎦⎥⎤2 21 3. (2) AB =⎣⎢⎡⎦⎥⎤2 21 3⎣⎢⎡⎦⎥⎤1 -10 1=⎣⎢⎡⎦⎥⎤2 01 2.∴ (AB )⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤2 01 2⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,(AB )⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤2 01 2⎣⎢⎡⎦⎥⎤ 2-1=⎣⎢⎡⎦⎥⎤40,(AB )⎣⎢⎡⎦⎥⎤02=⎣⎢⎡⎦⎥⎤2 01 2⎣⎢⎡⎦⎥⎤02=⎣⎢⎡⎦⎥⎤04,即点O 、M 、N 变成点O′(0,0),M ′(4,0),N ′(0,4),△O ′M ′N ′的面积为12×4×4=8.3. (2014·南京、盐城一模)已知矩阵A =⎣⎢⎡⎦⎥⎤1a -1b 的一个特征值为2,其对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤21.(1) 求矩阵A ;(2) 若A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,求x 、y 的值.解:(1) 由题意,得⎣⎢⎡⎦⎥⎤ 1 a -1 b ⎣⎢⎡⎦⎥⎤21=2⎣⎢⎡⎦⎥⎤21,即⎩⎪⎨⎪⎧2+a =4,-2+b =2,解得a =2,b =4.所以A =⎣⎢⎡⎦⎥⎤ 1 2-1 4. (2) (解法1)A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,即⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤24,所以⎩⎪⎨⎪⎧x +2y =2,-x +4y =4,解得⎩⎪⎨⎪⎧x =0,y =1. (解法2)因为A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤23 -1316 16. 因为A ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤a b ,所以⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤a b =⎣⎢⎢⎡⎦⎥⎥⎤23-1316 16⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤01.所以⎩⎪⎨⎪⎧x =0,y =1.4. 设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2,则MN -1=⎣⎢⎡⎦⎥⎤1001.又M =⎣⎢⎡⎦⎥⎤2003,所以⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2=⎣⎢⎡⎦⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎣⎢⎡⎦⎥⎤120013. (2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C .(2) 对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (ad -bc≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc-c ad -bc a ad -bc.2. 二阶行列式与方程组的解对于关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪a b c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A )=⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若将方程组中行列式⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪a m c n 记为D y ,则当D≠0时,方程组的解为⎩⎪⎨⎪⎧x =D x D,y =D y D.请使用课时训练(B )第2课时(见活页).。
高考数学复习专题矩阵与变换考点剖析
矩阵与变换主标题:矩阵与变换副标题:为学生详细的分析矩阵与变换的高考考点、命题方向以及规律总结。
关键词:矩阵,二阶矩阵,变换,特征值,特征向量 难度:3 重要程度:5考点剖析:1.了解二阶矩阵的概念,了解线性变换与二阶矩阵之间的关系.2.了解旋转变换、反射变换、伸缩变换、投影变换、切变变换这五种变换的概念与矩阵表示.3.理解变换的复合与矩阵的乘法;理解二阶矩阵的乘法和简单性质. 4.理解逆矩阵的意义,会求出简单二阶逆矩阵.5.理解矩阵的特征值与特征向量,会求二阶矩阵的特征值与特征向量.命题方向:主要考查矩阵与变换,二阶逆矩阵与二元一次方程组及求矩阵的特征值与特征向量。
规律总结:1.矩阵相等实质上是矩阵对应元素相等,体现了方程思想,要注意矩阵对应元素相等.2.矩阵的乘法只满足结合律,不满足交换律和消去律. 3.对于平面图形的变换要分清是伸缩、反射、还是切变变换.4.伸缩、反射、切变变换这三种几何变换称为初等变换,对应的变换矩阵为初等变换矩阵,由矩阵的乘法可以看出,矩阵的乘法对应于变换的复合,一一对应的平面变换都可以看作这三种初等变换的一次或多次的复合.5.逆矩阵的求法常用待定系数法.6.若A ,B 两个矩阵均存在可逆矩阵,则有(AB )-1=B -1A -1,若A ,B ,C 为二阶矩阵且A 可逆,则当AB =AC 时,有B =C ,即此时矩阵乘法的消去律成立. 7.关于特征值问题的一般解法如下:给定矩阵A =⎣⎢⎡⎦⎥⎤ab cd ,向量α=⎣⎢⎡⎦⎥⎤x y ,若有特征值λ,则⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤λ-a -b -cλ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00,所以⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0,即λ2-(a +d )λ+(ad -bc )=0.8.求M nα,一般都是先求出矩阵M 的特征值与特征向量,将α写成t 1α1+t 2α2.利用性质M nα=t 1λn1α1+t 2λn2α2求解.知 识 梳 理1.矩阵的乘法规则(1)行矩阵[a 11a 12]与列矩阵⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21的乘法规则:[a 11a 12]⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21=[a 11×b 11+a 12×b 21].(2)二阶矩阵⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21a 12a 22与列向量⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0的乘法规则: ⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0=⎣⎢⎢⎡⎦⎥⎥⎤a 11×x 0+a 12×y 0a 21×x 0+a 22×y 0. 设A 是一个二阶矩阵,α、β是平面上的任意两个向量,λ、λ1、λ2是任意三个实数,则①A (λα)=λAα;②A (α+β)=Aα+Aβ; ③A (λ1α+λ2β)=λ1Aα+λ2Aβ.(3)两个二阶矩阵相乘的结果仍然是一个矩阵,其乘法法则如下:⎣⎢⎢⎡⎦⎥⎥⎤a 11a 21 a 12a 22⎣⎢⎢⎡⎦⎥⎥⎤b 11b 21 b 12b 22= ⎣⎢⎢⎡⎦⎥⎥⎤a 11×b 11+a 12×b 21a 21×b 11+a 22×b 21 a 11×b 12+a 12×b 22a 21×b 12+a 22×b 22 性质:①一般情况下,AB ≠BA ,即矩阵的乘法不满足交换律;②矩阵的乘法满足结合律,即(AB )C =A (BC );③矩阵的乘法不满足消去律. 2.矩阵的逆矩阵(1)逆矩阵的有关概念:对于二阶矩阵A ,B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.若二阶矩阵A 存在逆矩阵B ,则逆矩阵是唯一的,通常记A 的逆矩阵为A -1,A -1=B .(2)逆矩阵的求法:一般地,对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤ab cd (det A =ad -bc ≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .(3)逆矩阵与二元一次方程组:如果关于变量x ,y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n的系数矩阵A =⎣⎢⎡⎦⎥⎤ab cd 可逆,那么该方程组有唯一解⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ab cd -1⎣⎢⎡⎦⎥⎤m n ,其中A-1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -bad -bc -c ad -bc a ad -bc .3.二阶矩阵的特征值和特征向量 (1)特征值与特征向量的概念设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使得Aα=λα,那么λ称为A 的一个特征值,而α称为A 的一个属于特征值λ的一个特征向量. (2)特征多项式与特征方程设λ是二阶矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的一个特征值,它的一个特征向量为ξ=⎣⎢⎡⎦⎥⎤x y ,则A ⎣⎢⎡⎦⎥⎤x y =λ⎣⎢⎡⎦⎥⎤x y ,即⎣⎢⎡⎦⎥⎤x y 满足二元一次方程组⎩⎪⎨⎪⎧ax +by =λx ,cx +dy =λy ,故⎩⎪⎨⎪⎧λ-a x -by =0-cx +λ-d y =0⇔⎣⎢⎡⎦⎥⎤λ-a -b -cλ-d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤00(*)则(*)式有非零解的充要条件是它的系数矩阵的行列式⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0.记f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d 为矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征多项式;方程⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =0,即f (λ)=0称为矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征方程. (3)特征值与特征向量的计算如果λ是二阶矩阵A 的特征值,则λ是特征方程f (λ)=⎪⎪⎪⎪⎪⎪λ-a -b -cλ-d =λ2-(a +d )λ+ad -bc =0的一个根.解这个关于λ的二元一次方程,得λ=λ1、λ2,将λ=λ1、λ2分别代入方程组(*),分别求出它们的一个非零解⎩⎪⎨⎪⎧x =x 1,y =y 1,⎩⎪⎨⎪⎧x =x 2,y =y 2,记ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2.则Aξ1=λ1ξ1、Aξ2=λ2ξ2,因此λ1、λ2是矩阵A =⎣⎢⎡⎦⎥⎤ab cd 的特征值,ξ1=⎣⎢⎡⎦⎥⎤x 1y 1,ξ2=⎣⎢⎡⎦⎥⎤x 2y 2为矩阵A 的分别属于特征值λ1、λ2的一个特征向量.。
2014年高考数学一轮复习 热点难点精讲精析 选修系列(第5部分:矩阵与变换)
2014年高考一轮复习热点难点精讲精析: 选修系列(第5部分:矩阵与变换)一、 线性变换与二阶矩阵 (一)矩阵相等的应用 〖例〗已知A=32ad b c ⎡⎤⎢⎥+⎣⎦,B=542b c a d +⎡⎤⎢⎥+⎣⎦,若A=B ,求a ,,,b c d 。
思路解析:由矩阵相等的定义,知矩阵A ,B 对应元素相等,列出方程组后求解。
解答:由矩阵相等的定义知53422a b c d b c a d=⎧⎪=+⎪⎨=⎪⎪+=+⎩,解得15,10,7, 4.a b c d ===-= (二)二阶矩阵与平面向量乘法的应用〖例〗在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵2001⎡⎤⎢⎥⎣⎦对应的变换作用下得到曲线F ,求F 的方程。
思路解析:由已知矩阵可得坐标变换公式,从而得到椭圆上点与曲线上F 上点坐标间的关系,再代入椭圆方程即可得F 的方程。
解答:设000(,)P x y 是椭圆上任意一点,点P 在矩阵A=2001⎡⎤⎢⎥⎣⎦的作用下的像为00(,)P x y '''。
∵A=2001⎡⎤⎢⎥⎣⎦,∴坐标变换公式'0'002,x x y y ⎧=⎪⎨=⎪⎩∴'0'00,2x x y y ⎧=⎪⎨⎪=⎩∵点P 在椭圆上,故220041x y +=, ∴'2'200()()1x y +=,∴曲线F 的方程为221x y +=。
(三)线性变换性质的应用〖例〗二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变成点(-1,-1)与(0,-2)。
(1)求矩阵M ;(2)设直线l 在变换M 作用下得到了直线: 4.m x y -=求直线l 的方程。
思路解析:由已知条件下可利用待定系数法求矩阵M ,再通过矩阵M 对应的坐标变换公式确定直线l 与直线m 上点坐标间的关系,即可求直线l 的方程。
解答:1120(1),.1112120,,122120,.1221212,34a b a b a b M c d c d c d a b a b c d c d a b a b c d c d a b M c d --⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦---+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥---+-⎣⎦⎣⎦⎣⎦⎣⎦-=--+=⎧⎧⎨⎨-=--+=-⎩⎩=⎧⎪=⎪=⎨=⎪⎪=⎩设则有,也就是所以且解得所以.34⎡⎤⎢⎥⎣⎦122(2),,3434(,):4(2)(34)4,20,20.x x y M y x y x y m x y x y x y x y l x y '=+⎡⎤⎧=∴⎨⎢⎥'=+⎣⎦⎩''-=∴+-+=++=∴++=坐标变换公式为是直线上的点.即直线的方程为 二、变换的复合与二阶矩阵的乘法及逆变换与逆矩阵 (一)与矩阵乘法的相关问题〖例〗⊿ABC 的顶点为A (0,0),B (0,0),C (0,1)。
高考数学压轴专题最新备战高考《矩阵与变换》技巧及练习题附答案
【高中数学】《矩阵与变换》考试知识点一、151.解关于x 、y 、z 的三元一次方程组231231x y z x y az ay z +-=-⎧⎪-+=-⎨⎪-=⎩,并对解的情况进行讨论.【答案】答案不唯一,见解析 【解析】 【分析】根据题意,分别求出D 、x D 、y D 、z D 关于a 的表达式,再由三元一次方程组解的公式对a 的取值进行讨论,即可得到原方程组解的各种情况. 【详解】(1)(25)D a a =--+,(11)(1)x D a a =+-,22y D a =-,55z D a =-;① 当1a =,0x y z D D D D ====,方程组有无穷多解; ② 当52a =-,0D =,且x D 、y D 、z D 不为零,方程组无解; ③ 当1a ≠且52a ≠-时,方程组的解为1125a x a +=-+,225y a =+,525z a =-+. 【点睛】本题考查三元一次方程组的行列式解法,解题关键是要分类讨论,属于常考题.2.证明:(1)11122212a b a a a b b b =; (2)1212112222a kab kb a b a b a b ++=. 【答案】(1)证明见解析(2)证明见解析 【解析】 【分析】(1)根据行列式的运算,分别化简得11121222a b a b b a a b =-,12122112a a ab a b b b =-,即可求解;(2)根据行列式的运算,分别化简得1212122122a kab kb a b a b a b ++=-,11122122a b a b a b a b =-,即可求解. 【详解】(1)根据行列式的运算,可得11121222a b a b b a a b =-,12122112a a ab a b b b =-, 所以11122212a b a a a b b b =. (2)根据行列式的运算,可得121212212222()()a ka b kb a ka b b kb a a b ++=+-+ 122221221221()()a b ka b a b ka b a b a b =+-+=-,又由11122122a b a b a b a b =-,所以1212112222a ka b kb a b a b a b ++=.【点睛】本题主要考查了行列式的运算及其应用,其中解答中熟记行列式的运算法则,准确化简是解答的关键,着重考查了推理与运算能力,属于基础题.3.解方程:23649x xx=.【答案】1x = 【解析】 【分析】根据行列式的运算性质,求得29346xx x ⨯-⨯=,转化为322()3()123xx⨯-⨯=,令3()2x t =,得到方程1231t t ⨯-⨯=,进而即可求解【详解】根据行列式的运算性质,可得23293449xx xx=⨯-⨯,即29346x x x ⨯-⨯=,方程两边同除6x ,可得322()3()123xx⨯-⨯=,令3()2xt =,且0t >,则21()3xt =,可得1231t t⨯-⨯=,解32t =或1t =-(舍去), 即33()22x=,解得1x =. 故答案为:1x =. 【点睛】本题主要考查了行列式的运算性质,以及指数幂的运算和一元二次方程的应用,其中解答中熟记行列式的运算性质,结合指数幂的运算和一元二次方程的运算是解答的关键,着重考查了推理与运算能,属于基础题.4.解关于x ,y 的方程组93x ay aax y +=⎧⎨+=⎩.【答案】分类讨论,详见解析 【解析】 【分析】分别计算得到29D a =-,6x D a =,23y D a =-,讨论得到答案.【详解】2199a D a a ==-,639x a a D a ==,2133y a D a a ==-.当3a ≠±时,0D ≠,此时方程有唯一解:2226939a x a a y a ⎧=⎪⎪-⎨-⎪=⎪-⎩; 当3a =±时,0D =,0x D ≠,方程无解. 综上所述:3a ≠±,有唯一解;3a =±,无解. 【点睛】本题考查了通过行列式讨论方程组的解的情况,分类讨论是一个常用的方法,需要同学熟练掌握.5.解方程组32321x my m mx y m +=+⎧⎨+=-⎩.【答案】详见解析. 【解析】 【分析】求出行列式D 、x D 、y D ,对D 分0D ≠和0D =两种情况分类讨论,利用方程组解与行列式之间的关系求出方程组的解,或者将参数的值代入方程组进行求解,由此得出方程组的解. 【详解】由题意可得()()2933D m m m =-=--+,()()3(2)(21)231x D m m m m m =+--=--+,()()31y D m m =---.①当0D ≠时,即当3m ≠±时,()21313x y m D x D m D m y D m ⎧+==⎪⎪+⎨-⎪==⎪+⎩;②当3m =时,方程组335335335x y x y x y +=⎧⇔+=⎨+=⎩,令()x t t R =∈,得533t y -=,此时,该方程组的解有无数多个,为,()533x t t R t y =⎧⎪∈-⎨=⎪⎩;③当3m =-时,该方程组为331337x y x y -=-⎧⎨-+=-⎩17⇒-=,所以该方程组无解.【点睛】本题考查二元一次方程组的求解,解题时要对系数行列式是否为零进行分类讨论,考查运算求解能力,属于中等题.6.解关于x ,y 的方程组2122ax y a ax ay a+=+⎧⎨-=-⎩.【答案】见解析 【解析】 【分析】根据对应关系,分别求出D ,x D ,y D ,再分类讨论即可 【详解】 由题可得:()122a D a a a a==-+-,()2211=212x a D a aa+=-+--,221522y a a D a aa+==--.所以,(1)当0a ≠且2a ≠-时,()()221252a x a a a y a ⎧+⎪=⎪+⎨⎪=⎪+⎩; 当0a =或2-时,0x D ≠,方程组无解 【点睛】本题考查二元一次方程的解与行列式的对应关系,属于中档题7.讨论关于x ,y ,z 的方程组2112x y z x y az x ay a z ++=⎧⎪++=⎨⎪++=⎩解的情况.【答案】当1a ≠时,有唯一解2,11,0.a x a y a z -⎧=⎪-⎪=-⎨⎪=⎪⎩;当1a =时,无解.【解析】 【分析】先根据方程组中x ,y ,z 的系数及常数项计算出D ,x D ,y D ,z D ,再对a 的值进行分类讨论,并求出相应的解. 【详解】方程组可转化为:2111111121x a a a y z ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,2211111(1)1a a D a a ==--,21111(1)(2)12x D a a a a a ==---, 211111112y D a a a ==-+,111101112z D a ==,(1)当系数行列式||0D ≠时,方程组有唯一解,即1a ≠时,有唯一解2,11,0.a x a y a z -⎧=⎪-⎪=-⎨⎪=⎪⎩(2)当1a =时,原方程组等价于112x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩所以无解.【点睛】本题考查三元一次方程组的矩阵形式、线性方程组解的存在性、唯一性、三元一次方程的解法等基础知识,考查运算求解能力.8.求证:sin cos 1sin 2cos 21sin 22sin sin 3cos31xx xx x x xx =-. 【答案】证明见解析【解析】 【分析】先利用三阶矩阵的计算方法,化简等式的左边,再结合两角差的正弦公式化简即可证明. 【详解】sin cos 1sin 2cos 2sin cos sin cos sin 2cos 21sin 3cos3sin 3cos3sin 2cos 2sin 3cos31x x x x x x x xx x x x x x x xxx =-+=sin (-x )-sin(-2x )+sin (-x )=sin 2x -sin 2x . 【点睛】本题考查行列式的运算法则及性质的应用,变换的能力及数学分析能力,涉及两角和差的正弦公式,属于中档题.9.已知1m >,1n >,且1000mn <,求证:lg 901lg 4m n <. 【答案】证明见解析 【解析】 【分析】由题意,求得11000mn <<,利用基本不等式,得到2lg lg 90lg lg 24m n m n +⎛⎫<<=⎪⎝⎭,再结合行列式的运算,即可求解. 【详解】由题意,实数1m >,1n >,且1000mn <,可得11000mn <<,则2lg lg 90lg lg 24m n m n +⎛⎫<<=⎪⎝⎭,又由lg 919lg ln 9lg ln 144lg 4m m n m n n=-⨯=-,所以lg 901lg 4m n <. 【点睛】本题主要考查了行列式的运算性质,以及对数的运算性质和基本不等式的应用,其中解答中熟记行列式的运算法则,以及合理应用对数的运算和基本不等式求解是解答的关键,着重考查了推理与运算能力,属于中档试题.10.用行列式解关于的二元一次方程组:12(1)x y x k y k +=⎧⎨++=⎩.【答案】1k =时,方程组无解; 1k ≠时,12,11k x y k k -==--【解析】 【分析】由题方程组中x ,y 的系数及常数项求出D,D ,D X y ,然后再讨论k 的值进行求解方程组的解. 【详解】由题意可得:11D 21k =+= 1k -,11D 11X kk ==+,11 D 22y k k==-,∴当D ?10k =-≠即1k ≠时,方程组有唯一解即D 1D 1X x k ==-,D 2 D 1y k y k -==-; 当D ?10k =-=即1k =时,方程组无解.综上所述: 1k ≠时,方程组有唯一解1121x k k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩; 1k =时,方程组无解. 【点睛】本题考查了二元一次方程组的矩阵形式、线性方程组解得存在性、唯一性以及二元方程解法等基础知识,考查了学生的运算能力,属于中档题.11.已知向量102112A ⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦u r ,求矩阵1A -u r 的特征值和属于该特征值的特征向量.【答案】特征值:1,2-;对应特征向量:12⎛⎫ ⎪-⎝⎭,11⎛⎫⎪⎝⎭. 【解析】 【分析】先求得1A -u r,以及其特征多项式()fλ,令()0f λ=解得特征值,最后根据特征向量的定义求解即可. 【详解】设1A -u r a b c d ⎛⎫= ⎪⎝⎭,则由A u r 1A -u r E =r可得 10? 1?02 10? 1?1? 2a b c d ⎛⎫- ⎪⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭- ⎪⎝⎭, 解得1,1,2,0a b c d =-=-=-=,故得1A -u r 1? 12? 0--⎛⎫= ⎪-⎝⎭.则其特征多项式()()1? 1?122? f λλλλλ+==+-,令()0fλ=,可得特征值为121,2λλ==-.设11λ=对应的一个特征向量为x y α⎛⎫= ⎪⎝⎭,则由11A λαα-=r ,的2y x =-,令1x =,则2y =- 故矩阵1A -u r 的一个特征值11λ=对应的一个特征向量为12⎛⎫ ⎪-⎝⎭;同理可得矩阵1A -u r 的一个特征值22λ=-对应的一个特征向量为11⎛⎫ ⎪⎝⎭.【点睛】本题考查矩阵特征值和特征向量的求解,属中档题.12.用行列式解关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩,并对解的情况进行讨论. 【答案】见解析 【解析】 【分析】先求出相关的行列式,,x y D D D 的值,再讨论分式的分母是否为0,用公式法写出方程组的解,即可得到结论. 【详解】由题意,关于x 、y 的方程组:1()2ax y a a R x ay a +=+⎧∈⎨+=⎩, 所以221111,(1),12x a a D a D a a a a a aa+==-==-=-2121(21)(1)12y a a D a a a a a+==--=+-,(1)当1a ≠±时,0D ≠,方程组有唯一解,1211a x a a y a ⎧=⎪⎪+⎨+⎪=⎪+⎩;(2)当1a =-时,0,0x D D =≠,方程组无解; (3)当1a =时,0x y D D D ===,方程组有无穷多解,,()2x tt R y t=⎧∈⎨=-⎩.【点睛】本题主要考查了用行列式法求方程组的解,难度不大,属于基础题.13.解关于x 、y 的方程组(1)2024160x m y m mx y +++-=⎧⎨++=⎩,并对解的情况进行讨论.【答案】答案见解析; 【解析】 【分析】将原方程组写成矩阵形式为Ax b =,其中A 为22⨯方阵,x 为2个变量构成列向量,b 为2个常数项构成列向量. 而当它的系数矩阵可逆,或者说对应的行列式D 不等于0的时候,它有唯一解.并不是说有解. 【详解】 解:Q (1)2024160x m y m mx y +++-=⎧⎨++=⎩化成矩阵形式Ax b =则1124m A m +⎛⎫= ⎪⎝⎭,216m b -⎛⎫= ⎪-⎝⎭()()()24212242111242m m D m m m m m m ∴==-+=+=-++---,()()()42161122116422412x D m m m m m m ==-++-=-+=++,()()()162222412216y D m mm m m m ==----+-=-当系数矩阵D 非奇异时,或者说行列式24220D m m =--≠, 即1m ≠且2m ≠-时,方程组有唯一的解, 61x D x D m ==-,41y D m y D m-==-. 当系数矩阵D 奇异时,或者说行列式24220D m m =--=, 即1m =或2m =-时,方程组有无数个解或无解.当2m =-时,原方程为4044160x y x y --=⎧⎨-++=⎩无解,当1m =时,原方程组为21024160x y x y +-=⎧⎨++=⎩,无解.【点睛】本题主要考查克莱姆法则,克莱姆法则不仅仅适用于实数域,它在任何域上面都可以成立,属于中档题.14.用行列式讨论下列关于x 、y 、z 的方程组121ax y z x y az x y z --=⎧⎪+-=⎨⎪--=⎩的解的情况,并求出相应的解.【答案】(i )当1a ≠±时有唯一解.∴方程组的解为:02131x a y a z a ⎧⎪=⎪-⎪=⎨+⎪⎪=-⎪+⎩;(ii )当1a =-时,无解;(iii) 当1a =时,有无穷多解.∴通解为:3212x t y z t ⎧=+⎪⎪⎪=⎨⎪=⎪⎪⎩.【解析】 【分析】首先由二元一次方程组得到矩阵:,,,x y z D D D D ,然后根据条件判断a 的不同取值方程组解的情况,并分类讨论. 【详解】方程组可转化为: 1 111 1 21 1 11a x a y z --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦2 1 11 1 1(1)(1)1 1 1a D a a a a --=-=-=-+---,21 1 1 1 1 1 12 1 0, 1 2 32, 1 1 2331 1 11 1 11 1 1x y z a a D a D a a a D a ----=-==-=-+==-----Q(i )当1a ≠±时有唯一解.∴方程组的解为:02131x a y a z a ⎧⎪=⎪-⎪=⎨+⎪⎪=-⎪+⎩;(ii )当1a =-时,无解;(iii ) 当1a =时,有无穷多解.∴通解为:3212x t y z t ⎧=+⎪⎪⎪=⎨⎪=⎪⎪⎩. 【点睛】本题考查了二元一次方程组和矩阵形式、以及行列式值的计算,考查了学生概念理解,数学运算的能力,属于中档题.15.[选修4-2:矩阵与变换]已知矩阵A=0110⎡⎤⎢⎥⎣⎦ ,B=1002⎡⎤⎢⎥⎣⎦. 求AB;若曲线C 1;22y =182x + 在矩阵AB 对应的变换作用下得到另一曲线C 2 ,求C 2的方程. 【答案】(1)0210⎡⎤⎢⎥⎣⎦(2)228x y += 【解析】试题分析:(1)直接由矩阵乘法可得;(2)先根据矩阵乘法可得坐标之间关系,代入原曲线方程可得曲线2C 的方程. 试题解析:解:(1)因为A =0110⎡⎤⎢⎥⎣⎦, B =1002⎡⎤⎢⎥⎣⎦, 所以AB =01101002⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ 0110⎡⎤⎢⎥⎣⎦ 1002⎡⎤⎢⎥⎣⎦=0210⎡⎤⎢⎥⎣⎦ 0210⎡⎤⎢⎥⎣⎦. (2)设()00,Q x y 为曲线1C 上的任意一点,它在矩阵AB 对应的变换作用下变为(),P x y ,则000210x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即002y x x y =⎧⎨=⎩,所以002x y x y =⎧⎪⎨=⎪⎩. 因为()00,Q x y 在曲线1C 上,所以2200188x y +=, 从而22188x y +=,即228x y +=. 因此曲线1C 在矩阵AB 对应的变换作用下得到曲线2C :228x y +=. 点睛:(1)矩阵乘法注意对应相乘:a b m p am bn ap bq c d n q cm dn cp dq ++⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥++⎣⎦⎣⎦⎣⎦;(2)矩阵变换:a b x x c d y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎣'⎦⎦'表示点(,)x y 在矩阵a b c d ⎡⎤⎢⎥⎣⎦变换下变成点(,)x y ''.16.设矩阵12M x y ⎡⎤=⎢⎥⎣⎦,2411N ⎡⎤=⎢⎥--⎣⎦,若02513MN ⎡⎤=⎢⎥⎣⎦,求矩阵M 的逆矩阵1M -. 【答案】132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦ 【解析】【分析】根据矩阵的乘法运算求出MN ,然后由02513MN ⎡⎤=⎢⎥⎣⎦列出方程组,即可求出4,3x y ==,从而确定矩阵M ,再利用求逆矩阵的公式,即可求出矩阵M 的逆矩阵1M -.【详解】解:因为02513MN ⎡⎤=⎢⎥⎣⎦ ,所以25,413.x y x y -=⎧⎨-=⎩所以4,3x y ==; 矩阵1243M ⎡⎤=⎢⎥⎣⎦的逆矩阵132554155M -⎡⎤-⎢⎥=⎢⎥⎢⎥-⎢⎥⎣⎦. 【点睛】 本题主要考查矩阵的乘法运算及逆矩阵的求解.17.已知矩阵2132A ⎡⎤=⎢⎥⎣⎦,列向量x X y ⎡⎤=⎢⎥⎣⎦,47B ⎡⎤=⎢⎥⎣⎦,且AX B =. (1)求矩阵A 的逆矩阵1A -;(2)求x ,y 的值.【答案】(1)12132A --⎡⎤=⎢⎥-⎣⎦(2)12x y =⎧⎨=⎩【解析】【分析】 (1)求出二阶矩阵对应的行列式值不为0,进而直接代入公式求得逆矩阵;(2)由AX B =可得1214327X A B --⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦,计算矩阵的乘法,即可得答案. 【详解】(1)由2132A ⎡⎤=⎢⎥⎣⎦,()det 223110A =⨯-⨯=≠,所以A 可逆,从而12132A --⎡⎤=⎢⎥-⎣⎦. (2)由AX B =得到121413272X A B --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, ∴12x y =⎧⎨=⎩. 【点睛】本题考查公式法求矩的逆矩阵及矩阵的乘法计算,考查运算求解能力,属于基础题.18.已知变换T 将平面上的点11,2⎛⎫ ⎪⎝⎭,(0,1)分别变换为点9,24⎛⎫- ⎪⎝⎭,3,42⎛⎫- ⎪⎝⎭.设变换T 对应的矩阵为M .(1)求矩阵M ;(2)求矩阵M 的特征值. 【答案】(1)33244M ⎡⎤-⎢⎥=⎢⎥-⎣⎦(2)1或6 【解析】【分析】(1)设a b M c d ⎡⎤=⎢⎥⎣⎦,根据变换可得关于a b c d ,,,的方程,解方程即可得到答案; (2)求出特征多项式,再解方程,即可得答案;【详解】(1)设a b M c d ⎡⎤=⎢⎥⎣⎦,则194122a b c d ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦-⎣⎦⎣⎦,30214a b c d ⎡⎤-⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 即1924122324a b c d b d ⎧+=⎪⎪⎪+=-⎪⎨⎪=-⎪⎪⎪=⎩,解得33244a b c d =⎧⎪⎪=-⎪⎨⎪=-⎪=⎪⎩,则33244M ⎡⎤-⎢⎥=⎢⎥-⎣⎦. (2)设矩阵M 的特征多项式为()f λ,可得233()(3)(24)676244f λλλλλλ-==---=-+-,令()0f λ=,可得1λ=或6λ=.【点睛】本题考查矩阵的求解、矩阵M 的特征值,考查函数与方程思想、转化与化归思想,考查运算求解能力.19.在平面直角坐标系xOy 中,直线20x y +-=在矩阵12a A b ⎡⎤=⎢⎥⎣⎦对应的变换作用下得到的直线仍为20x y +-=,求矩阵A .【答案】1102-⎡⎤⎢⎥⎣⎦【解析】【分析】设(,)P x y 是直线20x y +-=上任意一点,根据题意变换得到直线220x ay bx y +++-=,对比得到答案.【详解】设(,)P x y 是直线20x y +-=上任意一点,其在矩阵2a a A b ⎡⎤=⎢⎥⎣⎦对应的变换下得到122a x x ay b y bx y +⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦仍在直线上, 所以得220x ay bx y +++-=,与20x y +-=比较得1121b a +=⎧⎨+=⎩,解得01b a =⎧⎨=-⎩, 故1102A -⎡⎤=⎢⎥⎣⎦. 【点睛】本题考查了矩阵变换,意在考查学生的计算能力和应用能力.20.已知方程组()()()11 ,232a x ay a R a x a y ⎧-+=⎪∈⎨+++=⎪⎩ (1)求证:方程组恰有一解;(2)求证:以方程的解(),x y 为坐标的点在一条直线上;(3)求x y +的最小值,并求此时a 的范围.【答案】(1)见解析;(2)见解析;(3)最小值13,[3,4]a ∈ 【解析】【分析】(1)利用二阶行列式证明(2)利用消参法得(),x y 的轨迹即可证明(3)利用绝对值不等式求最值【详解】(1)22111123230,3,4, 23232234,33y x a aa a D a a a a D a D a a a a a a ax y --==+---=-≠==-+==-++++--∴==,即方程组有唯一解(2)由(1)知34,33a ax y --==,消去参数a ,则3310x y +-=,即以方程的解(),x y 为坐标的点在一条直线上;(3)1||||(|3|3x y a +=-1|4|)3a +-≥,当且仅当()()340a a --≥即[3,4]a ∈时,x y +的最小值13【点睛】本题考查二元一次方程组的解,考查绝对值不等式求最值,是基础题。
高考讲坛高考数学一轮复习 第1节 二阶矩阵、平面变换与矩阵的乘法课件 理 苏教版选修42
【规律方法】 1.本题可先求出曲线 C′在矩阵 M 所对应的变换作用下得到 曲线 C′的方程再与方程x42+y2=1 加以比较得出 a,b 的值,也可 在曲线 C′上取两特殊点经阵 M 所对应的变换作用下得到点在曲 线 C′上,代入 C′方程,求出 a,b 的值. 2.二阶矩阵与线性变换涉及变换矩阵,变换前的曲线方程, 变换后的曲线方程三个要素,知其二可求第三个.
固
启
基
智
础
慧
·
·
自 主
选修 4-2 矩阵与变换
高 考
落
研
实
析
第一节 二阶矩阵、平面变换与矩阵的乘法
提
知
课
能
后·限典时 Nhomakorabea例
自
探
测
究
要求
内容
考
AB C
纲
矩阵的概念
√
传
二阶矩阵与平面向量
√
真
常见的平面变换 √
矩阵的乘法
√
1.矩阵的概念 (1)矩阵:排成的矩形数字(或字母)阵列称做矩阵.组成矩阵的 每一个数(或字母)称为矩阵的元素. (2)二阶矩阵: 2行2列 的矩阵称为二阶矩阵.通常记为 2×2 矩阵. (3)零矩阵: 所有元素都为0 的矩阵叫做零矩阵,记为 0.
(4)单位矩阵:矩阵10 01称为单位矩阵.记为 E. (5)矩阵相等,对于两个矩阵 A、B,只有当 A、B 的行数与列 数 分别相等,并且 对应位置的元素 也分别相等时,A 和 B 才相 等,记作 A=B.
2.二阶矩阵与平面向量的乘法
(1)行矩阵a11 a12与列矩阵bb1211的乘法规则为a11 a12 bb1211=
[解] 设曲线 C′:x2+y2=1 上任意一点 P(x,y),在矩阵 M 所对应的变换作用下得到点 P1(x1,y1),
(教师用书)高考数学一轮总复习 矩阵与变换课时训练 理(选修4-2)-人教版高三选修4-2数学试题
选修4-2 矩阵与变换第1课时 线性变换、二阶矩阵及其乘法(理科专用)1. 求点B(0,1)在矩阵⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到的点的坐标.解:矩阵⎣⎢⎡⎦⎥⎤0110表示将图形变换为与之关于直线y =x 对称的反射变换,故点B(0,1)变换得到点坐标B′(1,0).2. 设圆F :x 2+y 2=1在(x ,y )→(x′,y ′)=(x +2y ,y)对应的变换下变换成另一图形F′,试求变换矩阵M 及图形F′的方程.解:因为⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤x +2y y =⎣⎢⎡⎦⎥⎤1201⎣⎢⎡⎦⎥⎤x y ,所以M =⎣⎢⎡⎦⎥⎤1201.因为圆上任意一点(x ,y)变换为(x′,y ′)=(x +2y ,y),即⎩⎪⎨⎪⎧x′=x +2y ,y ′=y ,所以⎩⎪⎨⎪⎧x =x′-2y′,y =y′. 因为x 2+y 2=1,所以(x′-2y′)2+y′2=1,即图形F′的方程为(x -2y)2+y 2=1.3. (2014·苏锡常镇二模)已知点M(3,-1)绕原点逆时针旋转90°后,且在矩阵⎣⎢⎡⎦⎥⎤a 02b 对应的变换作用下,得到点N(3,5),求a 、b 的值.解:绕原点逆时针旋转90°对应的变换矩阵为⎣⎢⎡⎦⎥⎤0 -11 0.∴⎣⎢⎡⎦⎥⎤a 02 b ⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤0 -a b -2. 则由⎣⎢⎡⎦⎥⎤0 -a b -2⎣⎢⎡⎦⎥⎤ 3-1=⎣⎢⎡⎦⎥⎤35,得⎩⎪⎨⎪⎧a =3,3b +2=5, ∴ a =3,b =1.4. 若矩阵M =⎣⎢⎡⎦⎥⎤1101,求直线x +y +2=0在M 对应的变换作用下所得到的曲线方程. 解:设点(x ,y)是直线x +y +2=0上任意一点,在矩阵M 的作用下变换成点(x′,y ′),则⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x′=x +y ,y ′=y.因为点(x ,y)在直线x +y =-2上,所以x′=x +y =-2,故得到的直线方程为x +2=0.5. (2014·某某二模)若矩阵M =⎣⎢⎡⎦⎥⎤a 0-1 2把直线l :x +y -2=0变换为另一条直线l′:x +y -4=0,试某某数a 的值.解:设直线l 上任意一点P(x ,y)在矩阵M 作用下的点P′的坐标为(x ′,y′),则⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤ a 0-1 2⎣⎢⎡⎦⎥⎤x y ,所以⎩⎪⎨⎪⎧x′=ax ,y ′=-x +2y. 将点P ′(x′,y ′)代入直线l′:x +y -4=0,得(a -1)x +2y -4=0.即直线l 的方程为a -12x +y -2=0.所以a =3.6. 已知矩阵M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎡⎦⎥⎤0-11 0.在平面直角坐标系中,设直线2x +3y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解:由题设得MN =[0110][0-11 0]=⎣⎢⎡⎦⎥⎤1 00-1.设(x ,y)是直线2x +3y +1=0上任意一点,点(x ,y)在矩阵MN 对应的变换作用下变为(x′,y ′),则有⎣⎢⎡⎦⎥⎤1 00-1⎣⎢⎡ ⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x′y′,所以⎩⎪⎨⎪⎧x =x′,y =-y′.因为点(x ,y)在直线2x +3y +1=0上,从而2x ′+3(-y′)+1=0,即2x′-3y′+1=0.所以曲线F 的方程为2x -3y +1=0.7. (2014·某某)已知矩阵A =⎣⎢⎡⎦⎥⎤-12 1x ,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,x 、y 为实数.若Aα=Bα,求x +y 的值.解:由已知,得Aα=⎣⎢⎡⎦⎥⎤-1 2 1 x ⎣⎢⎡⎦⎥⎤2y =⎣⎢⎡⎦⎥⎤-2+2y 2+xy ,B α=⎣⎢⎡⎦⎥⎤1 12 -1⎣⎢⎡⎦⎥⎤2y =⎣⎢⎡⎦⎥⎤2+y 4-y .因为Aα=Bα,所以⎣⎢⎡⎦⎥⎤-2+2y 2+xy =⎣⎢⎡⎦⎥⎤2+y 4-y .故⎩⎪⎨⎪⎧-2+2y =2+y ,2+xy =4-y 解得⎩⎪⎨⎪⎧x =-12,y =4.所以x +y =72.8. 变换T 1是逆时针旋转π2的旋转变换,对应的变换矩阵是M 1;变换T 2对应的变换矩阵是M 2=⎣⎢⎡⎦⎥⎤1101.求:(1) 点P(2,1)在T 1作用下的点P′的坐标;(2) 函数y =x 2的图象依次在T 1、T 2变换作用下所得的曲线的方程.解:(1) M 1=⎣⎢⎡⎦⎥⎤0-110,M 1⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤0-110⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-12,所以点(2,1)在T 1作用下的点P′的坐标是(-1,2).(2) M =M 2M 1=⎣⎢⎡⎦⎥⎤1-110,设⎣⎢⎡⎦⎥⎤x y 是变换后图象上任意一点,与之对应的变换前的点是⎣⎢⎡⎦⎥⎤x 0y 0,则M ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,也就是⎩⎪⎨⎪⎧x 0-y 0=x ,x 0=y ,则⎩⎪⎨⎪⎧x 0=y ,y 0=y -x , 所以所求曲线的方程是y -x =y 2.9. 已知直角坐标平面xOy 上的一个变换是先绕原点逆时针旋转45°,再作关于x 轴反射变换,求这个变换的逆变换的矩阵.解:这个变换的逆变换是先作关于x 轴反射变换,再作绕原点顺时针旋转45°变换,其矩阵是⎣⎢⎡⎦⎥⎤cos (-45°) -sin (-45°)sin (-45°) cos (-45°)⎣⎢⎡⎦⎥⎤1 00 -1=⎣⎢⎢⎡⎦⎥⎥⎤ 22-22-22 -22. 10. 已知a 、b∈R ,若M =⎣⎢⎡⎦⎥⎤-1a b 3所对应的变换T M 把直线L :2x -y =3变换为自身,某某数a 、b.解:(解法1:特殊点法)在直线2x -y =3上任取两点(2,1)和(3,3),则⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤-2+a 2b +3,即得点(a-2,2b +3) ;⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤33=⎣⎢⎡⎦⎥⎤-3+3a 3b +9,即得点(3a -3,3b +9).将()a -2,2b +3和()3a -3,3b +9分别代入2x -y =3得⎩⎪⎨⎪⎧2(-2+a )-(2b +3)=3,2(-3+3a )-(3b +9)=3,解得⎩⎪⎨⎪⎧a =1,b =-4.(解法2:通法)设P(x ,y)为直线2x -y =3上任意一点,其在M 的作用下变为(x′,y ′),则⎣⎢⎡⎦⎥⎤-1a b 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-x +ay bx +3y =⎣⎢⎡⎦⎥⎤x′y′⎩⎪⎨⎪⎧x′=-x +ay ,y ′=bx +3y ,代入2x -y =3,得-(b +2)x +(2a -3)y =3,由题意得⎩⎪⎨⎪⎧-b -2=2,2a -3=-1,解得⎩⎪⎨⎪⎧a =1,b =-4. 11. (2014·某某二模)已知直线l :ax +y =1在矩阵A =⎣⎢⎡⎦⎥⎤2 301对应的变换作用下变为直线l′:x +by =1.(1) 某某数a 、b 的值;(2) 若点P(x 0,y 0)在直线l 上,且A ⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,求点P 的坐标.解:(1) 设直线l 上一点(x ,y)在矩阵A 对应的变换下得点(x′,y ′),则⎣⎢⎡⎦⎥⎤2 30 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′, ∴⎩⎪⎨⎪⎧x′=2x +3y ,y ′=y ,代入直线l′,得2x +(b +3)y =1, ∴ a =2,b =-2.(2) ∵ 点P(x 0,y 0)在直线l 上, ∴ 2x 0+y 0=1.由⎣⎢⎡⎦⎥⎤2 30 1⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x 0y 0,得⎩⎪⎨⎪⎧x 0=2x 0+3y 0,y 0=y 0, ∴⎩⎪⎨⎪⎧x 0=35,y 0=-15,∴ P ⎝ ⎛⎭⎪⎫35,-15.第2课时 逆变换与逆矩阵、矩阵的特征值与特征向量(理科专用)1. 已知α=⎣⎢⎡⎦⎥⎤21为矩阵A =⎣⎢⎡⎦⎥⎤ 1 a -1 4属于λ的一个特征向量,某某数a 、λ的值及A 2.解:由条件可知⎣⎢⎡⎦⎥⎤ 1 a -1 4⎣⎢⎡⎦⎥⎤21=λ⎣⎢⎡⎦⎥⎤21,所以⎩⎪⎨⎪⎧2+a =2λ,-2+4=λ,解得a =λ=2.因此A =⎣⎢⎡⎦⎥⎤1 2-1 4,所以A 2=⎣⎢⎡⎦⎥⎤ 1 2-1 4⎣⎢⎡⎦⎥⎤ 1 2-1 4=⎣⎢⎡⎦⎥⎤-1 10-5 14.2. (2014·某某二模)已知矩阵A =⎣⎢⎡⎦⎥⎤1 2c d (c 、d 为实数).若矩阵A 属于特征值2、3的一个特征向量分别为⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤11,求矩阵A 的逆矩阵A -1.解:由题意知,⎣⎢⎡⎦⎥⎤1 2c d ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤42c +d =2⎣⎢⎡⎦⎥⎤21,⎣⎢⎡⎦⎥⎤1 2c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤3c +d =3⎣⎢⎡⎦⎥⎤11,所以⎩⎪⎨⎪⎧2c +d =2,c +d =3,解得⎩⎪⎨⎪⎧c =-1,d =4. 所以A =⎣⎢⎡⎦⎥⎤ 1 2-1 4,所以A -1=⎣⎢⎢⎡⎦⎥⎥⎤23 -1316 16. 3. (2014·某某一模)已知二阶矩阵M 有特征值λ=1及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤1-1,且M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,求矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,则由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤1-1,得⎩⎪⎨⎪⎧a -b =1,c -d =-1. 再由⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,得⎩⎪⎨⎪⎧a +b =3,c +d =1. 联立以上方程组解得a =2,b =1,c =0,d =1,故M =⎣⎢⎡⎦⎥⎤2 10 1.4. (2014·某某期末)已知二阶矩阵M 有特征值λ=5,属于特征值λ=5的一个特征向量是e =⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换为(-2,4),求矩阵M .解:设M =⎣⎢⎡⎦⎥⎤a b c d ,依题意⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤55,且⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,所以⎩⎪⎨⎪⎧a +b =5,c +d =5,-a +2b =-2,-c +2d =4,解得⎩⎪⎨⎪⎧a =4,b =1,c =2,d =3,所以M =⎣⎢⎡⎦⎥⎤4 12 3. 5. 已知二阶矩阵A 有两个特征值1、2,求矩阵A 的特征多项式.解:由特征多项式的定义知,特征多项式是一个首项系数为1的二次三项式.因此不妨设f(λ)=λ2+bλ+c.因为1,2是A 的特征值,所以f(1)=f(2)=0,即1,2是λ2+bλ+c =0的根.由根与系数的关系知:b =-3,c =2,所以f(λ)=λ2-3λ+2.6. 矩阵M =⎣⎢⎡⎦⎥⎤3652有属于特征值λ1=8的一个特征向量e 1=⎣⎢⎡⎦⎥⎤65,及属于特征值λ2=-3的一个特征向量e 2=⎣⎢⎡⎦⎥⎤ 1-1.对向量α=⎣⎢⎡⎦⎥⎤38,计算M 3α.解:令α=m e 1+n e 2,将具体数据代入,有m =1,n =-3,所以a =e 1-3e 2.M 3α=M 3(e 1-3e 2)=M 3e 1-3(M 3e 2)=λ31e 1-3(λ32e 2)=83⎣⎢⎡⎦⎥⎤65-3×(-3)3⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤3 1532 479, 即M 3α=⎣⎢⎡⎦⎥⎤3 1532 479.7. (2014·某某期末)已知矩阵A =⎣⎢⎡⎦⎥⎤2n m1的一个特征根为λ=2,它对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤12.(1) 求m 与n 的值;(2) 求A -1.解:(1) 由题意得:Aα=λα⎣⎢⎡⎦⎥⎤2 n m 1⎣⎢⎡⎦⎥⎤12=λ⎣⎢⎡⎦⎥⎤12=2⎣⎢⎡⎦⎥⎤12⎩⎪⎨⎪⎧2+2n =2,m +2=4,解得⎩⎪⎨⎪⎧n =0,m =2. (2) 设A -1=⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤2 02 1⎣⎢⎡⎦⎥⎤a b c d =E =⎣⎢⎡⎦⎥⎤1 00 1,∴⎩⎪⎨⎪⎧2a =1,2b =0,2a +c =0,2b +d =1,解得⎩⎪⎨⎪⎧a =12,b =0,c =-1,d =1,∴A-1=⎣⎢⎢⎡⎦⎥⎥⎤120-11. 8. 利用逆矩阵的知识解方程MX =N ,其中M =⎣⎢⎡⎦⎥⎤5241,N =⎣⎢⎡⎦⎥⎤5-8.解:设M -1=⎣⎢⎡⎦⎥⎤x y z w ,⎣⎢⎡⎦⎥⎤5241⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤5x +2z 5y +2w 4x +z 4y +w =⎣⎢⎡⎦⎥⎤1001,⎩⎪⎨⎪⎧5x +2z =1,5y +2w =0,4x +z =0,4y +w =1,解得⎩⎪⎪⎨⎪⎪⎧x =-13,y =23,z =43,w =-53,所以M-1=⎣⎢⎢⎡⎦⎥⎥⎤-132343-53. 可得X =M-1N =⎣⎢⎢⎡⎦⎥⎥⎤-132343-53⎣⎢⎡⎦⎥⎤ 5-8=⎣⎢⎡⎦⎥⎤-720. 所以原方程的解为⎣⎢⎡⎦⎥⎤-720.9. (2014·某某二模)已知矩阵A =⎣⎢⎡⎦⎥⎤ak 01(k≠0)的一个特征向量为α=⎣⎢⎡⎦⎥⎤k -1,A 的逆矩阵A -1对应的变换将点(3,1)变为点(1,1).某某数a 、k 的值.解:设特征向量为α=⎣⎢⎡⎦⎥⎤k -1,对应的特征值为λ,则⎣⎢⎡⎦⎥⎤a k 0 1⎣⎢⎡⎦⎥⎤ k -1=λ⎣⎢⎡⎦⎥⎤k -1,即⎩⎪⎨⎪⎧ak -k =λk,λ=1. 因为k≠0,所以a =2.因为A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤11,所以A ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31, 即⎣⎢⎡⎦⎥⎤2 k 0 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤31,所以2+k =3,解得k =1. 综上,a =2,k =1.10. 设M 是把坐标平面上点的横坐标不变、纵坐标沿y 方向伸长为原来5倍的伸压变换.求:(1) 直线4x -10y =1在M 作用下的方程; (2) M 的特征值与特征向量.解:(1) M =⎣⎢⎡⎦⎥⎤1005.设(x′,y ′)是所求曲线上的任意一点,⎣⎢⎡⎦⎥⎤1005⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,所以{x′=x ,y ′=5y ,得⎩⎪⎨⎪⎧x =x′,y =15y′,代入4x -10y =1,得4x′-2y′=1, 所以所求曲线的方程为4x -2y =1. (2) 矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-100λ-5=(λ-1)(λ-5).令f(λ)=0,解得λ1=1,λ2=5.当λ1=1时,由Mα1=λ1α1,得特征向量α1=⎣⎢⎡⎦⎥⎤10;当λ2=5时,由Mα2=λ2α2,得特征向量α2=⎣⎢⎡⎦⎥⎤01.11. (2014·苏锡常镇一模)已知矩阵M =⎣⎢⎡⎦⎥⎤1 22 1,β=⎣⎢⎡⎦⎥⎤17,计算M 6β. 解:矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤1-1.令β=m α1+n α2,得m =4,n =-3.M 6β=M 6(4α1-3α2)=4(M 6α1)-3(M 6α2)=4×36⎣⎢⎡⎦⎥⎤11-3(-1)6⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤2 9132 919.。
高考数学总复习(考点引领+技巧点拨)矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值.pdf
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值 考情分析考点新知①掌握二阶矩阵存在逆矩阵的条件并能进行矩阵的运算. 求二阶矩阵的特征值和特征向量利用特征值和特征向量进行矩阵运算. ①理解逆矩阵的意义掌握二阶矩阵存在逆矩阵的条件并能进行矩阵的运算. 会求二阶矩阵的特征值和特征向量会利用矩阵求解方程组.会利用特征值和特征向量进行矩阵运算. 1. 设M==求MN.解:MN==已知矩阵M=若矩阵M的逆矩阵M -1=求a、b的值.解:由题意知MM-1=E=即=即解得a=5=3.求矩阵的特征多项式.解:f(λ)==(λ-1)(λ-2)+2=-+4.(选修42习题第1题改编)求矩阵M=[]的特征值.解:矩阵M的特征多项式为f(λ)==(λ+2)·(λ+3)=0令f(λ)=0得M的特征值为λ=-2=-3.(选修42习题第1题改编)求矩阵N=的特征值及相应的特征向量.解:矩阵N的特征多项式为f(λ)==(λ-8)·(λ+3)=0令f(λ)=0得N的特征值为λ=-3=8当λ=-3时一个解为故特征值λ=-3的一个特征向量为;当λ=8时一个解为故特征值λ=8的一个特征向量为 1. 逆变换与逆矩阵(1) 对于二阶矩阵A、B若有AB=BA=E则称A是可逆的称为A的逆矩阵.(2) 若二阶矩阵A、B均存在逆矩阵则AB也存在逆矩阵且(AB)1=B-1-1(3) 利用行列式解二元一次方程组.特征值与特征向量(1) 设A是一个二阶矩阵如果对于实数λ存在一个非零向量α使Aα=λα那么λ称为A的一个特征值而α称为A的属于特征值λ的一个特征向量.(2) 从几何上看特征向量的方向经变换矩阵A的作用后保持在同一条直线上这时特征向量或者方向不变(λ>0)或者方向相反(λ0)对应的变换作用下得到的曲线为x+y=1.(1) 求实数a、b的值;(2) 求A的逆矩阵.解:(1)设曲线2x+2xy+y=1上任一点P(x)在矩阵A对应的变换下的象是P′(x′),由==得因为P′(x′)在圆x+y=1上所以(ax)+(bx+y)=1化简可得(a+b)x2+2bxy+y=1依题意可得a+b=2=2=1=1或=-1=1而由a>0可得a=b=1.(2)由(1)A==|A2|=1(A2)-1= 1. 已知矩阵A=若点P(1)在矩阵A对应的变换作用下得到点P′(0-8).(1) 求实数a的值;(2) 求矩阵A的特征值.解:(1) 由=得a+1=-8所以a=-9.(2) 由(1)知A=则矩阵A的特征多项式为(λ)==(λ-1)-9=λ-2λ-8令f(λ)=0所以矩阵A的特征值为-2或4.已知M==求二阶方阵X使MX=N.解:(解法1)设X=据题意有=根据矩阵乘法法则有解得所以X=(解法2)因为MX=N所以X=M-1-1=所以=M-1==已知矩阵M=其中a∈R若点P(1-2)在矩阵M的变换下得到点P′(-4),求实数a的值;并求矩阵M的特征值及其对应的特征向量.解:由=-2a=-4=3.=则矩阵M的特征多项式为(λ)==(λ-2)(λ-1)-6=λ2-3λ-4 令f(λ)=0得矩阵M的特征值为-1与4. 当λ=-1时x+y=0矩阵M的属于特征值-1的一个特征向量为; 当λ=4时2x-3y=0矩阵M的属于特征值4的一个特征向量为设矩阵M=(其中a>0).(1) 若a=2=3求矩阵M的逆矩阵M-1;2) 若曲线C:x+y=1在矩阵M所对应的线性变换作用下得到曲线C′:+y=1求a、b的值.解:(1) 设矩阵M的逆矩阵M-1=则MN-1=.又M=所以=所以2x=1=0=0=1即x==0=0=故所求的逆矩阵M-1=(2) 设曲线C上任意一点P(xy),它在矩阵M所对应的线性变换作用下得到P′(x′),则=即又点P′(x′)在曲线C′上所以+y′=1则+b=1为曲线C的方程.又已知曲线C的方程为x+y=1故又a>0所以 1. 矩阵的逆矩阵(1) 已知A、B、C为二阶矩阵且AB=AC若矩阵A存在逆矩阵则B=C.(2) 对于二阶可逆矩阵A=(ad-bc≠0)它的逆矩阵为A-1=二阶行列式与方程组的解对于关于x、y的二元一次方程组我们把称为二阶行列式它的运算结果是一个数值(或多项式)记为(A)==ad-bc.若将方程组中行列式记为D记为D记为D则当D≠0时方程组的解为 [备课札记]。
2014届高考数学二轮专题复习专题八第1讲矩阵与变换理
专题八选考系列第1讲矩阵与变换1. 计算:(1) ; (2) .2. 若直线y=kx在矩阵对应的变换作用下得到的直线过点P(4,1),求实数k的值.3. (2013·连云港模拟)已知矩阵M=,点A(1,0)在矩阵M对应变换作用下变为A'(1,2),求矩阵M 的逆矩阵M-1.4. 设A=,B=,X=,试解方程AX=B.5. 设数列,满足a n+1=3a n+2b n,b n+1=2b n,且满足=M,求二阶矩阵M.6. (2012·高淳模拟)在平面直角坐标系xOy中,设椭圆4x2+y2=1在矩阵A=对应的变换作用下得到曲线F,求曲线F的方程.7. (2013·海安模拟)已知矩阵A=,向量α=.(1) 求A的逆矩阵;(2) 计算A5α的值.8. (2013·扬州期末)若矩阵A有特征值λ1=3,λ2=-1,它们所对应的特征向量分别为e1=和e2=,求矩阵A.9. 已知矩阵M=,N=.(1) 求矩阵MN;(2) 若点P在矩阵MN对应的变换作用下得到点Q(0,1),求点P的坐标.10. (2013·苏、锡、常、镇四市调研)已知点A(0,0),B(2,0),C(2,2)在矩阵M=对应的变换作用下得到的对应点分别为A'(0,0),B'(,1),C'(0,2),求矩阵M.【高考押题】11.已知矩阵M=对应的变换将点A(1,1)变为A'(0,2),将曲线C:xy=1变为曲线C',求:(1) 实数a,b的值;(2) 曲线C'的方程.专题八选考系列第1讲矩阵与变换1. (1) 原式==.(2) 原式==.2. 设变换T:→,则==,即代入直线y=kx,得x'=ky',将点P(4,1)代入得k=4.3. 因为=,所以a=1,b=2,所以M=,所以M-1=.4. 由已知可得A-1=,X=A-1B==,即5. 由题知=,所以=,所以M==.6. 设P(x0,y0)是椭圆上任意一点,点P(x0,y0)在矩阵A对应的变换下变为点P'(x'0,y'0),则有=,即所以又因为点P在椭圆上,故4+=1,从而(x'0)2+(y'0)2=1,所以曲线F的方程是x2+y2=1.7. (1) 因为|A|==6≠0,故A-1==.(2) 矩阵A的特征多项式为f (λ)==λ2-5λ+6,由f(λ)=0,解得λ1=2,λ2=3.当λ1=2时,解得a1=;当λ2=3时,解得a2=,设α=ma1+na2,得解得m=3,n=1.则A5α=A5(3a1+a2)=3(A5a1)+A5a2=3(a1)+a2=3×25+35=.8. 设A=,由得即解得所以A=.9. (1) MN==.(2) 方法一:设点P(x,y),则=,即解得即点P.方法二:设点P(x,y),因为=,所以==,即点P.10. 由题意得=,所以则a=,c=.又=,所以则b=-,d=,所以矩阵M=.11. (1) 由题意知=,即解得(2) 设P'(x,y)是曲线C'上任意一点,则由题意得=,即解得因为x0y0=1,所以·=1,即-=1, 故曲线C'的方程为-=1.。
2014届高考数学一轮复习名师首选第13章71《二阶矩阵与变换》学案
学案71 矩阵与变换 (一)二阶矩阵与变换导学目标: 1.了解矩阵的有关概念,理解二阶矩阵与平面列向量的乘法.2.了解几种常见的平面变换,理解矩阵对应的变换把平面上的直线变成直线(或者点).3.理解二阶矩阵的乘法及简单性质.自主梳理1.线性变换与二阶矩阵在平面直角坐标系xOy 中,由⎩⎪⎨⎪⎧x ′=ax +by ,y ′=cx +dy ,(其中a ,b ,c ,d 是常数)构成的变换称为线性变换.由四个数a ,b ,c ,d 排成的正方形数表⎣⎢⎡⎦⎥⎤a b c d 称为________,其中a ,b ,c ,d称为矩阵的________,矩阵通常用大写字母A ,B ,C ,…或(a ij )表示(其中i ,j 分别为元素a ij 所在的行和列).2.矩阵的乘法行矩阵[a 11a 12]与列矩阵⎣⎢⎡⎦⎥⎤b 11b 21的乘法规则为[a 11a 12]⎣⎢⎡⎦⎥⎤b 11b 21=[a 11b 11+a 12b 21],二阶矩阵⎣⎢⎡⎦⎥⎤a b c d 与列矩阵⎣⎢⎡⎦⎥⎤x y 的乘法规则为⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +by cx +dy .矩阵乘法满足结合律,不满足交换律和消去律.3.几种常见的线性变换(1)恒等变换矩阵M =⎣⎢⎡⎦⎥⎤1 00 1;(2)旋转变换R θ对应的矩阵是M =_____________________________________________; (3)反射变换要看关于哪条直线对称.例如若关于x 轴对称,则变换对应矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 -1;若关于y 轴对称,则变换对应矩阵为M 2=__________;若关于坐标原点对称,则变换对应矩阵M 3=____________;(4)伸压变换对应的二阶矩阵M =⎣⎢⎡⎦⎥⎤k 1 00 k 2,表示将每个点的横坐标变为原来的________倍,纵坐标变为原来的________倍,k 1,k 2均为非零常数;(5)投影变换要看投影在什么直线上,例如关于x 轴的投影变换的矩阵为M =__________; (6)切变变换要看沿什么方向平移,若沿x 轴平移|ky |个单位,则对应矩阵M =__________,若沿y 轴平移|kx |个单位,则对应矩阵M =⎣⎢⎡⎦⎥⎤1 0k 1.(其中k 为非零常数).4.线性变换的基本性质设向量α=⎣⎢⎡⎦⎥⎤x y ,规定实数λ与向量α的乘积λα=__________;设向量α=⎣⎢⎡⎦⎥⎤x 1y 1,β=⎣⎢⎡⎦⎥⎤x 2y 2,规定向量α与β的和α+β=__________. (1)设M 是一个二阶矩阵,α、β是平面上的任意两个向量,λ是一个任意实数,则①M (λα)=__________,②M (α+β)=______________________________.(2)二阶矩阵对应的变换(线性变换)把平面上的直线变成直线(或一点).自我检测1.点A (3,-6)在矩阵⎣⎢⎢⎡⎦⎥⎥⎤1 -10 12对应的变换作用下得到的点的坐标是________. 2.设⎣⎢⎡⎦⎥⎤4 -20 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ 0-1,则它表示的方程组为______________.3.设矩阵A =⎣⎢⎡⎦⎥⎤1 -10 1,矩阵A 所确定的变换将点P (x ,y )变换成点Q ,则Q 点的坐标为________.4.设△OAB 的三个点坐标为O (0,0),A (A 1,A 2),B (B 1,B 2),在矩阵M =⎣⎢⎡⎦⎥⎤1k 01对应的变换下作用后形成△OA ′B ′,则△OAB 与△OA ′B ′的面积之比为____________________.5.二阶矩阵M 对应的变换将点(1,-1)与(-2,1)分别变为点(-1,-1)与(0,-2). (1)求矩阵M ;(2)设直线l 在矩阵M 对应的变换作用下得到直线m :x -y -4=0,求l 的方程.探究点一 几种常见的变换例1 试讨论下列矩阵将所给图形变成了什么图形,并指出该变换是什么变换. (1)⎣⎢⎡⎦⎥⎤1 00 1,方程为y =2x +2; (2)⎣⎢⎡⎦⎥⎤-1 0 0 1,点A (2,5); (3)⎣⎢⎡⎦⎥⎤2 00 1,曲线方程为x 2+y 2=4.变式迁移1 将点(2,4)先经过矩阵⎣⎢⎡⎦⎥⎤1 00 2变换后,再绕原点逆时针旋转90°角所得的点坐标为________.探究点二 矩阵的乘法及几何意义例2 验证下列等式,并从几何变换的角度给予解释: ⎣⎢⎡⎦⎥⎤1 11 3=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 10 1.变式迁移2 已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12和N =⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22,求证:MN =NM .探究点三 矩阵与变换的综合应用例3 已知两个城市甲与乙间的交通有陆路和航空两种,其陆路可用矩阵表示为M =错误!,航空可用矩阵表示为N =错误!.(1)试从NM 的结果中说明在这个网络里可以进行怎样的旅行?(2)请计算M 2,并据此矩阵说明网络里可以进行怎样的旅行? (3)请计算MNM ,并据此说明网络里可以做怎样的旅行?变式迁移3 已知A =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α,B =⎣⎢⎡⎦⎥⎤cos β -sin βsin β cos β,试求AB ,并对其几何意义给予解释.1.常见的变换矩阵(1)恒等变换矩阵为M =⎣⎢⎡⎦⎥⎤1 00 1;(2)伸压变换矩阵为M =⎣⎢⎡⎦⎥⎤k 00 1或M =⎣⎢⎡⎦⎥⎤1 00 k ;(3)反射变换矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 -1,M 2=⎣⎢⎡⎦⎥⎤-1 00 1,M 3=⎣⎢⎡⎦⎥⎤-1 0 0 -1;(4)旋转变换矩阵为M =⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ;(5)投影变换矩阵为M 1=⎣⎢⎡⎦⎥⎤1 00 0,M 2=⎣⎢⎡⎦⎥⎤1 01 0,M 3=⎣⎢⎡⎦⎥⎤0 00 1;(6)切变变换矩阵为M =⎣⎢⎡⎦⎥⎤1 k 0 1或M =⎣⎢⎡⎦⎥⎤1 0k 1.2.矩阵的乘法不满足交换律,不满足消去律,但满足结合律. 设A =⎣⎢⎡⎦⎥⎤a b c d ,B =⎣⎢⎡⎦⎥⎤u v s t ,则AB =⎣⎢⎡⎦⎥⎤au +bs av +bt cu +ds cv +dt .课后练习(满分:90分)一、填空题(每小题6分,共48分)1.矩阵⎣⎢⎡⎦⎥⎤a b c d (左)乘向量⎣⎢⎡⎦⎥⎤p q 的法则是________.2.在某个旋转变换中,顺时针旋转π3所对应的变换矩阵为________.3.直线2x +y -1=0经矩阵M =⎣⎢⎡⎦⎥⎤-1 00 -1的变换后得到的直线方程为________.4.设a ,b ∈R ,若矩阵A =⎣⎢⎡⎦⎥⎤a 10b 将直线l :x +y -1=0变为直线x -y -2=0,则a =________,b =________.5.已知A =⎣⎢⎡⎦⎥⎤ 2 -3-4 6,B =⎣⎢⎡⎦⎥⎤8 45 5,C =⎣⎢⎡⎦⎥⎤5 -23 1.则AB =________,AC =________.6.曲线y =sin x 在矩阵MN 变换下的函数解析式为________.(其中M =⎣⎢⎡⎦⎥⎤1 00 2,N =⎣⎢⎢⎡⎦⎥⎥⎤12 00 1.)7.在直角坐标系中,△OAB 的顶点坐标O (0,0),A (2,0),B (1,2),△OAB 在矩阵MN的作用下变换所得的图形的面积为________(其中矩阵M =⎣⎢⎡⎦⎥⎤1 00 -1,N =⎣⎢⎢⎡⎦⎥⎥⎤122022). 8.已知二阶矩阵M 满足M ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤10,M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22,则M 2⎣⎢⎡⎦⎥⎤1-1=________.二、解答题(共42分)9.(14分)已知矩阵A =⎝ ⎛⎭⎪⎫1 12 1,向量β=⎝ ⎛⎭⎪⎫12.求向量α,使得A 2α=β.10.(14分)(2010·江苏)在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1).设k 为非零实数,矩阵M =⎣⎡⎦⎤k 00 1,N =⎣⎡⎦⎤0 11 0,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 的面积的2倍,求k 的值.11.(14分)已知矩阵M =⎣⎡⎦⎤1b a 1,N =⎣⎡⎦⎤c 0 2d ,且MN =⎣⎡⎦⎤2-2 00.①求实数a ,b ,c ,d 的值;②求直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程.学案71 矩阵与变换 (一)二阶矩阵与变换答案自主梳理1.二阶矩阵 元素 3.(2)⎣⎢⎡⎦⎥⎤cos θ -sin θsin θ cos θ(3)⎣⎢⎡⎦⎥⎤-1 0 0 1 ⎣⎢⎡⎦⎥⎤-1 0 0 -1 (4)k 1 k 2 (5)⎣⎢⎡⎦⎥⎤1 000 (6)⎣⎢⎡⎦⎥⎤1k 01 4.⎣⎢⎡⎦⎥⎤λx λy ⎣⎢⎡⎦⎥⎤x 1+x 2y 1+y 2 (1)λM α M α+M β自我检测1.(9,-3) 2.⎩⎪⎨⎪⎧4x -2y =03y =-1 3.(x -y ,y )4.1∶1解析 由题意知T M 为切变变换,故变换前后图形面积大小不变.5.(1)⎣⎢⎡⎦⎥⎤1 23 4 (2)x +y +2=0解析 (1)设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-1-1,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤-2 1=⎣⎢⎡⎦⎥⎤ 0-2.∴⎩⎪⎨⎪⎧a -b =-1c -d =-1.①⎩⎪⎨⎪⎧-2a +b =0-2c +d =-2.②由①②联立得a =1,b =2,c =3,d =4,故M =⎣⎢⎡⎦⎥⎤1 23 4.(2)设(x ′,y ′)为l 上任意一点,在经矩阵M 变换下对应的点为(x ,y ),则⎣⎢⎡⎦⎥⎤1 23 4⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y ∴⎩⎪⎨⎪⎧x =x ′+2y ′y =3x ′+4y ′, 代入x -y -4=0得x ′+y ′+2=0, 即x +y +2=0. 课堂活动区例1 解题导引 对于已知变换前后的象和原象,要求变换矩阵这类问题,我们显然无法对所有的变换进行一一尝试,用待定系数法解题可起到事半功倍的效果.通过具体的矩阵对平面上给定图形 (如正方形、三角形)的变换,应充分地认识到矩阵可表示如下的线性变换:恒等、反射、伸压、旋转、切变、投影.解 (1)所给方程表示的是一条直线.设A (x ,y )为直线上的任意一点,经过变换后的点为A ′(x ′,y ′). ∵⎣⎢⎡⎦⎥⎤1 00 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴x =x ′,y =y ′.变换后的方程仍为y =2x +2. ∴该变换是恒等变换.(2)经过变化后变为(-2,5),它们关于y 轴对称,故该变换为关于y 轴的反射变换. (3)所给方程是以原点为圆心,2为半径的圆,设A (x ,y )为曲线上的任意一点,经过变换后的点为A 1(x 1,y 1),则⎣⎢⎡⎦⎥⎤2 00 1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2x y =⎣⎢⎡⎦⎥⎤x 1y 1,∴2x =x 1,y =y 1.将之代入到x 2+y 2=4可得方程x 214+y 124=4,此方程表示椭圆,所给方程表示的是圆,该变换是伸压变换.变式迁移1 (-8,2) 解析 由题意知⎣⎢⎡⎦⎥⎤cos 90° -sin 90°sin 90° cos 90°⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤24 =⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤0 -21 0⎣⎢⎡⎦⎥⎤24=⎣⎢⎡⎦⎥⎤-8 2例2 解题导引 ①熟悉六种线性变换,方可理解矩阵乘法的几何意义.矩阵乘法MN 的几何意义为对向量连续依次实施的两次几何变换(先T N 后T M )的复合变换.②因为矩阵的乘法运算不满足变换律,对应地,对一个向量a 先实施变换f ,再实施变换g 与先实施变换g ,再实施变换f ,其结果通常也是不一样的.因而做题时必须认真审题.弄清题意,不能混淆f (g (a ))和g (f (a )).解 等式右边表示的是对点(x ,y )先作沿x 轴的切变变换得(x +y ,y ),再将所得的点进行保持横坐标不变,纵坐标变为原来的2倍的伸压变换得(x +y,2y ),最后将得到的点作沿y 轴的切变变换得(x +y ,x +3y ).等式左边表示的是将点(x ,y )作如下变换:⎣⎢⎡⎦⎥⎤1 11 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x +y x +3y ,即它也是将点(x ,y )变成了点(x +y ,x +3y ),因此,等式两边表示的变换相同,所以有⎣⎢⎡⎦⎥⎤1 11 3=⎣⎢⎡⎦⎥⎤1 01 1⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤1 10 1变式迁移2 解 MN =⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22=⎣⎢⎢⎡⎦⎥⎥⎤2+64 2-646-246+24, NM =⎣⎢⎢⎡⎦⎥⎥⎤ 22 22-22 22⎣⎢⎢⎡⎦⎥⎥⎤12 -3232 12=⎣⎢⎢⎡⎦⎥⎥⎤2+64 2-646-246+24, 故MN =NM .例3 解题导引 M 的意义表示陆路的网络图为甲→乙;N 的意义表示航空的网络图为甲→乙.解 (1)NM =⎣⎢⎡⎦⎥⎤1 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤1 10 1,这说明,在此网络中可以选择先陆路后航空的旅行.(2)M 2=⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤1 00 1,这说明,在此网络中可以选择先陆路后再陆路的旅行.(3)MNM =⎣⎢⎡⎦⎥⎤0 11 0⎣⎢⎡⎦⎥⎤1 11 0⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤0 11 1,这说明,在此网络中可以选择先陆路,再航空,然后再陆路的旅行.变式迁移3 解 AB =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α⎣⎢⎡⎦⎥⎤cos β -sin βsin β cos β=⎣⎢⎡⎦⎥⎤cos αcos β-sin αsin β -cos αsin β-sin αcos βsin αcos β+cos αsin β -sin αsin β+cos αcos β=⎣⎢⎡⎦⎥⎤α+β -α+βα+β α+βAB 表示的变换为逆时针旋转α+β.A 表示逆时针旋转α,B 表示逆时针旋转β. 课后练习区1.⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤p q =⎣⎢⎡⎦⎥⎤ap +bq cp +dq2.⎣⎢⎢⎡⎦⎥⎥⎤ 12 32-32 12解析 顺时针旋转π3即逆时针旋转53π,变换矩阵为⎣⎢⎢⎡⎦⎥⎥⎤cos 5π3 -sin 53πsin 5π3 cos5π3=⎣⎢⎢⎡⎦⎥⎥⎤ cos π3 sin π3-sin π3 cos π3=⎣⎢⎢⎡⎦⎥⎥⎤ 12 32-32 12.3.2x +y +1=0解析 由变换矩阵M 知坐标变换公式为⎩⎪⎨⎪⎧x ′=-x y ′=-y,即⎩⎪⎨⎪⎧x =-x ′y =-y ′,代入直线方程2x +y -1=0得2x ′+y ′+1=0.即2x +y +1=0. 4.2 -1解析 在直线l 上任取一点P (x ,y ),经矩阵变换后为点P ′(x ′,y ′),则由⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤a 10 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤ax +y by ,得⎩⎪⎨⎪⎧x ′=ax +y ,y ′=by . 所以ax +y -by -2=0,即ax +(1-b )y -2=0,于是由a 1=1-b 1=-2-1,解得a =2,b =-1.5.⎣⎢⎡⎦⎥⎤ 1 -7-2 14,⎣⎢⎡⎦⎥⎤ 1 -7-2 14 解析 AB =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤8 45 5=⎣⎢⎡⎦⎥⎤1 -7-2 14,AC =⎣⎢⎡⎦⎥⎤ 2 -3-4 6⎣⎢⎡⎦⎥⎤5 -23 1=⎣⎢⎡⎦⎥⎤ 1 -7-2 14.6.y =2sin 2x解析 MN =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 1=⎣⎢⎢⎡⎦⎥⎥⎤12 0 0 2, 即在矩阵MN 变换下⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎢⎡⎦⎥⎥⎤12x 2y , 则12y ′=sin 2x ′,即曲线y =sin x 在矩阵MN 变换下的函数解析式为y =2sin 2x . 7.1解析 MN =⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22,⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00, ⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤20,⎣⎢⎢⎡⎦⎥⎥⎤1 220 -22⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤ 2-1. 可知O ,A ,B 三点在矩阵MN 作用下变换所得的点分别为O ′(0,0),A ′(2,0),B ′(2,-1).可知△O ′A ′B ′的面积为1.8.⎣⎢⎡⎦⎥⎤-2-4 解析 设M =⎣⎢⎡⎦⎥⎤a b c d ,由M ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤10得,⎣⎢⎡⎦⎥⎤a c =⎣⎢⎡⎦⎥⎤10,所以a =1,c =0. 由M ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤22得,⎣⎢⎡⎦⎥⎤a +b c +d =⎣⎢⎡⎦⎥⎤22,所以b =1,d =2. 所以M =⎣⎢⎡⎦⎥⎤1 10 2. 所以M 2=⎣⎢⎡⎦⎥⎤1 10 2⎣⎢⎡⎦⎥⎤1 10 2=⎣⎢⎡⎦⎥⎤1 30 4. 所以M 2⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤1 30 4⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤-2-4. 9.解 A 2=⎝ ⎛⎭⎪⎫1 12 1⎝ ⎛⎭⎪⎫1 12 1=⎝ ⎛⎭⎪⎫3 24 3.(4分) 设α=⎝ ⎛⎭⎪⎫x y ,由A 2α=β,得⎝ ⎛⎭⎪⎫3 24 3⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫12,(7分) 从而⎩⎪⎨⎪⎧ 3x +2y =1,4x +3y =2,解得⎩⎪⎨⎪⎧x =-1,y =2.所以α=⎝ ⎛⎭⎪⎫-12.(14分) 10.解 由题设得MN =⎣⎡⎦⎤k 00 1 ⎣⎡⎦⎤0 11 0=⎣⎡⎦⎤0 k 1 0.(4分)由⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤00=⎣⎡⎦⎤00,⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-20=⎣⎡⎦⎤ 0-2, ⎣⎡⎦⎤0 k 1 0⎣⎡⎦⎤-21=⎣⎡⎦⎤k -2,可知A 1(0,0),B 1(0,-2),C 1(k ,-2).(10分) 计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,由题设知|k |=2×1=2,所以k 的值为-2或2.(14分)11.解 方法一 ①由题设得⎩⎪⎨⎪⎧ c +0=2,2+ad =0,bc +0=-2,2b +d =0,解得⎩⎪⎨⎪⎧ a =-1,b =-1,c =2,d =2.(6分)②因为矩阵M 对应的线性变换将直线变成直线(或点),所以可取直线y =3x 上的两点(0,0),(1,3).由⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤00=⎣⎡⎦⎤00, ⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤13=⎣⎡⎦⎤-22得 点(0,0),(1,3)在矩阵M 所对应的线性变换作用下的象分别是点(0,0),(-2,2).(12分) 从而直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程为y =-x .(14分) 方法二 ①同方法一.②设直线y =3x 上的任意点(x ,y )在矩阵M 所对应的线性变换作用下的象是点(x ′,y ′),由⎣⎡⎦⎤x ′y ′=⎣⎡⎦⎤1-1 -11⎣⎡⎦⎤x y =⎣⎡⎦⎤ x -y -x +y =⎣⎡⎦⎤-2x 2x 得y ′=-x ′,即点(x ′,y ′)必在直线y =-x 上.由(x ,y )的任意性可知,直线y =3x 在矩阵M 所对应的线性变换作用下的象的方程为y =-x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《最高考系列 高考总复习》2014届高考数学总复习(考点引领+技巧点拨)选修4-2 矩阵与变换第2课时 逆变换与逆矩阵、矩阵的特征值1. 设M =⎣⎢⎡⎦⎥⎤0110,N =⎣⎢⎢⎡⎦⎥⎥⎤10012,求MN . 解:MN =⎣⎢⎡⎦⎥⎤0110⎣⎢⎢⎡⎦⎥⎥⎤10012=⎣⎢⎢⎡⎦⎥⎥⎤01210. 2. 已知矩阵M =⎣⎢⎡⎦⎥⎤a 273,若矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤b -2-7a ,求a 、b 的值.解:由题意,知MM -1=E ,⎣⎢⎡⎦⎥⎤a 273⎣⎢⎡⎦⎥⎤b -2-7a =⎣⎢⎡⎦⎥⎤1001,即⎣⎢⎡⎦⎥⎤ab -1407b -213a -14=⎣⎢⎡⎦⎥⎤1001, 即⎩⎪⎨⎪⎧ab -14=1,7b -21=0,3a -14=1,解得a =5,b =3. 3. 求矩阵⎣⎢⎡⎦⎥⎤12-12的特征多项式.解:f(λ)=⎪⎪⎪⎪⎪⎪λ-1-21λ-2=(λ-1)(λ-2)+2=λ2-3λ+4.4. (选修42P 73习题第1题改编)求矩阵M =[1 6-2-6]的特征值.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-62λ+6=(λ+2)·(λ+3)=0,令f(λ)=0,得M 的特征值为λ1=-2,λ2=-3.5. (选修42P 73习题第1题改编)求矩阵N =⎣⎢⎡⎦⎥⎤3652的特征值及相应的特征向量.解:矩阵N 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-3-6-5λ-2=(λ-8)·(λ+3)=0, 令f(λ)=0,得N 的特征值为λ1=-3,λ2=8,当λ1=-3时⎩⎪⎨⎪⎧-6x -6y =0,-5x -5y =0,一个解为⎩⎪⎨⎪⎧x =-1,y =1, 故特征值λ1=-3的一个特征向量为⎣⎢⎡⎦⎥⎤-1 1; 当λ2=8时⎩⎪⎨⎪⎧5x -6y =0,-5x +6y =0,一个解为⎩⎪⎨⎪⎧x =6,y =5,故特征值λ2=8的一个特征向量为⎣⎢⎡⎦⎥⎤65.1. 逆变换与逆矩阵(1) 对于二阶矩阵A 、B ,若有AB =BA =E ,则称A 是可逆的,B 称为A 的逆矩阵.(2) 若二阶矩阵A 、B 均存在逆矩阵,则AB 也存在逆矩阵,且(AB )-1=B -1A -1. (3) 利用行列式解二元一次方程组. 2. 特征值与特征向量(1) 设A 是一个二阶矩阵,如果对于实数λ,存在一个非零向量α,使A α=λα,那么λ称为A 的一个特征值,而α称为A 的属于特征值λ的一个特征向量.(2) 从几何上看,特征向量的方向经变换矩阵A 的作用后,保持在同一条直线上,这时特征向量或者方向不变(λ>0),或者方向相反(λ<0).特别地,当λ=0时,特征向量就变换成零向量.[备课札记]题型1 求逆矩阵与逆变换例1 用解方程组的方法求下列矩阵M 的逆矩阵.(1) M =⎣⎢⎡⎦⎥⎤1101;(2) M =⎣⎢⎡⎦⎥⎤1221. 解:(1) 设M -1=⎣⎢⎡⎦⎥⎤a b c d ,则由定义知⎣⎢⎡⎦⎥⎤1101⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧a +c =1,b +d =0,c =0,d =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =0,d =1,故M-1=⎣⎢⎡⎦⎥⎤1-10 1. (2) 设M -1=⎣⎢⎡⎦⎥⎤a b c d, 则由定义知⎣⎢⎡⎦⎥⎤1221⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001,即⎩⎪⎨⎪⎧a +2c =1,b +2d =0,2a +c =0,2b +d =1,解得⎩⎪⎪⎨⎪⎪⎧a =-13,b =23,c =23,d =-13,故M-1=⎣⎢⎢⎡⎦⎥⎥⎤-13 2323-13.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤2-31-1所对应的线性变换把点A(x ,y)变成点A′(13,5),试求M 的逆矩阵及点A 的坐标.解:依题意,由M =⎣⎢⎡⎦⎥⎤2-31-1,得|M |=1,则M -1=⎣⎢⎡⎦⎥⎤-13-12.从而由⎣⎢⎡⎦⎥⎤2-31-1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤135,得⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤-13-12⎣⎢⎡⎦⎥⎤135=⎣⎢⎡⎦⎥⎤-1×13+3×5-1×13+2×5=⎣⎢⎡⎦⎥⎤2-3, 故⎩⎪⎨⎪⎧x =2,y =-3,∴ A 点坐标为(2,-3). 题型2 求特征值与特征向量例2 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0).(1) 求实数a 的值;(2) 求矩阵M 的特征值及其对应的特征向量.解:(1) 由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0,得2-2a =-4 a =3. (2) 由(1)知M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4.令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时,⎩⎪⎨⎪⎧(λ-2)x -3y =0,-2x +(λ-1)y =0 2x -3y =0.∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32. 变式训练已知M =⎣⎢⎡⎦⎥⎤1221,β=⎣⎢⎡⎦⎥⎤17,计算M 5β.解:矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1-2-2λ-1=λ2-2λ-3.令f(λ)=0,解得λ1=3,λ2=-1,从而求得对应的一个特征向量分别为α1=⎣⎢⎡⎦⎥⎤11,α2=⎣⎢⎡⎦⎥⎤ 1-1.令β=m α1+n α2,则m =4,n =-3. M 5β=M 5(4α1-3α2)=4(M 5α1)-3(M 5α2)=4(λ51α1)-3(λ52α2)=4×35⎣⎢⎡⎦⎥⎤11-3×(-1)5⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤975969.题型3 根据特征值或特征向量求矩阵 例3 矩阵M =⎣⎢⎡⎦⎥⎤1102有特征向量为e 1=⎣⎢⎡⎦⎥⎤11,e 2=⎣⎢⎡⎦⎥⎤10, (1) 求e 1和e 2对应的特征值;(2) 对向量α=⎣⎢⎡⎦⎥⎤41,记作α=e 1+3e 2,利用这一表达式间接计算M 4α,M 10α.解:(1) 设向量e 1、e 2对应的特征值分别为λ1、λ2,则⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤11=λ1⎣⎢⎡⎦⎥⎤11,⎣⎢⎡⎦⎥⎤1102⎣⎢⎡⎦⎥⎤10=λ2⎣⎢⎡⎦⎥⎤10, 故λ1=2,λ2=1,即向量e 1,e 2对应的特征值分别是2,1. (2) 因为α=e 1+3e 2,所以M 4α=M 4(e 1+3e 2)=M 4e 1+3M 4e 2=λ41e 1+3λ42e 2=⎣⎢⎡⎦⎥⎤1916,M 10α=M 10(e 1+3e 2)=M 10e 1+3M 10e 2=λ101e 1+3λ102e 2=⎣⎢⎡⎦⎥⎤210+3210.备选变式(教师专享)已知矩阵M =⎣⎢⎡⎦⎥⎤200-1有特征向量e 1→=⎣⎢⎡⎦⎥⎤10,e 2→=⎣⎢⎡⎦⎥⎤01,相应的特征值为λ1,λ2.(1) 求矩阵M 的逆矩阵M -1及λ1,λ2;(2) 对任意向量α→=⎣⎢⎡⎦⎥⎤x y ,求M 100α→.解:(1) 由矩阵M =⎣⎢⎡⎦⎥⎤200-1变换的意义知M -1=⎣⎢⎢⎡⎦⎥⎥⎤1200-1, 又Me 1→=λ1e 1→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤10=λ1⎣⎢⎡⎦⎥⎤10,故λ1=2,同理Me 2→=λ2e 2→,即⎣⎢⎡⎦⎥⎤200-1⎣⎢⎡⎦⎥⎤01=λ2⎣⎢⎡⎦⎥⎤01,故λ2=-1.(2) 因为α→=⎣⎢⎡⎦⎥⎤x y =xe 1→+ye 2→,所以M 100α→=M 100(xe 1→+y·e 2→)=xM 100e 1→+yM 100e 2→=x λ1001e 1→+y λ2100e 2→=⎣⎢⎡⎦⎥⎤2100x y.1. 求函数f(x)=⎪⎪⎪⎪⎪⎪2cosx sinx -1的值域.解:f(x)=-2-sinxcosx =-2-12sin2x ∈⎣⎢⎡⎦⎥⎤-52,-32.2. 已知矩阵A 的逆矩阵A-1=⎣⎢⎢⎡⎦⎥⎥⎤-143412-12,求矩阵A 的特征值. 解:∵ A -1A =E ,∴ A =(A -1)-1.∵ A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 34 12-12,∴ A =(A -1)-1=⎣⎢⎡⎦⎥⎤2321. ∴ 矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=λ2-3λ-4.令f(λ)=0,解得矩阵A 的特征值λ1=-1,λ2=4. 3. (2013·江苏)已知矩阵A =⎣⎢⎡⎦⎥⎤-10 02,B =⎣⎢⎡⎦⎥⎤1206,求矩阵A -1B . 解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤-10 02⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1001, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001,故a =-1,b =0,c =0,d =12.∴ 矩阵A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012, ∴ A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10012⎣⎢⎡⎦⎥⎤1206=⎣⎢⎡⎦⎥⎤-1-2 0 3. 4. 设曲线2x 2+2xy +y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤a 0b 1(a>0)对应的变换作用下得到的曲线为x 2+y 2=1.(1) 求实数a 、b 的值;(2) 求A 2的逆矩阵.解:(1) 设曲线2x 2+2xy +y 2=1上任一点P(x ,y)在矩阵A 对应的变换下的象是P′(x′,y ′),由⎣⎢⎡⎦⎥⎤x′y′=⎣⎢⎡⎦⎥⎤a 0b 1⎣⎢⎡⎦⎥⎤x y =[]ax bx +y ,得⎩⎪⎨⎪⎧x′=ax ,y ′=bx +y. 因为P′(x′,y ′)在圆x 2+y 2=1上,所以(ax)2+(bx +y)2=1,化简可得(a 2+b 2)x 2+2bxy +y 2=1,依题意可得a 2+b 2=2,2b =2 a =1,b =1或a =-1,b =1, 而由a>0可得a =b =1.(2) 由(1)A =⎣⎢⎡⎦⎥⎤1011,A 2=⎣⎢⎡⎦⎥⎤1011⎣⎢⎡⎦⎥⎤1011=⎣⎢⎡⎦⎥⎤1021 |A 2|=1,(A 2)-1=⎣⎢⎡⎦⎥⎤10-21.1. 已知矩阵A =⎣⎢⎡⎦⎥⎤1 -1a 1,若点P(1,1)在矩阵A 对应的变换作用下得到点P′(0,-8).(1) 求实数a 的值; (2) 求矩阵A 的特征值.解:(1) 由⎣⎢⎡⎦⎥⎤1 -1a 1⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤0-8,得a +1=-8,所以a =-9. (2) 由(1)知A =⎣⎢⎡⎦⎥⎤ 1 -1-9 1,则矩阵A 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-1 19 λ-1=(λ-1)2-9=λ2-2λ-8,令f(λ)=0,所以矩阵A 的特征值为-2或4.2. 已知M =⎣⎢⎡⎦⎥⎤2-1-43,N =⎣⎢⎡⎦⎥⎤4-1-31,求二阶方阵X ,使MX =N .解:(解法1)设X =⎣⎢⎡⎦⎥⎤x yz w ,据题意有⎣⎢⎡⎦⎥⎤2-1-43⎣⎢⎡⎦⎥⎤x y z w =⎣⎢⎡⎦⎥⎤4-1-31,根据矩阵乘法法则有⎩⎪⎨⎪⎧2x -z =4,2y -w =-1,-4x +3z =-3,-4y +3w =1.解得⎩⎪⎨⎪⎧x =92,y =-1,z =5,w =-1,所以X =⎣⎢⎢⎡⎦⎥⎥⎤92-15-1. (解法2)因为MX =N ,所以X =M -1N ,M -1=⎣⎢⎢⎡⎦⎥⎥⎤321221.所以X =M -1N =⎣⎢⎢⎡⎦⎥⎥⎤321221⎣⎢⎡⎦⎥⎤4-1-31=⎣⎢⎢⎡⎦⎥⎥⎤92-15-1.3. 已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a∈R ,若点P(1,-2)在矩阵M 的变换下得到点P′(-4,0),求实数a 的值;并求矩阵M 的特征值及其对应的特征向量.解:由⎣⎢⎡⎦⎥⎤2a 21⎣⎢⎡⎦⎥⎤1-2=⎣⎢⎡⎦⎥⎤-40,∴ 2-2a =-4 a =3.∴ M =⎣⎢⎡⎦⎥⎤2321,则矩阵M 的特征多项式为f(λ)=⎪⎪⎪⎪⎪⎪λ-2-3-2λ-1=(λ-2)(λ-1)-6=λ2-3λ-4令f(λ)=0,得矩阵M 的特征值为-1与4.当λ=-1时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =0 x +y =0,∴ 矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1;当λ=4时, ⎩⎪⎨⎪⎧(λ-2)x -3y =0-2x +(λ-1)y =02x -3y =0,∴ 矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.4. 设矩阵M =⎣⎢⎡⎦⎥⎤a 00b (其中a>0,b>0).(1) 若a =2,b =3,求矩阵M 的逆矩阵M -1;(2) 若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C′:x 24+y 2=1,求a 、b 的值.解:(1) 设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2,则MN -1=⎣⎢⎡⎦⎥⎤1001.又M =⎣⎢⎡⎦⎥⎤2003,所以⎣⎢⎡⎦⎥⎤2003⎣⎢⎡⎦⎥⎤x 1y 1x 2y 2=⎣⎢⎡⎦⎥⎤1001,所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M-1=⎣⎢⎡⎦⎥⎤12013. (2) 设曲线C 上任意一点P(x ,y),它在矩阵M 所对应的线性变换作用下得到P′(x′,y ′),则⎣⎢⎡⎦⎥⎤a 00b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x′y′,即⎩⎪⎨⎪⎧ax =x′,by =y′.又点P′(x′,y ′)在曲线C′上,所以x′24+y′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧a 2=4,b 2=1.又a>0,b>0,所以⎩⎪⎨⎪⎧a =2,b =1.1. 矩阵的逆矩阵(1) 已知A 、B 、C 为二阶矩阵,且AB =AC ,若矩阵A 存在逆矩阵,则B =C . (2) 对于二阶可逆矩阵A =⎣⎢⎡⎦⎥⎤a b c d (ad -bc≠0),它的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤d ad -bc -b ad -bc-c ad -bca ad -bc . 2. 二阶行列式与方程组的解对于关于x 、y 的二元一次方程组⎩⎪⎨⎪⎧ax +by =m ,cx +dy =n ,我们把⎪⎪⎪⎪⎪⎪ab c d 称为二阶行列式,它的运算结果是一个数值(或多项式),记为det(A)=⎪⎪⎪⎪⎪⎪a b c d =ad -bc.若将方程组中行列式⎪⎪⎪⎪⎪⎪a b c d 记为D ,⎪⎪⎪⎪⎪⎪m b n d 记为D x ,⎪⎪⎪⎪⎪⎪a m c n记为D y ,则当D≠0时,方程组的解为⎩⎪⎨⎪⎧x =D xD,y =D yD .请使用课时训练(B )第2课时(见活页).[备课札记]。