第三章 非均相物系的汇总

合集下载

第三章 非均相

第三章 非均相

2.器壁效应
当容器尺寸远远大于颗粒尺寸时,器壁效应可忽略, 否则需加以考虑
3.颗粒形状的影响
同一种固体物质,球形或近球形颗粒比同体积非球形 颗粒的沉降快一些。
沉降速度的计算
试差法
由于在计算出ut之前Ret的大小未知,因此要通过试 差确定应该选取的计算公式。即:先假设沉降属于 某一流型,则可直接选用与该流型相应的沉降速度 公式计算,然后按求出的ut检验Ret值是否在原假设 的流型范围内。
滞流区
d 2 ( s ) g ut 18
ut 0.27 d ( s ) g Re t0.6
过渡区

湍流区
ut 1.74
d ( s ) g

1.颗粒的体积浓度
影响沉降速度的因素
当颗粒的体积浓度小于0.2%时,理论计算值的偏差在1% 以内,当颗粒浓度较高时便发生干扰沉降
(四)离心沉降设备-旋液分离器
旋液分离器也称水力旋流器,其
结构和工作原理均与旋风分离器 类似,用于悬浮液的分离。
(五)离心沉降设备-沉降离心机
沉降离心机是利用机械带动液体旋转, 分离非均相混合物的常用设备。 主要特点:主体设备(转鼓)与混合物 共同共同旋转,通过转速调节,可以大 幅度 改变离心分离因数。 分类: 据操作方式:间歇式、连续式。 据设备主轴的方位:立式、卧式 据卸料方式:人工卸料式、螺旋卸料式、 刮刀卸料式。
球形颗粒的自由沉降
将表面光滑的刚性球形颗粒置于静止的流体介 质中,若颗粒的密度大于流体的密度,则颗粒 将在流体中降落 根据牛顿第二运动定律,颗粒所受三个力的合 力应等于颗粒的质量与加速度的乘积,即 Fg-Fb-Fd= ma
du d ( s ) g d ( ) d s 或 6 4 2 6 d

化工原理教案03非均相物系的分离

化工原理教案03非均相物系的分离

第三章 非均相物系的分离第一节 概 述一、 化工生产中常遇到的混合物可分为两大类:第一类是均相物系—如混合气体、溶液,特征:物系内各处性质相同,无分界面。

须用吸收、蒸馏等方法分离。

第二类是非均相体系— 1.液态非均相物系固体颗粒与液体构成的悬浮液; 不互溶液体构成的乳浊液;2.气态非均相物系固体颗粒(或液体雾滴)与气体构成的含尘气体(或含雾气体); 气泡与液体所组成的泡沫液等。

特征:物系内有相间的界面,界面两侧的物性截然不同。

(1)分散相:往往是液滴、雾滴、气泡,固体颗粒,µm 。

(2)连续相:连续相若为气体,则为气相非均相物系。

连续相若为液体,则为液相非均相物系。

二、 非均相物系分离的目的:1)净制参与工艺过程的原料气或原料液。

2)回收母液中的固体成品或半成品。

3)分离生产中的废气和废液中所含的有害物质。

4)回收烟道气中的固体燃料及回收反应气中的固体触媒等。

总之:以满足工艺要求,提高产品质量,改善劳动条件,保护环境,节约能源及提高经济效益。

常用分离方法:1)重力沉降:微粒借本身的重力在介质中沉降而获得分离。

2)离心分离:利用微粒所受离心力的作用将其从介质中分离。

亦称离心沉降。

此法适用于较细的微粒悬浮体系。

3)过滤:使悬浮体系通过过滤介质,将微粒截留在过滤介质上而获得分离。

4)湿法净制:使气相中含有的微粒与水充分接触而将微粒除去。

5)电除尘:使悬浮在气相中的微粒在高压电场内沉降。

本章主要讨论:利用机械方法分离非均相物系,按其涉及的流动方式不同,可大致分为沉降和过滤两种操作方式。

三、 颗粒和流体相对运动时所受到的阻力 流体以一定的速度绕过静止颗粒时或者固体颗粒在静止流体中移动时 流体对颗粒的作用力——ye 力F d22u AF d ρξ= [N]式中,A —颗粒在运动方向上的投影,πd p 2u —相对运动速度ξ—阻力系数, ξ=Φ(Re )=Φ(d p u ρ/μ)层流区:Re <2, ξ=24/Re ──Stokes 区过渡区:Re=2—500, Re 10=ξ ──Allen 区 湍流区:Re=500--2⨯105, ξ≌0.44 ──Newton 区第二节 重力沉降一、球形颗粒的自由沉降自由沉降──对于单一颗粒在流体中的沉降或者颗粒群充分地分散、颗粒间互不影响,不致引起相互碰撞的沉降过程。

考研必备《化工原理》第三章:非均相混合物

考研必备《化工原理》第三章:非均相混合物
33

(五) 助滤剂

当悬浮液中的颗粒很细时,过滤时 很容易堵死过滤介质的孔隙,或所形成 的滤饼在过滤的压力差作用下,孔隙很 小,阻力很大,使过滤困难。一般加入 助滤剂解决。 常用的助滤剂:硅藻土、珍珠岩、 石棉、炭粉、纸浆粉
34
二、过滤设备
( 一 ) 板框压滤机
35
板框压滤机是间歇式压滤机中应 用最广泛的一种。 此机是由多块滤板和滤框交替排 列而组成。板和框都用一对支耳 架在一对横梁上,可用压紧装置 压紧或拉开。 为了组装时便于区分,在板和框 的边上作不同的标记,非洗涤板 以一钮记,框以两钮记,洗涤板 以三钮记。
15
3. 过滤时当颗粒尺寸比 过滤介质孔径小时, 过滤开始会有部分颗 粒进入过滤介质孔道 里,迅速发生“架桥” 现象 4. 典型设备:板框压滤机 叶滤机 真空转筒过滤机 密闭加耙过滤机
16
五、筛分
1.筛分分析:用一组泰勒制标准筛 分析出混合颗粒的粒径分布。 每英寸长度上的孔数为筛子的目数 相临筛号的筛孔的直径比 2
rm 称为过滤介质的比阻,是单位厚度过滤介 质的阻力,其数值等于粘度为1Pa· s的滤液以 1m/s的平均速度穿过厚度为1m的过滤介质所 需的压力降。 52
p 为滤液通过滤饼层的压力降 为滤液的粘度
Lm 过滤介质的厚度

为单位体积滤液可得滤饼体积
de 为毛细孔道的平均直径 Rm 为过滤介质阻力,是过滤介质比
可测得混合颗粒大小的粒度分布 进行筛分时,将若干个一系列的筛按筛孔大 小的次序从上到下叠起来,筛孔尺寸最大的 放在最上面,筛孔最小的筛放在最下面,它 的底下放一无孔的底盘。 把要进行筛分的混合颗粒放在最上面的一个筛 中,将整叠筛均衡地摇动,较小的颗粒通过各 17 个筛的筛孔依次往下落。

非均相分离

非均相分离
第三章 非 均 相 分 离
1
第三章 非 均 相 分 离
§1 概述

非均相分离的分类
均相物系——传质操作(如蒸馏、吸收、萃取、干燥等)
非均相物系——机械操作(如沉降、过滤等)
1、非均相物系:存在相界面。对悬浮物有分分散相与连续相。
2、常见非均相物系分离操作有:
1)沉降物系置于力场,两相沿受力方向产生相对运动而分离,即沉降。 2)过滤:利用多孔的介质,将颗粒截留于介质上方达到液体与固体分离 3)湿法净制:“洗涤”气体 4)静电除尘:高压直流电场中,带电粒子定向运动,聚集分离。
………………(Ⅳ)牛顿定律
(三)沉降速度计算:
试差步骤:假设流型→采用对应公式计算 u t →校核 Ret 及流型
5
二、重力沉降计算举例
【例3-1】 有一玉米淀粉水悬浮液,温度20℃,淀粉颗粒平均直径为 15μm,淀粉颗粒吸水后的密度为1020kg m3 ,试求颗粒的沉降速度。
解:先假定沉降在层流区进行,故可以用式(Ⅱ)计算:
Pa
12
三、旋风分离计算举例
【例3-4】 某含尘空气中微粒的密度为1500 kg m3,温度70℃,常 压下流量1200 m3 h1。现采用筒体直径400mm的标准旋风分离器
进行除尘,试求能分离出尘粒的最小直径。
解:应用式(Ⅷ)求取 d c ,即:
dc
查图得: B D 0.4 0.1m, Ne 5 44
二、过滤基本方程式
dV P A
Ad r(V Ve)
…………………(Ⅸ)
即为滤饼不可压缩的过滤基本方程式。为过滤过程中任一瞬间的速度 dV ~ V 的关系。
d
15
三、恒压过滤

化工原理:(含答案)第三章 非均相物系的分离

化工原理:(含答案)第三章 非均相物系的分离

第三章 非均相物系的分离一、填空题:1.⑴一球形石英颗粒,在空气中按斯托克斯定律沉降,若空气温度由20°C 升至50°C ,则其沉降速度将 。

⑵降尘室的生产能力只与降尘室的 和 有关,而与 无关。

解⑴下降 ⑵长度 宽度 高度2.①在除去某粒径的颗粒时,若降尘室的高度增加一倍,则沉降时间 ,气流速度 ,生产能力 。

②在滞流(层流)区,颗粒的沉降速度与颗粒直径的 次方成正比;在湍流区,颗粒的沉降速度与颗粒直径的 次方成正比。

解①增加一倍 , 减少一倍 , 不变 ②2 , 1/2沉降操作是指在某种 中利用分散相和连续相之间的 差异,使之发生相对运动而实现分离的操作过程。

沉降过程有 沉降和 沉降两种方式。

答案:力场;密度;重力;离心3.已知q 为单位过滤面积所得滤液体积V/S ,e e e S V q V /,为为过滤介质的当量滤液体积(滤液体积为e V 时所形成的滤饼层的阻力等于过滤介质的阻力),在恒定过滤时,测得2003740/+=∆∆q q τ,过滤常数K = ,e q = 。

解0.000535 , 0.05354.⑴间歇过滤机的生产能力可写为Q =V/∑τ,此外V 为 ,∑τ表示一个操作循环所需的 ,∑τ等于一个操作循环中 , 和 三项之和。

一个操作循环中得到的滤液体积 ,总时间 ,过滤时间τ ,洗涤时间τw , 辅助时间τD⑵.一个过滤操作周期中,“过滤时间越长,生产能力越大”的看法是 ,“过滤时间越短,生产能力越大”的看法是 。

过滤时间有一个 值,此时过滤机生产能力为 。

不正确的 ,不正确的 , 最适宜 , 最大⑶.过滤机操作循环中,如辅助时间τ越长则最宜的过滤时间将 。

⑶ 越长(4). 实现过滤操作的外力可以是 、 或 。

答案:重力;压强差;惯性离心力5.⑴在过滤的大部分时间中, 起到了主要过滤介质的作用。

⑵最常见的间歇式过滤机有 和 连续式过滤机有 。

⑶在一套板框过滤机中,板有 种构造,框有 种构造。

【学习】第三章非均相物系的分离

【学习】第三章非均相物系的分离

d
ut
① 层流区或斯托克斯区(104 Ret 1)
24 R et
② 过渡区或艾伦区(1Ret 103)
18.5 R e t 0.6
③ 湍流区或牛顿区( 103Ret 2105) 0.44
整理课件
(1)层流区: ut
gd2(s ) 18
(非常重要) 称斯托克斯公式
(2)过渡区:
ut
0.2
u t d s 2 (1 s 8 )g ( 3 1 0 6 1 ) 0 2 1 ( 8 2 .8 6 1 6 1 .5 1 0 0 ) 6 0 9 .8 5 0 1 .0m 6 /s8
校核 R e td su t 3 0 1 0 1 6 . 8 6 0 .0 1 整6 0 理8 5 课5 件1 .1 6 5 0 .1 3 1
例 3-1 已 知 固 体 颗 粒 的 密 度 为 2600kg/m3 , 大 气 压 强 为 1.013×105Pa,试求直径为30μm的球形颗粒在30℃大气中的自 由沉降速度。解 由附录查取,30℃,1atm下空气的物性参数
密度 ρ=1.165kg/m3;粘度 μ=1.86×10-5Pa·s
假设沉降处于层流区
2)压力降
气体通过旋风分离器而引起的磨擦损失
称为气体通过旋风分离器的压力降。
整理课件
Pf
ui2
2
3)分离效率
旋风分离器的分离效率有两种表示方法,
一是总效率,以ηo表示;二是粒级效率, 以ηi表示。P157 总效率是指进入旋风分离器的全部颗粒中
被分离下来的颗粒的质量分率
粒级效率是指进入旋风分离器的直径为di 的颗粒被分离下来的颗粒的质量分率
当Fc、Fb、Fd三力达到平衡,有
d3

第三章 非均相物系分离

第三章  非均相物系分离

B B
含尘气体
用途:适用于含颗粒浓度为 0.01 ~ 500g/m3、粒度不小于5μm的气体净 化与颗粒回收操作,尤其是各种气固流态化装置的尾气处理。
排尘
结构和工作原理:含尘气体以较高的线速度切向进入器内, 在外筒与排气管之间形成旋转向下的外螺旋流场,到达锥底 后以相同的旋向折转向上形成内螺旋流场直至达到上部排气 管流出。颗粒在内、外旋转流场中均会受离心力作用向器壁 方向抛出,在重力作用下沿壁面下落到排灰口被排出。

2 gd p ( p )
18ut 0.153Pa s
9.81 (1.25103 ) 2 (7900 880) 18 0.039
校核雷诺数 R ep 上述计算有效
d put

1.25103 0.039 880 0.28 2 0.153
三、重力沉降设备-降尘室 降尘室:分离含尘气体中颗粒的重力沉降设备。
2 P
比表面积:单位体积颗粒所具有的表面积
S 6 a V dP
2、非球形颗粒
(1)当量直径 A:体积当量直径 B:面积当量直径:
d ev
3
6V

S
d es

C:比表面当量直径: d 6 6 ea a S /V (2)形状因数 常用球形度 Ψ 表示,即与颗粒等体积的一个球的表面积 与颗粒的表面积之比 2 2 d ev d ev 2 2 d es d es
CD为阻力系数,与颗粒的雷诺数Rep有关。对球形颗粒 24 d p u A:Rep<2,层流区 Rep 此时 CD Rep 2 gd p ( p ) 由此推出 u -斯托克斯公式 t 18
适用范围10-4<Rep<2

第三章 非均相物系的分离

第三章  非均相物系的分离
在操作中是确定所能完全分离最小颗粒直径的判据。当 Stoches定律适用时,颗粒在降尘室中作自由沉降,处理量为
Vs时能分离出的颗粒的最小直径dmin为:
2 gdmin ( s ) Vs ut 18 A0
降尘室底面积
d min
Vs 18 g( s ) A0
(2) 沉降槽(增稠器)
利用重力沉降分离悬浮液的设备。 分类:间歇式和连续式
沉降过程: 第一阶段:沉降槽上部,颗粒浓度低,近似自由沉降; 第二阶段:沉降槽下部,颗粒浓度大,属于干扰沉降。
沉降速度:通常由实验来确定。
悬浮液的沉聚过程
悬浮液的沉聚过程一般出现:清液区、等浓度区、变浓 度区和沉聚区。若颗粒不均匀,则不出现等浓度区。
颗粒存在,改变了流体的表观密度和表观粘度。
表观粘度: m
校正因子:
表观密度:
1 101.82 (1 )
m (1 ) s
计算干扰沉降速度:
求m、m ut ut
② 流体分子运动的影响
颗粒直径小于 2~3 μ m 以下时,抑制重力沉降。 ③ 液滴或气泡变形
u t2 离心力 m ar m r
离心加速度 颗粒的切线速度 A r1 r C ur u B
旋转半径
若颗粒为球形:
ut2 作用力 (s ) 6 r
颗粒密度
d 3
ut r2
流体密度
颗粒在旋转流体中的运动
阻 力
d 2 ur2
4 2
当作用力等于阻力时,可得离心沉降速度ur
4d ( s )ut2 d 2 ( s ) ut2 ur 相对运动为层流 3r 18 r
降尘室用于分离气体中的固体颗粒 重力沉降 沉降槽用于分离液体中的固体颗粒 离心沉降 旋风分离器用于分离气体中的固体颗粒 旋液分离器用于分离液体中的固体颗粒

第三章非均相物系的分离

第三章非均相物系的分离
第三章 非均相物系的分离和固 体流态化
2020年4月9日
1
3.1 概述
3.1.1 均相物系和非均相物系
均相物系:物系内部各处物料性质均匀而不存在相界面的混合物系。
非均相物系:物系内部有明显的相界面存在而界面两侧物料的性质不同的 混合物系。
3.1.2 非均相物系的分类
1.按状态分
液态非均相物系:固、液、气分散在液相中。分:
2.非球形颗粒:常用颗粒的当量直径和球形度表示其特性。 (1)体积当量直径de:与实际颗粒体积Vp相等的球形颗粒的直径 定义为非球形颗粒的当量直径。即:
de 3
6Vp
(2)表面积当量直径ds:表面积等于实际颗粒表面积Sp的球形颗 粒的直径定义为非球形颗粒的表面积当量直径。即:
ds
Sp
(3)比表面积当量直径da:比表面积等于实际颗料比表面积ap的球 形颗粒的直径定义为非球形颗粒的比表面积当量直径。即:
4.电子除尘:使含有悬浮尘粒或雾滴的气体通过金属电极间 的高压直流静电场,气体电离产生离子附着于悬浮尘粒或雾滴 上而使之荷电。荷电的尘粒、雾滴在电场力的作用下至电极后 发生中和而恢复中性从而达到分离。
3.2 颗粒及颗粒床层的特性
3.2.1 颗粒的特性(单颗粒的几何特性参数)
固体颗粒由于其形成的方法和条件不同,致使它们具有不同 的几何形状和尺寸,在工程计算中,常需要知道颗粒的几何特 性参数:即大小(尺寸)、形状和表面积(或比表面积)等。
de和s来表征。
3.颗粒群的特性
工业中碰到的颗粒大多是由大小和形状不同的若干颗粒组成 的集合体,称为颗粒群。但通常认为它们的形状一致,而只考 虑其大小分布,这样就提出了其粒度分布及其平均直径的问题。
(1) 按颗粒尺寸对颗粒群进行排列划分的结果称为粒度分布。根

化工原理 第三章 沉降与过滤

化工原理 第三章 沉降与过滤
(1)作用:防止滤饼压缩及细小颗粒堵塞过滤介质的孔隙。 (2)使用方法: A . 在悬浮液中加入助滤剂后一起过滤。 B. 先把助滤剂配成悬浮液并过滤,形成助滤剂层后,才正式过滤。 应予注意,一般以获得清净滤液为目的时,采用助滤剂才是适宜的。 (3)要求 A.能形成多孔饼层刚性颗粒 B.物理、化学性质稳定 c.具有不可压缩性(在使用的压力范围内)
二.过滤基本方程
1. 定义 (1)空隙率:单位体积床层中的空隙体积,,m3/m3。 (2)比表面:单位体积颗粒所具有的表面积,a,m2/m3。 2. 孔道当量直径
(1)
3. 过滤速度: 由 所以
(2)

u1 u /
(3)
过滤介质层相垂直的方向上床层空隙中的滤液流速u1 按整个床层截面积计算的滤液平均流速u
1.降尘室的总高度H,m;
2.理论上能完全分离下来的最小颗粒尺寸;
解:1)降尘室的总高度H
273 t 273 427 VS V0 1 2.564m3 / s 273 273
VS 2.564 H bu 2 0.5
2.564m
2)理论上能完全出去的最小颗粒尺寸
Vs 2.564 ut 0.214m / s bl 2 6
将(1)、(3)代入(2)并写成等式
pc 1 3 u ' 2 ( ) 2 K a (1 ) L
层流流动,K’值可取为5。
Pc u 2 ( ) 2 5a (1 ) L
3
——过滤速度表达式
4. 过滤速率(体积流量):单位时间内获得的滤液体积
显然
所以
5. 滤饼的阻力 令 — 滤饼的比阻
t
Vs blu t
——降尘室的生产能力

化工原理 第三章 非均相物系的分离和固体流态化.

化工原理 第三章 非均相物系的分离和固体流态化.

' 4.17 0.29
Reb
pf L
1 2 a2u
4.17
3
1 au2
0.29 3
6 a
sde
pf L
1 2 u 150 3 sde 2
1 u2
1.75
3 sde
Reb
3
pf L
1 2 u 150 3 sde 2
Reb
100
pf L
1 u2 1.75 3 sde
第三章 非均相物系分离和固体流态化
目的→基于流体 力学(颗粒与流 体间的相对运 动),掌握非均 相物系的机械分 离方法、过程计 算及其典型设备 的结构、特性和 选型。
非均相物系 概念
颗粒和颗粒床层特性
非均相物系的
沉降
分离和固体流 机械分离
态化
过滤
固体流态化
概念-非均相物系
1. 非均相物系 ① 非均相物系
均相混合物 (均相物系)
溶液与混合气体
混合物
分散物质 固体颗粒、液滴或气泡
非均相混合物 (分散相)
(非均相物系) 分散介质 气态非均相物系(含尘气体)
(连续相) 液态非均相物系(悬浮液)
概念-非均相物系
② 非均相物系的分离方法 沉降→颗粒相对于流体(静止或运动)运动而实现悬 浮物系分离,作用力是重力或离心力。
1/100 0.0042 0.0058 in或147 μm
概念-颗粒
② 颗粒群的平均粒径 颗粒群的平均粒径→常用平均比表面积直径,即Sauter直径。
k
da2
6
da3
ni di2
i 1
k i 1
ni
6
di3
xi K nisdi3

化工原理:3-1非均相物系分离

化工原理:3-1非均相物系分离
基于流体力学的理论,一般可采用机械分 离的方法进行分离
1、沉降:颗粒相对于流体运动。 重力沉降 离心沉降 电场力
返回
2、过滤:流体相对于固体颗粒床层运动。
重力过滤 加压过滤 真空过滤 离心过滤
返回
其他方法
离子交换分离 如: 水中的Ca2+, Mg2+
膜分离 如 :海 水的脱盐、造纸废 水的处理
Feed
Product
Separating agent
Separation equipment accounts for 50 to 90% of the capital investment in large-scale petrochemical processes centered around chemical reactions
悬浮液、乳浊液、泡沫液
气态非均相物系:固、液分散在气相中。 含尘气体、含雾气体
返回
按颗粒大小分 粗悬浮系统:d>100μm •悬浮系统:0.1μm>d>100μm •胶体系统:d<0.1μm
返回
3.1.3 非均相物系的分离目的
回收有用的分散相 净化连续相 环境保护的需要
返回
3.1.4 非均相物系的分离方法
composed of about 70% coal
power with particular particle
size distribution, 30% water
and little additive(less than
1%).
返回
3.1.2 非均相物系的分类
根据连续相的状态分: 液态非均相物系:固、液、气分散在液相中。
返回
②无量纲参数判别法(K判据法)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4d(S
)
u
2 T
3 R
ut是常量,ur随uT和R变化,是变量。
2.离心沉降所处理的非均相物系中固粒直径通常很小,沉降一般
在滞流区进行,故其沉降速度可表示为:
ur
d2 (S ) 18
u
2 T
R
3.分离因数:同一颗粒在同种介质中的离心沉降速度与重力沉降
速度的比值,以Kc表示:
KC
ur ut
u
2 T
粒径d/μm
d<dc的颗粒有些可能已在进口处靠近壁面,在停留时间内能 够到达器壁;或者互相聚集而成大颗粒因而具有较大的沉降速 度。
②颗粒向器壁运动时,穿过厚度为进气口宽度B的流体层;
③颗粒与流体相对运动为滞流,且ρs>>ρ。
ur
d2 (S ) uT2 18 R
d2S 18
u
2 i
Rm
临界粒径计算公式的推导
颗粒到达器壁所需沉降时间:t
B ur
18R mB
d
2Su
2 i
气流在旋风分离器内停留时间: l 2R m Ne
ui
ηo~di粒级效率曲线:
100
粒径效率ηpi/%
此曲线可通过实测旋风分离器进、
出口气流中的含尘浓度及粒度分布得
到。设其临界直径dc为10μm。理论 上 : 凡 d>10μm 的 颗 粒 , 均 应
ηpi=100%;而 d<10μm的颗粒,均
为ηpi=0,即为折线所示。
0 10
实际上:d<dc的颗粒也有可观的 分 离 效 果 ; d>dc 的 颗 粒 也 有 部 分 未 被分离下来。其原因:
第三章 非均相物系的分离——离心沉降
依靠惯性离心力的作用而进行的沉降过程称为离心沉降。 对于两相密度差较小,颗粒粒度较细的非均相物系,用重力沉 降很难进行分离甚至完全不能分离时,改用离心沉降则可大大 提高沉降速度,且可缩小设备尺寸。
离心沉降是利用沉降设备使流体 和颗粒一起作旋转运动,在离心力的 作用下,由于颗粒密度大于流体密度, 将使颗粒沿径向与流体产生相对运动, 从而实现分离。在高速旋转的过程中, 颗粒受到的离心力比重力大得多,且 可根据需要进行调整,因而其分离效 果好于重力沉降。
pi
C1i C2i C1i
100 %
式中:
C1i、C2i-粒径为di的颗粒在旋风分离器进口、出口气体中的 含尘浓度,g/m3。
分效率的表示方法:
ηo~di曲线 称粒级效率曲线 ηpi ~di/d50函数曲线 d50用以下经验公式估算。
其中:d50 0.27
D ui (S )
式中:d50-分效率为50%的颗粒直径,称为分割粒径
一、离心沉降速度
流体作圆周运动时,使其方向不断改变的力称为向心力。而
颗粒的惯性却促使它脱离圆周轨道而沿切线方向飞出,这种惯性
力称为离心力。当颗粒在距中心R处旋转时,其切向速度uT,径
向速度ur 。受力分析:
离心力:F
m
u
2 T
R
6
d
3S
u
2 T
R
方向向外
向心力:FC
6
d3
u
2 T
R
方向向内
阻力:Fd
ui
若某种尺寸的颗粒所需的沉降时间θt恰等于气流在器内停 留时间θ,该颗粒就是理论上能被完全分离下来的最小颗粒。
以dC代表这种颗粒的直径,即临界粒径,则:
18R mB
d
C2 S
u
2 i
2R m Ne ui
故:
dC
9B N eS u i
dC
9B NeSui
〖讨论〗
D↑,B=D/4↑,dC↑,η↓ 故设备尺寸不能太大,当气体处理量大时,使用若干小尺寸
(1)含尘气体处理量:旋风分离器的处理量除与其进口宽度B和高
度h有关外,主要由进口气速ui来确定,气速过高过低均对分离 效率不利,一般在15~25m/s之间,故:VS=uiBh
(2)临界直径dC:指理论上能够完全分离出来的最小颗粒直径, 为判断旋风分离器分离效率高低的重要依据之一。
①气体在旋风分离器中有规则地旋转Ne圈,旋转的平均半径为 Rm,切向速度恒等于进口气速,即uT=ui=VS/(hB)
gR
Kc值一般在102~105之间,其大小反映了离 心沉降设备的效能为重力沉降设备的倍数,是
离心分离设备性能的一项重要指标。
二、旋风分离器的结构与操作原理
构造:进气管、上筒体、下锥体和中央升气 管等
操作原理:含尘气体由进气管进入旋风分 离器后,沿圆筒的切线方向,自上而下作圆周 运动。渐向筒壁运动,到达筒壁后沿壁面落 下,自锥体排出进入灰斗。
〖说明〗旋风分离器一般用来除去气流 中粒径5μm以上的尘粒,对颗粒含量 高于200g/m3的气体,由于颗粒的聚 集作用,它甚至能除去3μm以下的颗 粒。
对直径在200μm以上的颗粒最好先 用重力沉降法除去,以减小对器壁的磨 损;
对于直径5μm以下的颗粒,除尘效 率很低,需采用袋滤器或湿法捕集。
三、旋风分离器的性能
4
d2
u
2 r
2
方向向内
F
ur uT
FC R
Fd
在稳定运动中,作用力与阻力达到平衡,颗粒
与流体的相对运动速度ur达到恒定,即:
离心
6
d
3
(S
)
u
2 T
R
d2 4
u
2 r
2
0
ur
4d(S
)
u
2 T
3 R
沉降 速度
〖说明〗
1.重力沉降速度:u t
4d(S ) g 3
离心沉降速度:u r
旋风分离器并联使用,以维持较高的分离效率。
ui↑,dC↓,η↑ 说明提高进口气速可提高分离效率,但进口阻力增加,同时
湍流状况增大,易带起灰尘,所以一般不采用此法。
上式中只要给出合适的Ne值,即可计算dC。 一般情况:Ne=0.5-3.0; 标准型:Ne=5.0
(3)分离效率
分离效率是衡量旋风分离器操作效果的参数,可用总效率和分 效率表示。
净化后的气流在中心轴附近范围内由下而 上做旋转运动,最后经顶部排气管排出。
通常,将下行的螺旋形气流称为外旋流, 上行的螺旋形气流称为内旋流。内、外旋流的 旋转方向相同。外旋流的上部是主要除尘区。
主要结构参数为筒体直径D,其它尺 寸以D为标准,如图示。
〖特点〗:结构简单,造价低廉,无运 动部件,操作范围广,可用多种材料制 造,是化工、轻工、冶金等部门常用的 分离和除尘设备。
①总效率η0: 进入旋风分离器的全部粉尘中被分离下来的质 量百分率,即:
式中:
0
C1 C2 C1
100 %
C1、C2-旋风分离器进口、出口气体中的含尘浓度,g/m3。 总效率是工程上最常用的,也是最易于测定的分离效率。其
缺点是不能表明旋风分离器对各种尺寸粒子的不同分离效果。
②分效率(粒级效率) ηi 按各种粒度分别表明其被分离下来的质量百分率。即:
相关文档
最新文档