中考数学总复习第一篇知识方法固基第三单元函数考点强化练9平面直角坐标系与函数的概念试题
中考数学平面直角坐标系和函数复习(知识点归纳+常考题型剖析)
中考数学平面直角坐标系和函数复习(知识点归纳+常考题型
剖析)
平面直角坐标系和函数相关概念
【基础知识归纳】
归纳一、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系
把坐标平面被x轴和y轴分割而成的四个部分
分别叫做第一象限、第二象限、第三象限、第四象限
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开
2. 函数的三种表示法
(1)列表法(2)图像法(3)解析法
3. 由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接。
中考数学复习考点知识归类讲解与练习01 平面直角坐标系与函数基本概念
中考数学复习考点知识归类讲解与练习专题01 平面直角坐标系与函数基本概念知识对接考点一、平面直角坐标系1.相关概念(1)平面直角坐标系(2)象限(3)点的坐标2.各象限内点的坐标的符号特征3.特殊位置点的坐标(1)坐标轴上的点(2)一三或二四象限角平分线上的点的坐标(3)平行于坐标轴的直线上的点的坐标(4)关于x轴、y轴、原点对称的点的坐标4.距离(1)平面上一点到x轴、y轴、原点的距离(2)坐标轴或平行于坐标轴的直线上两点间的距离(3)平面上任意两点间的距离5.坐标方法的简单应用(1)利用坐标表示地理位置(2)利用坐标表示平移1 / 27要点补充:点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于;(2)点P(x,y)到y 轴的距离等于;(3)点P(x,y)到原点的距离等于.考点二、函数及其图象1.变量与常量2.函数的概念3.函数的自变量的取值范围4.函数值5.函数的表示方法(解析法、列表法、图象法)6.函数图象要点补充:由函数解析式画其图像的一般步骤:(1)列表:列表给出自变量与函数的一些对应值;(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.专项训练一、单选题1.已知点P (a ,a+3)在第二象限,且点P 到x 轴的距离为2,则a 的值为()A .1-B .5-C .2-D .2y x 22y x +【答案】A【分析】先判断a的取值,进而根据点P到x轴的距离为2得到a+3=2,解得即可.【详解】解:∵点P(a,a+3)在第二象限,∴30aa<⎧⎨+>⎩,∴-3<a<0,∵点P到x轴的距离为2,∴|a+3|=2,∴a+3=2,∴a=-1,故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.在平面直角坐标系中,点P(3,4)关于y轴对称点的坐标为()A.(﹣3,4)B.(3,4)C.(﹣3,﹣4)D.(4,﹣3)【答案】A【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】3 / 27解:点P (3,4)关于y 轴对称点的坐标为(-3,4),故选:A .【点睛】此题主要考查了关于y 轴对称点的坐标,关键是掌握点的坐标的变化规律.3.如图,一个机器人从点O 出发,向正西方向走2m 到达点1A ;再向正北方向走4m 到达点2A ,再向正东方向走6m 到达点3A ,再向正南方向走8m 到达点4A ,再向正西方向走10m 到达点5A ,…按如此规律走下去,当机器人走到点20A 时,点20A 的坐标为()A .(20,20)-B .(20,20)C .(22,20)--D .(22,22)-【答案】A【分析】 先求出A 1,A 2,A 3,…A 8,发现规律,根据规律求出A 20的坐标即可.【详解】解:∵一个机器人从点O 出发,向正西方向走2m 到达点1A ,点A 1在x 轴的负半轴上,∴A 1(-2,0)从点A 2开始,由点1A 再向正北方向走4m 到达点2A ,A 2(-2,4),由点2A 再向正东方向走6m 到达点3A ,A 3(6-2,4)即(4,4),由点3A 再向正南方向走8m 到达点4A ,A 4(4,4-8)即(4,-4),由点A 4再向正西方向走10m 到达点5A ,A 5(4-10,-4)即(-6,-4),由点A 5再向正北方向走12m 到达点A 6,A 6(-6,12-4)即(-6,8),5 / 27由点A 6再向再向正东方向走14m 到达点A 7,A 7(14-6,8)即(8,8),由点A 7再向正南方向走16m 到达点8A ,A 8(8,8-16)即(8,-8),观察图象可知,下标为偶数时在二四象限,下标为奇数时(除1外)在一三象限,下标被4整除在第四象限.且横坐标与下标相同,因为2054=⨯,所以20A 在第四象限,坐标为(20,20)-.故选择A .【点睛】本题考查平面直角坐标系点的坐标规律问题,掌握求点的坐标方法与过程,利用下标与坐标的关系找出规律是解题关键.4.小娜驾车从哈尔滨到大庆.设她出发第x min 时的速度为y km/h ,图中的折线表示她在整个驾车过程中y 与x 之间的函数关系式.下列说法:(1)在77≤x ≤88时,小娜在休息;(2)小娜驾车的最高速度是120km/h ;(3)小娜出发第16.5min 时的速度为48km/h ;(4)如果汽车每行驶100km 耗油10升,那么小娜驾车在33≤x ≤66时耗油6.6升. 其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【分析】根据函数图象对每个选项进行分析判断,最后得出结论.①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;②观察图象小娜的最高时速为120千米;③用待定系数法求出11≤x ≤22时的函数关系式,可求小娜出发第16.5min 时的速度;④小娜驾车在33≤x ≤66时时速为120千米/小时,依次求出小娜驾车在33≤x ≤66时行驶的路程,从而耗油量可求.【详解】解:①观察图象在77≤x ≤88时,小娜在以时速96千米在行驶;故①错误; ②观察图象小娜的最高时速为120千米,故②正确;③在11≤x ≤22时,设y =kx +b .将(11,24)和(22,72)代入上式:11242272k b k b +=⎧⎨+=⎩, 解得:481124k b ⎧=⎪⎨⎪=-⎩. ∴482411y x =-. 当x =16.5min 时,y =48.∴小娜出发第16.5min 时的速度为48km /h .故③正确;④由图象可知:小娜驾车在33≤x ≤66时时速为120千米/小时,∴车在33≤x ≤66时小娜行驶了66331206660-⨯=(千米). ∴耗油为:66×10100=6.6(升).7 / 27故④正确;综上,正确的有②③④共三个.故选:C .【点睛】本题主要考查了一次函数的应用.理解函数图象上的点的实际意义是解题的关键.另外待定系数法是确定函数解析式的重要方法.5.下列不能表示y 是x 的函数的是()A .B .21y x =+C .D .【答案】C【分析】根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断即可.【详解】解:根据函数的定义(给定一个x 值都有唯一确定的y 值与它对应),对选项逐个判断, A :观察列表数据发现,符合函数的定义,不符合题意;B :观察x 与y 的等式发现,符合函数的定义,不符合题意;C :观察函数图像发现,不符合函数的定义,符合题意;D :观察函数图像发现,符合函数的定义,不符合题意;故选:C .【点睛】此题主要考查了函数的定义,涉及到了函数的表示方法(解析法,图像法和列表法),熟练掌握函数的基础知识是解题的关键.x的函数的是()6.下列各图象中,y不是..A.B.C.D.【答案】B【分析】对于自变量x的每一个确定的值y都有唯一的确定值与其对应,则y是x的函数,根据函数的定义解答即可.【详解】根据函数的定义,选项A、C、D图象表示y是x的函数,B图象中对于x的一个值y有两个值对应,故B中y不是x的函数,故选:B.【点睛】此题考查函数的定义,函数图象,结合函数图象正确理解函数的定义是解题的关键.9 / 277.如图,在平面直角坐标系中,//AB DC ,AC BC ⊥,5CD AD ==,6AC =,将四边形ABCD向左平移m 个单位后,点B 恰好和原点O 重合,则m 的值是()A .11.4B .11.6C .12.4D .12.6【答案】A【分析】 由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,根据勾股定理求得DE 的长度,再根据三角形相似求得BF ,矩形的性质得到OF ,即可求解.【详解】解:由题意可得,m 的值就是线段OB 的长度,过点D 作DE AC ⊥,过点C 作CF OB ⊥,如下图:∵5CD AD ==,DE AC ⊥ ∴132CE AC ==,90DEC ∠=︒由勾股定理得4DE =∵//AB DC∴DCE BAC ∠=∠,90ODC BOD ∠=∠=︒又∵AC BC⊥∴90 ACB CED∠=∠=︒∴DEC BCA△∽△∴DE CE CDBC AC AB==,即4356BC AB==解得8BC=,10AB=∵CF OB⊥∴90 ACB BFC∠=∠=︒∴BCF BAC∽△△∴BC BFAB BC=,即8108BF=解得 6.4BF=由题意可知四边形OFCD为矩形,∴5OF CD==11.4OB BF OF=+=故选A【点睛】此题考查了相似三角形的判定与性质,图形的平移,矩形的判定与性质,勾股定理等,熟练掌握相关基本性质是解题的关键.8.在平面直角坐标系中,已知点A(0,0)、B(2,2)、C(3,0),若以点A、B、C、D为顶点的四边形是平行四边形,则点D的坐标不可能为()A.(﹣1,2) B.(5,2) C.(1,﹣2) D.(2,﹣2)【答案】D【分析】分三种情况:①BC为对角线时,②AB为对角线时,③AC为对角线时;由平行四边形的11 / 27性质容易得出点D 的坐标. 【详解】解:分三种情况:①BC 为对角线时,点D 的坐标为(5,2) ②AB 为对角线时,点D 的坐标为(﹣1,2), ③AC 为对角线时,点D 的坐标为(1,﹣2),综上所述,点D 的坐标可能是(5,2)或(﹣1,2)或(1,﹣2). 故选:D . 【点睛】本题考查了平行四边形的性质、坐标与图形的性质;熟练掌握平行四边形的性质是解决问题的关键.9.半径是R 的圆的周长C 2R π=,下列说法正确的是() A .C ,π,R 是变量,2是常量 B .C 是变量,2,π,R 是常量 C .R 是变量,2,π,C 是常量 D .C ,R 是变量,2π是常量【答案】D 【分析】根据变量和常量的概念解答即可. 【详解】解:在半径是R 的圆的周长2C R π=中,C ,R 是变量,2π是常量. 故选D . 【点睛】本题主要考查了变量和常量,在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量.10.关于变量x ,y 有如下关系:①6-=x y ;②24y x =;③2y x =;④3y x =.其中y 是x 函数的是() A .①③ B .①②③④ C .①③④ D .①②③【答案】C 【分析】根据函数的定义可知,满足对于x 的每一个取值,y 都有唯一确定的值与之对应关系,据此即可确定函数的个数. 【详解】解:y 是x 函数的是①x -y =6;③y =2|x |;④3y x =; ∵x =1时,y =±2,∴对于y 2=4x ,y 不是x 的函数; 故选:C . 【点睛】本题考查了函数的定义,函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量. 二、填空题11.若点()25,4P a a --到两坐标轴的距离相等,则点P 的坐标是______. 【答案】()1,1或()3,3-; 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案. 【详解】解:∵P (2a -5,4-a )到两坐标轴的距离相等, ∴254a a -=-.13 / 27∴254a a -=-或25(4)a a -=--, 解得3a =或1a =,当3a =时,P 点坐标为(1,1); 当1a =时,P 点坐标为(-3,3). 故答案为:(1,1)或(-3,3). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.12.在平行四边形ABCD 中,点A 的坐标是(﹣1,0),点B 的坐标是(2,3),点D 的坐标是(3,1),则点C 的坐标是___. 【答案】(6,4). 【分析】根据四边形ABCD 是平行四边形,可得AB∥DC ,且AB =DC ,根据坐标间关系可得2-(-1)=x C -3,3-0=y C -1,解得x C =6,y C =4即可. 【详解】解:∵四边形ABCD 是平行四边形, ∴AB∥DC ,且AB =DC , ∴2-(-1)=x C -3,3-0=y C -1, ∴x C =6,y C =4, 点C (6,4) 故答案为(6,4).【点睛】本题考查平行四边形的性质,点的坐标关系建构方程,掌握平行四边形的性质,点的坐标关系建构方程.13.函数y=182xx+-的自变量的取值范围是______.【答案】x≠4【分析】当表达式的分母中含有自变量时,自变量取值要使分母不为零,据此可得结论.【详解】解:由题可得,8﹣2x为分母,8﹣2x≠0,解得x≠4,∴函数182xyx+=-的自变量的取值范围是x≠4,故答案为:x≠4.【点睛】本题考查的是自变量的取值范围,由于此题表达式为分式,根据分式有意义的条件,分母不为零,得到自变量的取值范围.14.若一个函数图象经过点A(1,3),B(3,1),则关于此函数的说法:①该函数可能是一次函数;②点P(2,2.5),Q(2,3.5)不可能同时在该函数图象上;15 / 27③函数值y 一定随自变量x 的增大而减小;④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大. 所有正确结论的序号是 ___. 【答案】①②④ 【分析】根据函数的定义,一次函数的图象及函数的性质一一分析即可求解. 【详解】解:①因为一次函数的图象是一条直线,由两点确定一条直线,故该函数可能是一次函数,故正确;②由函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量,所以点P (2,2.5),Q (2,3.5)不可能同时在该函数图象上,故正确;③因为函数关系不确定,所以函数值y 不一定一直随自变量x 的增大而减小,故错误; ④可能存在自变量x 的某个取值范围,在这个范围内函数值y 随自变量x 增大而增大,故正确; 故答案为①②④. 【点睛】本题主要考查函数的定义及一次函数的图象与性质,熟练掌握函数的定义及一次函数的图象与性质是解题的关键.15.在圆周长公式2C r π=中,常量是__________. 【答案】2π 【分析】根据常量的定义即可解答. 【详解】解:圆周长公式2C r π=中,常量是2π, 故答案为:2π. 【点睛】本题考查了常量的定义,正确理解定义是关键.16.如图,平面直角坐标系中O 是原点,等边△OAB 的顶点A 的坐标是(2,0),点P 以每秒1个单位长度的速度,沿O →A →B →O →A …的路线作循环运动,点P 的坐标是__________________.【答案】12⎛ ⎝⎭【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可. 【详解】解:由题意得,第1秒结束时P 点运动到了线段OA 的中点C 的位置,所以P 1的坐标为P 1(1,0);第2秒结束时P 点运动到了点A 的位置,所以P 2的坐标为P 2(2,0);第3秒结束时P 点运动到了线段AB 的中点D 的位置,如下图所示,过D点作x轴的垂线交于x2处,∵△OAB是等边三角形,且OA=2,∴在Rt△AD x2中,∠DA x2=60°,AD=1,∴21 2Ax=,2Dx=故D点的坐标为32⎛⎝⎭,即P332⎛⎝⎭;第4秒结束时P点运动到了点B的位置,同理过B点向x轴作垂线恰好交于点C,在Rt△OBC中,∠BOC =60°,2OB=,1OC=,BC故B点的坐标为(1,即P4(1;第5秒结束时P点运动到了线段OB的中点E的位置,根据点D即可得出E点的坐标为12⎛⎝⎭,即 P512⎛⎝⎭;第6秒结束时运动到了点O的位置,所以P6的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……17 / 27由上可知,P 点的坐标按每6秒进行循环, ∵2021÷8=336……5,∴第2021秒结束后,点P 的坐标与P 5相同为12⎛ ⎝⎭,故答案为:12⎛ ⎝⎭.【点睛】本题主要考查了点的坐标特征,等边三角形的性质,数字规律,关键是求出前面几个点坐标,得出规律.17.平面直角坐标系中,点()5,3A -,()0,3B ,()5,0C -,在y 轴左侧一点(),P a b (0b ≠且点P 不在直线AB 上).若40APO ∠=︒,BAP ∠与COP ∠的角平分线所在直线交于D 点.则ADO ∠的度数为______°.【答案】110或70 【分析】分两种情况,①点P 在AO 下方,设AP 与CO 交于点N ,过点N 作//NM AD ,先证明NM 平分PNO ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMO P ∠=+∠,即可求解;②点P 在AO 上方,设PO 与AB 交于点M,过点M 作//NM OD ,先证明NM 平分PNA ∠,根据“三角形两内角平分线的夹角与第三个角的关系”,可以得出1902NMA P ∠=+∠,即可求解. 【详解】19 / 27解:分两种情况, ①点P 在AO 下方时,设AP 与CO 交于点N ,过点N 作//NM AD ,PAD PNM ∴∠=∠, //AB NO , BAN ONP ∴∠=∠,AD 平分BAN ∠,12PAD BAN ∴∠=∠,12PNM ONP ∴∠=∠,NM∴平分ONP ∠,OM 平分NOP ∠,111(180)70222MNO NOM ONP PON NPO ∴∠+∠=∠+∠=-∠=︒,110NMO ∴∠=︒, //NM AD ,110ADO NMO ∴∠=∠=︒;①点P 在AO 上方时,设AB 与PO 交于点N ,过点N 作//NM OD ,POD PNM ∴∠=∠,//AB CO ,PNA POC ∴∠=∠,DO 平分POC ∠,12POD POC ∴∠=∠,12PNM PNA ∴∠=∠,NM∴平分ANP ∠,直线CD 平分NAP ∠,111(180)70222MNA NAM PNA PAN NPA ∴∠+∠=∠+∠=-∠=︒,110NMA ∴∠=︒, //NM AD ,18070ADO NMO ∴∠=-∠=, 70ADO ∴∠=︒或110︒.故答案为:70或110.【点睛】本题主要考查了三角形双内角平分线模型,平行线的性质,解题的关键是找基本模型. 18.一个三角形的底边长是3,高x 可以任意伸缩,面积为y ,y 随x 的变化变化,则其中的常量为________,y 随x 变化的解析式为______________. 【答案】3 32y x = 【分析】先根据变量与常量的定义,得到3为常量,x 和y 为变量,再根据三角形面积公式得到21 / 27y =12×3×x =32x (x >0), 【详解】解:数值发生变化的量为变量,数值始终不变的量为常量,因此常量为底边长3,由三角形的面积公式得y 随x 变化的解析式为32y x =. 故答案为:3;32y x =. 【点睛】本题考查主要函数关系式中的变量与常量和列函数关系式解决本题的关键是要理解函数关系中常量和变量. 三、解答题19.已知一个圆柱的底面半径是3cm ,当圆柱的高(cm)h 变化时,圆柱的体积()3cm V 也随之变化.(1)在这个变化过程变量h 、V 中,自变量是______,因变量是______; (2)在这个变化过程中,写出圆柱的体积V 与高h 之间的关系式;(3)当圆柱的高h 由3cm 变化到6cm 时,圆柱的体积V 由______变化到______. 【答案】(1)h ,V ;(2)9V h π=;(3)327cm π,354cm π 【分析】(1)利用函数的概念进行回答;(2)利用圆柱的体积公式求解;(3)分别计算出h =3和6对应的函数值可得到V 的变化情况. 【详解】解:(1)在这个变化过程中,自变量是h ,因变量是V ;故答案为h ,V ;(2)V =π•32•h =9πh ;(3)当h =3cm 时,V =27πcm 3;当h =6cm 时,V =54πcm 3;所以当h 由3cm 变化到6cm 时,V 是由27πcm 3变化到54πcm 3.故答案为:27πcm3;54πcm3.【点睛】本题考查了函数关系式:用来表示函数关系的等式叫做函数解析式,也称为函数关系式.函数解析式是等式.解决此题的关键是圆柱的体积公式.20.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?【答案】(1)t,s;(2)50,30;(3)15小时,450km【分析】(1)根据函数图像可得;(2)根据函数图象中的数据,可以计算出小轿车和大客车的速度;(3)设两车出发xh时,两车相遇,根据题意列出方程,解之可得x,再乘以大客车的速度可得到甲地的距离.【详解】解:(1)自变量是时间t;因变量是路程s;(2)由图象可得,小轿车的速度为:500÷10=50(km/h),大客车的速度为:500÷503=30(km/h),故答案为:50,30;(3)设两车出发x小时,两车相遇,30x+50(x-14)=500,解得,x=15,30x=30×15=450,即两车出发15h后两车相遇,两车相遇时,距离甲地的路程是450km,故答案为:15,450.【点睛】本题考查了从函数图像获取信息,一元一次方程的应用,解答本题的关键是明确题意,结合函数图像得到必要信息.21.在平面直角坐标系中,O为坐标原点,C(4,0),A(a,3),B(a+4,3)(1)求ΔOAC的面积;(2)若aOABC是菱形.【答案】(1)6;(2)见解析【分析】(1)过点A(a,3)作AE⊥x轴于点E,根据A(a,3),C(4,0)求出AE和OC的长度,23 / 27然后根据三角形面积公式求解即可;(2)首先根据点A 和点B 的纵坐标相同得到//AB OC ,然后结合AB OC =得到四边形OABC 是平行四边形,然后根据勾股定理求出OA 的长度,得到OA =OB ,根据菱形的判定定理即可证明. 【详解】解:(1)如图所示,过点A (a ,3)作AE ⊥x 轴于点E ,则AE =3, 又∵C (4,0), ∴OC =4,∴S △OAC =11=43622OC AE ⨯⨯⨯⨯=.(2)若a =)A ,)43B ,, ∵A B y y =, ∴//AB OC , ∵44AB OC ==,, ∴AB OC =.∴四边形OABC 是平行四边形, 过点A 作AE ⊥x 轴,则90AEO ∠=︒,3AE OE ==,∴4OA =,∴OA AB=,∴四边形OABC是菱形.【点睛】此题考查了三角形面积的求法,菱形的判定,解题的关键是根据题意找到坐标和线段的关系.22.定义:平面直角坐标系中,点M(a,b)和点N(m,n)的距离为MN,例如:点(3,2)和(4,0(1)在平面直角坐标系中,点(2,5-)和点(2,1)的距离是,点(72,3)和点(12,1-)的距离是;(2)在平面直角坐标系中,已知点M(2-,4)和N(6,3-),将线段MN平移到M ′ N′,点M的对应点是M′,点N的对应点是N′,若M′的坐标是(8-,m),且MM′=10,求点N′的坐标;(3)在平面直角坐标系中,已知点A在x轴上,点B在y轴上,点C的坐标是(12,5),若BC=13,且△ABC的面积是20,直接写出点A的坐标.【答案】(1)6,5;(2)当M′(-8,12)时,N′(0,5),当M′(-8,-4)时,N′(0,-11);(3)(8,0)或(-8,0)或(16,0)或(32,0)【分析】(1)分别利用两点间距离公式求解即可.(2)构建方程求出m的值,可得结论.(3)设(0,)B t,构建方程求出t的值,可得结论.【详解】解:(1)点(2,5)-和点(2,1)的距离6,25 / 27点7(2,3)和点1(2,1)-的距离5=, 故答案为:6,5. (2)由题意,10MM '=,∴10=,12m =∴或4-,(8,12)M ∴'-或(8,4)--,当(8,12)M '-时,(0,5)N ', 当(8,4)M '--时,(0,11)N '-. (3)设(0,)B t ,(12,5)C ,13BC =,∴13,解得0t =或10,(0,0)B ∴或(0,10),当(0,0)B 时,20ABC S ∆=,∴15202OA ⨯⨯=, 8OA ∴=,(8,0)A ∴或(8,0)-.当(0,10)B 时,20ABC BOC AOC AOB S S S S ∆∆∆∆=+-=或20ABC AOC AOB BOC S S S S ∆∆∆∆=--=,∴111101*********OA OA ⨯⨯+⨯⨯-⨯⨯=或111101012520222OA OA ⨯⨯-⨯⨯-⨯⨯=,16OA ∴=或32,∴或(32,0),A(16,0)综上所述,满足条件的点A的坐标为(8,0)或(8,0)-或(16,0)或(32,0).【点睛】本题属于三角形综合题,考查了两点间距离公式,三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27 / 27。
人教版初中数学中考考点系统复习 第9讲 平面直角坐标系与函数
对点训练 7.(青海中考)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器
内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h (cm)与注水时间t(min)的函数图象大致为图中的( B )
A
B
C
D
第7题图
8.(孝感中考)如图,在四边形ABCD中,AD∥BC,
∠D=90°,AB=4,BC=6,∠BAD=30°.动点P沿
(2)第二、四象限角平分线(直线y=-x)上的点的横、纵坐标⑧ 互 为相反数 .
4.点的对称(简记为关于谁对称谁不变,另一个变号;关于原点对称都变号): (1)点P(a,b)关于x轴对称的点的坐标为⑨ (a,-b) ;
(2)点P(a,b)关于y轴对称的点的坐标为⑩ (-a,b) ;
(3)点P(a,b)关于原点对称的点的坐标为⑪ (-a,-b) .
第9题图
A.32
B.34
C.36
D.38
10.(绥化中考)黑龙江省某企业用货车向乡镇运送农用物资,行驶2小时后,天 空突然下起大雨,影响车辆行驶速度,货车行驶的路程y(km)与行驶时间x (h)之间的函数关系如图所示,2小时后货车的速度是 65 km/h.
第10题图
命题点1 平面直角坐标系中点的坐标特征 1.(2020·毕节)在平面直角坐标系中,第二象限内有一点M,点M到x轴的距离为
2.几何图形: a.根据题目中的条件,确定自变量与因变量对应的几何量; b.根据动点的运动轨迹,先确定转折点,然后判断每个转折点前后区间内相关 量的增减性,最后判断函数图象.
考点1 平面直角坐标系中点的坐标特征 考点精讲 1.(1)(兴义四模)若点A(a+1,b-2)在第二象限,则点B(-a,1-b)在
中考第一轮复习第9讲平面直角坐标系及函数的基础知识
第三单元 函数及其图象第9讲 平面直角坐标系及函数的基础知识,知识清单梳理)平面直角坐标系1.定义:平面内,两条互相__垂直__、原点__重合__的数轴组成平面直角坐标系.坐标平面内的点与__有序__实数对一一对应.2.特殊点的坐标特征(1)各象限内点的坐标的符号特征3.点P(x ,y)坐标的几何意义(1)点P(x ,y)到x 轴的距离是__|y|__. (2)点P(x ,y)到y 轴的距离是__|x|__. (3)点P(x ,y)到原点的距离是.函数的有关概念,云南省近五年高频考点题型示例)平面直角坐标系中点的坐标特征【例1】(2019曲靖中考)在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度,得到点P′的坐标是( )A .(2,4)B .(1,5)C .(1,-3)D .(-5,5) 【解析】点平移规律:左减右加,上加下减. 【答案】B1.(2019红河中考)在平面直角坐标系中,已知点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是( C )A .(-1,2)B .(1,-2)C .(1,2)D .(2,1) 2.(2019昭通中考)已知点P(2a -1,1-a)在第一象限,则a 的取值范围在数轴上表示正确的是( C )函数自变量的取值范围【例2】(2019云南中考)函数y =1x -2的自变量x 的取值范围为( ) A .x >2 B .x <2 C .x ≤2 D .x ≠2【解析】分式函数自变量的取值范围是使分母不为零的实数,即x -2≠0,x ≠2. 【答案】D3.(2019大理等八地州联考)在函数y =x +1x中,自变量x 的取值范围是__x≥-1且x≠0__. 4.(2019云南中考)函数y =x -7的自变量x .5.(2019曲靖中考)如果整数x >-3,那么使函数y x 的值是__0__.(只填一个)6(2019内江中考)在函数y =1x -3+x -2中,自变量x 的取值范围是__x≥2且x≠3__.,近五年遗漏考点及社会热点与创新题)1.遗漏考点无2.创新题【例】(2019佳木斯中考)如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是( )ABCD【解析】先注甲池速度较快,水到达连接的地方,水面上升比较慢,最后水面持平后继续上升.【答案】D,课内重难点真题精练及解题方法总结)1.在平面直角坐标系中,已知点P(2,-3),则点P在( D )A.第一象限 B.第二象限C.第三象限 D.第四象限【方法总结】根据各象限内点的坐标的符号特征,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)可以得到答案.2.(2019西宁中考)在平面直角坐标系中,将点A(-1,-2)向右平移3个单位长度得到点B,则点B 关于x轴的对称点B′的坐标为( B )A.(-3,-2) B.(2,2) C.(-2,2) D.(2,-2)【方法总结】点平移,横坐标左减右加,纵坐标上加下减.关于x 轴对称,横坐标相等,纵坐标互为相反数;关于y 轴对称,纵坐标相等,横坐标互为相反数;关于原点对称,横、纵坐标均互为相反数.3.下列图象中,表示y 是x 的函数的个数有( B )A .1个B .2个C .3个D .4个【方法总结】函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.4.函数y =21-x +1x 中,自变量x 的取值范围是__x<1且x≠0__.【方法总结】(1)分式函数,自变量的取值范围是使分母不为零的实数;(2)偶次根式函数,自变量的取值范围是使被开方数为非负实数.5.当x =__-2__时,函数y =3x 2-12x -2的值为零.【方法总结】函数的值和分式值为0的条件,分子为0且分母不为0,解分式方程时要注意检验. 6.(2019河南中考)如图①,点P 从△ABC 的顶点B 出发,沿B→C→A 匀速运动到点A ,图②是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是__12__.【方法总结】考查函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论. 请完成精练本第9页作业2019-2020学年数学中考模拟试卷一、选择题1.如图,有一平行四边形ABCD 与一正方形CEFG ,其中E 点在AD 上.若∠ECD=35°,∠AEF=15°,则∠B 的度数为何?( )A .50B .55C .70D .752.下列等式一定成立的是( ) A .a 2+a 3=a 5B .(a+b )2=a 2+b 2C .(2ab 2)3=6a 3b 6D .(x-a )(x-b )=x 2-(a+b )x+ab3.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,则下列结论: ① abc <0;② 2a +b =0; ③ b 2-4ac <0;④ 9a+3b+c >0; ⑤ c+8a <0.正确的结论有( ).A .1个B .2个C .3个D .4个4.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),对角线BD 与x 轴平行,若直线y =kx+5+2k (k≠0)与菱形ABCD 有交点,则k 的取值范围是( )A.3243k -≤-… B.223k --剟C.324k --剟D.﹣2≤k≤2且k≠05.已知反比例函数2y x=-,下列说法不正确的是( ) A .图像必经过点()1,2-B .y 随着x 的增大而增大C .图像分布在第二,四象限内D .若1x >,则20y -<<6.如图,CD 是⊙O 的弦,∠ADC=35°,则∠CBA 的度数为( )A .35B .45C .55D .657.把一个足球垂直于水平地面向上踢,该足球距离地面的高度h (米)与所经过的时间t (秒)之间的关系为2110(014)2h t t t =-≤≤. 若存在两个不同的t 的值,使足球离地面的高度均为a (米),则a 的取值范围( ) A .042a ≤≤B .050a ≤<C .4250a ≤<D .4250a ≤≤8.如图,点E 、F 分别为正方形ABCD 的边BC 、CD 上一点,AC 、BD 交于点O ,且∠EAF =45°,AE ,AF 分别交对角线BD 于点M ,N ,则有以下结论:①△AOM ∽△ADF ;②EF =BE+DF ;③∠AEB =∠AEF =∠ANM ;④S △AEF =2S △AMN ,以上结论中,正确的个数有( )个.A .1B .2C .3D .49.下列命题不正确的是( )A .任何一个成中心对称的四边形是平行四边形B .平行四边形既是轴对称图形又是中心对称图形C .线段、平行四边形、矩形、菱形、正方形都是中心对称图形D .等边三角形、矩形、菱形、正方形都是轴对称图形 10.下列图形中,可以看作是中心对称图形的是( )A .B .C .D .11.如图,二次函数2(0)y ax bx c a =++>的图象经过点(1,0),(3,0)A B -.有下列结论:①20a b c ++<; ②当1x >时,随x 的增大而增大;③当0y >时,13x -<<;④当2m x m <<+时,若二次函数的最小值为4a -,则m 的取值范围是11m -<<。
2024年中考数学总复习考点梳理第三章第一节平面直角坐标系与函数
x1
第一节 平面直角坐标系与函数
返回目录
4. [人教八下P80例题改编]在初中阶段,我们经历了列表、描点、 连线、画函数图象,并结合图象研究函数性质的过程.以下是 我们研究函数y=-(x-1)(|x|-3)的图象和性质的部分过程,请 补充完整. x与y的几组对应值如下表:
1. [北师八上P72习题改编]在平面直角坐标系中,已知点P(2m-
1,,
1
((12))若 若点 点PP在在第y轴二上象,限则,m则的m值的为取__值_2_范__围__是;__m__<__12__;
(3)若点P在第一、三象限的角平分线上,则m=____2____;
(4)点Q的坐标为(2,n),若直线PQ∥x轴,则点Q的坐标为 __(2_,__3__) _.
章前复习思路
平面直角坐 标系与函数
坐标系中点的特征 点变化的坐标特征
函数
一次函数 反比例函数 二次函数
研究函数的一般路径
函数解析式 图象 性质
图象平移
①增减性; ②对称性; ③最值
函数的应用
解决问题
应用
建模思想 数形结合思想
1 教材改编题课前测 2 教材知识逐点过 3 广东近6年真题 4 教材原题到重难考法
第一节 平面直角坐标系与函数
返回目录
广东近6年考情及趋势分析
命题点1 平面直角坐标系中点的坐标特征(6年3考) 课标要求 1.理解平面直角坐标系的有关概念,能画出平面直角坐标系;在给定的 平面直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐 标; 2.在实际问题中,能建立适当的直角坐标系,描述物体的位置.
人教版初中数学中考 讲本 第三单元 函 数 第9讲 平面直角坐标系与函数
2.(2022·潜江)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平 线上,小正方形沿该水平线自左向右匀速穿过大正方形.设穿过的时间为t,大 正方形的面积为S1,小正方形与大正方形重叠部分的面积为S2.若S=S1-S2,则 S随t变化的函数图象大致为( A )
A
B
C
D
详解:由题意得:当0≤t<1时,S=4-t; 当1≤t≤2时,S=3; 当2<t≤3时,S=t+1.故选A.
【要点提炼】(1)各象限内点的坐标特征:
点P(x,y)在第一象限⇔x > 0且y>0;
点P(x,y)在第二象限⇔x<0且y > 0;
点P(x,y)在第三象限⇔x < 0且y<0;
点P(x,y)在第四象限⇔x > 0且y < 0.
(2)坐标轴上点的坐标特征:
点P(x,y)在x轴上⇔ y =0;
考点三 点的坐标变换 5.(2022·广东)在平面直角坐标系中,将点(1,1)向右平移2个单位长度后,
得到的点的坐标是( A )
A.(3,1)
B.(-1,1)
C.(1,3)
D.(1,-1)
6.(2022·新疆)在平面直角坐标系中,点A(2,1)与点B关于x轴对称,则点B
的坐标是( A )
A.(2,-1) C.(-2,-1)
x≥-1且x≠3
【要点提炼】(1)函数的定义:一般地,在一个变化过程中,如果有两个变 量x与y,并且对于x的每一个确定值,y都有唯一确定的值与其对应,那么y是x 的函数,其中x是自变量,y是因变量.
(2)函数的表示方法:列表法、图象法、解析式法.
(3)函数自变量的取值范围:解析式含有分母时,分母 ≠0 ;解析式含有
中考数学专题复习《平面直角坐标系与函数》知识点梳理及典型例题讲解课件
③在某个变化过程中处于主导地位的变量即为自变量,随之变
化且对应值有唯一确定性的另一个变量即为该自变量的函数.
(4)函数自变量取值范围.
①不同类型的函数关系式中自变量取值范围的求解方法:
函数解析式
整式型(y=ax+b)
自变量的取值范围
全体实数,但在实际问题中要注意限
向上平移b个单位
向下平移b个单位
平移后点P'的坐标
特征
(x-a,y)
左减
(x+a,y)
(x,y+b)
(x,y-b)
右加
上加
下减
(Βιβλιοθήκη )中心对称的坐标特征:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)
关于原点的对称点为P'(-x,-y).
(8)图形在坐标系中的旋转的坐标特征.
图形(点)的旋转与坐标变化:
① 点 P ( x , y ) 绕 坐 标 原 点 顺 时 针 旋 转 9 0 °, 其 坐 标 变 为
P'(y,-x);
②点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P'
(-x,-y);
③点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P’
(-y,x);
④点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P'
间的距离为|y1-y2|.
任意两点P1(x1,y1),P2(x2,y2),则线段P1P2的中点坐标
1 +2 1 +2
为(
,
);
2
2
任 意 两 点 P1 ( x1 , y1 ) , P2 ( x2 , y2 ) , 则 线 段 P1P2 =
安徽省中考数学总复习 第一篇 知识 方法 固基 第三单
考点一
考点二
考点三
考点必备梳理
考题初做诊断
考法必研突破
考点二函数及自变量的取值范围 1.函数的相关概念 (1)变量:取值会发生变化的量称为变量. (2)常量:取值固定不变的量称为常量. (3)函数:一般地,设在一个变化过程中存在两个变量x,y,如果对于 x在它允许取值范围内的每一个值,y都有唯一确定的值与它对应,那 么就说x是自变量,y是x的函数. (4)函数值:如果当x=a时,y=b,那么b叫做当自变量的值为a时的函 数值.
A.第一象限 B.第二象限 C.第三象限 D.第四象限 答案:D 解析:因为点A(a+1,b-2)在第二象限, 所以a+1<0且b-2>0,得a<-1且b>2, 从而-a>0,1-b<0,点B(-a,1-b)在第四象限, 故选D.
考法1
考法2
考法3
考点必备梳理
考题初做诊断
考法必研突破
对应练1(2018·山东东营)在平面直角坐标系中,若点P(m-2,m+1)
命题点1 命题点2
考点必备梳理
考题初做诊断
考法必研突破
命题点1 命题点2
考点必备梳理
考题初做诊断
考法必研突破
解析 由题意,甲走了1小时到了B地,在B地休息了半个小时,用2小时 正好走到C地,乙走了 小53 时到了C地,在C地休息了 小13 时.由此可 知正确的图象是A.故选A.
命题点1 命题点2
在第二象限,则m的取值范围是( C )
A.m<-1
B.m>2
C.-1<m<2
函数自变量的取值范围必须使实际问题有意义
考点一
考点二
考点三
中考数学第三单元函数及其图象第09课时平面直角坐标系及函数
.
(-2,3)
7.在平面直角坐标系xOy中,对于点P(x,y),我们把点P'(-y+1,x+1)叫做点P的伴随(bàn
suí)点.已知点A1的伴随点为A2,点A2的伴随点为
A3,点A3的伴随点为A4,这样依次得到A1,A2,A3,…,An,…,若点A1的坐标为(3,1),则点A3的坐标为
(-3,1)
2.点 P(x,y)到 x 轴的距离是
2021/12/9
第一
第二
第三
第四
在x
在y
象限
象限
象限
象限
轴上
轴上
(+,+)
( - ,+ )
( - ,- )
( + ,- )
y
____=0
x
____=0
|y|
,到 y 轴的距离是
|x|
第四页,共二十六页。
,到原点的距离是 + .
课前双基巩固
考点二
平面(píngmiàn)直角坐标系中点的坐标变化
A.(3,-4)
C
B.(4,-3)
C.(-4,3)
D.(-3,4)
2. [2018·广安] 已知点P(1-a,2a+6)在第四象限,则a的取值范围是 (
A.a<-3
B.-3<a<1
C.a>-3
D.a>1
2021/12/9
)
A
第三页,共二十六页。
(
)
课前双基巩固
知识梳理
1.点的坐标特征
点
P(x,y)
图 9-5
2021/12/9
第十六页,共二十六页。
中考数学总复习 第三单元 函数 第09课时 平面直角坐标系与函数课件
例 2 点 A(3,-2)关于 x 轴对称的点的坐标是
关于 y 轴对称的点的坐标是
(-3,-2)
;
关于原点对称的点的坐标是 (-3,2)
;
(3,2)
;
把点 A 向左平移 2 个单位,再向下平移 3 个单位得到的点的坐标是
把点 A 绕着原点顺时针旋转 90°的点的坐标是
(-2,-3)
(1,-5)
;
.
[方法模型] 求一个图形旋转、平移、轴对称后的图形对应点的坐标,一般要把握三点:一是图形变换的性质;
12/9/2021
第十三页,共二十二页。
高频考向探究
探究三 函数(hánshù)的概念及函数(hánshù)自变量的取值范围
例 3 [2018·内江] 已知函数 y=
是(
+1
-1
,则自变量 x 的取值范围
)
A.-1<x<1
B.x≥-1 且 x≠1
C.x≥-1
D.x≠1
[解析] 根据题意得:
+ 1 ≥ 0,
B.小明读报用了 30 min
C.食堂到图书馆的距离为 0.8 km
D.小明从图书馆回家的速度为 0.8 km/min
12/9/2021
第十八页,共二十二页。
高频考向探究
[答案] B
[解析] 图中横轴表示小明离家的时间,纵轴表示离家的距离,由图可知:吃早餐用的时间为(25-8)min,即 17
min,故 A 错误;读报用了(58-28)min,即 30 min,故 B 正确;食堂到图书馆的距离应为(0.8-0.6) km,即 0.2 km,故
[答案] B
第十四页,共二十二页。
x≥-1 且 x≠1.故选择 B.
华师版九年级数学 中考总复习常考易考 教材基础知识整理梳理 第三单元 函数 第9讲 平面直角坐标系与函数
第9讲平面直角坐标系与函数知识点一:平面直角坐标系关键点拨及对应举例1.相关概念(1)定义:在平面内有公共原点且互相垂直的两条数轴构成平面直角坐标系.(2)几何意义:坐标平面内任意一点M与有序实数对(x,y)的关系是一一对应.点的坐标先读横坐标(x轴),再读纵坐标(y轴).2.点的坐标特征( 1 )各象限内点的坐标的符号特征(如图所示):点P(x,y)在第一象限⇔x>0,y>0;点P(x,y)在第二象限⇔x<0,y>0;点P(x,y)在第三象限⇔x<0,y<0;点P(x,y)在第四象限⇔x>0,y<0.(2)坐标轴上点的坐标特征:①在横轴上⇔y=0;②在纵轴上⇔x=0;③原点⇔x=0,y=0.(3)各象限角平分线上点的坐标①第一、三象限角平分线上的点的横、纵坐标相等;②第二、四象限角平分线上的点的横、纵坐标互为相反数(4)点P(a,b)的对称点的坐标特征:①关于x轴对称的点P1的坐标为(a,-b);②关于y轴对称的点P2的坐标为(-a,b);③关于原点对称的点P3的坐标为(-a,-b).(5)点M(x,y)平移的坐标特征:M(x,y)M1(x+a,y)M2(x+a,y+b)(1)坐标轴上的点不属于任何象限.(2)平面直角坐标系中图形的平移,图形上所有点的坐标变化情况相同.(3)平面直角坐标系中求图形面积时,先观察所求图形是否为规则图形,若是,再进一步寻找求这个图形面积的因素,若找不到,就要借助割补法,割补法的主要秘诀是过点向x轴、y轴作垂线,从而将其割补成可以直接计算面积的图形来解决.3.坐标点的距离问题(1)点M(a,b)到x轴,y轴的距离:到x轴的距离为|b|;)到y轴的距离为|a|.(2)平行于x轴,y轴直线上的两点间的距离:点M1(x1,0),M2(x2,0)之间的距离为|x1-x2|,点M1(x1,y),M2(x2,y)间的距离为|x1-x2|;点M1(0,y1),M2(0,y2)间的距离为|y1-y2|,点M1(x,y1),M2(x,y2)间的距离为|y1-y2|.平行于x轴的直线上的点纵坐标相等;平行于y轴的直线上的点的横坐标相等.知识点二:函数4.函数的相关概念(1)常量、变量:在一个变化过程中,数值始终不变的量叫做常量,数值发生变化的量叫做变量.(2)函数:在一个变化过程中,有两个变量x和y,对于x的每一个值,y都有唯一确定的值与其对应,那么就称x是自变量,y是x的函数.函数的表示方法有:列表法、图像法、解析法.(3)函数自变量的取值范围:一般原则为:整式为全体实数;分式的分母不为零;二次根式的被开方数为非负数;使实际问题有意义.失分点警示函数解析式,同时有几个代数式,函数自变量的取值范围应是各个代数式中自变量的公共部分. 例:函数y=35xx+-中自变量的取值范围是x≥-3且x≠5.5.函数的图象(1)分析实际问题判断函数图象的方法:①找起点:结合题干中所给自变量及因变量的取值范围,对应到图象中找对应点;②找特殊点:即交点或转折点,说明图象在此点处将发生变化;③判断图象趋势:判断出函数的增减性,图象的倾斜方向.(2)以几何图形(动点)为背景判断函数图象的方法:读取函数图象增减性的技巧:①当函数图象从左到右呈“上升”(“下降”)状态时,函数y随x的增大而增大(减小);②函数值变化越大,图象越陡峭;③当函数y值始xy第四象限(+,-)第三象限(-,-)第二象限(-,+)第一象限(+,+)–1–2–3123–1–2–3123O。
河北省中考数学总复习第三单元函数第09课时平面直角坐标系与函数课件
[答案] (2,1) [解析] 根据中点坐标的求法可知点 P 的坐 标为(-1,1),因为左右平移点的纵坐标不变,由 题意可知向右平移 3 个单位,则各点的横坐 标加 3,所以点 Q 的坐标是(2,1).
高频考向探究
探究三 平面直角坐标系中点的规律探究
例 3 [2018· 齐齐哈尔] 如图 9-4,在平面直角坐标系中,点 A( 3,1)在射线 OM 上,点 B( 3,3)在射线 ON 上,以 AB 为直角边作 Rt△ ABA1,以 BA1 为直角边作第二个 Rt△ BA1B1,以 A1B1 为直角边作第三个 Rt△ A1B1A2,…,依此规律, 得到 Rt△ B2017A2018B2018,则点 B2018 的纵坐标为 .
高频考向探究
拓考向
1.如图 9-3,在平面直角坐标系内,正方形 ABCD 的顶点 B,D 的坐标分别是(0,0),(2,0),且 A,C 两点关于 x 轴对称,则点 C 的坐标是 ( B ) A.(1,1) C.(1,-2) B.(1,-1) D.(2,-2)
图9-3
高频考向探究
2.已知直角坐标系中的点 A,点 B 的坐标分别为 A(-2,6),B(0,-4), 且 P 为 AB 的中点,若将线段 AB 向右平移 3 个单位长度后, 与点 P 对应的点为 Q,则点 Q 的坐标为 .
课前双基巩固
9.在函数 y= A.x≥1 C.x<1
������ -1 1-������
中,自变量 x 的取值范围是 ( B.x>1 D.x≤1
)
[答案] B [解析] 根据题意得 x-1≥0,1-x≠0,解得 x>1.
课前双基巩固
10.小明早上从家骑自行车去上学,先走平路到达点 A,再走上坡路到达点 B,最后走下坡路到达学校,小明骑自行车 所走的路程 s(单位:千米)与他所用的时间 t(单位:分)的关系如图 9-2 所示,放学后,小明沿原路返回,且走平路、上 坡路、下坡路的速度分别保持和去上学时一致,下列说法: ①小明家距学校 4 千米; ②小明上学所用的时间为 12 分; ③小明上坡的速度是 0.5 千米/分; ④小明放学回家所用时间为 15 分. 其中正确的个数是 ( A.1 个 B.2 个 ) C.3 个 D.4 个
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点强化练9 平面直角坐标系与函数的概念
夯实基础
1.(xx·江苏扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是()
A.(3,-4)
B.(4,-3)
C.(-4,3)
D.(-3,4)
答案C
解析平面直角坐标系中,点M在第二象限内,所以横坐标为负,纵坐标为正.由点M到x轴的距离为3,则纵坐标为3;到y轴的距离为4,横坐标为-4,所以M点的坐标为(-4,3),故选C.
2.(xx·云南)函数y=的自变量x的取值范围为()
A.x≤0
B.x≤1
C.x≥0
D.x≥1
答案B
解析函数y=自变量x满足1-x≥0,解得x≤1.
3.(xx·青海)如图,把Rt△ABO放置在平面直角坐标系中,已知∠OAB=30°,B点的坐标为(0,2),将
△ABO沿着斜边AB翻折后得到△ABC,则点C的坐标是()
A.(2,4)
B.(2,2)
C.(,3)
D.()
答案C
解析过点C作CD⊥OA,由∠OAB=30°,B点的坐标为(0,2)得OB=2,AB=4,OA=2,所以AC=2,在Rt△ACD中,∠ACD=30°,所以AD=,CD==3,所以OD=AD=,因此点C的坐标是(,3),故选C.
4.(xx·山东淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器.然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部.则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()
〚导学号16734106〛答案D
解析开始水位慢慢上升,当水由玻璃杯溢出时,容器内最高水位保持不变,当水位慢慢超过空玻璃杯的高度时,水位又缓慢上升,由于此时鱼缸的底面积大于空玻璃杯的底面积,所以同样的流速情况下,水位上升的速度要比刚开始往空玻璃杯中注水时水面高度上升的慢,故选D.
5.(xx·北京)小苏和小林在如图所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如右图所示.下列叙述正确的是()
A.两人从起跑线同时出发,同时到达终点
B.小苏跑全程的平均速度大于小林跑全程的平均速度
C.小苏前15 s跑过的路程大于小林前15 s跑过的路程
D.小林在跑最后100 m的过程中,与小苏相遇2次
答案D
解析A.由图可知,小林先到达终点;B.由题图可知,两人行程相同,小苏用的时间多,故小苏的平均速度小于小林的平均速度,错误;C.由图可知,小苏前15s跑过的路程小于小林前15s跑过的路程,错误;D.正确.故选D.
6.(xx·江苏镇江)甲、乙两地相距80 km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20 km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()
A.10:35
B.10:40
C.10:45
D.10:50
答案B
解析由图象知,汽车行驶前一半路程(40km)所用的时间是1h,所以速度为40÷1=40(km/h),于是行驶后一半路程的速度是40+20=60(km/h),所以行驶后一半路程所用的时间为40÷60=(h),因为h=
×60(min)=40(min),所以该车一共行驶了1小时40分钟到达乙地,所以到达乙地的时间是当天上午10:40.故选B.
7.(xx·浙江温州)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.
(1)在图中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标.
(2)在图中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.
答案略
提升能力
8.已知点P(1-2m,m-1),则不论m取什么值,该P点必不在()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
答案A
解析①当1-2m>0时,m<,m-1<0,所以点P在第四象限,一定不在第一象限;②当1-2m<0时,m>,m-1既可以是正数,也可以是负数,点P可以在第二象限或第三象限.综上所述,P点必不在第一象限.
9.
(xx·浙江义乌)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(-
1,2),B(1,3),C(2,1),D(6,5),则此函数()
A.当x<1时,y随x的增大而增大
B.当x<1时,y随x的增大而减小
C.当x>1时,y随x的增大而增大
D.当x>1时,y随x的增大而减小
答案A
解析观察图象可知,AB段中y随x的增大而增大,BC段中y随x的增大而减小,CD段中y随x的增大而增大,再根据A、B、C、D各点的坐标可知,x<1时,y随x的增大而增大;当1<x<2时,y随x的增大而减小;当x>2时,y随x的增大而增大.故选A.
10.(xx·桐城模拟)若点M(3,-2)与点N(x,y)在同一条平行于x轴的直线上,且MN=1,则N点的坐标为()
A.(4,-2)
B.(3,-1)
C.(3,-1)或(3,-3)
D.(4,-2)或(2,-2)
点M(3,-2)与点N(x,y)在同一条平行于x轴的直线上,MN=1,∴y=-2,|x-3|=1,∴x=2或4,∴N点的坐标为(2,-2)或(4,-2).故选D.
如有侵权请联系告知删除,感谢你们的配合!
如有侵权请联系告知删除,感谢你们的配合!。