初中数学总复习试题及答案
初中数学中考总复习:一元二次方程、分式方程的解法及应用--巩固练习题及答案(基础)
中考总复习:一元二次方程、分式方程的解法及应用—巩固练习(基础)【巩固练习】 一、选择题1. 用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -= C .()229x += D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( ) A .1 B .12C .13D .253.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B . 1k >-且0k ≠C .1k <D . 1k <且0k ≠4.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-= B .2653500x x +-= C .213014000x x --= D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A.B.C.D.二、填空题7.若ax 2+bx+c=0是关于x 的一元二次方程,则不等式3a+6>0的解集是____ ____. 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9.某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m= m 有实数根,则 m 的取值范围是 .三、解答题 13. (1)解方程:x x x x 4143412+-=---; (2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.关于x 的一元二次方程1201x p x x 有两实数根=-+-、.2x (1)求p 的取值范围;(2)若p x x x x 求,9)]1(2)][1(2[2211=-+-+的值.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米? (2)能否使所围的矩形场地面积为810平方米,为什么?【答案与解析】 一、选择题 1.【答案】B ;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方,整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】B ;【解析】由题意得方程有两个不相等的实数根,则△=b 2-4ac>0,即4+4k>0.解得1k >-且0k ≠. 4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x . 6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为千米。
北师大版七年级数学下册总复习专项测试题 附答案解析(10份)
总复习专项测试题(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定3、如图,已知,,则( ).A.B.C.D.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式7、的次数和项数分别为()A.B.C.D.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个10、如图,已知直线、被直线所截,那么的同位角是()A.C.D.11、若,则()A.B.C.D.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、一个直三棱柱的顶点个数是()A.B.C.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.18、计算__________.19、如图,,其中,则.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.23、计算:(1)(2)总复习专项测试题(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.【答案】B【解析】解:由题意知,,.只需测出线段的长度即可得出池塘两端,的距离.故答案应选:.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定【答案】B【解析】解:如图所示.,且平分,,是等腰三角形,,,,,而,且,,解得.故正确答案是:.3、如图,已知,,则( ).A.B.C.D.【答案】C【解析】解:,,,.故正确答案是.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定【答案】C【解析】解:由网格中图可知,点为的中点,点为的中点,则、的交点是的重心.5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.【答案】C【解析】解:由题意得,降价后的销售价为.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式【答案】B【解析】解:根据整式的概念可知,单项式和多项式统称为整式,故“整式就是多项式”错误;是单项式,故“是单项式”正确;是次二项式,故“是七次二项式”错误;是多项式,故“是单项式”错误.故正确答案是:是单项式7、的次数和项数分别为()A.B.C.D.【答案】A【解析】解:的次数和项数分别为.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个【答案】B【解析】解:由多边形的概念可知第四个、第五个是多边形共个.9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个【答案】A【解析】解:,是等腰三角形,,平分,,,,,在中,,为等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,所以共有个等腰三角形.10、如图,已知直线、被直线所截,那么的同位角是()A.B.C.D.【答案】D【解析】解:根据同位角的定义知,的同位角是.11、若,则()A.B.C.D.【答案】A【解析】解:由题意得解得.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数【答案】C【解析】解:的绝对值是,正确;的倒数是,正确;的相反数是,故“的相反数是”错误;是最小的正整数,正确.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、一个直三棱柱的顶点个数是()A.B.C.D.【答案】D【解析】解:一个直三棱柱由两个三边形的底面和个长方形的侧面组成,根据其特征及欧拉公式可知,它有个顶点.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个【答案】B【解析】解:①棱柱的上、下底面的形状相同,此选项正确;②若,则点为线段的中点,不一定在一条直线上,故此选项错误;③相等的两个角一定是对顶角,交的顶点不一定在一个位置,故此选项错误;④不相交的两条直线叫做平行线,必须在同一平面内,故此选项错误;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,此选项正确.故正确的为①⑤,共个.二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.【答案】自变量;因变量;两个变量之间【解析】解:利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示自变量,第二行表示因变量,但它不能全面反映两个变量之间的关系,只能反映其中的一部分.正确答案是:自变量;因变量;两个变量之间.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.【答案】【解析】解:由欧拉公式:,可得:.18、计算__________.【答案】【解析】解:19、如图,,其中,则.【答案】127【解析】解:由,得,,所以.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______组.【答案】【解析】解:根据频数分布直方图可知:后面三组的频数分别为、、,因为共有个数,所以这名学生的成绩的中位数是第和个数的平均数.因为第和个数在第三组,从图中可知这名学生的成绩的中位数在组.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.【解析】证明:...在和中.,,..,.(三线合一).22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.【解析】解:是的垂直平分线,,而,,已知,,又知,的周长为:.正确答案是:.23、计算:(1)【解析】解:(2)【解析】解:总复习专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、在下图所示的水解环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是()A.B.C.D.2、某音乐行出售三种音乐,即古典音乐,流行音乐,民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用()A. 扇形统计图B. 折线统计图C. 条形统计图D. 以上都可以3、含有 _____的等式叫做方程。
九年级数学初中总复习答案
九年级数学初中总复习答案一、选择题(每题3分,合计24分)(每小题有四个选项,只有一个正确答案)1. 如图1,在⊙O中,∠ABC=50°,则∠AOC等于┈┈┈┈┈┈┈┈┈┈┈┈┈┈()A.50°B.80°C.90°D.100°2. 如图2,AB是⊙O的弦,OC⊥AB,垂足为C,若⊙O的半径为2,OC=1,则弦AB的长为()A.5 B.25 C.3 D.233. 已知⊙O与⊙Q的半径分别为3cm和7cm,两圆的圆心距O1 O2 =4cm,则两圆的位置关系是()A.外切B.内切C.相交D.相离4. 如图3,在Rt△ABC中∠ACB=90°,AC=6,AB=10,CD是斜边AB上的中线,以AC为直径作⊙O,设线段CD的中点为P,则点P与⊙O的位置关系是┈┈┈┈┈┈┈┈┈┈┈()。
A、点P在⊙O内B、点P在⊙O上C、点P在⊙O外D、无法确定(图1)(图2)(图3)(图4)5.如图4,⊙的半径为4 ,,点、分别是射线、上的动点,且直线.当平移到与⊙相切时,的长度是┈┈┈┈┈┈┈┈┈┈()A. B. C. D.6. 有下列四个命题中,其中正确的有┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈()①圆的对称轴是直径;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.4个 B.3个 C.2个 D.1个7. 圆锥的底面圆的周长是4πcm,母线长是6cm,则该圆锥的侧面展开图的圆心角的度数是()A.40°B。
80°C。
120°D。
150°8. 如图5,长为4 ,宽为3 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向)木板上点A位置变化为,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A翻滚到A2位置时共走过的路径长为┈┈┈┈┈┈┈┈┈┈┈┈┈┈()A.10 B.C.D.(图5)(图6)(图7)二、填空题(每空2分,合计20分)9.如图6,AB是⊙O的直径,CD与⊙O相切于点C,∠BAC=50°,则∠ACD=_____。
初中数学复习题目及答案
初中数学复习题目及答案初中数学是学生们学习过程中不可或缺的一门学科,它涵盖了诸多知识点和技巧。
在备考阶段,复习题目及答案的总结整理对于学生们来说是非常重要的。
本文将通过一些典型的数学题目,来帮助初中生们巩固知识点,提高解题能力。
一、整数运算1. 计算:(-5) + (-7) + 3 + (-2) + 8 - (-4)。
解:首先,计算括号内的运算,得到:(-5) + (-7) + 3 + (-2) + 8 + 4 = -9。
2. 计算:(-6) × (-3) × 2。
解:两个负数相乘得正数,所以:(-6) × (-3) × 2 = 36。
3. 计算:13 ÷ (-5)。
解:正数除以负数得负数,所以:13 ÷ (-5) = -2。
二、代数式的简化4. 简化代数式:2x + 3y - x + 4y。
解:合并同类项,得到:2x - x + 3y + 4y = x + 7y。
5. 简化代数式:4(2x + 3y) - 2x。
解:先计算括号内的乘法,得到:4(2x + 3y) = 8x + 12y。
再减去2x,得到:8x + 12y - 2x = 6x + 12y。
三、平方根与立方根6. 计算:√64。
解:√64 = 8。
7. 计算:∛27。
解:∛27 = 3。
8. 计算:√(16 + 9)。
解:先计算括号内的加法,得到:√25 = 5。
四、比例与百分数9. 某商品原价为80元,现在打8折,求现价。
解:打8折相当于原价的80%,所以现价为80 × 0.8 = 64元。
10. 某水果店有苹果和橙子,苹果的价格是橙子的2倍,如果一共花了36元买了3个苹果和4个橙子,求每个橙子的价格。
解:设橙子的价格为x元,则苹果的价格为2x元。
根据题意,有:3(2x) + 4x= 36。
解方程得到:10x = 36,所以x = 3.6。
每个橙子的价格为3.6元。
初中数学总复习试卷及答案
一、选择题(每题3分,共30分)1. 若a > b,那么下列不等式中一定成立的是:A. a + 1 > b + 1B. a - 1 > b - 1C. a + 2 > b + 3D. a - 2 > b - 12. 下列各组数中,能构成等腰三角形的三边长是:A. 3, 4, 5B. 5, 5, 12C. 6, 8, 10D. 7, 7, 83. 在直角坐标系中,点P的坐标为(2,-3),点Q的坐标为(-1,4),则线段PQ的中点坐标是:A. (1,1)B. (1,-2)C. (0,1)D. (0,-2)4. 下列函数中,是反比例函数的是:A. y = 2x + 3B. y = 3/xC. y = x^2 + 1D. y = x^35. 若一个长方体的长、宽、高分别为a、b、c,且a > b > c,则该长方体的体积V最大时,a、b、c的取值关系是:A. a = b = cB. a > b = cC. a > b > cD. a > c > b6. 在等腰三角形ABC中,AB = AC,∠BAC = 40°,则∠B的度数是:A. 40°B. 50°C. 60°D. 70°7. 下列图形中,不是轴对称图形的是:A. 正方形B. 等边三角形C. 等腰梯形D. 圆8. 若x^2 - 5x + 6 = 0,则x的值为:A. 2或3B. 1或4C. 2或4D. 1或39. 在下列函数中,y = kx + b是一次函数的是:A. y = x^2 - 1B. y = 3/xC. y = kx + bD. y = √x10. 在一次函数y = kx + b中,k和b的取值范围是:A. k ≠ 0,b ≠ 0B. k ≠ 0,b ≠ 0C. k ≠ 0,b可以为任意实数D. k可以为任意实数,b ≠ 0二、填空题(每题5分,共25分)11. 若a + b = 5,ab = 6,则a^2 + b^2的值为______。
初中数学复习题集及答案
初中数学复习题集及答案一、选择题1.下列哪个数是素数?A.12B.25C.37D.42答案:C2.计算下列各式的值:(3+4)×8÷2-5A.20B.22C.25D.27答案:B3.已知一边长为5cm的正方形,它的周长是多少?A.15cmB.20cmC.25cmD.30cm答案:C4.求下列各数的平方根:16A.2B.4C.8D.16答案:B5.简化下列各式:2x+3y-4x+5yA.x+2yB.-2x+8yC.-2x+2yD.8x-2y答案:A二、填空题1.将10的3次方写成指数形式:10^___答案:32.已知a=5,b=2,求a²-b²的值:___答案:213.求方程2x+4=10的解:x=___答案:34.已知长方形的长是10cm,宽是5cm,它的面积是___平方厘米。
答案:505.一只水桶里有30升的水,倒出1/3,还剩___升。
答案:20三、解答题1.求下列各组数的最大公约数:18和27答案:最大公约数为9。
2.解方程:3x-7=14答案:x=73.已知直角三角形的斜边长为10cm,一个直角边长为6cm,求另一个直角边的长度。
答案:直角边长为8cm。
四、应用题某班有30名学生,其中男生比例为3:2,女生占总人数的几分之几?答案:男生人数为30×(3/5)=18人女生人数为30-18=12人女生占总人数的2/5。
初中数学总复习试题及答案
初中总复习考试数学试题及答案一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.22.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a33.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤36.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.18.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= .12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为(结果保留π).14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= .15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.18.先化简,再求值:﹣,其中x=.19.解方程组:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<60 60≤x<70 70≤x<80 48A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= ,b ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是;(3)请估计该年级分数在80≤x<100的学生有多少人?22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP △PCD (填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值范围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.2【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:﹣2的相反数是2.故选:D.2.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用幂的乘方运算法则计算得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式=2a4,正确;B、原式=a5,错误;C、原式=a12,错误;D、原式=a4,错误,故选A3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】用排除法:既能沿某一条直线对折两部分能够完全重合,又旋转180°后能与自身重合的图形【解答】解:A选项对应的图形只是中心对称图形;B选项对应的图形既不是轴对称图形,也不是中心对称图形;C选项对应的图形只是轴对称图形;D选项对应的图形既是轴对称图形,又是中心对称图形故:选D4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.【考点】概率公式.【分析】可先找出单词中字母的个数,再找出a的个数,用a的个数除以总个数即可得出本题的答案.【解答】解:单词中共有8个字母,a有两个,所以在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率==,故选C.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤3【考点】在数轴上表示不等式的解集.【分析】根据数轴可知解集表示﹣2和3之间(包括3)的点表示的部分,据此即可求解.【解答】解:表示的解集是:﹣2<x≤3.故选B.6.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°【考点】平行线的性质.【分析】根据对顶角相等求出∠2=65°,然后跟据CD∥EB,判断出∠B=180°﹣65°=115°.【解答】解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选D.7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.1【考点】点的坐标;解直角三角形.【分析】根据A的坐标,利用锐角三角函数定义求出t的值即可.【解答】解:∵点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,∴=2,则t=4,故选A8.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定【考点】命题与定理.【分析】根据等式性质、补角、三角形的外角和以及方差的定义即可作出正确的判断.【解答】解:A、a2=b2,则a=±b,此选项错误;B、等角的补角相等,此选项正确;C、n边形的外角和为360°,此选项错误;D、x甲=x乙,S2甲>S2乙,则乙数据更稳定,此选项错误;故选B.9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设乙每小时做x个零件,则甲每小时做(x+6)个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,由题意得: =,故选:C.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3【考点】反比例函数与一次函数的交点问题.【分析】联立直线和双曲线解析式可得方程组,消去y整理成关于x的一元二次方程,再由不等式组可求得a的取值范围,从而可判定一元二次方程根的个数,则可得出直线与双曲线的交点个数.【解答】解:联立直线和双曲线解析式可得,消去y整理可得x2﹣ax﹣(2a+1)=0,该方程判别式为△=(﹣a)2﹣4××[﹣(2a+1)]=a2+2a+1=(a+1)2,解不等式组,可得a<﹣2,∴(a+1)2>0,即△>0,∴方程x2﹣ax﹣(2a+1)=0有两个不相等的实数根,∴直线y=与双曲线y=有两个交点,故选C.二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= x(x﹣6).【考点】因式分解-提公因式法.【分析】首先找出公因式,进而提取公因式得出答案.【解答】解:x2﹣6x=x(x﹣6).故答案为:x(x﹣6).12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为 3.209×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将32090000用科学记数法表示为3.209×107.故答案为:3.209×107.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为10π(结果保留π).【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为2,则底面周长=4π,圆锥的侧面积=×4π×5=10π.故答案为:10π.14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= 45°.【考点】正方形的性质.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为 2 .【考点】切线的性质;勾股定理;垂径定理.【分析】连接OD,首先证明四边形OECD是矩形,从而得到BE的长,然后利用垂径定理求得BF的长即可.【解答】解:连接OD,∵OE⊥BF于点E.∴BE=BF=2,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=EC=2,BC=3,∴BE=BC﹣EC=BC﹣OD=3﹣2=1,∴BF=2BE=2,故答案为:2.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为36 .【考点】规律型:图形的变化类.【分析】根据已知图形的面积得出变化规律,进而求出答案.【解答】解:∵第①个几何体的表面积为:6=3×1×(1+1),第②个几何体的表面积为18=3×2×(2+1),第③个几何体的表面积为3×3×(3+1)=36,故答案为:36.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.18.先化简,再求值:﹣,其中x=.【考点】分式的化简求值.【分析】先把分子、分母因式分解,再通分,然后把要求的式子进行化简,再代入进行计算即可.【解答】解:﹣=﹣===,把x=代入上式得:原始==+1.19.解方程组:.【考点】解二元一次方程组.【分析】利用加减消元法解二元一次方程组.【解答】解:①×2得:2x+4y=6③,③+②得:5x=10,解得:x=2,把x=2代入①得:2+2y=3,解得:y=,所以方程组的解为:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.【解答】证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<60 60≤x<70 70≤x<80 48A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= 12 ,b =0.2 ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是72°;(3)请估计该年级分数在80≤x<100的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)先求出样本总人数,即可得出a,b的值,补全直方图即可.(2)用360°×频率即可;(3)全校总人数乘80分以上的学生频率即可.【解答】解:(1)∵调查的总人数=4÷0.1=40(人)∴a=40×0.3=12,b=8÷40=0.2;故答案为:12,0.2;补全直方图如图所示,(2)360°×0.2=72°;故答案为:72°;320×(0.25+0.15)=128(人);答:估计该年级分数在80≤x<100的学生有128人.22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.【考点】作图—应用与设计作图;等边三角形的性质;菱形的性质;扇形面积的计算.【分析】(1)根据题意和基本作图作出图形,根据相应的面积公式计算即可;(2)利用扇形的弧长公式和面积公式计算即可.【解答】解:(1)如图所示:(2)设扇形的半径为R,=30,R=,扇形面积为:×30×≈430m2,上述四个图形中面积最大的图形是扇形.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?【考点】一次函数的应用.【分析】(1)设y甲=k1x(k1≠0),把x=600,y甲=480代入即可;当0≤x≤200时,设y乙=k2x (k2≠0),把x=200,y乙=400代入即可;当x>200时,设y乙=k3x+b(k3≠0),把x=200,y =400和x=600,y乙=480代入即可;乙(2)当x=800时求出y甲,当x=400时求出y乙,即可求出答案.【解答】解:(1)设y甲=k1x(k1≠0),由图象可知:当x=600时,y甲=480,代入得:480=600k1,解得:k1=0.8,所以y甲=0.8x;当0≤x≤200时,设y乙=k2x(k2≠0),由图象可知:当x=200时,y乙=400,代入得:400=200k2,解得:k2=2,所以y乙=2x;当x>200时,设y乙=k3x+b(k3≠0),由图象可知:由图象可知:当x=200时,y乙=400,当x=600时,y乙=480,代入得:,解得:k3=0.2,b=360,所以y乙=0.2x+360;即y乙=;(2)∵当x=800时,y甲=0.8×800=640;当x=400时,y乙=0.2×400+360=440,∴640+440=1080,答:厂家可获得总利润是1080元.24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP ∽△PCD(填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.【考点】四边形综合题.【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过角的计算得出∠BAP=∠CPD,由此即可得出△ABP∽△PCD;(2)过点F作FH⊥PC于点H,根据矩形的性质以及角的计算找出∠B=∠FHP=90°、∠BEP=∠HPE,由此即可得出△BEP∽△HPE,根据相似三角形的性质,找出边与边之间的关系即可得出结论;(3)分点E在AB和AD上两种情况考虑,根据相似三角形的性质找出各边的长度,再利用分割图形求面积法找出S与t之间的函数关系式,令S=4.2求出t值,此题得解.【解答】解:(1)∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠BAP+∠BPA=90°.∵∠MPN=90°,∴∠BPA+∠CPD=90°,∴∠BAP=∠CPD,∴△ABP∽△PCD.故答案为:∽.(2)是定值.如图3,过点F作FH⊥PC于点H,∵矩形ABCD中,AB=2,∴∠B=∠FHP=90°,HF=AB=2,∴∠BPE+∠BEP=90°.∵∠MPN=90°,∴∠BPE+∠HPE=90°,∴∠BEP=∠HPE,∴△BEP∽△HPE,∴,∵BP=1,∴.(3)分两种情况:①如图3,当点E在AB上时,0≤t≤2.∵AE=t,AB=2,∴BE=2﹣t.由(2)可知:△BEP∽△HPE,∴,即,∴HP=4﹣2t.∵AF=BH=PB+BH=5﹣2t,∴S=S矩形ABHF﹣S△AEF﹣S△BEP﹣S△PHF=AB•AF﹣AE•AF﹣BE•PB﹣PH•FH=t2﹣4t+5(0≤t≤2).当S=4.2时,t2﹣4t+5=4.2,解得:t=2±.∵0≤t≤2,∴t=2﹣;②如图4,当点E在AD上时,0≤t≤1,过点E作EK⊥BP于点K,∵AE=t,BP=1,∴PK=1﹣t.同理可证:△PKE∽△FCP,∴,即,∴FC=2﹣2t.∴DF=CD﹣FC=2t,DE=AD﹣AE=5﹣t,∴S=S矩形EKCD﹣S△EKP﹣S△EDF﹣S△PCF=CD•DE﹣EK•KP﹣DE•DF﹣PC•FC=t2﹣2t+5(0≤t≤1).当S=4.2时,t2﹣2t+5=4.2,解得:t=1±.∵0≤t≤1,∴t=1﹣.综上所述:当点E在AB上时,S=t2﹣4t+5(0≤t≤2),当S=4.2时,t=2﹣;当点E 在AD上时,S=t2﹣2t+5(0≤t≤1),当S=4.2时,t=1﹣.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值范围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点C坐标代入抛物线解析式即可求出a,令y=0可得抛物线与x轴的交点坐标.(2)根据题意可知,当点P在圆外部的抛物线上运动时,∠CPD为锐角,由此即可解决问题.(3)存在.如图2中,将线段C′A平移至D′F,当点D′与点H重合时,四边形AC′D′E 的周长最小,求出点H坐标即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣)2+经过点C(0,﹣2),∴﹣2=a(0﹣)2+,∴a=﹣,∴y=﹣(x﹣)2+,当y=0时,﹣(x﹣)2+=0,∴x1=4,x2=1,∵A、B在x轴上,∴A(1,0),B(4,0).(2)由(1)可知抛物线解析式为y=﹣(x﹣)2+,∴C、D关于对称轴x=对称,∵C(0,﹣2),∴D(5,﹣2),如图1中,连接AD、AC、CD,则CD=5,∵A(1,0),C(0,﹣2),D(5,﹣2),∴AC=,AD=2,∴AC2+AD2=CD2,∴∠CAD=90°,∴CD为⊙M的直径,∴当点P在圆外部的抛物线上运动时,∠CPD为锐角,∴m<0或1<m<4或m>5.(3)存在.如图2中,将线段C′A平移至D′F,则AF=C′D′=CD=5,∵A(1,0),∴F(6,0),作点E关于直线CD的对称点E′,连接EE′正好经过点M,交x轴于点N,∵抛物线顶点(,),直线CD为y=﹣2,∴E′(,﹣),连接E′F交直线CD于H,则当点D′与点H重合时,四边形AC′D′E的周长最小,设直线E′F的解析式为y=kx+b,∵E′(,﹣),F(6,0),∴可得y=x﹣,当y=﹣2时,x=,∴H(,﹣2),∵M(,﹣2),∴DD′=5﹣=,∵﹣=,∴M′(,﹣2)。
初中数学总复习基础巩固60题(含答案)
初中数学总复习基础巩固60题(含答案)1.如果x 的倒数是1 3,则的相反数是 2.绝对值小于12的整数是 33.已知|x|=5,|y|=2,|x-y|=y-x,则x+y= 24.若x<-2,那么x2=5.若样本9,7,8,10,6的方差是2,则另一样本49,47,48,50,46的标准差是6.当x<0时,化简3ax=7.将一组数据分成5组,制成频率分布直方图,其中第一组的频率是0.1,第四 8.组与第五组的频率之和为0.3,那么第二组与第三组的频率之和为 9.已知一组数据x 1,x 2,x 3,⋯,x n 的方差s2=5则另一组数据2x 1,2x 2,2x 3,⋯,2x n的方差是a 10.计算a22a4 = 211.如果分式2 2x 3的值不小于零,那么的取值范围 2 xx612.当x=时,分式的值为零|x|2x13.若代数式1的值不小于22x 的值,那么x 的最大整数值是314.某车间要加工4200个零件,原计划要x 天完成,现在要求提前2天完成,则 每天要比原计划多加工个零件。
15.计算(12654)(3) 16.若1(x2)有意义,则化简后得 2x17.方程(x+1)2=x+1的解为 18.若方程组 ax bx y 3y2x的解为2y4 2,则a=,b= 19.若方程kx2-2x+1=0有两个实数根,则k的取值范围是12x20.方程3x420的两根为x1,x2则x12+ x22=21.某校预备班的数学竞赛中共有30道题,答对一题得5分,不答得0分,答错扣4分,学生小王有5题未答,最后得77分,那么他答对了题。
2kx 22.方程2x30的一根为12,那么另一根为2kxk223.关于x的方程x(1)0的两个实数根互为相反数,则k的值是2xk24.若方程x60的一根是另一根的平方,那么k的值为25.一件皮衣,按成本加五成作为售价,后因季节原因,按售价八折降价出售,降价后的新售价为每件150元,若设这批皮衣每件成本价为x元,则可以列出方程式26.某年全国足球甲A联赛,规定每个球队都要在主场与各场进行一场比赛,到联赛结束共进行了182场比赛,那么参加比赛共有支甲A球队。
初三数学总复习资料_分专题试题及答案(90页)
(2) 已知| x | a(a 0) ,求 x 时,要注意 x a
考点 3 平方根与算术平方根
1、 若 x 2 a(a 0) ,则 x 叫 a 做的_________,记作______;正数 a 的__________叫做算术平 方根,0 的算术平方根是____。当 a 0 时, a 的算术平方根记作__________。
2
y
5、 实数 a, b, c 在数轴上对应点的位置如图 2 所示,下列式子中正确的有( )
c
ba
-2 -1 0 1 2 3
图2
① b c 0 ② a b a c ③ bc ac ④ ab ac
A.1 个
B.2 个 C.3 个 D.4 个
6、 ①数轴上表示-2 和-5 的两点之间的距离是______数轴上表示 1 和-3 的两点之间的距离是
用根号形式表示的数并不都是无理数(如 4 ),也不是所有的无理数都可以写成根号的形
式(如 )。
练习: 1、 把下列各数填入相应的集合内:
7.5,
15, 4,
8 ,
2 ,
3 8,
,
0.25,
0.1 5
13 3
有理数集{ 正实数集{
},无理数集{
}
}
2、 在实数 4, 3 , 0, 2
2 1,
64, 3 27 , 1 中,共有___ 27
2、 幂的运算法则:(以下的 m, n 是正整数)
(1)a m a n _____ ; (2)(a m )n ____ ; (3)(ab)n _____ ; (4)a m a n ______(a 0) ;
(5)(b )n ______ a
3、 乘法公式:
初中数学复习题目及答案
初中数学复习题目及答案一、选择题(每题2分,共20分)1. 下列哪个数不是整数?A. -3B. 0C. 5.5D. 20232. 如果一个角是直角的一半,那么这个角的度数是多少?A. 15°B. 30°C. 45°D. 90°3. 一个数的平方根是它本身,这个数是?A. 1B. -1C. 0D. 44. 一个长方体的长、宽、高分别是5cm、4cm、3cm,那么它的体积是多少立方厘米?A. 60B. 120C. 180D. 2405. 一个圆的半径是7cm,那么它的周长是多少厘米?(π取3.14)A. 43.96B. 56.52C. 70.68D. 85.246. 以下哪个是二次根式?A. √3B. 3√2C. √12D. √647. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 都不是8. 一个等腰三角形的两个底角相等,如果顶角是30°,那么底角是多少度?A. 75°B. 60°C. 120°D. 90°9. 一个数列的前三项是2, 4, 6,这个数列是?A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 无法确定10. 如果一个多项式的最高次项系数是-1,那么这个多项式是?A. 一次多项式B. 二次多项式C. 三次多项式D. 无法确定二、填空题(每题2分,共20分)11. 一个数的相反数是-8,这个数是________。
12. 一个直角三角形的两条直角边分别是3和4,斜边的长度是________。
13. 一个数的立方等于8,这个数是________。
14. 如果一个分数的分子是7,分母是14,那么这个分数化简后是________。
15. 一个圆的直径是14cm,那么它的半径是________cm。
16. 一个数的平方是36,这个数是________。
17. 一个数的绝对值是10,这个数可以是________或________。
初中数学复习试题及答案
初中数学复习试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. √2B. 2C. 0.5D. 1/3答案:A2. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 如果一个角是直角的一半,那么这个角的度数是:A. 45°B. 90°C. 180°D. 360°答案:A4. 以下哪个代数式不是二次根式?A. √xB. √(x-1)C. x√yD. √(x+y)答案:C5. 一个等腰三角形的底边长为6cm,腰长为5cm,那么这个三角形的高是:A. 4cmB. 3cmC. 2cmD. 1cm答案:B6. 一个数的立方等于它本身,这个数可以是:A. 0B. 1C. -1D. 所有选项答案:D7. 以下哪个选项是方程的解?A. x + 2 = 3B. x - 2 = 3C. 2x = 4D. 3x - 6 = 0答案:D8. 一个长方体的长、宽、高分别为2cm、3cm、4cm,那么它的体积是:A. 24cm³B. 12cm³C. 36cm³D. 48cm³答案:A9. 以下哪个选项不是实数?A. √2B. -πC. 0.5D. i答案:D10. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 0D. 所有选项答案:A二、填空题(每题3分,共30分)1. 一个数的平方是9,这个数是______。
答案:±32. 如果一个数的绝对值是5,那么这个数可以是______。
答案:±53. 一个三角形的三个内角之和是______。
答案:180°4. 一个数的倒数是1/4,那么这个数是______。
答案:45. 如果一个数的立方根是2,那么这个数是______。
答案:86. 一个圆的直径是10cm,那么它的半径是______。
答案:5cm7. 一个数的相反数是-7,那么这个数是______。
初中数学复习题及答案
初中数学复习题及答案一、选择题1. 下列哪个数是无理数?A. -3B. 0.5C. πD. √4答案:C2. 如果一个数的平方等于16,那么这个数是什么?A. 4B. -4C. 4或-4D. 以上都不是答案:C3. 一个三角形的内角和是多少度?A. 180°B. 360°C. 90°D. 120°答案:A二、填空题1. 一个数的绝对值是它到______的距离。
答案:原点2. 一个圆的半径为5,它的面积是______。
答案:25π3. 一个长方体的长、宽、高分别是2cm、3cm和4cm,它的体积是______。
答案:24cm³三、计算题1. 计算下列表达式的值:(1) √(9) + √(16)(2) (-2)³ + √(81)答案:(1) √(9) + √(16) = 3 + 4 = 7(2) (-2)³ + √(81) = -8 + 9 = 12. 解下列方程:(1) 2x - 5 = 3x + 1(2) 3x + 4 = 2x + 8答案:(1) 2x - 3x = 1 + 5-x = 6x = -6(2) 3x - 2x = 8 - 4x = 4四、解答题1. 某工厂生产一批零件,第一天生产了总数的1/4,第二天生产了总数的1/3,第三天生产了剩余的1/2。
如果这批零件总数为120个,求第三天生产了多少个零件?答案:第一天生产了120 * 1/4 = 30个零件。
第二天生产了120 * 1/3 = 40个零件。
剩余的零件数为120 - 30 - 40 = 50个。
第三天生产了50 * 1/2 = 25个零件。
2. 一个班级有40名学生,其中1/3是男生,1/4是女生,其余是混合性别。
求这个班级有多少男生和女生?答案:班级中有40 * 1/3 = 13.33(取整数为13)名男生。
班级中有40 * 1/4 = 10名女生。
剩余的学生数为40 - 13 - 10 = 17名,这部分学生是混合性别。
初中数学中考复习:30全等三角形(含答案)
中考总复习:全等三角形—巩固练习【巩固练习】一、选择题1.如图,△ABC是不等边三角形,DE=BC,以D、E为两个顶点画位置不同的三角形,使所画的三角形与△ABC全等,这样的三角形最多可画出( ) .A.2个B.4个C.6个D.8个2.如图,Rt△ABC中,∠BAC=90°,AB=AC,D为AC的中点,AE⊥BD交BC于E,若∠BDE=,∠ADB的大小是().A. B. C. D.3.如图,△ABC中,∠C为钝角,CF为AB上的中线,BE为AC上的高,若CF=BE,则∠ACF的大小是().A.45° B.60° C.30° D.不确定4.如图,△ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( ) . A. 45°B. 20°C. 30°D. 15°5.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是(). A.△ABD和△CDB的面积相等 B.△ABD和△CDB的周长相等 C.∠A+∠ABD=∠C+∠CBD D.AD∥BC,且AD=BC6. 如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB,则(). A.∠1=∠EFD B.BE=EC C.BF=DF=CD D.FD∥BC;二、填空题7.如图,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的。
若∠1:∠2:∠3=28:5:3,则的度数为______.8.如图,把△ABC绕C点顺时针旋转35°,得到,交于点,若,则∠A=______.9.如图,已知的周长是20,分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3, △ABC的面积是___________..如图,直线AE∥BD,点则……峰1峰2已知:如图,过△ABC的边BC的中点求证:14.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.15.如图,已知中,厘米,厘米,点为的中点.(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C 点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与 全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?16. 如图,在中,,,,. (1)求证:,. (2)如图,若是的中点.求证:. (3)如图,若于点,延长交于点.求证:.【答案与解析】一、选择题1.【答案】B.2.【答案】C.【解析】作关于BC的对称图形,作的中点,连接,则容易证明,说明和AE在同一条直线上的线段,根据对称性交于E点,所以与DE在同一条直线上,容易证明.所以.所以.3.【答案】C.【解析】延长CF到D,使CD=2CF,容易证明 △AFC≌△,所以∠D=∠FCA,所以AC∥BD,因为 CF=BE,所以CD=2BE,即AC与BD之间的距离等于CD的一半, 所以∠D=30°.所以内错角∠ACF=30°.4.【答案】D.5.【答案】C.【解析】提示:∵△ABD≌△CDB, ∴AB=CD,BD=DB,AD=CB,∠ADB=∠CBD, ∴△ABD和△CDB的周长和面积都分别相等. ∵∠ADB=∠CBD, ∴AD∥BC.6.【答案】D.二、填空题7.【答案】80°.【解析】由三角形内角和是180°知∠1=140°,∠2=25°,∠3=15°, 由翻折知:∠ABE=∠2,∠ACD=∠3,∴.8.【答案】55°.【解析】由旋转知:,, ∵,∴55, ∴55°.9.【答案】30 .【解析】提示:面积法.10.【答案】8.11.【答案】相等或互补.12.【答案】-29 , B .三、解答题13.【答案与解析】证明:延长FM到G,使,连接 ∵M为BC的中点, ∴△BMG≌△CMF ∴∠G=∠2,CF=BG, 又∵平分,ME∥AD, ∴∠3=∠4,∠3=∠E,∠1=∠4, ∴∠1=∠E,即AE=AF, ∵∠1=∠2,∠G=∠2,∠1=∠E, ∴∠G=∠E,即BE=BG=CF, ∴AB+AC=AB+AF+CF=AB+AE+CF=BE+CF=2CF,即14.【答案与解析】猜测AE=BD,AE⊥BD. 证明如下: ∵∠ACD=∠BCE=90°, ∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB. ∵△ACD和△BCE都是等腰直角三角形, ∴AC=CD,CE=CB. ∴△ACE≌△DCB(SAS) ∴AE=BD,∠CAE=∠CDB. ∵∠AFC=∠DFH, ∴∠DHF=∠ACD=90°, ∴AE⊥BD.15.【答案与解析】(1)①∵秒, ∴, ∵,点为的中点, ∴. 又∵, ∴, ∴. 又∵, ∴, ∴. ②∵,∴, 又∵,,则, ∴点,点运动的时间秒, ∴. (2)设经过秒后点与点第一次相遇, 由题意,得, 解得. ∴点共运动了. ∵, ∴点、点在边上相遇, ∴经过秒点与点第一次在边上相遇.16.【答案与解析】(1)提示:证明≌(SAS).(2)提示:延长至,使得,连结,先证≌(SAS), 再证≌(SAS).(3)提示:作于,的延长线于,先证≌(AAS), 同理证明≌,再证≌(AAS).。
初中数学中考计算题复习(最全)-含答案
一.解答题(共30小题)1.计算题:①;②解方程:.2.计算:+(π﹣2013)0.3.计算:|1﹣|﹣2cos30°+(﹣)0×(﹣1)2013.4.计算:﹣.5.计算:.6..7.计算:.8.计算:.9.计算:.10.计算:.11.计算:.12..13.计算:.14.计算:﹣(π﹣3.14)0+|﹣3|+(﹣1)2013+tan45°.15.计算:.16.计算或化简:(1)计算2﹣1﹣tan60°+(π﹣2013)0+|﹣|.(2)(a﹣2)2+4(a﹣1)﹣(a+2)(a﹣2)17.计算:(1)(﹣1)2013﹣|﹣7|+×0+()﹣1;(2).18.计算:.(1)19.(2)解方程:.20.计算:(1)tan45°+sin230°﹣cos30°•tan60°+cos245°;(2).21.(1)|﹣3|+16÷(﹣2)3+(2013﹣)0﹣tan60°(1)计算:.22.(2)求不等式组的整数解.(1)计算:23.(2)先化简,再求值:(﹣)÷,其中x=+1.24.(1)计算:tan30°25.计算:(1)(2)先化简,再求值:÷+,其中x=2+1.26.(1)计算:;(2)解方程:.27.计算:.28.计算:.29.计算:(1+)2013﹣2(1+)2012﹣4(1+)2011.30.计算:.1.化简求值:,选择一个你喜欢且有意义的数代入求值.2.先化简,再求值,然后选取一个使原式有意义的x值代入求值.3.先化简再求值:选一个使原代数式有意义的数代入中求值.4.先化简,再求值:,请选择一个你喜欢的数代入求值.5.(2010•红河州)先化简再求值:.选一个使原代数式有意义的数代入求值.6.先化简,再求值:(1﹣)÷,选择一个你喜欢的数代入求值.7.先化简,再求值:(﹣1)÷,选择自己喜欢的一个x求值.8.先化简再求值:化简,然后在0,1,2,3中选一个你认为合适的值,代入求值.9.化简求值(1)先化简,再求值,选择你喜欢的一个数代入求值.(2)化简,其中m=5.10.化简求值题:(1)先化简,再求值:,其中x=3.(2)先化简,再求值:,请选一个你喜欢且使式子有意义的数字代入求值.(3)先化简,再求值:,其中x=2.(4)先化简,再求值:,其中x=﹣1.11.(2006•巴中)化简求值:,其中a=.12.(2010•临沂)先化简,再求值:()÷,其中a=2.13.先化简:,再选一个恰当的x值代入求值.14.化简求值:(﹣1)÷,其中x=2.15.(2010•綦江县)先化简,再求值,,其中x=+1.16.(2009•随州)先化简,再求值:,其中x=+1.17.先化简,再求值:÷,其中x=tan45°.18.(2002•曲靖)化简,求值:(x+2)÷(x﹣),其中x=﹣1.19.先化简,再求值:(1+)÷,其中x=﹣3.20.先化简,再求值:,其中a=2.21.先化简,再求值÷(x﹣),其中x=2.22.先化简,再求值:,其中.24.先化简代数式再求值,其中a=﹣2.25.(2011•新疆)先化简,再求值:(+1)÷,其中x=2.26.先化简,再求值:,其中x=2.27.(2011•南充)先化简,再求值:(﹣2),其中x=2.28.先化简,再求值:,其中a=﹣2.29.(2011•武汉)先化简,再求值:÷(x ﹣),其中x=3. 30.化简并求值:•,其中x=21. . 2。
初中数学总复习题及答案
初中数学总复习题及答案一、选择题1. 下列哪个选项不是有理数?A. -3B. 0C. πD. √2答案:C2. 如果一个数的平方根等于它本身,那么这个数是:A. 0B. 1C. -1D. 2答案:A3. 以下哪个表达式等于0?A. 3 + 0B. 2 - 2C. 5 × 0D. 4 ÷ 4答案:C二、填空题1. 一个数的立方等于它本身,这个数可以是______。
答案:-1,0,12. 一个直角三角形的两个直角边分别为3和4,斜边的长度是______。
答案:53. 如果一个圆的半径为r,则圆的面积是______。
答案:πr²三、解答题1. 已知一个长方体的长、宽、高分别为a、b、c,求长方体的体积。
解:长方体的体积V = a × b × c2. 某工厂生产一批零件,合格率为95%,如果生产了200个零件,求不合格的零件数。
解:不合格的零件数= 200 × (1 - 95%) = 200 × 0.05 = 103. 一个数列的前三项为1,2,3,从第四项开始,每一项都是前三项的和。
求第10项的值。
解:第4项 = 1 + 2 + 3 = 6第5项 = 2 + 3 + 6 = 11以此类推,可以发现这是一个斐波那契数列,但起始值不同。
通过计算可得第10项的值为55。
四、应用题1. 某班级有40名学生,其中男生和女生的比例为3:2。
求班级中男生和女生各有多少人。
解:设男生人数为3x,女生人数为2x,根据题意有 3x + 2x = 40,解得 x = 8。
所以,男生人数为3 × 8 = 24,女生人数为2 × 8 = 16。
2. 某商店购进一批商品,进价为每件50元,标价为每件100元。
商店决定进行促销,顾客购买满200元可以享受8折优惠。
如果一位顾客购买了4件商品,求他需要支付的金额。
解:首先计算4件商品的原价:100 × 4 = 400元。
初中数学有理数知识点总复习有答案
初中数学有理数知识点总复习有答案一、选择题1.已知|m+3|与(n ﹣2)2互为相反数,那么m n 等于( )A .6B .﹣6C .9D .﹣9【答案】C【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】∵|m+3|与(n ﹣2)2互为相反数,∴|m+3|+(n ﹣2)2=0,∴m+3=0,n ﹣2=0,解得m=﹣3,n=2,所以,m n =(﹣3)2=9.故选C .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.2.如图,a 、b 在数轴上的位置如图,则下列各式正确的是( )A .ab >0B .a ﹣b >0C .a+b >0D .﹣b <a【答案】B【解析】解:A 、由图可得:a >0,b <0,且﹣b >a ,a >b∴ab <0,故本选项错误;B 、由图可得:a >0,b <0,a ﹣b >0,且a >b∴a+b <0,故本选项正确;C 、由图可得:a >0,b <0,a ﹣b >0,且﹣b >a∴a+b <0;D 、由图可得:﹣b >a ,故本选项错误.故选B .3.若2(1)210x y -++=,则x +y 的值为( ).A .12B .12-C .32D .32- 【答案】A【解析】解:由题意得:x-1=0,2y+1=0,解得:x=1,y=12-,∴x+y=11122-=.故选A.点睛:本题考查了非负数的性质.几个非负数的和为0,则每个非负数都为0.4.若a为有理数,且|a|=2,那么a是()A.2 B.﹣2 C.2或﹣2 D.4【答案】C【解析】【分析】利用绝对值的代数意义求出a的值即可.【详解】若a为有理数,且|a|=2,那么a是2或﹣2,故选C.【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.5.如图是张小亮的答卷,他的得分应是()A.40分B.60分C.80分D.100分【答案】A【解析】【分析】根据绝对值、倒数、相反数、立方以及平均数进行计算即可.【详解】解:①若ab=1,则a与b互为倒数,②(-1)3=-1,③-12=-1,④|-1|=-1,⑤若a+b=0,则a与b互为相反数,故选A.【点睛】本题考查了实数,掌握绝对值、倒数、相反数、立方根以及平均数的定义是解题的关键.6.如图所示,数轴上点P 所表示的数可能是( )A .30B .15C .10D .8 【答案】B 【解析】 【分析】点P 在3与4之间,满足条件的为B 、C 两项,点P 与4比较靠近,进而选出正确答案.【详解】∵点P 在3与4之间,∴3<P <4,即9<P <16∴满足条件的为B 、C图中,点P 比较靠近4,∴P 应选B 、C 中较大的一个故选:B .【点睛】本题考查对数轴的理解,数轴上的点,从左到右依次增大,解题过程中需紧把握这点.7.在数轴上,与原点的距离是2个单位长度的点所表示的数是( )A .2B .2-C .2±D .12± 【答案】C【解析】【分析】与原点距离是2的点有两个,是±2.【详解】解:与原点距离是2的点有两个,是±2.故选:C.【点睛】本题考查数轴的知识点,有两个答案.8.实数a b c d 、、、在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .3a >-B .0bd >C .0b c +<D .a b <【解析】【分析】根据数轴上点的位置,可以看出a b c d <<<,43a -<<-,21b -<<-,01c <<,3d =,即可逐一对各个选项进行判断.【详解】解:A 、∵43a -<<-,故本选项错误;B 、∵0b <,0d >,∴0bd <,故本选项错误;C 、∵21b -<<-,01c <<,∴0b c +<,故本选项正确;D 、∵43a -<<-,21b -<<-,则34a <<,12<<b ,∴a b >,故本选项错误;故选:C .【点睛】本题考查了数轴和绝对值,利用数轴上的点表示的数右边的总比左边的大、有理数的运算、绝对值的意义是解题的关键.9.如图,下列判断正确的是( )A .a 的绝对值大于b 的绝对值B .a 的绝对值小于b 的绝对值C .a 的相反数大于b 的相反数D .a 的相反数小于b 的相反数【答案】C【解析】【分析】根据绝对值的性质,相反数的性质,可得答案.【详解】解:没有原点,无法判断|a |,|b |,有可能|a |>|b |,|a |=|b |,|a |<|b |.由数轴上的点表示的数右边的总比左边的大,得a <b ,由不等式的性质,得﹣a >﹣b ,故C 符合题意;故选:C .【点睛】本题考查了数轴、绝对值、相反数,利用不等式的性质是解题关键,又利用了有理数大小的比较.10.如果||a a =-,下列成立的是( )A .0a >B .0a <C .0a ≥D .0a ≤【解析】【分析】绝对值的性质:正数的绝对值等于它本身,负数的绝对值等于它的相反数,0的绝对值是0.【详解】如果||a a =-,即一个数的绝对值等于它的相反数,则0a ≤.故选D .【点睛】本题考查绝对值,熟练掌握绝对值的性质是解题关键.11.已知a 、b 、c 都是不等于0的数,求a b c abc a b c abc +++的所有可能的值有( )个.A .1B .2C .3D .4 【答案】C【解析】【分析】根据a b c 、、的符号分情况讨论,再根据绝对值运算进行化简即可得.【详解】由题意,分以下四种情况:①当a b c 、、全为正数时,原式11114=+++=②当a b c 、、中两个正数、一个负数时,原式11110=+--=③当a b c 、、中一个正数、两个负数时,原式11110=--+=④当a b c 、、全为负数时,原式11114=----=-综上所述,所求式子的所有可能的值有3个故选:C .【点睛】本题考查了绝对值运算,依据题意,正确分情况讨论是解题关键.12.已知直角三角形两边长x 、y 满足224(2)10x y -+--=,则第三边长为 ( ) A . B .13 C .5或13 D .513【答案】D【解析】【分析】【详解】解:∵|x 2-4|≥02(2)1y --,∴x 2-4=0,2(2)1y --=0,∴x=2或-2(舍去),y=2或3,分3种情况解答:①当两直角边是2时,三角形是直角三角形, 则斜边的长为:222222+=; ②当2,3均为直角边时,斜边为222313+=;③当2为一直角边,3为斜边时,则第三边是直角,长是22325-=.故选D .考点:1.非负数的性质;2.勾股定理.13.若2(21)12a a -=-,则a 的取值范围是( )A .12a ≥ B .12a > C .12a ≤ D .无解【答案】C【解析】【分析】 根据二次根式的性质得2(21)a -=|2a-1|,则|2a-1|=1-2a ,根据绝对值的意义得到2a-1≤0,然后解不等式即可.【详解】解:∵2(21)a -=|2a-1|,∴|2a-1|=1-2a ,∴2a-1≤0,∴12a ≤. 故选:C .【点睛】 此题考查二次根式的性质,绝对值的意义,解题关键在于掌握其性质.14.数轴上A ,B ,C 三点所表示的数分别是a ,b ,c ,且满足||||||c b a b a c ---=-,则A ,B ,C 三点的位置可能是( )A .B .C .D .【答案】C【解析】【分析】由A 、B 、C 在数轴上的位置判断出a 、b 、c 的大小关系,根据绝对值性质去绝对值符号,判断左右两边是否相等即可.【详解】当a c b <<时,||||c b a b b c a b a c ---=-+-=-,180°-66?38=113?22′′,此选项错误;B 、当a <b <c 时,||||2c b a b c b a b c a b ---=-+-=+-,44A-mB=,此项错误;C 、当c <a <b 时,||||c b a b b c a b a c ---=-+-=-,||a c a c -=-,此项正确D 、当c <b <a 时,||||2c b a b b c a b c a b ---=--+=--+,||a c a c -=-,此选项错误;故选C.【点睛】本题主要考查绝对值性质:正数绝对值等于本身,0的绝对值是0,负数绝对值等于其相反数.15.下列运算正确的是( )A 4 =-2B .|﹣3|=3C 4=± 2D 39【答案】B【解析】【分析】A 、根据算术平方根的定义即可判定;B 、根据绝对值的定义即可判定;C 、根据算术平方根的定义即可判定;D 、根据立方根的定义即可判定.【详解】解:A 、C 42=,故选项错误;B 、|﹣3|=3,故选项正确;D 、9开三次方不等于3,故选项错误.故选B .【点睛】此题主要考查了实数的运算,注意,正数的算术平方根是正数.16.-14的绝对值是( ) A .-4 B .14 C .4 D .0.4【答案】B【解析】【分析】直接用绝对值的意义求解.【详解】 −14的绝对值是14. 故选B .【点睛】 此题是绝对值题,掌握绝对值的意义是解本题的关键.17.在﹣6,0,﹣1,4这四个数中,最大的数是( )A .4B .﹣6C .0D .﹣1 【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值大的其值反而小即可求解.【详解】∵4>0>﹣1>﹣6,∴最大的数是4.故选A .【点睛】此题主要考查了有理数的大小的比较,解题的关键利用正负数的性质可以解决问题.18.已知a ,b ,c 是有理数,当0a b c ++=,0abc <时,求a b c b c a c a b +-+++的值为( )A .1或-3B .1,-1或-3C .-1或3D .1,-1,3或-3 【答案】A【解析】【分析】根据0a b c ++=,0abc <,可知这三个数中只能有一个负数,另两个为正数,把0a b c ++=变形代入代数式求值即可.【详解】解:∵0a b c ++=,∴b c a +=-、a c b +=-、a b c +=-,∵0abc <,∴a 、b 、c 三数中有2个正数、1个负数, 则a b c a b c b c a c a b a b c +-=+-+++---, 若a 为负数,则原式=1-1+1=1,若b 为负数,则原式=-1+1+1=1,若c 为负数,则原式=-1-1-1=-3,所以答案为1或-3.故选:A .【点睛】 本题考查了绝对值的性质,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,难点在于判断出负数的个数.19.若实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <-5B .b +d <0C .||||a c <D .c d <【答案】D【解析】【分析】根据数轴得到-5<a<b<0<c<d ,且a d b c >>>,再依次判断各选项即可得到答案.【详解】由数轴得-5<a<b<0<c<d ,且a d b c >>>,∴A 错误;∵b+d>0,故B 错误;∵a c >,∴C 错误;∵d c >,c>0,∴c d <,故D 正确,故选:D.【点睛】此题考查数轴上数的大小关系,绝对值的性质,有理数的加法法则.20.如图数轴所示,下列结论正确的是( )A.a>0 B.b>0 C.b>a D.a>b【答案】A【解析】【分析】根据数轴,可判断出a为正,b为负,且a距0点的位置较近,根据这些特点,判定求解【详解】∵a在原点右侧,∴a>0,A正确;∵b在原点左侧,∴b<0,B错误;∵a在b的右侧,∴a>b,C错误;∵b距离0点的位置远,∴a<b,D错误【点睛】本题是对数轴的考查,需要注意3点:(1)在0点右侧的数为正数,0点左侧的数为负数;(2)数轴上的数,从左到右依次增大;(3)离0点越远,则绝对值越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中总复习考试数学试题及答案一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.22.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a33.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤36.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.18.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= .12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为(结果保留π).14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= .15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.18.先化简,再求值:﹣,其中x=.19.解方程组:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<6060≤x<7070≤x<8048A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= ,b ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是;(3)请估计该年级分数在80≤x<100的学生有多少人?22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP △PCD (填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题,每小题4分,共40分1.﹣2的相反数是()A.﹣ B.C.﹣2 D.2【考点】相反数.【分析】依据相反数的定义求解即可.【解答】解:﹣2的相反数是2.故选:D.2.下列计算正确的是()A.a4+a4=2a4B.a2•a3=a6C.(a4)3=a7D.a6÷a2=a3【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】A、原式合并同类项得到结果,即可作出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;C、原式利用幂的乘方运算法则计算得到结果,即可作出判断;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式=2a4,正确;B、原式=a5,错误;C、原式=a12,错误;D、原式=a4,错误,故选A3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】用排除法:既能沿某一条直线对折两部分能够完全重合,又旋转180°后能与自身重合的图形【解答】解:A选项对应的图形只是中心对称图形;B选项对应的图形既不是轴对称图形,也不是中心对称图形;C选项对应的图形只是轴对称图形;D选项对应的图形既是轴对称图形,又是中心对称图形故:选D4.在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率为()A.B.C.D.【考点】概率公式.【分析】可先找出单词中字母的个数,再找出a的个数,用a的个数除以总个数即可得出本题的答案.【解答】解:单词中共有8个字母,a有两个,所以在英文单词“parallcl“(平行)中任意选择一个字母是“a“的概率==,故选C.5.某个关于x的一元一次不等式组的解集在数轴上表示如图,则该解集是()A.﹣2<x<3 B.﹣2<x≤3 C.﹣2≤x<3 D.﹣2≤x≤3【考点】在数轴上表示不等式的解集.【分析】根据数轴可知解集表示﹣2和3之间(包括3)的点表示的部分,据此即可求解.【解答】解:表示的解集是:﹣2<x≤3.故选B.6.如图,∠1=65°,CD∥EB,则∠B的度数为()A.65° B.105°C.110°D.115°【考点】平行线的性质.【分析】根据对顶角相等求出∠2=65°,然后跟据CD∥EB,判断出∠B=180°﹣65°=115°.【解答】解:如图,∵∠1=65°,∴∠2=65°,∵CD∥EB,∴∠B=180°﹣65°=115°,故选D.7.如图,点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,则t值为()A.4 B.3 C.3 D.1【考点】点的坐标;解直角三角形.【分析】根据A的坐标,利用锐角三角函数定义求出t的值即可.【解答】解:∵点A(2,t)在第一象限,OA与x轴所夹锐角为α,tanα=2,∴=2,则t=4,故选A8.下列命题为真命题的是()A.若a2=b2,则a=bB.等角的补角相等C.n边形的外角和为(n﹣2)•180°D.若x甲=x乙,S2甲>S2乙,则甲数据更稳定【考点】命题与定理.【分析】根据等式性质、补角、三角形的外角和以及方差的定义即可作出正确的判断.【解答】解:A、a2=b2,则a=±b,此选项错误;B、等角的补角相等,此选项正确;C、n边形的外角和为360°,此选项错误;D、x甲=x乙,S2甲>S2乙,则乙数据更稳定,此选项错误;故选B.9.甲、乙二人做某种零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等,若设乙每小时做x个,则可列方程()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设乙每小时做x个零件,则甲每小时做(x+6)个零件,根据题意可得,甲做90个所用的时间与乙做60个所用的时间相等,据此列方程.【解答】解:设乙每小时做x个零件,则甲每小时做(x+6)个零件,由题意得: =,故选:C.10.若,则在同一直角坐标系中,直线y=与双曲线y=的交点个数为()A.0 B.1 C.2 D.3【考点】反比例函数与一次函数的交点问题.【分析】联立直线和双曲线解析式可得方程组,消去y整理成关于x的一元二次方程,再由不等式组可求得a的取值围,从而可判定一元二次方程根的个数,则可得出直线与双曲线的交点个数.【解答】解:联立直线和双曲线解析式可得,消去y整理可得x2﹣ax﹣(2a+1)=0,该方程判别式为△=(﹣a)2﹣4××[﹣(2a+1)]=a2+2a+1=(a+1)2,解不等式组,可得a<﹣2,∴(a+1)2>0,即△>0,∴方程x2﹣ax﹣(2a+1)=0有两个不相等的实数根,∴直线y=与双曲线y=有两个交点,故选C.二、填空题,每小题3分,共18分11.分解因式:x2﹣6x= x(x﹣6).【考点】因式分解-提公因式法.【分析】首先找出公因式,进而提取公因式得出答案.【解答】解:x2﹣6x=x(x﹣6).故答案为:x(x﹣6).12.2015年我国农村义务教育营养改善计划惠及学生人数达32090000人,将32090000用科学记数法表示为 3.209×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将32090000用科学记数法表示为3.209×107.故答案为:3.209×107.13.已知一个圆锥的底面半径为2,母线长为5,则这个圆锥的侧面积为10π(结果保留π).【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为2,则底面周长=4π,圆锥的侧面积=×4π×5=10π.故答案为:10π.14.如图,将正方形纸片按如图折叠,AM为折痕,点B落在对角线AC上的点E处,则∠CME= 45°.【考点】正方形的性质.【分析】由正方形的性质和折叠的性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠B=90°,∠ACB=45°,由折叠的性质得:∠AEM=∠B=90°,∴∠CEM=90°,∴∠CME=90°﹣45°=45°;故答案为:45°.15.如图,Rt△ABC,∠C=90°,BC=3,点O在AB上,OB=2,以OB长为半径的⊙O与AC相切于点D,交BC于点F,OE⊥BC于点E,则弦BF的长为 2 .【考点】切线的性质;勾股定理;垂径定理.【分析】连接OD,首先证明四边形OECD是矩形,从而得到BE的长,然后利用垂径定理求得BF的长即可.【解答】解:连接OD,∵OE⊥BF于点E.∴BE=BF=2,∵AC是圆的切线,∴OD⊥AC,∴∠ODC=∠C=∠OFC=90°,∴四边形ODCF是矩形,∵OD=OB=EC=2,BC=3,∴BE=BC﹣EC=BC﹣OD=3﹣2=1,∴BF=2BE=2,故答案为:2.16.棱长为1的小正方体按照如图所示的摆放规律,逐个排成若干个无缝隙的几何体,图(1)几何体表面积为6,图(2)几何体表面积为18,则图(3)中所示几何体的表面积为36 .【考点】规律型:图形的变化类.【分析】根据已知图形的面积得出变化规律,进而求出答案.【解答】解:∵第①个几何体的表面积为:6=3×1×(1+1),第②个几何体的表面积为18=3×2×(2+1),第③个几何体的表面积为3×3×(3+1)=36,故答案为:36.三、解答题17.计算: +(3﹣π)0﹣2sin60°+(﹣1)2016+||.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】本题涉及零指数幂、特殊角三角函数值、立方根、绝对值.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣2+1﹣2×+1+﹣1=﹣1.18.先化简,再求值:﹣,其中x=.【考点】分式的化简求值.【分析】先把分子、分母因式分解,再通分,然后把要求的式子进行化简,再代入进行计算即可.【解答】解:﹣=﹣===,把x=代入上式得:原始==+1.19.解方程组:.【考点】解二元一次方程组.【分析】利用加减消元法解二元一次方程组.【解答】解:①×2得:2x+4y=6③,③+②得:5x=10,解得:x=2,把x=2代入①得:2+2y=3,解得:y=,所以方程组的解为:.20.如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)选取①②,利用ASA判定△BEO≌△DFO即可;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.【解答】证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.21.某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题少分数段(x表示分数)频数频率50≤x<6060≤x<7070≤x<8048A0.1B0.380≤x<90 10 0.2590≤x<100 6 0.15(1)表中a= 12 ,b =0.2 ,并补全直方图(2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是72°;(3)请估计该年级分数在80≤x<100的学生有多少人?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)先求出样本总人数,即可得出a,b的值,补全直方图即可.(2)用360°×频率即可;(3)全校总人数乘80分以上的学生频率即可.【解答】解:(1)∵调查的总人数=4÷0.1=40(人)∴a=40×0.3=12,b=8÷40=0.2;故答案为:12,0.2;补全直方图如图所示,(2)360°×0.2=72°;故答案为:72°;320×(0.25+0.15)=128(人);答:估计该年级分数在80≤x<100的学生有128人.22.如图所示,在两墙(足够长)夹角为60°,的空地上,某花店老板准备用30m长的篱笆(可弯折)围成一个封闭花园(要求:①该篱笆要全部用尽;②两墙须作为花园的两边使用;③面积计算结果均精确到个位)(1)按上述要求,店里三位员工分别想围成等边三角形、直角三角形、菱形的花园,图(1)表示30m长的篱笆,请你用此篱笆分别在图(2)、图(3)、图(4)上帮助他们画出指定的图形,并在图下方的横线上写出相应的花园面积;(2)按上述要求,店老板决定把花园围成扇形,请计算该扇形面积(不要求画图);并直接写出上述四个图形中面积最大的图形名称.【考点】作图—应用与设计作图;等边三角形的性质;菱形的性质;扇形面积的计算.【分析】(1)根据题意和基本作图作出图形,根据相应的面积公式计算即可;(2)利用扇形的弧长公式和面积公式计算即可.【解答】解:(1)如图所示:(2)设扇形的半径为R,=30,R=,扇形面积为:×30×≈430m2,上述四个图形中面积最大的图形是扇形.23.某厂家在甲、乙两家商场销售同一商品所获利润分别为y甲,y乙(单位:元),y甲,y乙与销售数量x(单位:件)的函数关系如图所示,请根据图象解决下列问题;(1)分别求出y甲,y乙与x的函数关系式;(2)现厂家分配该商品800件给甲商场,400件给乙商场,当甲、乙商场售完这批商品,厂家可获得总利润是多少元?【考点】一次函数的应用.【分析】(1)设y甲=k1x(k1≠0),把x=600,y甲=480代入即可;当0≤x≤200时,设y乙=k2x (k2≠0),把x=200,y乙=400代入即可;当x>200时,设y乙=k3x+b(k3≠0),把x=200,y =400和x=600,y乙=480代入即可;乙(2)当x=800时求出y甲,当x=400时求出y乙,即可求出答案.【解答】解:(1)设y甲=k1x(k1≠0),由图象可知:当x=600时,y甲=480,代入得:480=600k1,解得:k1=0.8,所以y甲=0.8x;当0≤x≤200时,设y乙=k2x(k2≠0),由图象可知:当x=200时,y乙=400,代入得:400=200k2,解得:k2=2,所以y乙=2x;当x>200时,设y乙=k3x+b(k3≠0),由图象可知:由图象可知:当x=200时,y乙=400,当x=600时,y乙=480,代入得:,解得:k3=0.2,b=360,所以y乙=0.2x+360;即y乙=;(2)∵当x=800时,y甲=0.8×800=640;当x=400时,y乙=0.2×400+360=440,∴640+440=1080,答:厂家可获得总利润是1080元.24.如图(1)矩形ABCD中,AB=2,BC=5,BP=1,∠MPN=90°将∠MPN绕点P从PB处开始按顺时针方向旋转,PM交AB(或AD)于点E,PN交边AD(或CD)于点F,当PN旋转至PC 处时,∠MPN的旋转随即停止(1)特殊情形:如图(2),发现当PM过点A时,PN也恰好过点D,此时,△ABP ∽△PCD(填:“≌”或“~”(2)类比探究:如图(3)在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设AE=t,△EPF面积为S,试确定S关于t的函数关系式;当S=4.2时,求所对应的t的值.【考点】四边形综合题.【分析】(1)根据矩形的性质找出∠B=∠C=90°,再通过角的计算得出∠BAP=∠CPD,由此即可得出△ABP∽△PCD;(2)过点F作FH⊥PC于点H,根据矩形的性质以及角的计算找出∠B=∠FHP=90°、∠BEP=∠HPE,由此即可得出△BEP∽△HPE,根据相似三角形的性质,找出边与边之间的关系即可得出结论;(3)分点E在AB和AD上两种情况考虑,根据相似三角形的性质找出各边的长度,再利用分割图形求面积法找出S与t之间的函数关系式,令S=4.2求出t值,此题得解.【解答】解:(1)∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠BAP+∠BPA=90°.∵∠MPN=90°,∴∠BPA+∠CPD=90°,∴∠BAP=∠CPD,∴△ABP∽△PCD.故答案为:∽.(2)是定值.如图3,过点F作FH⊥PC于点H,∵矩形ABCD中,AB=2,∴∠B=∠FHP=90°,HF=AB=2,∴∠BPE+∠BEP=90°.∵∠MPN=90°,∴∠BPE+∠HPE=90°,∴∠BEP=∠HPE,∴△BEP∽△HPE,∴,∵BP=1,∴.(3)分两种情况:①如图3,当点E在AB上时,0≤t≤2.∵AE=t,AB=2,∴BE=2﹣t.由(2)可知:△BEP∽△HPE,∴,即,∴HP=4﹣2t.∵AF=BH=PB+BH=5﹣2t,∴S=S矩形ABHF﹣S△AEF﹣S△BEP﹣S△PHF=AB•AF﹣AE•AF﹣BE•PB﹣PH•FH=t2﹣4t+5(0≤t≤2).当S=4.2时,t2﹣4t+5=4.2,解得:t=2±.∵0≤t≤2,∴t=2﹣;②如图4,当点E在AD上时,0≤t≤1,过点E作EK⊥BP于点K,∵AE=t,BP=1,∴PK=1﹣t.同理可证:△PKE∽△FCP,∴,即,∴FC=2﹣2t.∴DF=CD﹣FC=2t,DE=AD﹣AE=5﹣t,∴S=S矩形EKCD﹣S△EKP﹣S△EDF﹣S△PCF=CD•DE﹣EK•KP﹣DE•DF﹣PC•FC=t2﹣2t+5(0≤t≤1).当S=4.2时,t2﹣2t+5=4.2,解得:t=1±.∵0≤t≤1,∴t=1﹣.综上所述:当点E在AB上时,S=t2﹣4t+5(0≤t≤2),当S=4.2时,t=2﹣;当点E 在AD上时,S=t2﹣2t+5(0≤t≤1),当S=4.2时,t=1﹣.25.如图,在直角坐标系中,抛物线y=a(x﹣)2+与⊙M交于A,B,C,D四点,点A,B在x轴上,点C坐标为(0,﹣2).(1)求a值及A,B两点坐标;(2)点P(m,n)是抛物线上的动点,当∠CPD为锐角是,请求出m的取值围;(3)点e是抛物线的顶点,⊙M沿cd所在直线平移,点C,D的对应点分别为点C′,D′,顺次连接A,C′,D′,E四点,四边形AC′D′E(只要考虑凸四边形)的周长是否存在最小值?若存在,请求出此时圆心M′的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)把点C坐标代入抛物线解析式即可求出a,令y=0可得抛物线与x轴的交点坐标.(2)根据题意可知,当点P在圆外部的抛物线上运动时,∠CPD为锐角,由此即可解决问题.(3)存在.如图2中,将线段C′A平移至D′F,当点D′与点H重合时,四边形AC′D′E 的周长最小,求出点H坐标即可解决问题.【解答】解:(1)∵抛物线y=a(x﹣)2+经过点C(0,﹣2),∴﹣2=a(0﹣)2+,∴a=﹣,∴y=﹣(x﹣)2+,当y=0时,﹣(x﹣)2+=0,∴x1=4,x2=1,∵A、B在x轴上,∴A(1,0),B(4,0).(2)由(1)可知抛物线解析式为y=﹣(x﹣)2+,∴C、D关于对称轴x=对称,∵C(0,﹣2),∴D(5,﹣2),如图1中,连接AD、AC、CD,则CD=5,∵A(1,0),C(0,﹣2),D(5,﹣2),∴AC=,AD=2,∴AC2+AD2=CD2,∴∠CAD=90°,∴CD为⊙M的直径,∴当点P在圆外部的抛物线上运动时,∠CPD为锐角,∴m<0或1<m<4或m>5.(3)存在.如图2中,将线段C′A平移至D′F,则AF=C′D′=CD=5,∵A(1,0),∴F(6,0),作点E关于直线CD的对称点E′,连接EE′正好经过点M,交x轴于点N,∵抛物线顶点(,),直线CD为y=﹣2,∴E′(,﹣),连接E′F交直线CD于H,则当点D′与点H重合时,四边形AC′D′E的周长最小,设直线E′F的解析式为y=kx+b,∵E′(,﹣),F(6,0),∴可得y=x﹣,当y=﹣2时,x=,∴H(,﹣2),∵M(,﹣2),∴DD′=5﹣=,∵﹣=,∴M′(,﹣2)。