机械设计第十二章滑动轴承
《机械基础》第十二章轴承教案
《机械基础》教案课题第十二章轴承课型理论课课时2授课班级授课时间授课教师教材分析本节课的内容是关于《机械基础》中的第十二章。
要求学生理解机械基础的功用、结构,课标要求是掌握机械基础的作用。
选用的教材是由中国劳动社会保障出版社出版的《机械基础》(第七版),学习内容是机械基础的内容和各项方法。
学情分析知识储备:对机械有着初步的了解。
能力水平:熟悉机械基础的发展史。
学习特点:学习、接受新知识能力较弱,尤其是理论性强的知识,不能充分利用课余时间学习。
学习目标知识目标:理解滚动轴承的基本知识。
能力目标:能够掌握滑动轴承的基本内容。
素质目标:1.认识到机械的重要性。
2.积极参与课堂,能够表达自己的观点和想法。
学习重难点教学重点:1. 滚动轴承的基本知识。
2.滑动轴承的基本内容。
教学方法讲授法、讨论法、演示法、实物教学法课前准备教师准备:教学课件学生准备:课前预习教学媒体多媒体教室、多媒体课件教学过程教学环节教师活动设计学生活动设计设计意图活动一:创设情境生成问题1.情境导入让学生阅读教材导入情景,引导学生思考:轴承基本知识。
2.展示学习目标认识到轴承的重要性。
掌握轴承基本知识的具体内容。
1.阅读导入情景,思考教师提问,结合生活中的实际,认真回答。
2.查看并记住本节任务的学习目标。
1.通过情景问话,引出本课主题。
同时激发学习兴趣。
2.通过课件展示本节任务,让学生明确课堂任务。
活动二:调动思维探究新知一.导入新课:组织教学、吸引学生注意力,使学生进入上课状态。
二.1.新课讲解:借助PPT讲授机械基础基本知识内容,利用课件进行讲授,对比课件中的构造简图,对轴承基本知识有一个初步的了解。
轴承支承转动的轴及轴上零件,以保证轴的旋转精度,减少轴与轴座之间的摩擦和磨损滚动轴承滑动轴承12—1 滚动轴承一、滚动轴承的结构和类型1.滚动轴承的结构学习机械基础基本知识的总体认知(1)听课、思考、结合生活实际,认真回答教师提出的问题。
濮良贵《机械设计》(第9版)章节题库-第12章 滑动轴承【圣才出品】
第12章 滑动轴承一、选择题1.某部分式向心滑动轴承,在混合摩擦状态下工作,设轴颈d =100mm ,轴转速n =10r/min ,轴瓦材料的[p]=150MPa ,[v]=4m/s ,[pv]=12MPa·m/s ,B/d =1.2,则此轴承能承受的最大径向载荷为( )。
A .1800kNB .2880kNC .3000kND .3880kN【答案】A【解析】根据滑动轴承的设计准则,v≤[v],p =F/(dB )≤[p],pv≤[pv],可知v =πdn/60=π×100×10-3×10/60m/s =0.052m/s <[v]=4m/s ,满足要求。
F≤dB[p]=100×1.2×100×150N =1800N36[] 1.2100101210N 2750kN 10ππ60B pv F n -⨯⨯⨯⨯≤==⨯所以,F≤1800kN。
2.设计动压式液体摩擦滑动轴承时,如其他条件不变,当相对间隙φ=Δ/d 减小时,承载能力将( )。
A .变大B .变小C.不变D.不确定【答案】A【解析】根据公式F=ηωdBC p/φ2可知,轴承的承载能力与φ2成反比。
因此,φ减小时,F将增大。
3.在非液体摩擦滑动轴承设计中,限制pv值的主要目的是( )。
A.防止轴承过度磨损B.防止轴承因发热而产生塑性变形C.防止轴承因过度发热而产生胶合D.防止轴承因过度发热而产生裂纹【答案】C【解析】轴承的发热量与其单位面积上的摩擦功耗fpv成正比(f是摩擦系数),限制pv值就是限制轴承的温升。
防止轴承过热产生胶合失效。
4.在加工精度不变时,增大( )不是提高动压润滑滑动轴承承载能力的正确设计方法?A.轴径B.偏心率C.轴承宽度D.润滑油粘度【答案】A【解析】影响动压润滑滑动轴承承载能力的主要参数有宽径比B/d、相对间隙Ψ以及润滑油粘度的影响,同时在其他条件不变的情况下,h min愈小则偏心率ε愈大,轴承的承载能力就愈大。
第12章%20%20滑动轴承复习题
第12章滑动轴承复习题一、选择题10-1.滑动轴承材料应有良好的嵌藏性是指________。
A.摩擦系数小B.顺应对中误差C.容纳硬污粒以防磨粒磨损D.易于跑合10-2.下列各材料中,可作为滑动轴承衬使用的是________。
A.ZchSnSb8-4 B. 38SiMnMoC.GCr15 D. HT20010-3.在非液体摩擦滑动轴承设计中,限制p值的主要目的是________。
A.防止轴承因过度发热而胶合B.防止轴承过度磨损C.防止轴承因发热而产生塑性变形D.防止轴承因发热而卡死10-4.在非液体摩擦滑动轴承设计中,限制pv值的主要目的是________。
A.防止轴承因过度发热而胶合B.防止轴承过度磨损C.防止轴承因发热而产生塑性变形D.防止轴承因发热而卡死10-5.润滑油的主要性能指标是________。
A.粘性B.油性C.压缩性D.刚度10-6.向心滑动轴承的偏心距e随着________而减小。
A.转速n增大或载荷F的增大B.n的减小或F的减小C.n的减小或F的增大D.n增大或F减小10-7.设计动压向心滑动轴承时,若通过热平衡计算发现轴承温升过高,在下列改进设计的措施中有效的是________。
A.增大轴承的宽径比B/d B.减少供油量C.增大相对间隙D.换用粘度较高的油10-8.动压向心滑动轴承,若其它条件均保持不变而将载荷不断增大,则________。
A.偏心距e增大B.偏心距e减小C.偏心距e保持不变D.增大或减小取决于转速高低10-9.设计动压向心滑动轴承时,若宽径比B/d取得较大,则________。
A.轴承端泄量大,承载能力高,温升高B.轴承端泄量大,承载能力高,温升低C.轴承端泄量小,承载能力高,温升低D.轴承端泄量小,承载能力高,温升高10-10.一流体动压滑动轴承,若其它条件都不变,只增大转速n,其承载能力________。
A.增大B.减小C.不变D.不会增大10-11.设计流体动压润滑轴承时,如其它条件不变,增大润滑油粘度,温升将________。
第12章滑动轴承
二、滑动轴承的分类
按承载 方向分 径向轴承 ——承受径向载荷 止推轴承 ——承受轴向载荷
分
类
按润滑 状态分 按承载 机理分
液体润滑滑动轴承 不完全液体润滑滑动轴承 自润滑滑动轴承 液体动压润滑轴承和结构的设计;轴瓦的结构设计和 轴承材料的选取;轴承的结构参数的确定;润
滑剂的选取及其供应;轴承的工作能力及热平
衡计算。
§12-2 滑动轴承的主要结构形式
一、 整体式径向滑动轴承 组成: 整体轴承座和由减摩材料 制成的整体轴瓦。 特点: 1) 结构简单,成本低廉。 2) 因磨损而造成的间隙无法调整。 3) 只能沿轴向装拆。
油杯孔
轴承座
轴承
应用场合:低速、轻载或间歇性工作的机器中。
厚壁轴瓦
具有足够的强度和刚 度,可降低对轴承座 孔的加工精度要求。
强度足够的材料可
单一材料
以直接作成轴瓦,
如黄铜,灰铸铁。
轴瓦强度不足,故 两种材料 采用多种材料制作
轴瓦。
铸造轴瓦
铸造工艺性好,单件、 大批生产均可,适用 于厚壁轴瓦。
只适用于薄壁轴瓦,
卷制轴套
具有很高的生产率。
二、轴瓦的定位方法 目的:防止轴瓦与轴承座之间产生轴向和周向的相 对移动。 轴向 定位
<0.1 0.1~0.3 0.3~0.6 0.3~1.2 1.2~2.0
平均压力 p< (3~7.5) Mpa
L-AN150 L-AN100、150 L-AN100 L-AN68、100 L-AN68
注: 1)表中润滑油是以40℃时的运动粘度为基础的牌号 2)不完全液体润滑,工作温度<60℃
三、固体润滑剂及其选择 特点:可在滑动表面形成固体膜。 适用场合:用于一些有特殊要求的场合。 使用方式:
第十二章滑动轴承
二、摩擦状态 1.干摩擦 固体表面直接接触,因而 →功耗↑ 磨损↑ 不许出现干摩擦! 2.边界摩擦 运动副表面有一层厚度<1 μ m 的薄油膜, 不足以将两金属表面分开,其表面微观高峰 部分仍将相互搓削。
vv
温度↑ →烧毁轴瓦
v
比干摩擦的磨损轻, f ≈ 0.1~0.3 3.液体摩擦 有一层压力油膜将两金属表面隔开,彼此不 直接接触。 摩擦和磨损极轻, f ≈ 0.001~0.01
v
在一般机器中,处于以上情况的混合状态。 边界摩擦
f
混合摩擦 液体摩擦
o
摩擦特性曲线
η n/p
称无量纲参数η n/p 为轴承特性数η -动力粘度, p-压强, n-每秒转数。
三、磨损 典型的磨损过程 1、磨合磨损过程 在一定载荷作用下形成一 个稳定的表面粗糙度,且在以 后过程中,此粗糙度不会继续 改变,所占时间比率较小。
二、轴瓦的结构
厚壁轴瓦 卷制轴套 薄壁轴瓦 轴瓦非承载区内表面开有进油口和油沟,以利于润滑油均匀分布 在整个轴径上。 进油孔 油沟 F
整体轴套
油沟形式
d
宽径比 B/d----轴瓦宽度与轴径直径之比, 是重要参数。 液体润滑摩擦的滑动轴承: 非液体润滑摩擦的滑动轴承: B/d=0.5~1 B/d=0.8~1.5
常采用自动调心式轴承,一般 B/d=0.5~1.5。
2、止推(推力)滑动轴承 作用:用来承受轴向载荷 结构特点:由轴承座和止推轴颈组成
a)实心式
b)空心式
c)单环式
d)多环式
§12-2
滑动轴承的失效形式、轴(轴承衬)瓦材料、结构 和轴承润滑
一、失效形式: 1、磨粒磨损 2、刮伤 3、胶合 4、疲劳剥落 5、腐蚀
机械设计 第十二章 滑动轴承
p 6v 3 (h h0 ) x h
详细推导
F
x
c
b ho
v
o
y
a
流体动力润滑的必要条件是:
◆ ◆ ◆
相对运动的两表面间构成楔形空间。 楔形空间中充满具有粘性的液体。 两板相对运动的结果,应使液体在粘性力的作用下由楔形空间的大端 流向楔形空间的小端 。
润滑脂牌号表
滑动轴承润滑剂的选择
二、润滑油及其选择
◆ ◆ ◆
滑动轴承润滑剂的选择2
特
点: 有良好的流动性,可形成动压、静压或边膜界润滑膜。
适用场合:不完全液体滑动轴承和完全液体润滑滑动轴承。 选择原则:主要考虑润滑油的粘度。 转速高、压力小时,油的粘度应低一些;反之,粘度应高一些。 高温时,粘度应高一些;低温时,粘度可低一些。
v [v]
4.选择配合
[v]—材料的许用滑动速度 一般可选H9/d9或H8/f7、H7/f6
[p]、[v]、[ pv ]的选择
止推滑动轴承的设计计算
液体动力润滑径向滑动轴承的设计计算
一、流体动力润滑基本方程的建立
液体动力润滑径向滑动轴承的设计计算1
对流体平衡方程(Navier-Stokes方程)作如下假设,以便得到简化 形式的流体动力平衡方程。这些假设条件是 : u ( ) 。 ◆ 流体为牛顿流体,即 y ◆ 流体的流动是层流,即层与层之间没有物质和能量的交换;
◆ 轴承工作能力取决于hlim,它与η、ω、Δ和F等有关,应保证hlim≥[h]。
液体动力润滑径向滑动轴承的设计计算
液体动力润滑径向滑动轴承的设计计算4
三、径向滑动轴承的几何关系和承载量系数 最小油膜厚度:hmin= δ-e = rψ(1-χ) 其中: 相对间隙,ψ = δ / r = Δ / d ψ—
第12章机械零件润滑设计ppt课件
(12.4)
d1和d2 —— 轴环的外径和内径; [p] —— 许用压力,见附表6.5 。
d2
d
d
d
d2
d
R1
d0
d0
L1 L1 bK
d0
d1
d0
(a)实心式
(b)单环式 (c)空心环式
(d)多环式
图12.2 非液体润滑止推轴承
(2)校核轴承的 pv 值 轴承的 p 和 v 值分别为
V dn
60 1000
F n O'
O hmin
(c) 形成油膜 不稳定运行
图12.3 径向滑动轴承形成流体动力润滑的过程
此时,由于轴承内的摩擦阻力仅为液体的内阻力,故 摩擦系数达到最小值。理论和实践证明,在其它条件不变 时轴颈转速愈高,轴颈中心愈接近轴承孔中心。
F O'
n O
(d)n>>0 稳定运行 图12.3 径向滑动轴承形成流体动力润滑的过程
12.2.2 径向滑动轴承的几何关系和承载量系数
1.几何关系与膜厚计算
图12.4 径向滑动轴承几何参数与压力分布
轴承中心和轴颈中心的连线 OO1 与载荷 F(作用在
轴心)形成的夹角 a 称为偏位角。轴承孔和轴颈直径分 别用 D 和 d 表示,则轴承直径间隙为: = D – d 。半径
间隙为轴承孔半径 R 与轴颈半径 r 之差: = R – r =/2。
直径间隙与轴颈公称直径之比称为相对间隙,以 表示:
dr
(12.6)
当轴颈稳定运转时,轴心 O 与轴承中心 O1 的距ቤተ መጻሕፍቲ ባይዱ,
称为偏心距,用 e 表示。而偏心距 e 与半径间隙 的比值, 称为偏心率,并以 表示:
第12章滑动轴承PPT课件
邓 召
错动。
义
轴承盖上部开有螺纹孔,用以安装油杯。
轴瓦也是剖分式的,通常由下轴瓦承受载荷。
为了节省贵重金属或其它需要,常在轴瓦内 表面上浇注一层轴承衬。
在轴瓦内壁非承载区开设油槽,润滑油通过 油孔和油槽流进轴承间隙。
轴承剖分面最好与载荷方向近似垂直,多数 * 轴承的剖分面是第12水章滑平动轴承的(也有做成6倾斜的)。
用的结构形式有空心式,单环式和多环式, 下
其结构及尺寸见下图。通常不用实心式轴径,
邓 召
因其端面上的压力分布极不均匀,靠近中心 义
处的压力很高,对润滑极为不利。
空心式轴径接触面上压力分布较均匀,润滑条 件较实心式有所改善。
单环式是利用轴颈的环形端面止推,而且可以 利用纵向油槽输入润滑油,结构简单,润滑方 便,广泛用于低速,轻载的场合。
学习目标
滑动轴承的特点和应用场合;对滑动轴承的典型结 构、轴瓦材料及其选用原则有一较全面的认识;掌 握不完全液体润滑滑动轴承和液体动力润滑径向滑 动轴承的设计原理及设计方法 。
*
第12章滑动轴承
1
§12-1 概述
机
根据轴承中摩擦性质的不同,可把轴承分为滑动轴承和滚动轴
械 设
承两大类。
计
滚动轴承由于摩擦系数低,起动阻力小,且已标准化,对设计、下
另外,只能从轴颈端部装拆,对于重型机器的 轴或具有中间轴颈的轴,装拆很不方便,甚至 无法实现
所以这种轴承多用在低速、轻载或间歇性工作的 机器中。
*
第12章滑动轴承
5
(二)对开式径向滑动轴承
机 械
设
对开式滑动轴承由轴承座、轴承盖、剖分式 计
轴瓦和双头螺柱等组成。
下
第十二章_滑动轴承
与轴的中心线垂直。 (2)推力滑动轴承:只能承受轴向载荷,轴承上的反作用力
与轴中心线方向一致。 (3)径向止推滑动轴承,又称复合滑动轴承,同时动压润滑轴承、静压润滑轴承、动静压润滑轴承、非流体润 滑轴承、自润滑轴承、磁悬浮润滑轴承和电磁悬浮润滑轴承 等。 3.按轴承所使用的润滑剂分 液体润滑轴承、气体润滑轴承、脂润滑轴承和固体润滑轴承 等。
(4)固体润滑剂: 固体润滑剂主要有石墨、二硫化钼、动物蜡u、聚四氟乙烯、 聚氯氟乙烯、尼龙和某些软金属(如铅、锡、铟等)。固体润 滑剂常用于自润滑轴承。
3、润滑剂的性能指标 (1)润滑油的性能指标:粘度、内油性、闪点、凝点、酸值、 残碳量等。
四、润滑方式及润滑装置 滑动轴承润滑的供油方式分为间歇式相连续式。 1、手工润滑 间歇式是利用油壶或油枪通过轴承座上的油孔由人工定时
(1)整体式结构 轴承座通常采用铸铁铸造而成, 轴承套采用减摩性好的材料制成。 优点:构造简单,价格较低,常 用于低速、载荷不大的间歇工作 的机器上。 缺点:
1)当滑动表面磨损而间隙过大时,无法调整轴承间隙; 2)轴颈只能从端部装入,对于粗重的轴或具有中轴颈的轴安 装不便。
(2)剖分式结构轴承
剖分式轴承由轴承座、轴承盖、剖 分轴瓦、轴承盖螺柱等组成
3、油环润滑 如图14—19所示,将一油环套在轴颈上,油环下部浸在
油中,当轴颈旋转时,靠摩擦力带动油环旋转,从而把油 带入轴承进行润滑。
4、压力循环润滑
这是利用油泵将润滑油经输油管送入轴承的高效润滑方式, 供油充分、散热性好,压力及供油量均可调节。但结构复杂、 费用高。因而多用于高速、重载轴承的润滑。
二、滑动轴承材料滑动轴承的失效形式:轴承的摩擦表面的磨 损、胶合与疲劳破坏,以及用双层金属或三层金属制作的轴瓦 的轴承衬的脱落。
河科大机械设计作业第12.13章作业解答[1]
第十二章滑动轴承一、分析与思考题12-20 在滑动轴承上开设油孔和油槽时应注意哪些问题?答: 1、应开设在非承载区;2、油槽沿轴向不能开通。
12-21 一般轴承的宽径比在什么范围内?为什么宽径比不宜过大或过小?答:一般B/d为0.3—1.5;B/d过小,承载面积小,油易流失,导至承载能力下降。
但温升低;B/d过大,承载面积大,油易不流失,承载能力高。
但温升高。
12-22 滑动轴承常见的失效形式有哪些?答:磨粒磨损,刮伤,咬粘(胶合),疲劳剥落和腐蚀。
12-23 对滑动轴承材料的性能有哪几方面的要求?答: 1、良好的减摩性,耐磨性和抗咬粘性。
2、良好的摩擦顺应性,嵌入性和磨合性。
3、足够的强度和抗腐蚀能力。
4、良好的导热性、工艺性、经济性。
12-24 在设计滑动轴承时,相对间隙ψ的选取与速度和载荷的大小有何关系?答:速度愈高,ψ值应愈大;载荷愈大,ψ值应愈小。
12-25 验算滑动轴承的压力p、速度v和压力与速度的乘积pv,是不完全液体润滑滑轴承设计的内容,对液体动力润滑滑动轴承是否需要进行此项验算?为什么?答:也应进行此项验算。
因在起动和停车阶段,滑动轴承仍处在不完全液体润滑状态。
另外,液体动力润滑滑动轴承材料的选取也是根据[p]、[pv]、[v]值选取。
12-26 试说明液体动压油膜形成的必要条件。
答: 相对滑动的两表面间必须形成收敛的楔形间隙;有相对速度,其运动方向必须使油由大端流进,小端流出; 润滑油必须有一定的粘度,且充分供油; 12-27 对已设计好的液体动力润滑径向滑动轴承,试分析在仅改变下列参数之一时,将如何影响该轴承的承载能力。
⑴ 转速n=500r/min 改为n=700r/min ; ⑵ 宽径比B/d 由1.0改为0.8;⑶ 润滑油由采用46号全损耗系统用油改为68号全损耗系统用油 ⑷ 轴承孔表面粗糙度由R z =6.3μm 改为R z =3.2μm 。
答:(1)承载能力↑ (2)承载能力↓ (3)η↑,承载能力↑(4)R Z ↓,允许h min ↓,偏心率↑,承载能力↑。
濮良贵《机械设计》(第10版)教材辅导书(滑动轴承)【圣才出品】
第12章滑动轴承12.1 复习笔记【知识框架】【通关提要】本章主要介绍了滑动轴承的失效形式及材料、不完全流体润滑滑动轴承的设计计算以及流体动力润滑的形成条件。
学习时需要重点掌握以上内容。
本章主要以选择题、填空题和简答题的形式考查,判断题和计算题较少。
复习本章时以理解记忆为主,计算为辅。
【重点难点归纳】一、概述(见表12-1-1)表12-1-1 滑动轴承的类型及主要内容二、滑动轴承的主要结构形式、失效形式及常用材料(见表12-1-2)表12-1-2 滑动轴承的主要结构形式、失效形式及常用材料三、轴瓦结构(见表12-1-3)表12-1-3 轴瓦结构四、滑动轴承润滑剂的选用1.润滑脂及其选择润滑脂常用在要求较低、难以经常供油,或者低速重载以及作摆动运动之处的轴承中。
选择润滑脂品种的一般原则为:①当压力高和滑动速度低时,选择针入度小的。
②所用润滑脂的滴点,一般应比轴承的工作温度高约20~30℃。
③不同工作环境选用合适的润滑脂,如在潮湿的环境下,应选择防水性强的钙基或铝基润滑脂。
2.润滑油及其选择当液体动压轴承转速高、压力小时,应选粘度较低的油,在高温条件下工作的轴承,润滑油的粘度应比常温轴承的高一些。
3.固体润滑剂固体润滑剂可以在接触面上形成固体膜以减小摩擦阻力,通常只用于一些有特殊要求的场合。
五、不完全流体润滑滑动轴承设计计算(见表12-1-4)表12-1-4 不完全流体润滑滑动轴承设计计算六、流体动力润滑径向滑动轴承设计计算1.流体动力润滑的基本方程流体动力润滑滑动轴承的基本方程(一维雷诺方程)∂p/∂x=6ηυ(h-h0)/h3式中,p为两板间油膜压力;η为润滑油的动力粘度;v为表面滑动速度;h为油膜厚度;h0为∂p/∂x=0时的油膜厚度。
从上式中可以得知,形成动压油膜的必要条件如下:(1)两工件之间的间隙必须有楔形间隙。
(2)两工件表面之间必须连续充满润滑油或其他液体。
(3)两工件表面必须有相对滑动速度。
机械设计第十二章滑动轴承
摩擦:滚动摩擦滚动摩擦轴承滚动轴承滑动摩擦滑动摩擦轴承滑动轴承第十二章滑动轴承第一节概述1、滑动轴承应用场合:1)工作转速特高轴承,如汽轮发电机;2)要求对轴的支撑位置特别精确的轴承,如精密磨床;3)特重型的轴承,如水轮发电机;4)承受巨大的冲击和振动,如轧钢机;5)根据工作要求必须做成剖分式的轴承,如曲轴轴承;6)在特殊的工作条件下(如在水中或腐蚀性介质中)工作的轴承,如军舰推进器的轴承;7)在安装轴承处的径向空间尺寸受到限制时,也常采用滑动轴承,如多辊轧钢机。
2、分类①按载荷方向:径向(向心)轴承、止推轴承、向心止推②按接触表面之间润滑情况:液体滑动轴承、非液体滑动轴承液体滑动轴承:完全是液体非液体滑动轴承:不完全液体润滑轴承、无润滑轴承不完全液体润滑轴承(表面间处于边界润滑或混合润滑状态)无润滑轴承(工作前和工作时不加润滑剂)③液体润滑承载机理:液体动力润滑轴承(即动压轴承)液体静压润滑轴承(即液体静压轴承)3、如何设计滑动轴承(设计内容)1)轴承的型式和结构2)轴瓦的结构和材料选择3)轴承的结构参数4)润滑剂的选择和供应5)轴承的工作能力及热平衡计算4.特点:承载能力大,工作平稳可靠,噪声小,耐冲击,吸振,可剖分等特点。
第二节滑动轴承的典型结构一、整体式径向滑动轴承:特点:结构简单,易于制造,端部装入,装拆不便,轴承磨损后无法调整。
应用:低速、轻载或间歇性工作的机器中。
二、对开式径向滑动轴承:装拆方便,间隙可调,应用广泛。
特点:结构复杂、可以调整磨损而造成的间隙、安装方便。
应用场合:低速、轻载或间歇性工作的机器中。
三、止推式滑动轴承:多环式结构,可承受双向轴向载荷。
第三节滑动轴承的失效形式及常用材料一、失效形式1、磨粒磨损:硬颗粒对轴颈和轴承表面起研磨作用。
2、刮伤:硬颗粒划出伤痕。
3、胶合:轴承温度过高,载荷过大,油膜破裂或供油不足时,轴颈和轴承相对运动表面材料发生粘附和迁移,从而造成轴承损坏。
机械基础 第十二章 轴承
《机械基础》第十二章
轴承
轴承 轴承是机器中用来支承 转动的轴和轴上零件的重要 零部件,它能保持轴的正常 工作位置和旋转精度,减小 转动时轴与支承间的摩擦和 磨损,轴承性能的好坏直接 影响机器的使用性能。因此, 轴承是机器的重要组成部分。
滚动轴承
滚动轴承具有摩擦力矩小,易起动, 载荷,转速及工作温度的适用范围较广, 轴向尺寸小,润滑维修方便等优点,滚动 轴承已标准化,在机械中应用非常广泛。
滚动轴承的结构特点
(4)极限转速 滚动轴承在一定的载荷及润滑条件下,轴承许可的最高转速称为极限转速。转速过高会产生高温,
润滑失效产生破坏。
提高轴承极限转速的措施有:提高轴承精度,选用较大的游隙,改用特殊材料及结构的保持架,采 用循环润滑、油雾润滑或喷射润滑,设置冷却系统等。
滚动轴承的 轴向固定
《机械基础》第十二章
图12-6 滚动轴承的角偏位
滚动轴承的结构及特点
滚动轴承的结构特点
(3)游隙 轴承内、外滚道与滚动体之间的间隙量称为游隙,即为当一个 座圈固定时,另一座圈沿径向或轴向的最大移动量。如图12-7所示 。游隙可影响轴承的运动精度、寿命、噪声、承载能力等。
图12-7 滚动轴承的游隙
滚动轴承的结构及特点
滚动体是滚动轴承形成滚动摩擦不可 缺少的核心元件。保持架的作用是将滚动 体均匀隔开,以减少滚动体之间的相互摩 擦和磨损,常见的保持架结构形式如图 12-4所示。
图12-3 滚动体
图12-4 滚动体保持架
滚动轴承的结构及特点
滚动轴承的结构特点
(1)公称接触角α 滚动轴承的公称接触角 α指轴承的径向平面(垂直 于轴线)与滚动体和滚道接 触点的公法线之间的夹角, 如图12-5所示。
《机械设计基础》第十二章-滑动轴承解析
1、含油轴承 用粉末冶金法制得,具有多孔性组织,空隙内可贮存润滑 油,加一次油可使用较长时间,用于加油不方便的场合
2、灰铸铁、耐磨铸铁 低速轻载场合 3、橡胶轴承 具有较大的弹性,能减轻振动使运转平稳 4、塑料轴承 摩擦系数低,可塑性、跑合性能良好,耐磨,耐蚀
导热性差,膨胀系数大,容易变形,一般作轴承衬使用
上轴瓦为非承载区。
F
润滑油应由非承载区引入,所以在顶部
开进油孔。
在轴瓦内表面,以进油口为中心沿纵向、 斜向或横向开有油沟,以利于润滑油均匀分布 在整个轴颈上。
油沟的形式
B
一般油沟离轴瓦端面保持一定距离,以防止漏油。
当载荷垂直向下或略有偏斜时,轴承中分面常为水平方向。 当载荷方向有较大偏斜时,则轴承中分面斜着布置(通常倾斜45º)。
跑合,常用于高速、重载的轴承。
价格较贵,机械强 度较差,只能作为轴承 衬材料浇铸在钢、铸铁 或青铜轴瓦上。青铜的 导热性良好。
这种合金在110 ℃左右开始软化,为了安全,在设计、运行中常 将温度控制在70℃~80℃。
2、铅锑轴承合金
各方面性能与锡锑轴承合金相近,但这种材料较脆,不宜承受较 大的冲击载荷。一般用于中速、中载的轴承。
§12-1 滑动轴承的特点、应用
一、滑动轴承的特点
优点:1)普通滑动轴承结构简单,制造、拆装方便; 2)具有良好的耐冲击性和吸振性; 3)运转平稳,旋转精度高; 4)高速时比滚动轴承的寿命长; 5)可做成剖分式。
缺点:1)维护复杂; 2)润滑条件高; 3)边界润滑时轴承的摩擦损耗较大。
二、滑动轴承的应用
根据上述计算,可知选用铸锡锌铅青铜(ZQSn6-3-3)作为轴瓦材 料是足够的,其[p]=8N/mm2,[pv]=10N·m/(mm2·s)。
机械设计课后习题答案 机械工业出版社(12章)
习题复习
6308/P53—推力球轴承,尺寸系列为03,内径代号为08,表 示内径d=8*5=40mm,公差等级为P5级,游隙代号为C3组。 N307/P2—圆柱滚子轴承,尺寸系列为03,内径代号为 07, 表示内径d=7*5=35mm,公差等级为 P2 级。
习题复习
12-5.一非液体摩擦径向滑动轴承,轴颈直径d=20mm, 宽径比B/d=1,轴颈转速n=1460r/min,轴瓦材料为 ZCuAl10Fe3,试问它可以承受的最大径向载荷是多 少? [ 解:由轴瓦材料查表12-2得: p ] =20MPa, ] =5m/s, [v pv =15MPa·m/s 由B/d=1,d=20mm,得B=20mm
解: 7207AC角接触球轴承,a=25° (1)计算内部轴向力S 由表12-13查得 S=0.68Fr ∴S1=0.68Fr1=0.68*1040=707.2N S2=0.68Fr2=0.68*3390=2305.2N S1、S2的方向见下图
习题复习
2.计算轴承所受的轴向载荷 ∵S1+Fa=(707.2+870)N<S2=2305.2N S1+Fa=(707.2+870)N S2=2305.2N 轴有向右移动的趋势,轴承1被“放松”,轴承2被“压紧”.轴承所 受的轴向载荷为 轴承1 Fa1=S2-Fa=2305.2-870=1435.2N 轴承2 Fa2=S2=2305.2N 3.计算当量动载荷P 查手册7207AC型轴承的基本额定动载荷Cr=29000N Cor=19200N e=0.68
习题复习
12-1.摩擦状态有哪几种?各有何特点?
答:按相对运动表面的润滑情况,摩擦可分为以下几种状态: (1)干摩擦:两摩擦表面间不加任何润滑剂而直接接触的摩擦。 摩擦功损耗大,磨损严重,温升很高,会导致轴瓦烧毁。 (2)边界摩擦:两摩擦表面间有润滑油存在,在金属表面间形成一层 薄的油膜,即边界油膜。 边界摩擦不能完全消除但能有效地减轻磨损。 (3)液体摩擦:两摩擦表面间有充足的润滑油,一定条件下能形成足 够厚的润滑油膜将两金属表面完全隔开。 理想的润滑状态,摩擦因数很小。 (4)混合摩擦:两摩擦表面间的摩擦状态介于边界摩擦和液体摩擦之间。 可有效地降低摩擦,降低磨损。
机械原理第十二章 滑动轴承
d D
整体轴套
轴瓦(衬 背) 轴承衬
卷制轴套
剖分式轴瓦有厚壁和薄壁轴瓦之分。 厚壁轴瓦是将轴承合金浇注在青铜或钢制瓦背上。
薄壁轴瓦用双金属板连续轧制而成。
为提高轴承合金与轴瓦背的结合强度,防止脱落,常在轴瓦背 表面制出螺纹、凹槽及榫头结构。
厚壁轴瓦
薄壁轴瓦
为防止轴瓦在轴承座中转动,轴瓦端部设置凸缘作轴向定位, 也可用紧定螺钉或销钉将其固定在轴承座上。
二、常用滑动轴承材料 (一)金属材料
(1)轴承合金(巴氏合金或白合金): 嵌入性、顺应和磨合性好,不易胶合。但轴承合金的强度很
低,只能做轴承衬。适用于重载、中高速场合。
青铜: 锡青铜、铅青铜、铝青铜 (2) 铜合金
黄铜
较高的强度、较好的减摩性和耐磨性。应用广泛
锡青铜减摩性和耐磨性最好,用于中速、重载场合;铅青铜抗 粘附能力强,用于高速、重载场合;铝青铜的强度与硬度较高,抗 粘附能力差,用于低速、重载场合。 (3)铝基轴承合金 耐腐蚀性好和疲劳强度较高,减摩性也较好,适用于高速、重载 的场合 (4) 铸铁
第四节 非液体润滑滑动轴承设计
工程上应用较多且较容易实现的是非液体润滑滑动轴承。非 液体润滑滑动轴承的工作能力和使用寿命取决于轴承的减摩性能、 机械强度和边界膜的强度。实践表明,磨损和胶合是滑动轴承的 主要失效形式。
这类滑动轴承可靠的工作条件是:边界膜不破裂,维持粗糙 表面微腔内有液体润滑存在。由于边界膜破裂的因素很复杂,因 此,仍采用简化的条件性计算 。
(三)圆周速度v值验算
v dn [v]
60 1000
式中 n——轴颈的转速(r/min); [v]——轴颈圆周速度的许用值,m/s。
二、推力轴承的计算
机械设计第十二章滑动轴承
机械设计第十二章滑动轴承引言滑动轴承是一种常用的机械元件,广泛应用于各种机械设备中。
它是通过润滑油膜在轴承与轴之间形成润滑层,以减小摩擦和磨损,保证机械设备运行的稳定性和寿命。
本文将介绍滑动轴承的工作原理、分类、设计要点以及常见故障及解决方案。
工作原理滑动轴承是通过动摩擦来转移轴承所受载荷的。
当轴承受到载荷时,润滑油膜在轴承和轴之间形成,使轴与轴承之间的接触部分只有少量的接触点,从而减小了摩擦和磨损,实现了轴与轴承的相对滑动。
分类滑动轴承可以根据润滑方式、摩擦材料和工作方式等进行分类。
常见的分类如下:1.润滑方式–干摩擦滑动轴承:不需要润滑油膜来减少摩擦和磨损,常见的干摩擦滑动轴承有干燥轴承和自润滑轴承。
–液体润滑滑动轴承:液体润滑滑动轴承需要润滑油膜来减少摩擦和磨损,常见的滑动轴承有液体润滑轴承和液体静压轴承。
2.摩擦材料–金属滑动轴承:采用金属作为摩擦材料,常见的金属滑动轴承有铜合金轴承、铝合金轴承等。
–非金属滑动轴承:采用非金属材料作为摩擦材料,常见的非金属滑动轴承有塑料轴承、陶瓷轴承等。
3.工作方式–圆周速度相对:轴与轴承之间产生相对圆周速度。
–直线速度相对:轴与轴承之间产生相对直线速度。
设计要点在设计滑动轴承时,需要考虑以下几个要点:1.轴承负荷:根据轴承所受的载荷来选择合适的轴承类型和尺寸。
2.润滑方式:根据工作条件和要求选择合适的润滑方式,如干摩擦滑动轴承还是液体润滑滑动轴承。
3.摩擦材料:根据工作条件和要求选择合适的摩擦材料,如金属滑动轴承还是非金属滑动轴承。
4.润滑油膜厚度:根据载荷、转速和润滑条件等要素来计算和确定润滑油膜的厚度。
5.温度和密封:在特定的工作环境中,需要考虑温度和密封性能对轴承的影响。
常见故障及解决方案滑动轴承在实际应用中,可能会出现一些故障。
常见的故障及相应的解决方案如下:1.磨损:轴承表面磨损,造成摩擦增加或噪音增大。
–解决方案:选择合适的润滑方式和润滑油膜厚度,定期检查和更换润滑油。
机械设计4[1].12#滑动轴承
§4-4 流体润滑原理简介
(一)流体动力润滑:两相对运动的摩擦表面借助 流体动力润滑: 于相对速度而产生的粘性流体膜来平衡外载荷; 于相对速度而产生的粘性流体膜来平衡外载荷; (二)弹性流体动力润滑:高副接触中,接触应力 弹性流体动力润滑: 使表面产生局部弹性变形,在接触区形成弹性流 体动力润滑状态; (三)流体静力润滑:将加压后的流体送入摩擦表 流体静力润滑: 面之间,利用流体静压力来平衡外载荷;
du 即 : τ = η ( 4 6) dy
剪切 应力 动力 粘度 速度 梯度
Uh h u
x
y
u=0
13
b)运动粘度与动力粘度的换算关系: η 2 ν= m / s 粘—温曲线见 图4-9 密度 ρ
动力粘度η:主要用于流体动力计算.Pas 动力粘度 运动粘度ν:使用中便于测量.m2/s 运动粘度 2.油性(润滑性):润滑油在摩擦表面形成各种吸附膜 油性
23
径向轴承, 滑动轴承 :径向轴承,止推轴承
24
§12-2 径向滑动轴承的结构
整体式径向滑动轴承
对开式径向滑动轴承 对开式径向滑动轴承 径向
图15-18 斜剖 分式径向 径向滑动 分式径向滑动 轴承
25
26
27
28
29
§12-2 径向滑动轴承的结构
调心滑动轴承
可调间隙的滑动轴承
30
滑动轴承
MPa m / s
v=
πn ( d1 + d 2 )
60 × 1000 × 2
≤ [v ]
m/s
44
(上式中各参数见表12-6) 上式中各参数见表 )
中南大学考研试题
设计计算非液体滑动轴承时要验算: 设计计算非液体滑动轴承时要验算 1) ; 其目的是 p ≤ [ p] 2) 3)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体是连续的
一维雷诺方程
讨论 1)油膜压力沿 x 方向变化规律 由
• 对平行板 平行板间油膜压力沿 x 方向无 变化,等于入口处压力( )
( )成正比,因此限制 值也就是限制轴承的温升,
从而避免温度过高使润滑失效。对于连续运转轴承,通常
都应进行这项计算。
轴颈的转速,r/min
轴颈的圆周速度,m/s 轴承材料的 许用
3. 限制速度 :
值,见P280表12-2
当 过大,即使 和 值都在允许的范围内,轴
承也可能很快磨损,故还必须限制滑动速度。
。
油槽的 尺寸可 查相关 的手册
§12-5 滑动轴承润滑剂的选用
润滑目的:减小摩擦,降低磨损,冷却,防锈,防尘和吸振。 润滑剂分类:流体(液体为主),脂,固体。润滑油为常用。
一.润滑脂的选择
润滑脂是润滑油与金属皂的混合物,呈半固体形态
。其稠度大,不易流失,无冷却效果,物化稳定性差,
摩阻大,有缓冲、吸振作用、承载能力大,故只适合低
3)润滑油油性良好,与固 6)润滑油不可压缩。
体表面吸附牢固。 取截面x处的一个单元体分
移动板A 0
h
析,存在如下静力平衡条件:
静止板B y
化简后得: 考虑到假设 4)有: 于是: 积分得: 1.油层的速度分布
带入边界条件: 解得:
即:
移动板A 0
静止板B b y
h
2.润滑油的流量 假设:无侧漏,z方向尺寸无限大,则通过间隙高度为 的
层与层间靠内摩擦阻 力(粘性)带动前进 沿 方向按线性变化
油层间压力无变化,平行板间润滑油不产生压力
轴颈和轴瓦偏心时 两倾斜板的摩擦状况
c
a
d
b
润滑油不可压缩 “拥挤”形成压力
二. 流体动压润滑的基本方程——雷诺方程:
假设:1)粘度与压力和Y值无关。 4)润滑油是牛顿流体。
2)润滑油沿Z向无流动。 5)润滑油无质量。
钙基
钠基 锂基 铝基
抗水性好、耐热性差、价廉
润滑脂选择参
抗水性差、耐热性好、防腐性较好 看P284表12-3
抗水性和耐热性好
抗水性好、有防锈作用、耐热性差
选择原则
1.压力高、速度低时,选针入度小一些的;反之…。 2.轴承的工作温度应低于滴点温度的 2030 ℃ 。 3.钙基耐水不耐温,工作温度低于75℃,钠基耐温
⑥ 结构上要求轴承剖分时;
⑦ 特殊工作条件下(如水、腐蚀介质中)。
滑动轴承更有优势。
滑动轴承已标准化
二.类型
按承载分
向心滑动轴承 推力滑动轴承
动压轴承
按摩擦状态分 液体摩擦滑动轴承 静压轴承
非液体摩擦滑动轴承
三.几种摩擦状态(回顾)
相对运动的表面就有磨损,要改善磨损,用润滑油。
按表面的润滑情况将摩擦分为:
d d1
d2
轴承材料的
许用值,见P287表12-5
§12-7 液体动力润滑径向滑动轴承设计计算
润滑油把两个相对运动表面完全分隔开时的摩擦称为液 体摩擦,由于两固体表面并不接触,因此理论上不存在磨损, 摩擦阻力的大小也仅仅取决于润滑油的性质(主要是粘度)。
实现液体摩擦有两种方法:
1)输入压力油以平衡载荷,由于可在轴承未工作时就将两 表面分开,故称为静压轴承。
不耐水,工作温度低于115145℃,锂基最好, 但价格稍贵。工作温度低在-50100℃ 。
二.润滑油的选择 润滑油的物理和化学指标主要有:粘度、粘度指数、
油性、凝点、闪点、酸值和残碳量等。对于大多数滑动轴 承来讲,粘度是最主要的指标,也是选择轴承用油的主要 依据;对混合摩擦状态的滑动轴承来讲,则油性也是很重 要的指标。
1、干摩擦:不加润滑剂时,相
对运动的零件表面直接接触,这 样产生的摩擦称为干摩擦 (如真空 中)。 f=0.15~0.3
2、边界摩擦:两表面加入润滑油后
,在金属表面会形成一层边界膜,它 可能是物理吸附膜,也可能是化学反 应膜。不满足流体动压形成条件,或 虽有动压力,但压力较低,油膜较薄 时,在载荷的作用下,边界膜互相接 触,横向剪切力比较弱,这种摩擦状 态称为边界摩擦。 f=0.1左右,是轴 承的最低要求。
速(
)重载、难以经常供油的场合。
润滑脂 的主要指标是针入度和滴点。
针入性:重1.5N的锥体,于25°C恒温下5s后刺入的深度;
表征润滑脂稀稠
承载
针入性 润滑脂越稠 摩擦阻力
滴点:在规定的加热条件下,润滑脂从标准测量杯的孔口
滴下第一滴时的温度。表征耐高温的能力。
润滑脂工作温度一般应低于滴点20 30 °C 润滑脂有钙基、钠基和锂基之分,一般说来:
油性—润滑油在摩擦表面形成各种吸附膜和化学反应膜的 性能。指润滑油对固体表面的吸附能力,一般来讲, 润滑油中含极性分子团愈多,油性愈好。因此,动 物油油性最好,植物油油性次之,矿物油油性最差。
粘度—流体抵抗变形的能力称为粘度,以流体内摩擦阻力 表示。是衡量润滑油易流动性的一个指标。粘度愈 大,润滑油的内摩擦阻力愈大,愈不易流动,因而 承载能力愈大。
结构型式:
整体式
剖分式
轴瓦和轴承座一般采用过盈配合
为了向摩擦表面间 加注润滑剂,在轴承 上方开设注油孔
二.轴瓦的结构要素 • 壁厚 • 定位唇:防止轴瓦在轴承中移动
• 油室(腔):存油 • 油孔和油槽:将油引入轴承
油槽 油孔 油室 壁厚 定位唇
油槽的位置: 不要开在轴承的承载区内,否则将急剧降低轴承的承载能力
铸铁 轻载。、低速的轴瓦材料
非金属材料 石墨、塑料、橡胶、尼龙等
摩擦系数小、耐磨、耐腐蚀、承载低、热变形大
常用轴瓦及轴承材料的性能见P280表12-2
§12-4 轴瓦结构
一.轴瓦的形式和构造: 双金属轴瓦,三金属轴瓦,厚瓦,薄瓦。
双(三)金属轴瓦:节省贵重金属
单金属轴瓦:结构简单,成本低
双金属轴瓦的瓦背和轴承衬的联接形式见下表
5.腐蚀(化学磨损): 润滑剂在使用中不断氧化,生成酸性物质…; 氧对巴氏合金的腐蚀,SnO2、SnO; 硫对含银或铜轴承材料的腐蚀、润滑油中的水分…。
二.轴瓦及轴承衬承材料
轴瓦和轴承衬材料统称为轴承材料。
1.对轴承材料的要求
基本要求
耐磨性 磨损少 减摩性 摩擦系数小
其他要求: 抗胶合性 顺应性、嵌入性、跑合性 强度
d0=(0.4~0.6)d1
d=d1+2S d0=1.1d1
S=(0.1~0.3)d1 S1=(2~3)S
§12-3 滑动轴承的失效型式 及常用材料
一.滑动轴承的失效形式
1.磨粒磨损: 硬颗粒进入轴承间隙或嵌入轴承表面… 2.刮伤:轴承间隙中的硬颗粒和表面粗糙度的轮廓顶峰… 3.胶合(粘着磨损): 4.疲劳剥落(疲劳磨损):
一. 径向滑动轴承 1. 限制平均压强 :
轴承所承受的径向载荷,N
轴瓦材料的许用压 力,见P280表12-2
轴颈直径,mm
轴承宽度,mm,由B/d定
目的
是避免压强过大使边界膜破裂从而导致金属 直接接触产生的剧烈磨损。对于转速很低或间歇
转动的轴,只需进行这项计算。
2. 限制值 :
考虑到功热当量, 值与轴承单位面积的摩擦功耗
2)在一定条件下,利用轴颈转动起来后的泵油作用把油带 入摩擦表面,形成压力油膜将两摩擦表面分开。这种滑 动轴承称为液体动压轴承。 静压轴承本身价廉,但附属液压系统昂贵,故应用受限
;液体动压轴承应用要广泛的多,但应注意,由于存在起动 和停车,所以液体动压轴承还是存在固体间的摩擦和磨损的 。
一. 压力油膜形成的原理 轴颈和轴瓦同心时 两平行板的摩擦状况
• 运动粘度
动力粘度 与同温下该流体密度 的比值:
国际单位制
单位换算 物理单位
称为 St(斯)
常用单位
cSt(厘斯)
动力粘度经常用于滑动轴承的分析计算中,商品油则 常用运动粘度来标定。
不完全液体润滑轴承润滑油牌号参看P285表12-4 液体动压轴承润滑油牌号参看P53表4-1
润滑油选择原则
1)外载大 — 难形成油膜 — 选粘度高的油 2)速度高 — 摩擦大 — 选粘度低的油 3)温度高 — 油变稀 — 选粘度高的油 4)比压大 — 油易挤出 — 选粘度高的油
在钢或铜制成的轴瓦内表面上浇注一层轴承合金,这层轴承 合金称轴承衬,钢或铜制成的轴瓦基体称瓦背。
铜合金 强度高,承载能力大,耐磨性和导热性优于轴承合金
。但其可塑性差,不易跑合,与之相配的轴径须淬硬。
锡青铜 铅青铜 铝青铜
中速、中载或重载 高速重载 低速重载
粉末冶金 铁或铜粉末混入石墨压制烧结而成,多孔性 存油,用于载荷平稳、低速和加油不便场合
一. 滑动轴承的特点及其应用场合
由于结构与制造的原因,一般说来:滚动轴承摩阻小
、起动灵敏;标准化程度高,质优价廉;便于使用与维护
;故广泛应用于一般尺寸、中速、中载的一般工作条件下
和运动机械中。
但是,在下列情况:
① 载荷特重;
② 承受巨大冲击载荷和振动载荷;
③ 回转精度要求特高;
④ 转速特大;
⑤ 尺寸很大或很小;
3、液体摩擦:当两摩擦表面被流体
(液体或气体)完全隔开时,摩擦表 面不会产生金属间的直接摩擦,流体 分子层间的粘剪阻力就是摩擦力,这 种摩擦称为流体摩擦。 f=0.001~0.008
4、混合摩擦:当动压润滑条件不具备,且边界膜遭破坏时
,就会出现流体摩擦、边界摩擦和干摩擦同时存在的现象, 这种摩擦状态称为混合摩擦。 f=0.008~0.1
耐腐蚀性 导热性 工艺性 经济性
2. 常用材料
轴承合金 (白金或巴氏合金 )